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ABSTRACT 

Bandyopadhyay, Salil K., University of Missouri at Rolla, Rolla, 

January, 1972. Transient Cooling of a Sphere due to Boiling. 

Major Professor: Alfred L. Crosbie 

The time - dependent surface temperature is determined for a 

sphere subjected to cooling by boiling. One dimensional heat transfer 

is considered and the solid is assumed to be homogeneous, isotropic 

and opaque to thermal radiation and to have temperature • independent 

physical properties. The initial temperature of the sphere and the 

coolant are assumed to be uniform and arbitrary. The boiling heat 

transfer coefficient at the surface of a sphere is a strong function 

of the surface temperatura thus resulting in an extremely nonlinear 

transient heat conduction problem. As a practical application of 

the problem, the process of quenching has been cited. 

In the analysis, the transient heat conduction equation with its 

initial and boundary conditions is transformed to a singular nonlinear 

Volterra integral equation of the second kind by use of the Lap. 

lace transformations. The equation is solved numerically on a digital 

computer by the method of modified successive approximations for the 

sphere. The time scale is broken into a desired number of intervals. 

The solution tor the first time interval is obtained by successive 

approximations and then used in finding the solution tor the next 

time interval. Initial guesses are obtained by the use of the ideal 

case of infinite thermal conductivity. The process of successive 

approximation is continued along the tiae scale till the solution 
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for all desired time is obtained. Within the limitations of the 

basic assumptions, the method can be termed as exact, since any 

degree of accuracy can be obtained. The results are presented in 

graphical and tabular forms and compared with analytical and ex­

perimental results where available. 

A separable kernel method is also applied for the solution of 

the Volterra integral equation describing the surface temperature. 

The kernel of the integral equation is approximated by a simple 

expression and substituted in the original integral equation. By 

suitable mathematical techniques, the integral equation is then trans­

formed to a differential equation which is much simpler to solve than 

the integral equation. The better the kernel is approximated, the 

more the separable kernel solution tends towards the solution 

obtained by the successive approximation method. This method of 

solution is more convenient to apply than the successive approximation 

method, but is not very accurate for Biot numbers greater than ten. 

Another approximate method, termed as the modified separable kernel 

method, is also presented for the solution of the integral equation. 

The accuracy of the modified method seems to be much better than the 

ordinary one and is found to give results within five percent of the 

exact solution when the kernel is represented by a suitable number 

of equations. 

Limiting cases of large and small Biot numbers { 0.1 to 10.0) 

are calculated and analysed in terms of the present solutions. It 

is concluded that the infinite thermal conductivity approach can 

approximate the exact solution to within ten percent for Biot numbers 

less than one. 



I INTRODUCTION 

When a hot solid is suddenly immersed in a pool of cool liquid, 

transient pool boiling takes place. During the cooling process, 

three distinct stages of boiling heat transfer occur, namely film, 

transition and nucleate boiling. When the solid cools down to a 

temperature close to the saturation temperature or the liquid, heat 

is transferred by tree convection until the system attains an 

equilibrium temperature. The heat transfer coefficient for all the 

regimes or boiling is a strong fUnction of surface temperature which 

makes the governing boundary condition:. extremely nonlinear. Hence 

a general solution tor the surface temperature of the sphere, valid 

for the entire cooling range seems difficult to obtain. Although 

transient pool boiling has been studied extensively, no exact solu­

tion for the surface temperature of a sphere has been presented 

so tar. 

Quenching is an excellent example Of transient pool boiling 

and is widely used in different industries. In the fields or met­

allurgy and manufacturing, quenching is a hardening process. Initially, 

the metallurgists were primarily interested in obtaining a desirable 

hardness of the solid and little attention was given to the heat 

transfer problem asaociated with it. But due to the excellent work 

ot Stolz, Paschkis et. al., (1 ], it has been conclusively proved 

that the investigation or heat transfer is necessary to achieve a 

desired hardness by quenching. In other words, a knowledge of the 

temperature history is useful in regulating the hardness. 
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For a better understanding of the relationship between the 

hardness and the heat transfer rate, a brief description of how 

quenching imparts hardness seems appropriate. When a solid is 

gradually heated in a furnace, beyond a certain temperature, struc­

tural changes take place in the solid. The range of temperature 

during which this transformation takes place is knowa as the critical 

range [2]. If the solid is then cooled down slowly, a reversible 

metallurgical transformation takes place as the body passes through 

the critical region and is transformed back to the original structure 

below this region. No noticeable change in the physical properties 

of the solid is observed after this process. 

But if the hot solid is quenched, rapid cooling makes the process 

metallurgically irreversible. The solid does not have enough time 

to transform back to the original preheated structure. Instead, there 

is a distortion of the crystal lattice and a new structure (Martensite, 

in ease of carbon steel) is formed. This new structure is respon­

sible for the increased hardness of the solid. However, the 

structure is brittle and, therefore, vulnerable to shocks and 

breakage. An extremely rapid cooling rate will produce a high 

degree of hardness and at the same time will make the material ex­

tremely brittle, sometimes causing cracks to appear in the surface. 

Hence, the rate of cooling must be properly controlled to get the 

desirable compromise between hardness and brittleness. 

The rate at which the solid cools is a strong function of the 

heat transfer coefficient which again is strongly related to the 

surface temperature. Thus, tor control of the hardness, a knowled~ 
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of the entire temperature history ot the quenched solid is essential. 

Typical cooling rates (temperature - time) and heat transfer 

coefficient - temperature curves are shown in Figures (la) and (lb), 

Reference [3 }. 

It baa been stated 1n the introductory paragraph that transient 

pool boiling encompasses three distinct regimes of boiling. A brief 

description of each of these regimes is now given. In film boiling, 

the temperature difference between the solid and the liquid is large 

and a vapor film completely surrounds the solid. In this stage, the 

vapor film acts as the medium of heat transfer between the solid and 

the liquid. This regime of boiling is shown by the portion ab in 

the curve 1n Figure (2). As the cooling continues, transition 

boiling occurs. This state of boiling is unstable and characterized 

by the alternate formation of vapor films and agitated vapor bubbles 

at different locations ot the heating surface. Within this region, 

the amount of vapor generated is not enough to support a stable 

vapor film over the entire surface but is again too large to allow 

a sufficient amount of liquid to reach the surface for creating 

enough bubbles tor nucleate boiling (discussed later). This phase 

of boiling is marked by the dashed portion be of the curve in Figure (2). 

With a further drop 1n temperature difference, the formation of 

a continuous stream of bubbles is observed on the heat transfer sur­

face. The above phenomenon occurs in the nucleate boiling regime. 

This regime of boiling is shown by cd on the curve in Figure (2). In 

the first part of th:ls regime the vapor bubbles are large whereas 1n 

the later part, With a fUrther reduction in the temperature of the 

solid, the bubbles become smaller and less numerous than those 1n 
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the earlier part and condense before reaching the surface of the 

subcooled liquid. There are many theories about the formation or 

bubbles (nucleation). However, moat of the theories suggest the 

existence of the "nucleation sites" on the heating surface from 

which the bubbles originate. It is to be observed that although the 

temperature difference between the solid and the liquid in the 

nucleate boiling regime is less than that in the film boiling regime, 

the heat flux in some portion of the nucleate boiling regime is 

higher than that in the film boiling regi~e. 

Finally when the surface temperature is close to the saturation 

temperature of the li•uid (considering subcooled liquid), transfer 

Of heat takes place by free convection. In this regime the heat 

transfer coefficient is proportional to the temperature difference 

between the solid and the liquid to the one fourth power. This 

region is shown by de on the curve in Figure (Z). 

Unfortunately, a simple relation between the heat transfer 

coefficient and the temperature difference between the solid and 

the liquid, as exists in the case of laminar tree convection, does 

not seem to exist tor boiling heat transfer, connecting all the 

regimes of boiling. Some correlations between the heat transfer 

coefficient and the temperature difference do exist for film and 

nucleate boiling. But these correlations are valid strictly tor the 

particular regime and the conditions attached to these (e.g. pressure, 

position and surface condition, diameter, etc.) and hence are not 

applicable, in general, tor other regimes and conditions. Hence a 

general solution of the temperature history valid tor all the regimes 

of boiling has not, so tar, been proposed because of the complexities 
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involved. 

