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ABSTRACT

This thesis explores various Trilinos packages to determine a
method for updating the deal.ii library, which specializes in solv-
ing partial differential equations by finite element methods. It be-
gins with introducing related concepts and general goals, followed
by exploring computational and mathematical methods which are
analytical solutions of one-dimensional Boussinesq equations and
developing newer prototypes for solvers in deal.ii based on Trilinos
packages. After demonstrating the methods, it indicates the redu-
cing solving time in newer prototypes. Based on results from the
prototype, similar methods are applied to update the deal.ii lib-
rary. In the end, a testing program is exploited to demonstrate the
improvement in performance for deal.ii.
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1 Introduction

Real world phenomenon in physics such as heat dynamics, fluid dynamics, and
quantum mechanics can mostly be represented by systems of partial differential equa-
tions (PDEs). Also, PDE systems can be enormous since they mostly describe phe-
nomenon observed across dimensions. Therefore, PDE systems of this size are normally
solved by computational software which is capable of formulating and solving large PDE
systems.

Nowadays, solving large systems is still time-consuming. Thus, scientists are de-
veloping new software and hardware to improve efficiency. One approach to improve
performance is by revising data structures and solving methods mainly through two
high performance techniques: parallelism and templates.

1.1 Introduction to Parallel Computing

As opposed to traditional sequential computing, parallel computing takes advant-
age of computer architectures in which there are multiple processors. The goal of
parallel computing is to reduce running time.[8]

The distributed memory model and the shared memory model are two major types
of parallel computing models. For instance, the Message Passing Interface (MPI), a
distributed memory model, relies on distributed networks, which is flexible and ex-
pressive. The OpenMP, a shared memory model, relies on multi-core processors, which
is easier to program and debug[11].1

1.2 Introduction to Template Programming

‘Templates’ are a distinct feature in the C++ programming language that allows
functions and classes to handle more data types or structures. Adopting ‘template’
programming has several benefits on my project, one of which reduces the repetition
in codes and allows programs to accept user-made data types besides the predefined
ones.

1.3 Introduction to Boussinesq Equation

In partial differential equations (PDEs), Boussinesq equations are often found in
fluid dynamics, describing groundwater flow through an aquifer as a nonlinear parabolic
PDE. The equation is named after Joseph Boussinesq, who first derived it in response to
John Scott Russell’s observation of the ”wave of translation” (also known as a solitary
wave or soliton). Boussinesq’s 1872 paper introduces the equations now known as the
Boussinesq equations[2].

1This project needs MPI-able environment.
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2 Contributions to this Topic

This thesis intends to provide several contributions to the scientific computing
field. First, it provides a detailed analytical solution for one-dimensional Boussinesq
equations (flow equation). Secondly, it demonstrates reasons to update deal.ii by
examining differences between various data services and solver abilities. Lastly, it
provides the potential conversions and modifications of deal.ii with more recent Trili-
nos packages.

3 Problem Statement

When trying to solve a large partial differential system by using computers, a
powerful software can be highly effective. Hardware technology advances rapidly, how-
ever, software takes years to catch up. When modifying and updating codes, we need
to reflect the current computer architectures and programming languages.[8]

In this thesis, I propose to update the Trilinos wrapper classes in deal.ii. Cur-
rently, deal.ii (version 8.4.1) uses Epetra for its vector and matrix representations,
ML and MueLu(partially) as its preconditioning, and AztecOO as its iterative linear
solver. Throughout the years, Trilinos (version 12.10) has seen a newer version for data
representation named Tpetra, and a newer version of linear solver named Belos.

To demonstrate the improvement of runtime performance, my intention is to use
one of the tutorial programs in deal.ii ‘step-32’ which are embedded with Trilinos wrap-
per classes of deal.ii. The step-32 constructs and solves multi-dimensional Boussinesq
equations. Thus, to have a better understanding of Boussinesq equations, my project
explores analytical solution of one-dimensional Boussinesq equations as discussed in a
1984 paper written by Christos D. Tzimopoulos Panagiotis K. Tolikas, and Epaminon-
das G. Sidiropoulos.

2



4 Background

4.1 One-Dimensional Boussinesq Equation

In general, the one-dimensional Boussinesq Equation has the form

∂h

∂t
=
K

S

∂

∂x
(h
∂h

∂x
) (4.1)

where K (in meters per second) and S (dimensionless) are hydraulic conductivity and
specific yield of the aquifer, respectively; h (in meters) is the depth of water from the
impermeable substratum; x is the horizontal distance from the origin; and t is the time.
The boundary conditions for the equation are given by

x = 0 t > 0 h = h1 (4.2)

x > 0 t = 0 h = h0 (4.3)

where h0 the initial depth of the water from the impermeable substratum, and h1 the
depth of water from the impermeable substratum at the origin. We consider this case
as an abrupt raising of piezometric head at the origin, i.e., h1 > h0 [12]. We can
approximate the solution as following:

Figure 1: Expected piezometric solution curve for H. [12]
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4.2 The deal.ii

‘Deal’ is the abbreviation of Differential Equations Analysis Library and ‘II’ in-
dicates that it is the successor of ‘Deal’. The deal.ii library is an open source C++
library that aims to solve partial differential equations by finite element methods. It
allows rapid development of modern finite element codes via providing simple meshes
programming content. The deal.ii library was introduced at Universität Heidelberg,
Germany, based on works by the Numerical Methods Group, which concentrated in
finite element methods and error estimation.[6]

4.3 Trilinos Packages

‘Trilinos’ is a collection of open-source software libraries, called packages, inten-
ded to be used as building blocks for the development of scientific applications. The
word ‘Trilinos’ is from Greek and means ‘a string of pearls’, suggesting a number of
software packages linked together by a common infrastructure. Trilinos was developed
at Sandia National Laboratories from a core group of existing algorithms and utilizes
the functions of software interfaces such as the BLAS, LAPACK, and MPI.[5]

4.3.1 Petra Packages

Petra is the Greek word for ‘foundation’. Therefore in Trilinos, Epetra, Tpetra and
Xpetra are representers for basic mathematical structures such as vectors, matrices, and
graphs. In general, all Petra packages are capable of parallel execution on distributed
memory machines.

1. Epetra
The ‘E’ stands for ‘essential’ and defines the basic classes for distributed matrices
and vectors, linear operators and linear problems. All packages in Trilinos support
Epetra, which means that each package accepts Epetra objects as input2[10].
Epetra supports double-precision numbers, floating point data, which can be
extended to 64-bit indices. This allows powerful combinations among the various
Trilinos functions. Epetra provides a high level of portability and stability. [8]

2. Tpetra
The ‘T’ stands for ‘template’. Tpetra can create templated distributed linear
Algebra objects. Because Tpetra uses templates technique, it allows Tpetra to
accept more data types than Epetra. In particular, Tpetra is based on two major
data types: ordinal type and scalar type. The ordinal type is used for storing
countable items, i.e. the number of non-zero elements in a matrix. The scalar
type is the type of stored data, which can be varying from a complex number to
a small 2× 2 matrix. [10]

2The MueLu package only accepts Epetra or Tpetra objects wrapped by Xpetra.
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3. Xpetra
Xpetra is a wrapper interface which accepts both Epetra and Tpetra objects.
The Xpetra also uses template technique like Tpetra. Xpetra enables algorithm
developers to write to a single interface but be able to use either Epetra or Tpetra.
Most importantly, Xpetra is used by MueLu preconditioner. [7]

4.3.2 Solver Packages

AztecOO and Belos are both iterative solver packages in Trilinos. The linear
system has the form Ax = B, where A is the left-hand side n by n matrix, X is th
solution, and B is the right-hand side.

