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ABSTRACT

Bandyopadhyay, Salil K., University of Missouri at Rolla, Rolla,
January, 1972. Transient Cooling of a Sphere due to Boiling.

Major Professor: Alfred L. Crosbie

The time - dependent surface temperature is determined for a
sphere subjected to cooling by boiling. One dimensional heat transfer
is considered and the solid is assumed to be homogeneous, isotropic
and opaque to thermal radiation and to have temperature - independent
physical properties. The initial temperature of the sphere and the
coolant are assumed to be uniform and arbitrary. The boiling heat
transfer coefficient at the surface of a sphere is a strong function
of the surface temperature thus resulting in an extremely nonlinear
transient heat conduction problem. As a practical application of
the problem, the process of quenching has been cited.

In the analysis, the tramsient heat conduction equation with its
initial and boundary conditions is transformed to a singular nonlinear
Volterra integral equation of the second kind by use of the Lap-
lace transformations. The equation is solved numerically on a digital
computer by the method of modified successive approximations for the
sphere. The time scale is broken into a desired number of intervals.
The solution for the first time interval is obtained by successive
approximations and then used in finding the solution for the next
time interval. Initial guesses are obtained by the use of the ideal
case of infinite thermal conductivity. The process of successive

approximation is continued along the time scale till the solution
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for all desired time is obtained. Within the limitations of the
basic assumptions, the method can be termed as exact, since any
degree of accuracy can be obtained, The results are presented in
graphical and tabular forms and compared with analytical and ex.
perimental results where available.

A separable kernel method is also applied for the solution of
the Volterra integral equation describing the surface temperaturse.
The kernel of the integral equation 1s approximated by a simple
expression and substituted in the original integral equation. By
suitable mathematical techniques, the integral equation is then trans-
formed to a differential equation which 1s much simpler to solve than
the integral equation., The better the kernel is approximated, the
more the separable kernel solution tends towards the solution
obtained by the successive approximation method. This method of
solution is more convenlent to apply than the successive approximation
method, but 18 not very accurate for Biot numbers greater than ten.
Another approximate method, termed as the modified separable kernel
method, is also presented for the solution of the integral equation.
The accuracy of the modified method seems to be much better than the
ordinary one and is found to give results within five percent of the
exact solution when the kernel is represented by & suitable number
of equations.

Limiting cases of large and small Biot numbers ( 0.1 to 10.0 )
are calculated and analysed in terms of the present solutions. It
18 concluded that the infinite thermal conductivity approach can

approximate the exact solution to within ten percent for Biot numbers

less than one.



I INTRODUCTION

When a hot solid is suddenly immersed in a pool of cool liquid,
transient pool boiling takes place. During the cooling process,
three distinct stages of boiling heat transfer occur, namely film,
transition and nucleate boiling. When the solid cools down to a
temperature close to the saturation temperature of the liquid, heat
is transferred by free convection until the system attains an
equilibrium temperature. The heat transfer coefficient for all the
regimes of boiling is a strong function of surface temperature which
makes the governing boundary condition: extremely nonlinear. Hence
a general solution for the surface temperature of the sphere, valid
for the entire cooling range seems difficult to obtain, Although
transient pool boiling has been studied extensively, no exact solu-
tion for the surface temperature of a sphere has been presented
so far.

Quenching is an excellent example of transient pool boiling
and is widely used in different industries. In the fields of met-
allurgy and manufacturing, quenching is a hardening process. Initially,
the metallurgists were primarily interested in obtaining a desirable
hardness of the solid and 1little attention was given to the heat
transfer problem associated with it. But due to the excellent work
of Stolz, Paschkis et. al., f1], it has been conclusively proved
that the investigation of heat transfer is necessary to achieve a
desired hardness by quenching. In other words, a knowledge of the

temperature history is useful in regulating the hardness.



For a better understanding of the relationship between the
hardness and the heat transfer rate, a brief description of how
quenching imparts hardness seems appropriate. When a solid is
gradually heated in a furnace, beyond a certain temperature, struc-
tural changes take place in the solid. The range of temperature
during which this transformation takes place i1s known as the critical
range [2]. If the solid is then cooled down slowly, a reversible
metallurgical transformation takes place as the body passes through
the critical region and is transformed back to the original structure
below this region. No noticeable change in the physical properties
of the solid is observed after this process,.

But if the hot solid is quenched, rapid cooling makes the process
metallurgically irreversible. The so0lid does not have enough time
to transform back to the original preheated structure. Instead, there
is a distortion of the crystal lattice and a new structure (Martensite,
in case of carbon steel) is formed. This new structure is respone
sible for the increased hardness of the solid. However, the
structure is brittle and, therefore, vulnerable to shocks and
breakage. An extremely rapid cooling rate will produce a high
degree of hardness and at the same time will make the material ex-
tremely brittle, sometimes causing cracks to appear in the surface.
Hence, the rate of cooling must be properly controlled to get the
desirable compromise between hardness and brittleness.

The rate at which the solid coocls is a strong function of the
heat transfer coefficient which again is strongly related to the

surface temperature. Thus, for control of the hardness, a knowledge



of the entire temperature history of the quenched solid is essential.
Typical cooling rates (temperature - time) and heat transfer
coefficient - temperature curves are shown in Figures (1a) and (1b),
Reference [3].