The purpose of this thesis is to present an exact solution for 

the surface temperature of a sphere cooled by boiling which is valid 

for a wide range of Biot numbers. The term exact is herein used 

because any degree of accuracy can be achieved in the numerical 

solution technique. The proposed solution is valid for any range 

or temperatures as long as the basic assumptions are satisfied 

(chapter 3}. Once the surface temperature is known, the interior 

temperature can be found by numerical quadrature. With knowledge 

of the surface temperature, the surface heat flux can be easily 

calculated. The solution technique is flexible enough to take care 

of the variations in geometry, if desired. The only pre-condition 

to this solution is that h must be known for all temperatures. 

The first step in this investigation is the mathematical form­

ulation of the physical problem. The linear partial differential 

equation for transient heat conduction in spherical coordinates with 

a temperature dependent heat transfer coefficient is transformed 

into a nonlinear Volterra integral equation of the second kind for 

the surface temperature by means of Laplace transformation. Two 

methods for solving the integral equation are presented. The first 

method solves the integral equation by successive approximations, 

while the second method transforms the integral equation into a set 

of nonlinear first order differential equations. The later method 

is known as the "Separable Kernel 1-lethod". Results are presented for 

both the methods and compared with each other and also with the 

experimental results of Stolz, Paschkis et. al. [1 ]. 
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II REVIEW OF LITERATURE 

A. Discussion 

The transient heat conduction problem connected With quenching 

presents an extremely nonlinear boundary condition because of the 

strong dependence of the heat transfer coefficient on the surface 

temperature. The results of many investigations are available on 

transient heat conduction problems covering a broad range of non­

linear boundary conditione. But so far, the nonlinear convective 

boundary condition problem has received little attention. 

The present review of literature will consist of two parts. In 

the first part, investigations concerning boiling heat transfer 

coefficient will be discussed. It has been mentioned in the intro­

duction that the boiling heat transfer coefficient h does not have 

a simple relationship with the surface temperature. But the ana­

lytical solution to the present problem is not possible unless h 

is known for all temperature. Initially the investigations concern­

ing h were carried out mainly for metallurgical reasons in quenching 

but eventually turned out to be of significant importance in the field 

of heat transfer. In the second part of the review, investigations 

of transient heat conduction problems with temperature dependent 

heat transfer coefficients and other kinds of nonlinear boundary 

conditions will be considered. 

A comprehensive study of the heat transfer coefficient in connect­

ion with quenching was presented by Stolz, Paschkis et. al. [1 ]. 

In their report, Stolz and Paschkis [3), stated the importance of 

heat transfer coefficient tor regulation of the material hardness 

with the quenching process. By perforaing a series of quenching 
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experiments in oil, Stolz, Paschkis et. al., obtained a complete 

range of heat transfer coefficient data covering all the regimes 

of boiling [1 J. Three different kinds of oil, designated as slow, 

intermediate and fast and two inch diameter silver spheres were used 

as quenchents and solids respectively. In the referenced data, the 

initial temperature of the solid was 1600° F and the bulk temperature 

0 of the liquid was 110 F. From the measured values of the interior 

temperatures, Stolz obtained the surface temperature of the sphere by 

a special numerical technique [4]. ~he method used to obtain the heat 

transfer coefficient from the surface temperature is described in 

detail in [1 J and [4 ]. 

Heinlhofer [5 ], and later Grossman and Ashimow [6] assumed con-

stant heat transfer coefficient during boiling. However, Stolz, 

Paschkis at. al. [1 1 considered the importance of a variable heat 

transfer coefficient during quenching. 

Engel [7 }, Wever and Rose [8 1 and Rose [9 J performed quenching 

experiments to compare the cooling rates of silver spheres. Their 

experimental techniques were later taken up by Stolz, Paschkis et. al. 

[1 ], Russel [10 J and Yoshida [11, 12, 13 J who were also interested in 

determining heat transfer coefficients for different combinations of 

solids and liquids. A brief review of their work has already been 

given in [1 J and hence need not be repeated here. 

A complete range of heat transfer coefficient data for all the 

regimes of boiling are also presented by ~rte and Clarke (14] and 

Veers and Florschuetz [15] for two different combinations of solid 

and liquid. Merta and Clarke obtained their data with a copper 

sphere - liquid nitrogen system at standard and near zero gravity 



1 0 

using a transient technique. Veers and Florschuetz compared the steady 

state and transient pool boiling data for a copper sphere- freon 113 

system. 

Another study on quenching and heat transfer coefficients 

has been made by Paschkis [16 ] • Other available papers on quenching 

[17, 18, 19, 20, 21, 22, 23, 24, 25] mostly deal with metallurgical 

aspects of quenching. 

In this portion of the review, a brief discussion of the past 

literature, dealing with nonlinear heat conduction is made. A 

usetul comparative study can, therefore, be made between the other 

method and the present author's method. However, since an extensive 

discussion Of the past literature concerning radiation boundary 

conditions, has already been made by Crosbie [29], the present dis­

cussion will be limited to the pertinent literature which was not 

discussed by Crosbie. 

For convenience, this portion of the review is presented in a 

tabular form, naming the author(s), the problem statement and the 

methods of solution. Unless mentioned in the table, all the problems 

discussed are one dimensional transient heat conduction problems with 

constant physical properties. 

After study or the table, and from the literature survey of 

Crosbie [29], it can be seen that most of the techniques used for the 

solution of nonlinear heat conduction problems are different com­

binations of analytical and numerical ones. Analytical techniques 

have been adopted to transform the general heat conduction equation 

(linear or nonlinear) with a set o! nonlinear boundary conditions 
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into a more desired form. Numerical techniques are then employed for 

the practical solution of the problem. Some of the most common ana­

lytical techniques are the heat balance integral method, Biot•s var­

iational calculas method and the Laplace transformation method. 

Some of the numerical solutions listed in the table are presented 

in a general form. Gaumer [26] and Gay and Cameron [31 ] have not 

discussed the solution of a nonline~ conduction problem, in particular, 

but have compared the use and applications of different finite dif­

ference methods in transient heat conduction problems. A table of 

comparative studies of five different finite difference techniques is 

provided in [31 1 from which a particular method can be selected 

according to the suitability of the problem. Mason [36] in her numer­

ical solution of a radiating surface has mostly concentrated on show­

ing the advantages or the implicit Runge-Kutta method over the ex­

plicit one. However she has not mentioned any particular geometry. 

Reference should be made to the investigations of Rosen [41 ], 

since among other things, he has also treated the temperature dependent 

heat transfer coefficient problem• However, he assumed a power law 

variation of the heat transfer coefficient. Although this assumption 

is a definite improvement over the assumption of a constant heat 

transfer coefficient, it is still a long way from the actual case. 

Thus, his proposed solution tor the temperature distribution in a 

semi-infinite solid with a temperature dependent heat transfer coef­

ficient, cannot be generalized to account tor all regimes of boiling. 

From this review of the past literature, it can be concluded that 

besides the work or Rosen [41 ], not much attention has been given to 
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nonlinear convective boundary condition problems. Previous work on 

nonlinear boundary condition problems have mostly centered around 

radiation boundary conditione. Some exact results tor this case, 

have been reported for the semi.infinite solid, plate. cylinder and 

sphere. A method is considered exact in the sense that any degree of 

accuracy can be achieved. In all cases studied, the body was assumed 

initially at a uniform temperature and tree of heat sources. But so 

far, no exact solution has been proposed for the transient heat 

conduction problem with nonlinear convective boundary conditions. 



Author(s) 
Reference No. 

Gaumer (26] 

Ivanov and 
Salomatov (27 ] 

Crosbie and 
Viskanta [28] 

Crosbie [29] 

Winter [3o] 

Gay and 
Cameron [31 ] 

B. Tabular Form 

Geometry, boundary condition 
and nature of the problem 

slab, cooling or heating by 
conduction, convection or 
radiation. 

one dimensional solid, heat 
conduction with time depen­
dent heat transfer coeffic­
ient. 

one dimensional solids; 
heating or cooling by 
radiation 

one dimensional solids, 
heated or cooled by 
convection an~or radiation. 

semi-infinite solids with 
parallel walled cavities; 
cooled by conduction in the 
interior and radiation 
at the surface. 

plate, radiation and 
adiabatic boundary 
con eli tion. 
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Method of solution 

forward, central and 
backward finite differ­
ence; stability of 
different methods 
compared. 

approximate analytical 
technique. 

using Laplace transfor­
mations the surface 
temperature expressed 
in terms of a Volterra 
integral equation; 
solved numerically by 
successive approxim­
ations. 

method of solution 
same as (28]; some 
approximate methods 
also proposed. 

numerical solutions; 
similar calculations 
performed for the 
same material without 
cavities; results of 
two cases compared. 

five different finite 
difference methods 
considered and a 
comparative study 
made. 