1. AztecOO
AztecOO is a linear solver package based on preconditioned Krylov methods. It
only supports Epetra objects. [10]

2. Belos
Belos provides next-generation iterative linear solvers and a powerful linear solver
developer framework. Belos supports both Epetra and Tpetra objects. Belos
also enables template, because user can benefit from Belos-defined abstract base
classes, which can be considered as more efficient.[10]

4.3.3 Preconditioning Packages

ML and Muelu are both preconditioner packages in Trilinos.

1. ML
ML is the algebraic (M)ulti(L)evel preconditioner package which has scalable
preconditioning capabilities for a variety of problems. It can be used as the
preconditioner for both AztecOO and Belos solvers, however, it only supports
Epetra objects.[10]

2. MueLu
MueLu is an extensible algebraic multi-grid library that is part of the Trilinos
packages. MueLu only works with Xpetra interface which wraps either Epetra or
Tpetra objects as long as the program is consistent with its data structure. The
library is written in C++ and enables templated traits. Like Tpetra, The MueLu
package allows for different ordinal and scalar types. Also, the MueLu package
is designed to support various computer architectures from supercomputers to
personal computers.

4.3.4 Finite Element and Matrix Generation Package

Galeri is the Greek word for Gallery. The Galeri can generate a variety of distributed
linear systems. The Galeri packages can also generate several well-known finite element
and finite difference matrices.

5



4.3.5 Summary of Trilinos Packages

Name Description Usage

Epetra

Essential package for building math-
ematical structures. Objects based
on Epetra can be used in many other
solver/preconditioning packages.

It is currently used in deal.ii-8.4.1.

Tpetra

A template based kernel for building
mathematical structures. Also, it is
a newer generation of Epetra.

To replace Epetra in deal.ii-8.4.1

Xpetra An interface wraps E/Tpetra.

It is used by MueLu. In deal.ii c

preconditioningAMGMulue class,
Epetra objects are wrapped by
Xpetra in order to use MueLu as
preconditioner.

ML
Multigrid preconditioner (MGP).
Main multigrid preconditioner pack-
age in Trilinos

Currently used by deal.ii.

MueLu
Newer generation of MGP. MueLu
is a flexible, high-performance mul-
tigrid solver library.

Currently, it is in deal.ii but not
supporting Tpetra.

AztecOO

Iterative solver. It allows flexible
construction of matrix and vector ar-
guments via Epetra matrix and vec-
tor classes.

Currently, deal.ii uses AztecOO as
wrapper solver for Trilinos objects.

Belos
A next-generation iterative linear
solvers and a powerful linear solver
developer framework.

To replace AztecOO in deal.ii

Galeri
Galeri contains a suite of utilities
and classes to generate a variety of
(distributed) linear systems.

Prototypes use Galeri to generate
problems. Not used in deal.ii

Table 1: Trilinos Packages.[8]
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5 Methods

5.1 Solving the One Dimensional Flow Equation Analytically

In Section 4.1,the partial differential equation to be solved is

∂h

∂t
=
K

S

∂

∂x

(
h
∂h

∂x

)
(5.1)

The boundary conditions of this partial differential equations are defined as

x = 0 t > 0 h = h1 (5.2)

x > 0 t = 0 h = h0 (5.3)

In order to solve this partial differential equation analytically, it needs to be reduced
into an ordinary differential equation by substituting x and t as,

η =
x

[(Kh0/S)t]1/2
(5.4)

Based on (5.2), (5.3) and (5.4), rewrite h(x, t) as H(η) as

h(x, t) = H(η) = H

(
x

[(Kh0/S)t]1/2

)
(5.5)

H = h/h0 µ = h1/h0 (5.6)

Then, we can reduce (5.1) into ordinary differential equations with boundary condition
(5.6) by applying chain-rule. It follows

∂h

∂t
=
K

S

∂

∂x

(
h
∂h

∂x

)
dH

dη
· ∂η
∂t

=
K

S

d

dη

(
h · dH

dη
· ∂η
∂x

)
∂η

∂x

dH

dη
· −x

2t
√

ktho
S

=
K

S

d

dη

h · dH

dη
· 1√

Kth0
S

 · 1√
Kth0
S

−dH

dη
· η

2t
=
K

S

d

dη

(
h · dH

dη

)
· S

Kt · h0

−dH

dη
· η

2t
=

d

dη

(
h · dH

dη

)
1

t · h0

−dH

dη
· η

2
=

d

dη

(
h

h0
· dH

dη

)
−dH

dη
· η

2
=

d

dη

(
H · dH

dη

)

(5.7)
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Thus, the result of simplification produces the ordinary differential equation with
boundary conditions (5.2) and (5.3) as

− η

2

dH

dη
=

d

dη

(
H

dH

dη

)
(5.8)

η = 0 H = µ (5.9)

η =∞ H = 1 (5.10)

Before we take integral to solve (5.8), we need to extract some properties from the
differential equations first. From (5.8), at the origin using product rule, it follows

d

dη

(
H

dH

dη

)
=

dH

dη
· dH

dη
+H · d

dη

(
dH

dη

)
(5.11)

Since we are looking at the origin when η = 0, by simplifying (5.11) we have:

0 = H
d2H

dη2
+

(
dH

dη

)2

(5.12)

Theorem 1. There exists an inflection point in H(η).

Remark. Let η = L→∞, which L is the so-called penetration distance of the H [12].

Proof. When η = L → ∞, H(η) approaches the horizontal asymptote H(L) = 1,
given by its boundary (5.10) and (5.12). At the origin the second derivate of H(η) is

−
(

dH
dη

)2/
H < 0. Therefore, to allow H(η) → 1 when η → ∞, an inflection point

must exist.

Let ηk be the inflection point, where the second derivative of H(η) is zero. Thus, from
(5.8) at the inflection point ηk it follows

− η

2

dH

dη
= H

d2H

dη2
+

(
dH

dη

)2

= 0 +

(
dH

dη

)2

(5.13)

or

− ηk
2

=
dH

dη

∣∣∣
η=ηk

(5.14)

Thus, let H(ηk) = v and the main characteristics of H(η) are

H(ηk) = v − ηk
2

=
dH

dη

∣∣∣
η=ηk

0 =
d2H

dη2

∣∣∣
η=ηk

H(0) = µ H(L) = 1 (5.15)

Then, in the interval ηk ≤ η ≤ L, a way to express H(η) by interpolating H approxim-
ately as a polynomial. We need to fit this polynomial respects characteristics above.
Thus, we have the form

H = v − ηk
2

(η − ηk) + A(η − ηk)λ (5.16)

where the unknowns are λ, ηk, v, A, L, µ.
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5.1.1 The Important Properties of H(η)

This subsection demonstrates details in solving the ordinary differential equation form
of H by find the properties of the unknowns via various algebraic manipulations.