Author(s) 
Reference No. 

Crosbie and 
Viskan ta [32} 

Adarkar and 
Hartstook [33 ] 

Vardi and 
Lamlich ~4] 

Vad.in [35] 

Crosbie and 
Viskanta [36] 

Mason [37} 

Geometry, boundary condition 
and nature of the pro~lem 

plate, heating or cooling by 
combined convection and 
radiation. 

semi-infinite solid; heat 
conduction with time varying 
radiation boundary condition. 

finite cylinder, steady 
state heat conduction with 
radiation boundary condition 
and with distributed heat 
source; two dimenaional 
problem. 

infinite slab, simultaneous 
convection and radiation at 
the boundary. 

one dimensional solid, 
heated or cooled by 
radiation. 

alaD; radiating boundary 
condition. 
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Method of solution 

method same as [28 ] 

integral method. 

finite difference; 
graphical results. 

integral equation of 
temperature distribu­
tion solved by iter­
ation method assuming 
a cubic temperature 
profile. 

kernel of the trans­
formed Volterra 
integral equation 
approximated by a 
separable kernel; 
resulting nonlinear 
differential equation 
solved numerically; 
solution not practical 
for small time. 

implicit Runge-Kutta 
method which is uncon­
ditionally stable and 
much faster than the 
explicit method. 



.A.uthor(s) 
Reference No. 

Abrams [38 ] 

Ayers [39 J 

Ayers [40 J 

Rosen (411 

Graham [42] 

Vujanovic [43 ] 

Geometry, boundary condition 
and nature of the problem 

sphere, cooled by radiation. 

cylinder; cooled by radiation 

sphere; cooled by radiation 

semi-infinite solid; heated 
or cooled by convection an~or 
radiation at the surface; 
variable thermophysical pro­
perties. 

one dimensional solids; 
simultaneous convection and 
radiation. 

rod and slab; both linear and 
nonlinear boundary conditions 
are treated. 

15 

Method of solution 

mathod same as [28 ]. 

finite difference; 
results in graphical 
forms for a wide 
range of parameters. 

same as [39 ]. 

heat balance integral 
method; resulting 
ordinary differential 
equation solved 
numerically. 

by using Laplace and 
Z transformations on 
the governing heat 
conduction equation, 
a discrete time system 
ot equations is obtain­
ed !or digital computer 
solution; results in 
good agreement with 
[28 ]. 

variational technique; 
solution expressed in 
analytic closed form; 
results are in good 
agreement with known 
solutions. 



16 

III MA.THEMATI CAL FORMULATION OF THE PROBLEM 

This investigation is concerned with the transient surface 

temperature of a sphere, initially heated to a uniform temperature 

and then suddenly placed in a cool liquid. The initial temperature 

difference between the sphere and the liquid is large enough such that 

film, transition and nucleate boiling and free convection occur at the 

surface of the sphere during cooling. The heat transfer coefficient 

under this circumstance is a strong function of the surface temperature 

and hence the goYerning boundary condition becomes extremely nonlinear. 

Following are the basic assumptions made in the investigation: 

1. The heat conduction is one dimensional. 

2. The sphere is isotropic, homogenous and opaque to thermal 

3. 

radiation. 

The physical properties ( P• C and k ) are independent or 
p 

temperature. 

4. The bath temperature remains constant. 

5. The heat transfer coefficient h is independent of the diameter 

of the sphere. 

Special mention should be made about the last assumption. The 

values of h used in this analysis were determined tor a 2 inch diameter 

silver sphere (Bi : .50) by Stolz et. al. [1 ]. In the experiments 

performed by Stolz et. al., the surface temperature was measured and 

then a lumped parameter technique was applied to calculate h. Hence, 

the analytical solution for the temperature of the sphere becomes 

triTial, since the surface temperature was already measured to deter-

mine h. However, it is not always convenient to make laboratory 
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measurements of the surface temperatures for a wide range of physical 

situations. Hence, With the knowledge or h for one particular diameter 

of the sphere and with the assumption No. 5, the surface temperature 

for a wide range of diameters can be determined numerically. Also 

when the dependency or h on the diameter of the sphere can no longer 

be ignored, the technique of Reference [1 J can be employed to deter-

mine h by employing a hollow sphere so that the lumped parameter 

approximation can be applied (essentially true tor a small Bi). With 

these known values of h, the solution technique can then be suitably 

applied to determine the surface temperature o! a solid sphere or the 

same external diameter as the hollow one. 

The differential equation governing the tran•ient temperature 

distribution, therefore, is 

a T 
n1 = 

The initial and boundary conditions are 

!' ( r 1 ,o ) s: Ti 

- k 
a T h (T ) - :: a r 1 rl - R s -

a T I a-r-1 r 1 = 0 
:0 

( 1) 

(2a) 

[ T - T ] 
8 c 

(2b) 

(2c) 

To simplify the analysis, the basic e,uation (1) and the initial 

and boundary conditions (2a, 2b, and 2o) are expressed in dimension-

less rorms by the following substitutions: 



r1 
r = R and u ( r, t) 

Thus, we obtain 

and 

+ £ 
r 

u(r,O) ::: 

au -ar 
au 

=-at 

au r u c t> J Tr r ::: 1 
:::- g s 

...ll :0 
ar r ::: o 

In equation (4b) 

[ u (t) J ::: Bi h 
(u -g -s h s max 

h R 
where Bi max 

::: k 

ec) 

= 
T(r, t) 

Ti 
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(3) 

(4a) 

(4b) 

(4c) 

(4d) 

The solution of the above set of equations (3), (4a), (4b), (4c), and 

(4d) remains incomplete unless the values of h are explicity known 

for all the surface temperatures. In this regard, Reference [1 ] was 

consulted. 

Figure (3) in Reference [1 ] represents the behavior of h with 

surface temperature for a particular quenching experiment using 

oil as a quenchent. 
0 

The bulk temperature of the quenchent was 110 F 

and the initial temperature of the spherical sample was 1600° F. 

h is represented in the semilogarithmic scale in Figure (3) from 

Reference [1 ] and thus the interpolation of h becomes difficult. 
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15...-------..,....------------

0::1 
X· 

7 8 II 12 13 

Fig. 3 Variation of Heat Transfer Coefficient with Surface Tempera­
ture as used in this analysis. 
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However, several data points were selected carefully from this graph. 

These points were tested by a suitable interpolation routine. Testing 

was done numerically on a digital computer and minor adjustments in 

the input data were made until a smooth curve was obtained through 

these points. Figure (3) represents the final form ot the h • T 
s 

relationship used in the solution. 

The nu•erical program had to be run a number of times because 

of the abrupt behavior of h where a change from one boiling regime 

to the next takes place. In these regions, as can be seen from 

Figures (la) and (3), his very sensitive to minor changes in T • 
s 

The interpolating routine failed to interpolate the desired value 

correctly unless more data points were added to these regions. The 

nature of this particular interpolating routine is such that the 

routine picks up three input values on both sides of the desired 

point and computes the value based on the information provided by 

these six points. Hence, if the input points on either side are quite 

far apart, the interpolation method fails to pick up the nature of 

the curve correctly. After several trial and error runs, a total of 

136 points were used and smooth curve of h versus T was obtained. 
s 

Following the procedure of Crosbie [29], the partial differential 

equation (3) along with the initial and boundary conditions (4a), 

(4b) and (4c) is transformed into a single nonlinear Volterra in-

tegral equation of the second kind by the use of the Laplace trans-

formation with respect to time t and the application of the convolution 

theorem. The Laplace transformation of equations (3), (4b) and (4c) 

produces the following ordinary differential equation: 



2 
+ -r 

du -dr 
-su = -1 

with the transformed boundary conditions 

du I r dr :0 :0 

du I r a 1 -dr = - g [ u J s 

The solution to the above set of equations is 

ii (r,s) = 1 - 1 [ g (u ) · J (r, s) J 
s r s 

where the function F(r, s} is expresses as, Reference [38] 

f(r,s) = sinh( IS r) 

IS Cosh Ji" - Sinh IS 

The inverse of equation (7} is then symbolically given by 

u(r,t} = 1 
1 - -r 

-1 
!£ [ g(u ) • F (r,s) J 

s 
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(5) 

(6a) 

(6b) 

{7) 

(8) 

(9) 

The inverse of the right hand side of the above equation follows 

immediately with the help of the convolution theorem. The 

convolution property is stated as follows: 

t 

uv = u * v = fo u ( T ) v ( t- T } d T 

Thus, with the help of the convolution theorem 

-1 
JZ [g (u) • F (r,s)]= 

s 

t f g ( u ( T))F (x,t-T )d T 
0 s 

Substitution of equation (10) into equation (9) yields 

u(r,t) s: 1 
1 .. -r 

t . 
fo g [us (T)]F (r,t-T )dT 

( 10} 

( 11) 
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Equation (11) is the integral equation of the problem. However, 

it is not yet usable as a solution since the unknown function 

g (u (t) J which was defined earlier appears under the integral sign. a 

Hence F(r,t) has to be explicitly found by using the inversion theorem 

for the Laplace Transformations. 

F(r,t) 
-1 

1: !Z 

1 . -21Ti 

-[ F(r,s) J 

c + i(J) 

fc - ic:o 

C + iCD 

( F(x,s) exp (st)dt 
b - iCD 

sinh( IZr) eg (zt) d 
/i eoah /'£ - sinh It z 

where c is a positive constant in the complex plane lying to the 

right of the singularities of the integrand. Equation (12) is 

integrated by means of contour integration and the Cauchy Residue 

theorem with the result: 

( 12) 

CD 

F(r,t) :3r +2 L 
k:l 

sin A r 
k exp (- A 2t) 

k 
( 13) 

sin A 
k 

where the eigenvalues Ak are defined by tan \ = \• the A a: 0 

case excluded. Substitution of (13) into (11) yields 

t 
u(r,t) = 1 - J 

0 

(I) 

g r u c r> 1 r 3 + 2 I 
s k:l 

exp (- "Ak2 ( t - T ) ) ) d T 

sin \ r 

r sin X 
k 

( 14) 

Equation (14) implies that the surface temperature u must be known s 

as a function of time before any interior temperature can be found. 

The integral equation for the surface temperature is obtained simply 

by putting r equal to unity in equation (14): 



u (t) :: 1 -s 

.t 

fo 
Cl) 

g r u8 < T > 1r 3 + 2 r 
K::1 

(t - T )) ] d T 

. 2 
exp (.A k 

23 

( 15) 

Thus, the problem of transient cooldown of a sphere with a uniform 

initial temperature distribution and subject to nonlinear convective 

boundary conditions can be reduced to the solution of a single 

nonlinear Volterra integral equation of the second kind tor the 

surface temperature, equation (15). Once the surface temperature 

u (t) is known from equation (15), the interior temperature at any 
s 

position and time can be determined by substituting the value of 

u (t) in equation (14) and then by subsequent integration tor any 
s 

known time. 
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IV SOLUTIONS OF TEE INTEGRAL EQUATION 

(A) Modified Successive Approximation Method 

The integral equation {15) is solved by a modified successive 

approximation method. The use of the term 'modified' seems justified 

here since, as is described later, the present method breaks the 

total time into a convenient number of intervals and a successive 

approximation is applied over each of these intervals. But in the 

standard method of successive approximations an approximation is 

applied over the entire time period. 

Equation (15) can be rewritten with the substitution Y(t) :u (t) 
s 

(for convenience) 

aJ 

Y(t) = 1 - It g [ Y( T) ]( 3 + 2 \ 
2 . 

exp (-"A k (t- T» :Jd T 
0 kL.:1 

(16) 

(t ~ 0) 

To obtain the solution of the above equation, the entire time range 

for which the solution is desired, is divided into a suitable number 

of intervals. For the first time interval, 0 ~ t ~ t 1, an approx­

imation for the unknown temperature is made. With this initial value, 

successive approximations of the temperature are made for the first 

time interval using equation (16). Thus, the (n +1)th approximation 

is given by 

( ) Jot yn +1 t = 1 -
Cl) 2. 

g[Yn<r>][3+2 I exp(-1\k(t-r))]dT 

(1?) 
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Each of the following approximations is improved from the preceding 

one until the difference between the last two approximations becomes 

less than a predetermined error criterion. 

For the second time interval, the integral equation (16) is 

broken into two parts, the first being the time interval for which 

the solutions are already known trom (17). This results in: 

(I) 

yn +1 (t) = 1 - ! t, g [ Y( T ) ][ 3 + 2 I 
0 k:1 

CD 

(tg(Y(T)][3 +2 I 
Jt n 

1 k~ 

( 18) 
2 

exp (- 'A k ( t- T )) ) d T 

The second term of the above equation is completely known for all 

time t • Hence, an approximation tor the unknown temperature is 

made for the time interval t 1 ~ t <i: t 2• Again by the method of 

successive approXimations, each of the following approXimations is 

improved in equation ( 18), until th.e difference between the last two 

approximations meets the error criterion. 

In general, for m time intervals, equation (18) takes the form 

Yn +1 (t) =1-J~m g [ t( T ) ][ 3 +.2 ~ exp ( .. A.k2(t- T))] d T 
k:l 

(X) 
( 19) 

- ftt g ( y ( T ) ][ 3 + 2 I 
2 

exp (. 'A k ( t. T)) ] d T 
m n 

k=1 

This process is continued until the surface temperature for all 

desired time is known. 
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Although the process may seem theoretically simple, an analytical 

solution of equation {19) is, in general, highly impractical. For 

example, if we start with a simple initial approximation r0 ::: 1, 

assuming ec :::0, the dimensionless flux term in equation (17) is 

given by: 

denoting 

h (1) 
h 

max 
[ 1 - 0) ::: Bi H(Y0 ) 

h(Y )/h by H(Y ). 
n max n 

Next the approximation Y1 is, therefore, given by: 

t 
fo Bi H {1) [ 3 + 2 

CD . 2 
L exp ( ~ ~ k ( t- T ) ) ] d T 

k:: 1 

(0 < t< t,) 
t ::: 

(20) 

(21) 

It is evident from the above equation that determination of Y1 

involves the calculation of an infinite series and the values or 

H(l). 

Determination or the next approximation Y2 , as can be seen from 

equation {18), will then depend upon a new value of H(Y1) and the 

substitution Of new limits on the infinite series. Thus, the cal-

culations of subsequent approximations becomes too complicated to 

solve manually even with a simple starting value. Hence the use of 

a numerical technique, in this ease, becomes an obvious necessity. 

Since a suitable numerical technique makes the use of an analytical 

solution practical, a brief description of the numerical procedure 

should be given. Each time interval is subdivided equally into as 

many points as necessary so that a curve can be fitted for a numerical 
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interpolation formula to produce an error less than that desired of 

the surface temperature. This interpolation formula is necessary for 

the use of the Gaussian Quandrature formula [51 ] for evaluation of the 

integrals of equation (18). In this method, the ordinary Gaussian 

integration formula is used to evaluate 

t Q) 

f0m g [Y( T) }[ 3 + 2 I exp <- A.k 2 (t- T))] d T 
k:l 

and a modified Gaussian formula is used to evaluate 

g [Y ( T ) ) [ 3 + 2 
m 

(l) 2 
I exp (- A.k ( t- T )) ] d T 

k:l 

The 

and 

two forms o t Gaussian integration formulas are as 

b Cl) 

fa 
) b-a I wi f(yi)' 

b-a 
f(y dy:: 2 yi =2 xi 

i:l 

b 

fa f(y) (b-y)-tdy = 2 fb-a 

where 
2 

y i = a + (b-a)( 1-xi) 

follows: 

+ (!?..!.!:.) 
2 

(22) 

(23) 

The Gaussian weights wi and 

Reference [51 ]. 

(2n) 
wi and the abscissa xi are defined in 

One interesting thing to note is that equation (23) eliminates 

the singularity of the integral, Reference [52, 53]. The efficiency 

of the Gaussian quadrature method is much higher than other standard 

numerical integration techniques [52, 53]. 

The basic difference between the numerical and analytical approach 

is that the method or successive approximations is carried out point 

by point instead of integrating over the entire time interval. 

The initial guess in the method or successive approximations is of 
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vital importance for a fast convergence of the method to the exact 

solution. This is particularly true for the present problem where 

the heat transfer coefficient changes drastically with a small 

change of time in certain regions or cooling as can be seen from the 

h versus T curve, Figure (3). The rate of change of temperature is 
s 

very high in these regions, compared to the other regimes or cooling. 