� Property 1: A+C=B+C
The following figure from previous section (Figure 1) is modified to highlight the
area under the postulated solution curve. We extract the first property from the this
figure.

Figure 2: Modified postulated piezometric solution curve for H. [12]

Integrate (5.8) from η = ηk to L→∞ yields∫ L

ηk

−η
2

dH

dη
dη =

∫ L

ηk

d

dη

(
H

dH

dη

)
dη (5.17)

Applying integration by parts, the left-hand side of (5.17) yields∫ L

ηk

−η
2

dH

dη
dη = −η

2
·H
∣∣∣L
ηk

+
1

2

∫ L

ηk

Hdη

= −L · 1
2

+
ηk · v

2
+

1

2

∫ L

ηk

Hdη

(5.18)
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Similarly, the right-hand side of (5.17) yields3∫ L

ηk

d

dη

(
H

dH

dη

)
dη = H

dH

dη

∣∣∣L
ηk

= 1 · 0− v ·
(
−ηk

2

)
=
vηk
2

(5.19)

Thus, putting (5.18) and (5.19) together, it follows

−L · 1
2

+
vηk
2

+
1

2

∫ L

ηk

Hdη =
vηk
2

ηk − L+

∫ L

ηk

Hdη = ηk∫ L

ηk

(−1)dη +

∫ L

ηk

Hdη = ηk

(5.20)

or ∫ L

ηk

(H − 1)dη = ηk (5.21)

This equation can be interpreted as the area of A is the same as B from Figure 2.
Thus, the area bounded by the H solution curve and the lines H = 1 and η = ηk is
equal to ηk.

Theorem 2. In Figure 2, Area(C +B) = Area(C + A)

Proof. Based on Calculus knowledge, (5.21) yields,∫ L

ηk

(H − 1)dη =

∫ L

0

(H − 1)dη −
∫ ηk

0

(H − 1)dη (5.22)

or ∫ L

0

(H − 1)dη = −
∫ ηk

0

(H − 1)dη +

∫ L

ηk

(H − 1)dη

=

∫ ηk

0

(H − 1)dη + ηk

=

∫ ηk

0

(H − 1)dη +

∫ ηk

0

1dη

=

∫ ηk

0

Hdη

(5.23)

Thus, we have ∫ ∞
0

(H − 1)dη =

∫ ηk

0

Hdη (5.24)

It suggests that the area between the H solution curve and the line H = 1 equals
the area bounded by the H curve, the axes H = 0 and η = 0, and the line η = ηk.
Thus,Area(C +B) = Area(C + A)[12].
3The first derivative of H equals to 0 when η →∞, for H approaches horizontal asymptote.
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� Property 2: Two Integral Values at Inflection Points

Then, multiply (5.8) by η and integrate it from η = 0 to η = ηk yields∫ ηk

0

−η
2

2

dH

dη
dη =

∫ ηk

0

η
d

dη

(
H

dH

dη

)
dη (5.25)

Apply integration by parts on left-hand sides of (5.25), it follows∫ ηk

0

−η
2

2

dH

dη
dη = −η

2

2
·H
∣∣∣ηk
0

+

∫ ηk

0

ηHdη = −vη
2
k

2
+

∫ ηk

0

ηHdη (5.26)

Similarly, right-hand sides it follows∫ ηk

0

η
d

dη

(
H

dH

dη

)
dη = Hη

dH

dη

∣∣∣ηk
0
−
∫ ηk

0

(
H

dH

dη

)
dη

= −vη
2
k

2
− H2

2

∣∣∣ηk
0

= −vη
2
k

2
− v2 − µ2

2

(5.27)

Then, putting (5.26) and (5.27) together, we have∫ ηk

0

ηHdη =
µ2 − v2

2
(5.28)

Similarly, multiply (5.8) by η and integrate it from η = ηk to η =∞ yields∫ ∞
ηk

−η
2

2

dH

dη
dη =

∫ ∞
ηk

η
d

dη

(
H

dH

dη

)
dη (5.29)

Apply integration by parts on (5.29), it yields∫ ∞
ηk

−η
2

2

dH

dη
dη =

∫ ∞
ηk

η
d

dη

(
H

dH

dη

)
dη(

η2k
2

)
− L2

2
+

∫ ∞
ηk

ηHdη = −1 + v2

2
+

(
η2k
2

)
∫ ∞
ηk

−ηdη +

∫ ∞
ηk

ηHdη = −1 + v2 + η2k
2

(5.30)

or ∫ ∞
ηk

η(H − 1)dη =
v2 − 1 + η2k

2
(5.31)
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5.1.2 Polynomial Approximation Of the Solution

Now, we are ready to find all the unknowns of

H = v − ηk
2

(η − ηk) + A(η − ηk)λ (5.32)

We need to determine constants A and λ. Based on all boundary conditions, we can
make following boundary conditions based on (5.32)

H(L) = 1 = v − ηk
2

(L− ηk) + A(η − ηk)λ (5.33)

dH

dη

∣∣∣
η=L

= 0 = −ηk
2

+ A · λ(L− ηk)λ−1 (5.34)

In (5.21), we can substitute H(η) by the expression in (5.32). On the left-hand side of
(5.21) we have∫ ∞

0

(H − 1) dη =

∫ ∞
0

(
v − ηk

2
(η − ηk) + A (η − ηk) λ − 1

)
dη

=

(
−η + vη − η2ηk

4
+
ηηk

2

2
+ A (η − ηk) λ

(
η

1 + λ
− ηk

1 + λ

)) ∣∣∣∞
0

= −η
∣∣∣∞
0

+ vη
∣∣∣∞
0
− η2ηk

4

∣∣∣∞
0

+
ηηk

2

2

∣∣∣∞
0

+
A (η − ηk) 1+λ

1 + λ

∣∣∣∞
0

= −L+ vL− L2ηk
4

+
Lηk

2

2
+
A (L− ηk) 1+λ

1 + λ
(5.35)

while on the right-hand side we have∫ ηk

0

H dη =

∫ ηk

0

(
v − ηk

2
(η − ηk) + A (η − ηk) λ

)
dη

=

(
vη − η2ηk

4
+
ηηk

2

2
+ A (η − ηk) λ

(
η

1 + λ
− ηk

1 + λ

)) ∣∣∣ηk
0

= vη
∣∣∣ηk
0
− η2ηk

4

∣∣∣ηk
0

+
ηηk

2

2

∣∣∣ηk
0

= vηk +
ηk

3

4

(5.36)

So put (5.35) and (5.36) together

(ηk)− L+ vL− L2ηk
4

+
Lηk

2

2
+
A (L− ηk) 1+λ

1 + λ
= vηk +

ηk
3

4
(+ηk)

(v − 1) (L− ηk)−
ηk (L− ηk) 2

4
= ηk

(5.37)
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Similarly, from (5.32), and (5.21),∫ ∞
ηk