Hence, unless the initial approximation or the temperature at these 

points of sudden changes is sufficiently close to the exact solution, 

much ot the coaputer time will be lost in attaining a suitable eon-

vergence. Thus, the method for obtaining a suitable initial value is 

of particular interest. 

!he method of intersection as used by Crosbie [29], was initially 

employed for determining the initial values. But it was found that 

tor a Biot number larger than 1.0, this method failed to produce a 

convergence within a preset number of iterations. Obviously the 

guess was too far away from the actual value to produce a suitable 

convergence. Hence a method for obtaining a closer approximation 

to the actual case was sought. 

The infinite thermal conductivity solutions are found to be 

close approximations to the actual cases and hence are used as the 

initial guesses in the present problem. This particular method ot 

solutions has been discussed in detail under the heading of •separable 

Kernel Method' in the following section and hence need not be repeated 

here. Strictly speaking, infinite thermal conductivity solutions 

used as the initial guesses differ from the standard approach. The 

total time period, as has been mentioned previously, is broken into 

different time intervals. Initial guesses for all but one point 
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in any time interval are determined exactly in the same manner as 

that of standard infinite thermal conductivity solutions. Only the 

calculation of the first point in any subsequent interval is based 

on the exact value or the last point ot the preceding interval. 

Mathematically this can be shown as 

where Y1 (t .) R Y(t ) 
m m 

Y(t ) represents the exact value of the last point in the preceding 
m 

time interval, t 1 < t < t • 
m- = ::: m 

As illustrated in References [54 J and [55] and as can be seen from 

Figur~ (4), the ideal solution, in which infinite thermal conductivity 

was assumed, closely follows the exact solution tor small time except 

at points or sharp changes in temperature. For large time, there is 

practically no deviation from the exact solution. Hence only at the 

critical points of sharp changes, initial guesses are comparatively 

far away from the exact solutions and therefore, require more 

iterations tor convergence. 

The particular method of solution tor the cooling of a sphere 

with nonlinear convective boundary conditions can also be applied to 

other geometries. It can also take into account the effect of non-

uniform initial temperature, heat sources and some other forms of 

nonlinear boundary conditions. The major difference in the integral 

equations between the sphere and other geometries is the kernel 

F(x,t). The kernel for the surface temperature f(t- T) is obtained 

by replacing x by 0 tor a semi-infinite solid and by 1 for other 



geometries in F(x,t). 

For a semi-infinite solid: 

f(t- T ) = [ n (t- T) ]-t 

For a plate: 

f(t- T) = 1 + 2 
(I) . 2 
~ exp ( ~ A k ( t. r ) ) 

k~1 

with eigenvalues sin \ = 0 or ).k = k n. 

For a Cylinder: 

f(t- T) = 2 + 2 
CD . 2 
L exp(-A k (t-T )) 

k:l 

30 

(24) 

(25) 

(26) 

with the eigenvalues given by J 1( ).k) =0• Physically a plate, 

cylinder and sphere behave like a semi-infinite solid over a small 

time period. 
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(B) Separable Kernel Method 

An alternate method for solution of the Volterra integral 

equation which determines the surface temperature of the sphere 

is described in this section. The method is based on approximating 

the kernel by a separable kernel. The method is exact except for 

very small time. The natural appeal of this method is its ease of 

application and the independence of each approximation. 

The integral equation for the surface temperature, (Y(t) = u (t)) 
s 

of the sphere is as follows: 

t 
Y(t) = 1 - fo g ( Y ( T)) f(t- T) d T 

(X) 

where the kernel f( t- T ) is 3 + 2 l: 
k:l 

exp (- ' 2 (t T)) Ak - • 

The zeroth order approximation is obtained by neglecting all the terms 

of the infinite series of the kernel. The first order approximation 

is obtained by including the first term of the series, the second 

order approximation by including the second term, the third order 

approximation by taking up to the third term and so on depending 

upon the degree of accuracy required. Evidently the greater the 

number of terms, the better will be the accuracy since the kernel is 

represented more accurately. 

The zeroth order approximation gives the following integral 

equation: 

t 

Y ( t) = 1 - 3 f0 g [ Y ( T ) ] d T (27) 

Differentiating the above with respect to time transforms the above 

equation into a first order nonlinear differential equation: 
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dY dt : -3g fY ) (28) 

with the initial condition Y(O) = 1. 

The ordinary differential equation (28) describes the temperature 

history of the sphere with infinite thermal conductivity. The solution 

of equation (28) is the large time solution of equation (16) since the 

infinite series of the kernel tends to zero as time approaches infinity. 

Lim 

t + (I) 

exp [- A 2 ( t- T ) ] = 0 • 
k 

The first order approximation as explained, can be obtained by 

2 replacing the kernel by 3 + 2 exp [~ A 1 ( t- T ) ] • 

The resulting integral equation is: 

Y(t) : 1 - 3 
t 2 t 2 

fog[Y(T)]dT -2exp(-A. 1 t) fo exp(" 1 T) 

(29) 
g [ Y ( T) ] dT 

This equation can be rewritten as 

Y(t) = Y0 <t> + Y1 <t> (30) 

t 
where t 0 <t> = 1 - 3 fo g [ Y( T)] dT (31) 

t 
A 2 T) Y1 (t) = -2 exp 

2 fo exp( g[Y(T))dT. and (- A 1 t) 1 
(32) 

Differentiation of equations (31) and (32) with respect to time 

yields two first order linear differential equations of the following 

forms: 

-dt 
: - 3 g [ Y( t ) ] (33) 
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dY1 2 
~ = .. 2 g [ Y{t) ] - A 1 t 1 (t) (34) 

The two equations (33) and (34) are provided with two initial 

conditions 

and (35) 

r,<o> a 0 

These two t.trst order linear differential equations can be easily 

solved by numerical means. 

In general the Mth order approximation can be found by replacing 

the infinite aeries by 

M 

~ 
k:1 

2 
exp [- A k {t. T) ] 

and, therefore, the resulting integral equation is 

t 

Y{t) =: 1. 3 ~ g[Y{T) )d T -2 

M t 

~ f0 exp [.. Ak2 (t-T ) ] 
k=1 

g[Y{T))dT (36) 

As before, Y(t) can be assumed to be composed of M + 1 parts as 

follows: 

t 
wb.ere t 0 <t> = 1 - 3 f0 g[Y(T) )dT 

t 
A 2. T) Y1{t) 

2. 
/ 0 exp( g(Y{ T) ]d T =. 2 exp(- A 1 t) 1 

t 
A 2. T) t 2(t) 

2. /0 exp( g[ Y( T)] d T =- 2 exp(. A 2. t) 2 

- - - - ~ ~ - - - - - - ~ 

- . - - - - - - ~ .. - - - - - - - {38) 

- - - - ~ - - - - - - ~ ~ - - - - - -



t 
2 

YM(t) =- 2 exp(- AM t) f o exp( A 1/ T) g [ Y( T) ] d T 

Differentiation of the above set of equat~ons yields 

d Yo = - 3 g [ Y < t > J 
dt 

dY1 
'dt= -2g[Y(t)]-"'A 12 Y1(t) 

- - ~ - ~ - -

:!M : - 2g [ Y( t) ) -2(- AM 2) exp(- AM 2t) 

t 2 f o exp( A M T ) g ( Y( 'I' ) ] d T 

2 
::-2g[ Y(t)] -'AM YM (t) 
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09) 

For these M + 1 nonlinear differential equations (39), the initial 

conditions are 

which :rnakee 

Therefore, these M + 1 linear, interlinked, first order differential 

equations with the given initial conditions are easily solvable with 

the use of a digital computer. there are some standard subroutine 

packages in the computer built-in library which can be conveniently 

used. This author has used subroutine RKGS from System/360 Scientific 

Suproutine Package, (360 A - CM - 03X) version III of IBM Fortran 

language. The zeroth order solution was also computed by the use 
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ot a standard fourth order Runge-Kutta method and the Adams Moulton 

corrector predictor method. 