η(H − 1)dη =

∫ ∞
ηk

η(H − 1) dη −
∫ ∞
ηk

ηk(H − 1) dη +

∫ ∞
ηk

ηk(H − 1) dη

= η2k +

∫ ∞
ηk

(η − ηk)(H − 1)dη

= η2k +

∫ ∞
ηk

(η − ηk)
(
v − ηk

2
(η − ηk) + A(η − ηk)λ − 1

)
dη

= η2k +

(
A(η − ηk)λ+2

λ+ 2
− η3ηk

6
+
η2η2k

2
− η2

2
− ηη3k

2
+ ηηk +

η2v

2
− ηηkv

) ∣∣∣∞
ηk

= η2k +

(
A(L− ηk)λ+2

λ+ 2
− L3ηk

6
+
L2η2k

2
− L2

2
− Lη3k

2
+ Lηk +

L2v

2
− Lηkv

)
−
(
−η

4
k

6
+
η2k
2
− η2kv

2

)
=
A (η − ηk) λ+2

λ+ 2
− 1

6
ηk (L− ηk) 3 +

1

2
(v − 1) (L− ηk) 2 + η2k

(5.38)

From(5.31), we can find such equality

A (η − ηk) λ+2

λ+ 2
− 1

6
ηk (L− ηk) 3 +

1

2
(v − 1) (L− ηk) 2 = −η

2
k

2
+
v2

2
− 1

2
(5.39)

Also, in the interval of 0 ≤ η ≤ ηk, the area under the H(η) is taken approximated
as a linear function on interval [0, ηk]. From the Figure 2, we learn that H(η) across
points (0, µ) and (ηk, v). Put two points into a linear function, we have

H =
v − µ
ηk

η + µ (5.40)

Thus, left hand side of (5.28) can be reduced into∫ ηk

0

(
v − µ
ηk

η2 + µ

)
dη = η2k ·

2v + µ

6
(5.41)

and consequently (5.28) yields

η2k = 3
µ2 − v2

µ+ 2v
(5.42)

Equations (5.33),(5.34),(5.37),(5.39) and (5.28) construct a five parameters systems.
The unknowns are λ, ηk, v, A, L, µ. Then, after some algebraic manipulations, we have
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the iterative system with 4 intermediate variables D1, D2, D3 and D4, as following

D1 =
8λ

λ− 1
− 4λ2

(λ− 1)2
+

8λ2

(λ− 1)2

(
1

λ(λ+ 1)

)
D2 =

v − 1

ηk
=

2√
D1

D3 = L− ηk =
2λ

λ− 1
D2

D4 = D2D
2
3 −

D3
3

3
+

D3
3

λ(λ+ 2)

ηk = (D4 − 2D2)(−1 +D2
2)−1

A

ηk
=

1

2λDλ−1
3

(5.43)

Up to this point, we have all the parameters worked out and the iteration can be
carried out by choosing an initial value for λ > 2. simplifying it further, we have all
the parameters from (5.43)

ηk = (D4 − 2D2)
(
−1 +D2

2

)−1
v =

2ηk√
D1

+ 1

L =
2λ

λ− 1
D2 + ηk

A =
ηk

2λDλ−1
3

(5.44)

Also, from (5.44) we have

3µ2 − η2kµ− 3v2 − 2vη2k = 0 (5.45)

To solve µ, we need to use quadratic formula:

µ =

(
−η2k +

√
η4k + 12 (3v2 + 2η2kv)

)
/6 (5.46)

I use Matlab to assist for solving the system. The Matlab code is listed in Section 8.4.
Also, the result is demonstrated in the Section 6.1.
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5.2 Prototype Development

In previous work conducted by Emily Furst, she created three prototypes and
compared them in different problem sizes: 503, 1203, 1903, 2603,3303 and 4003. The
results in her paper suggested that MueLu + Belos4 are a suitable way to update
deal.ii, which currently uses ML + AztecOO. When she used Xpetra objects, however,
she instantiated Xpetra to Epetra. Thus, in my prototype, I instantiate Xpetra to
Tpetra moving a step forward.

Thus, to show the differences, three different prototypes are developed, which
each one solves a similar problem generated by Galeri. The mathematics problem
represents by Xpetra interface, which builds a(n) either Epetra or Tpetra expressed
by the command Xpetra::UseEpetra for Epetra or Xpetra::UseTpetra for Tpetra.
In the following code, MueLu is used for instantiating Xpetra objects into Epetra or
Tpetra objects.

Listing 1: Problem Generation for Prototypes[9].

1 typedef double scalar_type;

2 typedef int local_ordinal_type;

3 typedef int global_ordinal_type;

4 typedef KokkosClassic::DefaultNode::DefaultNodeType node_type;

5 typedef Tpetra::Map<local_ordinal_type,global_ordinal_type,node_type>

driver_map_type;↪→

6 RCP<const Map> xpetraMap =

MapFactory::Build(Xpetra::UseEpetra,matrixParameters.GetNumGlobalElements(),

indexBase, comm);

↪→

↪→

7 RCP<GaleriXpetraProblem> Pr = Galeri::Xpetra::BuildProblem<SC, LO, GO, Map,

CrsMatrixWrap, MultiVector>(matrixParameters.GetMatrixType(), xpetraMap,

matrixParameters.GetParameterList());

↪→

↪→

8 RCP<Matrix> xpetraA = Pr->BuildMatrix();

9 RCP<crs_matrix_type> A = MueLuUtilities::Op2NonConstEpetraCrs(xpetraA);

10 const driver_map_type map = MueLuUtilities::Map2EpetraMap(*xpetraMap);

Then, first comparison is between MLAztecOOEpetra and MLBelosEpetra. They
both use Epetra as its data service, ML as its preconditioner, but first one uses AztecOO
as its solver and second one uses Belos as the solver. Then, second comparison is
between MLBelosEpetra and MueLuBelosTpetra. The MueLuBelosTpetra is adopted
from an example from MueLu packages that uses Tpetra, MueLu as its preconditioner,
and Belos. These two comparisons indicate improvements in solving time. Details of
comparisons results are in Section 6.2.

4It means that the program uses MueLu as the preconditioner and Belos as the solver.
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5.3 Updating deal.ii

The comparison results from prototypes suggests that Tpetra+MueLu+Belos has
the best performance in large size problems. Thus, I expect a similar imporvement in
performance after updating deal.ii..

To begin this updating process, I take three steps. Since Epetra is currently used
by deal.ii, replacing all the data types and functionalities at once is infeasible. Further-
more, as I mention before, currently, deal.ii::TrilinosWrappers is using AztecOO
as its linear solver and ML as its preconditioner, which both are not compatible with
Tpetra.

Thus, I decide to start with updating the linear solver AztecOO, which means by
updating AztecOO to Belos, since Belos is compatible with both Epetra and ML.

Next, after I successfully update the linear solver, I turn to convert Epetra objects
to Tpetra objects.