The separable ker.nel method was also discussed and presented by 

Crosbie and Viskanta [36 )but their final form ot the differential 

equations was different from the one presented here. The basic 

approach of replacing the infinite series of the kernel f(t-T ) by 

a finite number of terms is the same. In this presentation, the 

temperature Y(t) in equation (37) is broken up in (M + 1) different 

parts. In Reference [36], Y(t) was differentiated successively 

(M + 1) times resulting in (M + 1) integrodifferential equations of 

different orders. By the simultaneous elimination of the integral 

terms from these equations an (M + 1)th order differential was 

obtained. The M + 1 initial conditions were also presented to solve 

the differential equation. 

The present method has some advantages over Crosbie and 

Viskanta•s. In the present formulation, no simultaneous elimination 

of integral terms is necessary. The set of (M + 1) nonlinear first 

order equations, equations (39), is obtained by simple substitutions. 

The differential equation obtained in Reference [36], contains the 

derivatives of the unknown term g on the right hand side of the 

equation. •s• is a tunction of the unknown temperature Y and hence 

the presence of different order derivatives of g makes the solution 

complicated. In the present formulation, equations (39) do not 

contain any derivative term of g. Also the initial conditions of 

the present method are much simpler to work with than in Reference ~6]. 

Thus, the present method is an improvement over Crosbie and Viskanta•s 

separable kernel method. 
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(C) Modified Separable Kernel Method 

A modified version of the separable kernel method is presented 

in this section. In the preceding section Y(t) was represented by 

a summation of M + 1 terms of equal weights, equation (37). But 

here Y(t) has been assumed to be of the following form: 

In the above equation EM is a weighted coefficient for the last 

term and can be determined as follows. 

The kernel f(t) for the sphere from equation (13) is given by: 

• 2 
f(t) = 3 + 2}: exp(- A k t) 

k-::1 
• 2 

or f(t) - 3 = 2I exp(- A k t) 
k:1 

(42) 

(43) 

The infinite series in the above equation can be represented by a 

finite number of terms with a weighted coefficient in the last term. 

2 2 2 
fM(t) - 3 = 2 exp(- A 1 t) + 2 exp(- A 2 t) + 2 exp(- A3 t) 

2 
+- - - - - - - + 2 e M exp(. AM t) 

(44) 

If both sides of equation (43) are integrated from 0 to m with 

respect to t, the expression becomes 

Q) 
CD CD 

fo r f<t> - 3 J dt t fo 
2 

=~ exp(- Ak t)dt 
k:l 

CD 

:2 t 1 (45) 

~ k:l 

By referring [52] and [5,], the infinite seri.es in equation (45) is 

calculated and round to be 



37 

(I) 

L 1 1 
~ = -

k:l k 
10 (46) 

Therefore, from equations (45) and (46) 

(J) (J) 
1 fo r f<t>-3 1 2 L 2 = T"2 = -

k:l k 
10 (47) 

Integration of equation (44) from 0 to CD with respect to t yields 

M-1 
=2 L 

k=1 

M-1 
= 2 }: 

k:1 

1 

~ 
(48) 

Since equation (43) is approximately represented by equation (44), 

they are assumed to be equal. Therefore, by equating the right hand 

sides of equations (47) and (48), we get 

M-1 
2 e:M 

2 L 1 
+ 

2 

~ " z = -10 
k=l M 

[ ~1 l e: M = To- L 1 ). 2 (49) or ~ M 
k:t k 

Hence, equation (49) determines the value of the weighted coefficient 

in terms of the known eigenvalues, to be used in equation (41). The 

rest of this proposed solution is exactly similar to that of the 

preceding section. The form of' the derivatives of different terms, 

equation (39), and the initial conditions, equation (40), remain the 

same in this method also. The only difference between the methods 

presented in section (b) and in the present section lies in the mode 
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of presentation of equations (37) and (41). 

The efficiency of the present solution is much higher than that 

obtained with the ordinary separable kernel method. It has been 

found that, after the computation of a few values of Y(t), all the 

terms except the first two or three in equation (40), rapidly go to 

zero. Thus, the effect of additional terms beyond the first two or 

three, becomes almost nil in the following computations. Hence, the 

expected improvement by the representation of the kernel with a 

larger number of terms is not efficiently achieved in the ordinary 

separable kernel method. But the addition of a weighted coefficient 

in equation (44) 1n the modified, largely improYes the effect of all 

the terms up to the laat one in the computations of Y(t). Proper 

participation of all the terms up to any desired value of Y(t) is 

thus assured in equation (44). The proposed solution requires 

fewer terms to represent the kernel f(t) and still to achieve the 

same amount of accuracy as the ordinary separable kernel method. 

The increase in efficiency in the modified technique is, therefore, 

obvious. 
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V RESULTS 

An inspection of equation (15) reveals that the dimensionless 

surface temperature Y(t) is a function of heat !lux g but which in 

turn is a function of the surface temperature and the heat transfer 

coefficient. As has been mentioned in Chapter 3, the heat transfer 

coefficient data for the different surface temperatures used in this 

study was taken from Reference (1 ). The values of h were based on 

the quenching of a two inch diameter silver sphere in oil at a con­

stant temperature of 110° F as used in the experiment by Stolz et. al. 

[1 ). Hence h and in turn g are expected to be different for a dif-

ferent oil temperature. But it has been found by Stolz et. al. [1] 

that there is virtually no change in the values of h with the change 

in the oil temperature as long as the oil temperature remains within 

0 
the region or sub-cooled boiling, (less than 600 F for the kind of 

oil used in their experiment). Hence the values of h with oil as 

quenchent can be considered to be independent of the oil temperature 

for sub-cooled boiling. With these values of h, results for surface 

temperature have been obtained in this study, for four different 

Biot numbers (i.e. four different size spheres). Once the surface 

temperature u has been found from equation (15), the interior 
s 

temperature at any time can be found by the substitution of u in 
s 

equation (14) and subsequent integration tor any known time. With 

the knowledge or heat transfer coefficients at different surface 

temperatures, heat fluxes at the boundary have been calculated 

(described later in this chapter). 

Surface temperature versus time curves for Biot numbers of 
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0.50, 1.0, 5.0 and 10.0 have been plotted in Figure (4), on the same 

scale. The results corresponding to Bi = 0.50 are of particular 

interest since experimental results for this case are available, 

Reference [1 ]. Strictly speaking, based on the available data for 

0 
k at 68 F, Bi for the case of Reference [1 J turns out to be 0.54 

which is 8% higher than 0.50. But it is to be noted that the value 

of k for silver changes considerably with temperature (237 Btu/hr. 

ft °F at 32° F to 208 Btu/hr. ft °F at 752° F). Also the value of 

h used in the calculation of Bi = h R/ k was read from a semi-max max 

logarithmic graph. Hence considering the errors involved, the 

value of Bi c 0.50 has been accepted as a close approximation for 

the experimental results in Reference [1 ]. The values calculated 

in this study compare favorably with those of Stolz et. al. [1 ). 

In Figure (4), the infinite thermal conductivity solutions 

(i.e. separable kernel method with one equation) are also presented 

for all four Biot numbers. The infinite thermal conductivity 

solutions are shifted along the time scale a distance which is 

inversely proportional to the ratios of the Biot numbers. This 

shift can be explained from the mathematical expression obtained 

with the infinite thermal conductivity assumption. 

From equation (31) 

dY/dt ~ -3 Bi h/h (Y- 6 ) max c 
(50) 

With the substitution of t* = Bi t, equation (50) takes the form 

dY/dt* : -3 h/h (Y - e ) max c 
( 5 1) 

It is evident from the above equation that the solution for Y in 

terms of t* is independent of Bi. Thus for all values of Bi there 
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is just one solution for Yin terms oft*. Comparison of the solutions 

for Bi = 5.0, 10.0 and the solution of equation (51) are graphically 

shown in Figure (5). • t is the product of t and Bi. Thus, for a fixed 

value of Y, the desired value of t is ~i ven by t :: t * /Bi, Y being 

held constant. This essentially means that t varies inversely with 

Y. Hence, if the curves for Y versus t are plotted tor all values 

Y and different Bi, they will be linearly shifted along the time 

scale a distance which is inversely proportional to the ratios of 

Biot numbers. 

The modified successive approximation solutions (henceforth 

called exact) as plotted in Figures (4) and (5) do not exhibit the 

same behavior as the infinite thermal conductivity solutions. This 

deviation is because both the internal and surface resistance to heat 

transfer of the sphere are correctly represented in the exact 

solutions. Mathematically speaking, the temperature distribution 

in the exact case is given by equation (16), which can not be trans-

formed to an equation independent of Bi. Hence the curves for the 

exact solutions are not shifted along t axis by the linear ratios 

ot the Biot numbers. 