5.3.1 Updating Solver from AztecOO to Belos

To update the linear solver in deal.ii::TrilinosWrappers from AztecOO to
Belos, we need to complete a list of things. It starts with modifying ‘header file’
trilinos solver.h. While using Trilinos package to solve problem, a linearProblem

object must be created first. Also, to create a Belos solver, a new SolverManager

object and a new SolverFactory object need to be created. When those are finished,
we can fully replace AztecOO solver. The new solver can choose one of the Belos solver
algorithms, i.e. block GMRES, block CG, pseudo-block CG, pseudo-block GMRES.
[1]

The following list provides the process of modification on trilinos solver.h.

1. Using new namespaces and abbreviating some variable names;

Listing 2: New Namespaces and Type Abbreviations in trilinos solver.h

1 //namespace:

2 using Teuchos::ParameterList;

3 using Teuchos::RCP;

4 using Teuchos::rcp;

5 using Teuchos::rcpFromRef;

6 //Type Abbreviations or Shortname

7 typedef double ST;

8 typedef Epetra_MultiVector MV;

9 typedef Epetra_Operator OP;
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Listing 3: The trilinos solver.h before
modification

1 std_cxx11::shared_ptr<Epetra_LinearProbl c
em >

linear_problem;

↪→

↪→

2 AztecOO solver;

Listing 4: The trilinos solver.h after
modification

RCP<Belos::LinearProblem<ST,MV,OP>>

linear_problem;↪→

1

RCP<Belos::SolverManager<ST,MV,OP>>

newSolver;↪→

2

RCP<Belos::SolverFactory<ST,MV,OP>>

factory;↪→

3

2. Change Epetra_LinearProblem into Belos::linearProblem<ST,MV,OP>;

3. Change AztecOO into Belos::SolverManager<ST,MV,OP> and Belos::Solver c

Factory<ST,MV,OP>.
4. Change some functions return type from void to double, to examine residuals.

Next, modify trilinos solver.cc. Before solving the problem, deal.ii uses a set of
different setup functions, solve, which initializes the LinearPrblem. The following
code show modifications on one of thos setup functions.

Remark (Highlights). The highlighted codes indicate important modifications.

Listing 5: solve in trilinos solver.cc
before modification

1 void SolverBase::solve (

2 Epetra_Operator &A,

3 VectorBase &x,

4 const VectorBase &b,

5 const PreconditionBase &preconditioner)

6 {

7 linear_problem.reset();

8

9 linear_problem.reset(

10 new Epetra_Linearproblem(&A,

11 &x.trilinos_vector(),

12 const_cast<Epetra_MultiVector *>

13 (&b.trilinos_vector())));

14

15 do_solve(preconditioner);

16 }

Listing 6: solve in trilinos solver.cc
after modification

void SolverBase::solve( 1

Epetra_Operator &a, 2

VectorBase &x, 3

const VectorBase &b, 4

const PreconditionBase &preconditioner) 5

{ 6

linear_problem.reset(); 7

//Transfer std_cxx11::shared_ptr object 8

RCP<const OP> A =

rcpFromRef(*(const_cast<OP *>(&a)));↪→

9

RCP<MV> X = rcpFromRef( 10

*(const_cast<Epetra_FEVector *> 11

(&x.trilinos_vector()))); 12

RCP<MV> B = rcpFromRef(*(const_cast<MV

*>(&b.trilinos_vector())));↪→

13

//create Belos linear_problem object 14

linear_problem = rcp(new

Belos::LinearProblem<ST, MV, OP>(A,

X, B));

↪→

↪→

15

return do_solve(preconditioner); 16

} 17
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Finally, we can update the solving function do_solve. The following code shows
modifications. This completes the modification on the linear solver in deal.ii::Tri c

linosWrappers from AztecOO to Belos.

Listing 7: do_solve in trilinos solver.cc after modification

1 void

2 SolverBase::do_solve(const PreconditionBase &preconditioner){

3

4 factory = rcp(new Belos::SolverFactory<ST,MV,OP>);

5 int max_iters = solver_control.max_steps();

6 double tol = solver_control.tolerance();

7

8 RCP<ParameterList> solverParams = rcp(new ParameterList());

9

10 solverParams->set("Maximum Iterations", max_iters);

11 solverParams->set("Convergence Tolerance", solver_control.tolerance());

12

13 switch (solver_name) {

14 case cg:

15 //before: solver.SetAztecOption(AZ_solver, AZ_cg);

16 newSolver = factory->create("CG", solverParams);

17 break;

18 case cgs:

19 //before: solver.SetAztecOption(AZ_solver, AZ_cgs);

20 newSolver = factory->create("Block CG", solverParams);

21 break;

22 case gmres:

23 //before: solver.SetAztecOption(AZ_solver, AZ_gmres);

24 //before: solver.SetAztecOption(AZ_kspace,

additional_data.gmres_restart_parameter);↪→

25 solverParams->set("Maximum Restarts",

additional_data.gmres_restart_parameter);↪→

26 newSolver = factory->create("GMERS", solverParams);

27 break;

28 case bicgstab:

29 //before: solver.SetAztecOption(AZ_solver, AZ_bicgstab);

30 newSolver = factory->create("bicgstab", solverParams);

31 break;

32 case tfqmr:

33 //before: solver.SetAztecOption(AZ_solver, AZ_tfqmr);

34 newSolver = factory->create("TFQMR", solverParams);

35 break;

36 default:

37 Assert(false, ExcNotImplemented());

38 }

39 /*Before:

40 if (preconditioner.preconditioner.use_count()!=0){

41 ierr = solver.SetPrecOperator(const_cast<Epetra_Operator

*>(preconditioner.preconditioner.get()));↪→

42 AssertThrow (ierr == 0, ExcTrilinosError(ierr));

43 }

18



44 else

45 solver.SetAztecOption(AZ_precond,AZ_none);

46 */

47 if (preconditioner.preconditioner.use_count() != 0) {

48 RCP<Epetra_Operator>MLPrec = rcpFromRef(*(const_cast<Epetra_Operator

*>(preconditioner.preconditioner.get())));↪→

49 RCP<Belos::EpetraPrecOp> RP = rcp(new Belos::EpetraPrecOp(MLPrec));

50 linear_problem->setRightPrec(RP);

51 }

52 linear_problem->setProblem();

53 //before: solver.SetProblem(*linear_problem);

54 newSolver->setProblem(linear_problem);

55 /* Before:

56 ierr = solver.Iterate (solver_control.max_steps(),

solver_control.tolerance());↪→

57 */

58 Belos::ReturnType result = newSolver->solve();

59 /*Before:

60 switch (ierr){

61 case -1:

62 AssertThrow (false, ExcMessage("AztecOO::Iterate error code -1: "

63 "option not implemented"));

64 case -2:

65 AssertThrow (false, ExcMessage("AztecOO::Iterate error code -2: "

66 "numerical breakdown"));

67 case -3:

68 AssertThrow (false, ExcMessage("AztecOO::Iterate error code -3: "

69 "loss of precision"));

70 case -4:

71 AssertThrow (false, ExcMessage("AztecOO::Iterate error code -4: "

72 "GMRES Hessenberg ill-conditioned"));

73 default:

74 AssertThrow (ierr >= 0, ExcTrilinosError(ierr));

75 }

76 */

77

78 if (result == Belos::Unconverged)

79 AssertThrow(false, ExcMessage("Belos::ReturnType Unconverged!"));

80

81 //before: solver_control.check (solver.NumIters(), solver.achievedTol());

82 solver_control.check(newSolver->getNumIters(), actTol);

83

84 if (solver_control.last_check() != SolverControl::success)

85 AssertThrow(false, SolverControl::NoConvergence(solver_control.last_step(),

86 solver_control.last_value()));

87 }
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5.3.2 Converting Epetra to Tpetra

Converting Epetra to Tpetra, we not only need to change data types, but also
their corresponding functions. Therefore, I create the Table 2 and Table 3 to provide
more details. There are few remarks for the tables.