Temperature-time curves tor each Biot number along with the 

separable kernel approximations are shown graphically in Figures {6) 

through {13). The case tor Bi = 0.1 is also included in this set 

as a limiting case of small Biot number. A comparison of Figures 

(6) through (13) and Figure (4) reveals that the spread between 

the exact and the infinite thermal conductivity solutions increases 

with the increase ot Bi. 

Bi can be interpreted as the ratio ot the internal and external 
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resistance to heat transfer of the solid concerned. The infin~te 

thermal conductivity solution is based on a zero internal resistance 

assumption. As the Bi increases, the internal resistance becomes 

progressively comparable with the external resistance. Hence with 

the increase of Bi, the exact solution increasingly shifts away from 

the ideal approximation of a zero internal resistance and thus the 

spread between the two solutions become apparent. 

For Bi = 10, the spread, particularly in the region where a 

sudden drop in temperature takes place (henceforth will be called 

critical region in this study), is much larger than for Bi = 0.10. 

This essentially means that during cooling, the infinite thermal 

conductivity solutions compare poorly with the exact solution for 

large Biot numbers. But with a decrease of Bi, as seen in Figures 

(6), (7) and (9), the infinite thermal conductivity solutions tend 

to approach the exact solutions. Therefore, for the small Biot 

number case, as can be seen from Figure (6) for Bi = 0.10, the 

exact solution can be approximated by the infinite thermal con­

ductivity assumption. Figures (6), (7) and (9) represent the tem­

perature distribution on the surface of a sphere for a wide range 

of time for three different Biot numbers (0.10, 0.50 and 1.0) 

whereas the rest of the Figures in the set (6) through (13) indicate 

the temperature distribution for the critical region in a much 

larger scale for four different numbers (Bi = 0.5, 1.0, 5 and 10). 

It is to be observed that the spread between the exact and the 

infinite thermal conductivity solution is particularly noticable 

in the critical regions (most of the nucleate and transition boiling 

regimes), where a large change in temperature occurs with a small 
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change in time. This can be explained from the h - T curve, 
8 

Figure (3). In this curve, the heat transfer coefficient has a 

sharp peak around 900° F. Hence, in the vicinity of this temperature, 

a major portion or the energy is lost from the solid and consequently 

a sharp drop in temperature takes place. But the infinite thermal 

conductivity solution is based on the assumption of a uniform tem-

perature throughout the solid. Hence, to maintain the uniformity 

of the interior temperature, the response of the solid to the sudden 

changes in the heat transfer coefficient at the surface, has to be 

slower than the exact solution. Therefore, in the case of the infinite 

thermal conductivity assumption, the critical region occurs at a 

later stage than in the exact solution. The drop in temperature also 

becomes smoother. 

As can be seen in Figures (6) through (13), the infinite thermal 

conductivity solutions always indicate higher values or temperatures 

than the exact solutions tor the same values of time up to a certain 

point. But at some point well beyond the critical region, the in-

finite thermal conductivity solution crosses the exact solution and 

indicates lower values of temperature than the exact solution along 

the time scale. Although solutions for large time have not been 

shown in these graphs, numerical results indicate that for large 

time, the infinite thermal conductivity solution very nearly co-

incides with the exact one. 

The above-mentioned behavior of the infinite thermal conduc-

tivity solution can be explained in the following manner. At the 

end of the cooling, the sphere must have reached the bath temperature 

regardless ot whether or not the infinite thermal conductivity 
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assumption has been included in the model. During the entire process 

of cooling, an equal amount of energy is lost for both the cases. 

The heat loss is proportional to the area below the corresponding 

Y versus t curves. Hence, if in the earlier part of cooling, the 

infinite thermal conductivity solution indicates higher values of 

temperature along the time scale, during the later part of cooling 

it must indicate a lower value of temperature than the exact solution. 

At some intermediate point, therefore, the infinite thermal conduc-

tivity solution must cross the exact solution. 

It is seen from Figures (6) through (13), that as Bi is in-

creased, the dip in the critical region becomes steeper and steeper. 

In the case for Bi = 1 o, there is a very sharp drop in temperature 

at t = 0.264 with almost no change in dimensionless time. This 

sharp drop can be attributed by the fact that with the increase in 

2 
Bi, the total time region (t = a t 1/R ) for cooling has been shrunk 

and correspondingly, the time range for the critical region has also 

been reduced. But the same temperature drop must take place during 

the reduced dimensionless time range. Hence the Y - t curves become 

steeper with the increase of Bi. 

Separable kernel solutions with more than one equation are also 

presented in graphical form in Figures (6), (8) and (10) through 

(13). As the number of equations is increased, the separable kernel 

solution seems to approach the exact solution. The reason for this 

behavior is simple. With an increase in the number of equations, 

the kernel is represented more accurately. However, an indefinite 

increase in the number of equations is undesirable because the rate 
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or convergence of the separable kernel method to the exact solution 

becomes progressively slower with an increase in the number of 

equations. This means that the change in the rate at which the 

sparable kernel method approaches the exact solution resulting 

from the increase in the number of equations from 10 to 20 is much 

less than the change in the rate resulting from an increase in the 

number from 1 to 2. Hence, it is expected that a stage will be 

reached when virtually no improvement in the efficiency will be 

observed by increasing the number of equations. In the present study, 

solutions for the separable kernel method with up to 20 equations 

have been presented. 

Values of surface temperature are also computed by the modified 

separable kernel method for Bi a 1. For comparison purposes, these 

are presented in Figure (11) along with the ordinary separable 

kernel method and the exact solutions. The increase in efficiency 

with the use of the modified method over the ordinary one is obvious 

from this figure. The modified method needs only 3 equations to 

attain almost the same solution as the ordinary method with 10 

equations. Also, the modified method gives a much closer approxi­

mation to the exact solution with just 5 equations than the ord­

inary method with 10 equations. The same kind of behavior can be 

expected for other Biot numbers. 

Surface heat fluxes for different Biot numbers have been deter­

mined numerically and plotted against time in Figures (14) and (1 5) . 

Full logarithmic graphs have been used for the plots because of the 

large variation in the heat flux with temperature. A brief descrip. 
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tion ot the numerical method tor the determination ot the heat 

fluxes seems necessary here. The determination ot heat transfer 

coefficient h has already been discussed. Once the surface temP­

erature Y for a particular time is known, the value of h corresponding 

to that surface temperature can be determined from Figure (3) or by 

numerical interpolation if a better accuracy is desired. The 

product of h and the temperature difference between the sphere 

and the liquid, therefore, determines the flux at a particular time. 

In Figure (14), heat fluxes tor the infinite thermal conductivity 

solution in the case of Bi • 5 have also been calculated and com­

pared with the exact solution. As expected from the temperature 

behavior from the preceding Figures (5) through (13), there is a 

sharp peak in each of these four graphs ot heat flux versus time 

representing a small region where the heat flux is well above the 

average value (peak nucleate boiling regime). This peak indicates 

a large loss of energy during a small period of time. These spikes 

become steeper and steeper With increasing Bi which again is consis­

tent with the temperature behavior. It is also noted that, tor large 

time, the heat fluxes become negligibly small compared to the average 

value of the flux. This is explained by the fact that at large 

time, the temperature difference between the solid and the coolant 

becomes very small and the value of h is also considerably reduced 

with the reduced surface temperature of the solid, Figure (3). The 

heat flux for the infinite thermal conductivity solution for Bi = 5, 

as shown in Figure (14), closely follows the exact solution. But the 

position of the peak heat flux is shifted towards the right along the 

time scale and at some point beyond this peak heat flux position, 
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the value of the heat flux for the infinite thermal conductivity 

solution continues to be less than the exact solution. This behavior 

is again consistent with the temperature behavior of the infinite 

thermal conductivity solution discussed previously. 

The time rate of change of the surface temperature indicates 

how rapidly the surface of the sphere cools. These rates 

(dY/dt : 6 Y/ 6t) have been calculated from the numerical results 

of the surface temperatures by forward and central difference 

techniques. The calculation of dY/dt is important because it is 

frequently used for the determination of h from experiments. In 

experiments, normally the temperatures are measured and hence Y 

and dY/dt can be evaluated. With the assumption of a thermally 

lumped solid, heat flux ia then determined. In mathematical form 

this can be expressed as 

where q/A is the heat transfer per unit area 

and M is the mass of the solid. 

Division of the heat flux by the temperature difference between the 

surface of the solid and the liquid then yields the heat transfer 

coefficient h. Small or hollow spheres are commonly used in the 

experiments so that the assumption of a thermally lumped solid 

(i.e. infinite thermal conductivity assumption) can be made. 

The rates have been calculated for both the exact and infinite 

thermal conductivity solutions for the Biot numbers of 0.1, 0.5, 

1.0, 5 and 10 and are plotted in Figures (16) through (20). It is 

observed from these graphs that only in case of small Biot numbers 
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(0.1 and 0.5), the exact and infinite thermal conductivity solutions 

are very close to each other. The exact solution can be approximated 

by the infinite thermal conductivity solution tor these cases. With 

the increase or Bi, however, the infinite thermal conductivity 

assumption breaks down in comparison with the exact case, particularly 

in the regions of the sharp rise or the magnitude of the derivatives 

or .in the peak regions. In these regions, the error between the 

infinite thermal conductivity solution and the exact solution is 

more than 400% for Biot numbers of 5 and 10 and the location of the 

peak tor the iafinite thermal conductivity solution occurs much 

later than the exact solution. Although this error tor Bi z: 1 .0 

is of the order of 300% in the peak regions, tor the remaining 

portion of the curve, the infinite thermal conductivity solution 

closely follows the exact solution. Hence, for the Bi :: 1.0 case, 

the infinite thermal conductivity solution can be used With a less 

than 10% deviation from the exact solution except in the region 

around the peak value of the curve. 

It is to be noted that the curves of Figures (16) through (20) 

are similar in shape to the beat flux versus time curves, Figures 

(14) and (15). But the peaks or these derivatives seem to have 

sharper rise than the heat flux cases. As expected, the peaks of 

the infinite thermal conductivity solutions are shifted to the 

right from the exact solution along the time scale. With the in­

crease in Bi, the shift between the exact and the infinite thermal 

conductivity solutions become more and more pronounced. This shift 

is due to the very nature of a zero internal resistance assumption 

in the solid. The solid under this assumption is always in a process 
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of maintaining a uniform temperature throughout. Hence, in main­

taining this criterion, more time will be needed for the solid to 

adjust itself to the sudden changes in the surface conditions than 

the exact solution. Hence, if the Biot number is increased (i.e. 

by increasing the diameter of a solid), the solid Will take more 

time to adjust itself tor maintaining a uniform condition to the 

sudden change in the surface condition. Thus, the peak will be 

more and more shifted to the right with the increase of Bi. 

It has been mentioned that both the forward and central dif· 

terence techniques have been employed for the calculation of dY/dt. 

Some improvement in the results was observed, particularly in those 

regions where a change in time step was made, by the application 

of central difference over the forward difference technique. This 

is quite understandable since the central difference computation is 

based on the information from both sides of the point at which the 

value is to be computed whereas the information from only one aide 

of the point is required tor the forward difference computation. 

A few words of cantion should be mentioned about computer time. 

It has been found that to attain a reasonable amount of accuracy in 

case of a large Bi (say 10), a considerable amount of computer time 

is required tor the successive approximation method. Cases tor 

Biot numbers greater than 10 were not calculated in this study. 

However, from the trend of the computer time spent on Bi = 0.1, 0.5, 

1, 5 and 10, it can be inferred that for very large Biot numbers 

(say 50 or 100), a large amount of computer time would be required. 

Computer time does not vary directly with the ratios of Biot numbers 

but progressively increases with the increase of Bi. However, this is 
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not a unique disadvantage of the successive approximation method, 

since this will essentially be true for all other numerical methods 

because of the sensitive nature of the Y versus t curve. Also 

tor large Biot numbers, a careful choice of time steps has to be 

made, particularly in the critical region. Otherwise the solution 

will fail to converge within a finite number of iterations. This 

choice of step size does not follow the linear ratios of Bi. Suitable 

time steps have to be determined by trial and error and experience. 

This is a painstaking and laborious process and requires a lot of 

computer time. Again this is not a limitation tor this particular 

method since this is true for all other numerical techniques. 
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VI CONCLUSION 

A practical method for obtaining an •exact' solution for the 

unsteady state temperature distribution in a sphere subject to a 

nonlinear convectiYe boundary condition has been presented. Surface 

temperature results for different Biot numbers are presented in 

graphical form and compared. Heat flux and rate of change of 

temperature with respect to dimensionless time (Fourier number) are 

also calculated for different Biot numbers and a comparatiYe study 

has been made. Two approximate methods or solution for the surface 

temperature have been proposed and the modified separable kernel 

method has been found to be more efficient than the ordinary one. 

The limiting case of infinite thermal conductivity solution is also 

investigated and round to give good results for large time. 

The modified successive approximation method as presented in 

this thesis, can take into account any change in geometry or the 

solid and a wide range of temperature between the solid and the 

coolant. However, as a prerequisite to the problem, values or heat 

transfer coefficient h must be known for all temperatures in order 

to fulfill the reqUirement of a complete set of boundary conditions, 

equations 4(a), (b), (c) and (d). With known values or h, the 

techniques presented in this study, can be used to calculate the 

surface and thereby the interior temperature, tor different Biot 

numbers. 

The accuracy of the numerical techniques used for the solution 

ot equation (16) is good enough tor all practical purposes. Where 

a high degree of accuracy (within 1 to 2 percent or the exact solution) 
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is not desired, either ot the separable kernel methods can be used 

to the best advantage. A large number of equations essentially 

increases the efficiency of either of the separable kernel methods 

but this also necessitates the determination ot an equal number of 

eigenvalues and the solution of a large number of interlinked 

differential equations. Hence a suitable compromise should be made. 

From the discussion of the results, it can be conveniently 

concluded that for the cases of Biot numbers higher than one, the 

infinite thermal conductivity solution breaks down compared with the 

exact one. The error in approximation becomes significantly large 

in the critical region (or the nucleate boiling region) where a 

rapid rate of heat !low is observed. However, the error is con-

siderably less for Biot numbers less than 1.0. Hence, tor the case 

ot Biot number less than one, the exact solution can be approximated 

by the simple assumption of lumped thermal system. 

In the previous chapter, it has been discussed how the time 

rate of the change of the surface temperature (dY/dt) is calculated 

and a comparative study of these rates tor different Biot numbers 

has been presented. The knowledge of dY/dt is useful, particularly 

for the smaller Biot number cases. For a small Biot number, the 

sphere can be aasumed to be thermally lumped and hence the simple 

form of the heat flux expression q/A :: (-Mc/A) dT/dt1 can be applied. 

With the knowledge of the heat flux, the heat transfer coefficient 

h can be easily determined. Normally in experiments, small spheres 

are used to enaure a small Biot number so that the approximation 

of a thermally lumped solid can be made. This avoids a lot of 

lengthy and laborious calculation. 
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As mentioned previously, this particular method of solution is 

flexible enough to account for other one dimensional geometries. Hence 

a direct extension or the present problem can be the solution for 

the temperature history of a slab, cylinder or a semi-infinite solid 

subjected to nonlinear convective boundary conditions. This can be 

accomplished simply by changing the expressions of the kernels for 

different geometries, equations (24), (25) and (26) and substituting 

in equation (16) for the determination of the surface temperature 

corresponding to that particular geometry. Eigenvalues for the 

different geometries will also be different. In the present problem, 

the interior temperature history of the solid has not been sought, 

although the method for its determination has been briefly discussed 

in the previous chapter. Thus, the avenue for the exploration of 

the interior temperature or the sphere and other geometries is left 

open. With the knowledge of the interior temperature, a suitable 

comparison between the interior and the surface temperature or the 

solid tor the particular cases can be made. In the process the 

response behavior or the solid to the changes in surface conditions 

can be obtained. 

The present solution is based on the available heat transfer 

coefficient data tor a paraffinic-type oil, designated as intermediate 

oil [ 1 ]. The same problem can be solved tor different fluids, if 

heat transfer coefficient data is available for the entire range of 

boiling. Mention of the cryogenic fluids should be made here since 

heat transfer coefficient data for some of them are available. How­

ever, when cryogenic fluids are used as quenchents, proper steps 

must be taken to account for the temperature dependency of the 
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physical properties of the solid. The solution obtained by using 

a different fluid may be considerably different from the present 

solution depending upon the nature of the heat transfer coefficient -

temperature curve, for the particular fluid. 
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