Remark (Arguments). The tables ignore all function arguments

Remark (Highlights). The blue functions suggests a direct conversion is missing. The
red functions suggests that those are the functions with the same name in different
structures.

Remark (Italic Form). The italic form is only using for Epetra FECrsGraph and
Epetra FECrsMatrix, which only implement in Epetra. During conversions, they are
converted into Tpetra::CrsGraph and Tpetra::CrsMatrix respectively.

Remark (Template Parameters for Trilinos). The following table are data types spe-
cifications for Tpetra Structure.

Listing 8: Data types for Tpetra Structure

1 typedef double SC;

2 typedef int LO;

3 typedef int GO;

4 typedef KokkosClassic::DefaultNode::DefaultNodeType NT;

The followling table is convension table for the data types.[3][4][10]

Structure Epetra Structure Tpetra Structure

Maps
Epetra Map

Tpetra::Map<SC, LO, GO>
Epetra BlockMap

Epetra LocalMap Tpetra::LocalMap<SC, LO, GO>

Export Epetra Export Tpetra::Export< SC, LO, GO >

Import Epetra Import Tpetra::Import<SC, LO, GO>

Operator Epetra Operator Tpetra::Operator<SC, LO, GO, NT>

Matrices

Epetra CrsMatrix
Tpetra::CrsMatrix<SC, LO, GO, NT>

Epetra FECrsMartix

Epetra RowMatrix Tpetra::RowMatrix<SC, LO, GO, NT>

Graphs
Epetra CrsGraph

Tpetra::CrsGraph<SC, LO, GO, NT>
Epetra FECrsGraph

Vectors
Epetra Vector Tpetra::Vector<SC, LO, GO, NT>

Epetra MultiVector Tpetra::MultiVector<SC, LO, GO, NT>

MPI

Epetra Comm Teuchos::RCP<Teuchos::Comm<int>>

Epetra MpiComm Tpetra::MpiPlatform<int>

Epetra SerialComm Tpetra::SerialPlatform<int>

Table 2: Epetra to Tpetra Data Type Conversion
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The followling table is the convension table for functions. [3][4][10]

E/Tpetra Structure Epetra Function Tpetra Function

Map

BlockMap

MinAllGID() getMinAllGlobalIndex ()

MaxAllGID() getMaxAllGlobalIndex ()

MinMyGID() getMinGlobalIndex ()

MaxMyGID() getMaxGlobalIndex ()

MinLID() getMinLocalIndex()

MaxLID() getMaxLocalIndex ()

NumMyElements() getNodeNumElements ()

NumGlobalElements() getGlobalNumElements ()

IndexBase() getIndexBase()

DistributedGlobal() isDistributed()

LinearMap() isContiguous ()

MyGlobalElements() getMyGlobalIndices ()

MyGID() isNodeGlobalElement()

MyLID() isNodeLocalElement()

LID() getLocalElement()

GID() getGlobalElement()

IsOneToOne() isOnetoOne()

UniqueGIDs()

CrsGraph

CrsMatrix

FECrsGraph

FECrsMatrix

RangeMap() getRangeMap()

RowMap() getRowMap()

DomainMap() getDomainMap()

GlobalLength() getGlobalLength()

ColMap() getColMap()

graph() getCrsGraph()

FillComplete() fillComplete()

Filled() isFillComplete()

IndexBase() getIndexBase ()

MaxNumIndices() getNodeMaxNumRowEntries()

NumMyRows () getNodeNumRows ()

NumMyIndices() getNumEntriesInLocalRow()

NumGlobalCols () getGlobalNumCols()

NumGlobalIndices() getNumEntriesInGlobalRow ()

GlobalMaxNumIndices() getGlobalMaxNumRowEntries()

ReplaceGlobalValues() replaceGlobalValues()

OperatorRangeMap() getRangeMap()

OperatorDomainMap() getDomainMap()

MaxNumEntries() getNodeMaxNumRowEntries()

NumMyEntries() getNumEntriesInLocalRow()

LRID()

GRID()

FECrs Graph

FECrs Matrix

InsertGlobalValues() insertGlobalValues()

GlobalAssmeble()

Vector

MultiVector

PutScalar() putScalar()

Map() getMap()

Norm1() norm1()

Norm2() norm2()

MeanValue() meanValue()

Update() update()
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PutScalar() putScalar()

MinValue()

MaxValue()

ExtractView()

Operator

OperatorRangeMap() getRangeMap()

OperatorDomainMap() getDomainMap()

Apply() Apply()

ApplyInverse() Apply()

Solver
reset() setProblem()

Iterate() solve()

NumIters() getNumIters()

TrueResidual() achievedTol()

Table 3: Epetra to Tpetra Functions Conversion
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6 Results

6.1 One-Dimensional Boussinesq Equation Result

In section 5.1 we have all the parameters for H(η) which defined in (5.32) as

H(η) = v − ηk
2

(η − ηk) + A(η − ηk)λ,where η =
x

[(Kh0/S)t]1/2
(6.1)

Then we need to find all the parameters by iterations. Thus, iterated through (5.44),
we have the following table:5

H λ v ηk µ A L

H1 2.1000 1.2571 0.2923 1.2996 0.0184 3.6498
H2 2.2000 1.5283 0.5931 1.7010 0.0326 3.8590
H3 2.3000 1.8135 0.9033 2.2082 0.0435 4.0898
H4 2.4000 2.1127 1.2240 2.8258 0.0519 4.3408

Table 4: Values of the Parameters for 1 < µ < 3.[12]

Then plot the H(η) by those parameters in Table 4 we have

Figure 3: Piezometric H versus η for various values of µ.[12]

The following Figure 4, 5 and 6 are representing numerical results for all the basis
parameters v, ηk, λ, A,andL versus µ, 1 < µ < 3.

5The code for iterations is listed in Section 8.4
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Figure 4: Values of the parameters v and ηk versus µ.[12]

Figure 5: Values of the parameters λ and L versus µ.[12]
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Figure 6: Values of the parameters λ and A versus µ.[12]

6.2 Prototypes Comparison

6.2.1 Number of Iterations Comparison

Figure 7: A line chart of all trials for MLAztecOOEpetra.cc, MLBelosE-
petra.cc, and MueLuBelosTpetra.cc with problem sizes from 503 to 4003.
This plot shows the range in number of iterations for each file.
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6.2.2 Solving Time Comparison

Figure 8: A column chart of 4 time trials for MLAztecOOEpetra.cc, ML-
BelosEpetra.cc, and MueLuBelosTpetra.cc with a problem size of 503.

Figure 9: A column chart of 4 time trials for MLAztecOOEpetra.cc, ML-
BelosEpetra.cc, and MueLuBelosTpetra.cc with a problem size of 2003.

26



Figure 10: A column chart of 4 time trials for MLAztecOOEpetra.cc, ML-
BelosEpetra.cc, and MueLuBelosTpetra.cc with a problem size of 3503.

Figure 11: A column chart of all trials for MLAztecOOEpetra.cc, ML-
BelosEpetra.cc, and MueLuBelosTpetra.cc with a problem size from 503 to
4003.
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6.3 Comparison of Trilinos Linear Solvers in deal.ii

6.3.1 Solving time Comparison

Figure 12: A scatter chart at Timestep 0 for step-32.cc. The measured time
is solving time. This plot shows the range in time performance for Belos
and AztecOO solver. The solving results listed at the bottom of this chart
have the same value for both solvers.

Figure 13: A scatter chart at Timestep 21 for step-32.cc. The measured
time is solving time. This plot shows the range in time performance for
Belos and AztecOO solver. The solving results listed at the bottom of this
chart have the same value for both solvers.

28



Figure 14: A scatter chart at Timestep 51 for step-32.cc. The measured
time is solving time. This plot shows the range in time performance for
Belos and AztecOO solver. The solving results listed at the bottom of this
chart have the same value for both solvers.

Figure 15: A scatter chart at Timestep 101 for step-32.cc. The measured
time is solving time. This plot shows the range in time performance for
Belos and AztecOO solver. The solving results listed at the bottom of this
chart have the same value for both solvers.
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6.3.2 Number of Solver Iteration Comparison

Figure 16: A table lists the number of iterations where ‘B’ stands for ‘Belos’
and ‘A’ stands for ‘AztecOO’. ‘Calling’ represents the nth time of calling B c

lockSchurPreconditioner::vmult function in step-32.cc.
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7 Conclusion

Overall, this project demonstrates the analytical solution of an one-dimensional
Boussinesq equation, a workable prototype for updating deal.ii, a new solver for deal.ii
and a conversion table for converting Epetra objects to Tpetra objects.

7.1 Performance of Prototypes

The results from Section 6.2 confirms that using MueLu as the preconditioner,
Belos as solver and Tpetra as basic mathematical structure result in shorter solving
time and a smaller number of iterations. A real world problem that deals.ii solves
can potentially have the large size of matrices and vectors. Thus, I believe the results
from prototypes suggest that improvement can be expected after successfully updating
deal.ii as proposed.

Noticeably, the intermediate prototype, MLEpetraBelos, does not result in faster
solving time with smaller sizes of the problems. Thus, the same results apply to the
current updated solver version of deal.ii-8.4.1. Since I have only updated the solver,
and ‘step-32’ uses ML as preconditioner, the program result in a longer runtime with
such a combination.

7.2 Performance of Updated deal.ii

The results from Section 6.3 reflect Section 6.2, that ML as preconditioner, Belos
as solver with Epetra do not produce shorter solving time and a smaller number of
iterations. Actually, the table in Figure 16 suggests that there is no difference in the
number of iterations at Timestep 0,21,51, and 101. Since this version of deal.ii only
updated its Trilinos solver, based on the results from 6.3, I believe that improvement
can be expected after a complete update.

7.3 Future Work

Currently, this project finishes updating the deal.ii Trilinos solver. The next phase
of converting Epetra to Tpetra is still ongoing. Also, the conversion table is not entirely
complete, which means that there is still much to do.

For starters, the conversion tables are not yet completed, maintaining the conver-
sion table is critical for the future of this project. The table needs regular updates
since Trilinos packages are constantly renewed. Also, it may be possible to encapsulate
some Xpetra objects into the project because Xpetra objects are more friendly when
working with MueLu.
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8 Appendix

8.1 Source Code

8.1.1 Sourc Code for Prototype

The complete source code of the prototypes can be found at the git repository https://

github.com/s1lin/ug_thesis_prototypes or clone as https://github.com/s1lin/
ug_thesis_prototypes.git.

8.1.2 Source Code for Updated deal.ii

The source code of the ongoing updating process of deal.ii-8.4.1 can be found at the
git repository https://github.com/s1lin/deal.ii-8.4.1-Tpetra.git or clone as
https://github.com/s1lin/deal.ii-8.4.1-Tpetra.git.
The complete source code for deal.ii with ‘Belos’ solver can be checked out as a branch.

8.2 Computing Specifications

In this project, the computing node has a Dual Intel Xeon CPU E5-2420 Sandy Bridge
@ 1.90GHz 15MB L3 Cache 95W Six-Core (12 cores per node, with 2 HW thread
states per core). The following are the detailed specifications.

Listing 9: Specification

1 vendor_id : GenuineIntel

2 cpu family : 6

3 model : 45

4 model name : Intel(R) Xeon(R) CPU E5-2420 0 @ 1.90GHz

5 stepping : 7

6 microcode : 0x710

7 cpu : 1201.156

8 cache size : 15360 KB

9 physical id : 1

10 siblings : 12

11 core id : 5

12 cpu cores : 6

13 apicid : 43

14 initial apicid : 43

15 fpu : yes

16 fpu_exception : yes

17 cpuid level : 13

18 wp : yes

19 flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat

pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb

rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology

nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx

smx est tm2 ssse3 cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic popcnt

tsc_deadline_timer aes xsave avx lahf_lm ida arat epb pln pts dtherm

tpr_shadow vnmi flexpriority ept vpid xsaveopt

↪→

↪→

↪→

↪→

↪→

↪→
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20 bogomips : 3796.05

21 clflush size : 64

22 cache_alignment : 64

23 address sizes : 46 bits physical, 48 bits virtual

8.3 Prototypes Detailed Comparison Table
Remark. In following table ‘I’ stands for number of iterations, ‘size’ stands for the
problem size, and ‘Residual’ stands for the result residual. The time is measuring in
seconds.The actual problem size is the cube power to the number in the ‘size’ column.

MueLuBelosTpetra MLBelosEpetra MLAztecOOEpetra

Size Time I Residual Time I Residual Time I Residual

50 0.13832 13 1.12E-07 0.07621 18 5.34E-07 0.05029 15 9.88E-07

50 0.12876 13 1.12E-07 0.05581 17 1.40E-07 0.04205 14 6.E-07

50 0.13895 13 1.12E-07 0.05359 17 8.64E-08 0.04043 15 7.01E-07

50 0.12423 13 1.12E-07 0.05536 17 1.74E-07 0.03625 14 1.25E-06

100 0.56452 13 1.17E-05 1.27561 18 1.13E-05 0.42046 14 1.28E-05

100 0.57198 13 1.17E-05 0.96262 18 3.89E-05 0.41381 14 1.72E-05

100 0.56596 13 1.17E-05 0.95775 18 2.53E-05 0.42866 14 2.10E-05

100 0.55718 13 1.17E-05 0.96385 18 9.40E-06 0.40586 14 1.75E-05

150 2.03450 13 5.53E-05 4.41518 19 3.00E-04 1.93984 15 2.37E-04

150 2.00938 13 5.53E-05 4.41267 19 1.43E-04 1.79286 14 1.26E-04

150 2.01293 13 5.53E-05 4.41494 19 1.38E-04 1.79128 14 1.07E-04

150 2.02474 13 5.53E-05 4.09582 18 3.62E-05 1.76792 14 9.00E-05

200 5.30855 14 1.81E-03 14.0855 22 6.98E-04 5.77289 17 5.17E-04

200 5.30083 14 1.81E-03 14.0809 22 3.46E-04 5.79151 17 1.42E-03

200 5.29882 14 1.81E-03 14.0751 22 9.63E-04 5.76752 17 8.37E-03

200 5.28961 14 1.81E-03 14.0423 22 3.83E-04 5.77199 17 1.62E-03

250 12.0674 16 4.28E-03 37.7575 26 3.12E-03 16.0191 22 6.94E-03

250 12.0437 16 4.28E-03 37.6013 26 7.63E-03 16.0310 22 4.58E-03

250 12.0514 16 4.28E-03 37.5571 26 3.57E-03 16.0286 22 1.81E-02

250 12.0406 16 4.28E-03 37.5510 26 6.68E-03 16.0724 22 2.51E-03

300 20.7442 16 4.28E-03 82.4861 32 5.23E-03 39.5045 28 4.97E-03

300 20.7682 16 8.02E-03 85.9746 32 4.83E-03 37.5331 27 1.08E-02

300 20.7546 16 8.02E-03 87.8332 32 8.47E-03 39.4962 28 9.38E-03

300 20.7720 16 8.02E-03 89.5426 33 1.54E-03 39.3823 28 1.11E-02

350 33.0793 16 2.52E-02 177.653 41 1.67E-02 121.813 55 1.14E-02

350 32.8929 16 2.52E-02 173.226 41 1.62E-02 103.102 48 1.03E-02

350 33.1230 16 2.52E-02 169.977 41 2.80E-02 119.006 54 2.19E-03

350 33.4639 16 2.52E-02 161.084 40 2.70E-02 119.055 54 9.74E-03

400 50.0645 16 6.24E-02 429.628 53 4.38E-02 523.259 139 6.67E-02

400 49.9835 16 6.24E-02 324.990 53 3.14E-02 396.836 110 5.95E-03

400 49.6237 16 6.24E-02 303.448 53 3.14E-02 424.181 116 2.30E-02

400 49.4960 16 6.24E-02 291.795 53 3.46E-02 363.891 100 1.21E-02

Table 5: Prototypes Detailed Comparison Table
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8.4 Code for Iteration

Listing 10: Iteration.m

1 function[u,v,nk,l,L] = Solve()

2 l(1) = 2;

3 m = 2;

4 index = 1;

5 tol = 1e-6;

6 while(m<3)

7 l(index) = m;

8 D1 = 8*m/(m-1)-4*m*m/(m-1)^2+(8*m*m/(m-1)^2)*(1/(m*(m+1)));

9 D3 = 2/sqrt(D1);

10 D4 = D3*2*m/(m-1);

11 D2 = D3*D4^2-D4^3/3+D4^3/(m*(m+2));

12 nk(index) = (D2 - 2*D3)*(-1+D3^2)^(-1);

13 v(index) = D3*nk(index)+1;

14 L(index) = D3*2*m/(m-1) + nk(index);

15 A(index) = nk(index)/(2*m*(L(index)-nk(index))^(m-1));

16 b = -nk(index)^2;

17 delta = b^2-12*(-3*v(index)^2-2*v(index)*nk(index)^2);

18 u(index) = (-b + sqrt(delta))/6;

19 m = l(index) + 1e-8;

20 index = index + 1;

21 end

22 end

8.5 Installation Notes and Scripts

8.5.1 The Trilinos Packages

The following is the CMake script to install Trilinos. 6 The lastest Trilinos version is
12.10, which can be downloaded from the public Github repository. 7

Listing 11: Trilinos Installation and CMake Script

1 mkdir trilinos_build

2 cd trilinos_build

3

4 cmake \

5 -DTrilinos_ENABLE_ALL_OPTIONAL_PACKAGES=OFF \

6 -DTrilinos_ENABLE_Amesos=ON \

7 -DTrilinos_ENABLE_Epetra=ON \

8 -DTrilinos_ENABLE_Tpetra=ON \

9 -DTrilinos_ENABLE_Xpetra=ON \

10 -DTrilinos_ENABLE_EpetraExt=ON \

6To successfully install Trilinos with MPI gFortran is required. The installation guide is listed in
Section 8.5.3

7To get Trilinos, clone from https://github.com/trilinos/Trilinos.git
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11 -DTrilinos_ENABLE_Ifpack=ON \

12 -DTrilinos_ENABLE_Ifpack2=ON \

13 -DTrilinos_ENABLE_AztecOO=ON \

14 -DTrilinos_ENABLE_Sacado=ON \

15 -DTrilinos_ENABLE_Teuchos=ON \

16 -DTrilinos_ENABLE_MueLu=ON \

17 -DTrilinos_ENABLE_Belos=ON \

18 -DTrilinos_ENABLE_ML=ON \

19 -DTrilinos_ENABLE_Kokkos=ON \

20 -DTrilinos_ENABLE_Teuchos=ON \

21 -DTrilinos_ENABLE_Galeri=ON \

22 -DTPL_ENABLE_MPI=ON \

23 -DBUILD_SHARED_LIBS=ON \

24 -DCMAKE_BUILD_TYPE=RELEASE \

25 -DCMAKE_INSTALL_PREFIX:PATH=/path/to/install/dir \

26 /path/to/source/folder

27

28 make -j 16 install

8.5.2 The deal.ii Library

The following is a CMake script to install the deal.ii, version 8.4.1 8.

Listing 12: deal.ii Installation and CMake Script

1 mkdir dealii_build

2 cd dealii_build

3

4 cmake \

5 -DDEAL_II_WITH_MPI=ON \s

6 -DDEAL_II_WITH_TRILINOS=ON \

7 -DDEAL_II_WITH_P4EST=ON \

8 -DTRILINOS_DIR=/path/to/trilinos \

9 -DP4EST_DIR=/path/to/p4est \

10 -DCMAKE_INSTALL_PREFIX=/path/to/install/dir \

11 /path/to/source/folder

12

13 make -j 16 install

8.5.3 Project Required Libraries

1. gFortran

8Installation of Trilinos are required in reproducing this project and should be installed prior to
deal.ii installation.
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2. BLAS, LAPACK 9

3. P4EST 10

9BLAS: Basic Linear Algebra Subprograms and LAPACK: Linear Algebra PACKage
10The P4EST enables the dynamic management of a collection of adaptive octrees, conveniently

called a forest of octrees. http://www.p4est.org
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