It has been stated in the introductory paragraph that transient
pool boiling encompasses three distinct regimes of boiling. A brief
description of each of these regimes is now given. In film boiling,
the temperature difference between the solid and the liquid is large
and a vapor film completely surrounds the solid, In this stage, the
vapor film acts as the medium of heat transfer between the solid and
the liquid. This regime of boiling is shown by the portion ab in
the curve in Figure (2). As the cooling continuee, transition
boiling occurs. This state of boiling is unstable and characterized
by the alternate formation of vapor films and agitated vapor bubbles
at different locations of the heating surface. Within this reglon,
the amount of vapor generated is not enough te support a stable
vapor film over the entire surface but is again too large to allow
a sufficient amount of liquid to reach the surface for creating
enough bubbles for nucleate boiling (discussed later). This phase
of boiling is marked by the dashed portion bc of the curve in Figure (2).

With a further drop in temperature difference, the formation of
a continuous stream of bubbles is observed on the heat transfer sur-
face. The above phenomenon occurs in the nucleate boiling regime.
This regime of boiling is shown by cd on the curve in Figure (2). 1In
the first part of this regime the vapor bubbles are large whereas in
the later part, with a further reduction in the temperature of the

golid, the bubbles become smaller and less numerous than those in
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the earlier part and condense before reaching the surface of the
gsubcooled liquid. There are many theories about the formation of
bubbles (nucleation), However, most of the theories suggest the
existence of the "nucleation sites" on the heating surface fronm
which the bubbles originate. It is to be observed that although the
temperature difference between the s0lid and the liquid in the
nucleate boiling regime is less than that in the film boiling regime,
the heat flux in some portion of the nucleate boiling regime is
higher than that in the film boiling regime,

Finally when the surface temperature is close to the saturation
temperature of the liquid (considering subcooled liquid), transfer
of heat takes place by free convection., In this regime the heat
transfer coefficient is proportional to the temperature difference
between the s0lid and the liquid to the one fourth power. This
region is shown by de on the curve in Figure (2).

Unfortunately, a simple relation between the heat transfer
coefficient and the temperature difference between the solid and
the liquid, as exists in the case of laminar free convection, does
not seem to exist for boiling heat transfer, connecting all the
regimes of boiling. Some correlations between the heat tramsfer
coefficient and the temperature difference do exist for film and
nucleate boiling. But these correlations are valid strictly for the
particular regime and the conditions attached to these (e.g. pressure,
position and surface condition, diameter, etc.) and hence are not
applicable, in general, for other regimes and conditions. Hence a
general solution of the temperature history valid for all the regimes

of boiling has not, so far, been proposed because of the complexities



involved,

The purpose of this thesis is to present an exact solution for
the surface tenmperature of a sphere cooled by boiling which is valid
for a wide range of Biot numbers. The term exact is herein used
because any degree of accuracy can be achieved in the numerical
solution technique. The proposed solution is valid for any range
of temperatures as long as the basic assumptions are satisfied
(chapter 3). Once the surface temperature is known, the interior
temperature can be found by numerical quadrature. With knowledge
of the surface temperature, the surface heat flux can be easily
calculated. The solution technique is flexible enough to take care
of the variations in geometry, if desired. The only pre-condition
to this solution is that h must be known for all temperatures,

The first step in this investigation is the mathematical form-
unlation of the physical problem., The linear partial differential
equation for transient heat conduction in spherical coordinates with
a temperature dependent heat transfer coefficient is transformed
into a nonlinear Volterra integral equation of the second kind for
the surface temperature by means of Laplace transformation. Two
methode for solving the integral equation are presented. The first
method solves the integral equation by successive approximations,
while the second method transforms the integral equation into a set
of nonlinear first order differential equations. The later method
is known as the "Separable Kernel Method". Results are presented for
both the methods and compared with each other and also with the

experimental results of Stolz, Paschkis et. al. [1].



II REVIEW OF LITERATURE

A, Discussion

The transient heat conduction problem connected with quenching
presents an extremely nonlinear boundary condition because of the
strong dependence of the heat transfer coefficient on the surface
temperature. The results of many investigations are available on
transient heat conduction problems covering a broad range of non-
linear boundary conditions. But so far, the nonlinear convective
boundary condition problem has received little attention.

The present review of literature will consist of two parts. 1In
the first part, investigations concerning boiling heat transfer
coefficient will be discussed., It has been mentioned in the intro-
duction that the boiling heat transfer coefficient h does not have
a simple relationship with the surface temperature. DBut the ana-
lytical solution to the present problem is not possible unless h
is known for all temperature. Initially the investigations concern-
ing h were carried out mainly for metallurgical reasons in quenching
but eventually turned out to be of significant importance in the field
of heat transfer. In the second part of the review, investigations
of transient heat conduction problems with temperature dependent
heat transfer coefficients and other kinds of nonlinear boundary
conditions will be considered.

A comprehensive study of the heat transfer coefficient in connect-
jon with quenching was presented by Stolz, Paschkis et. al. Nl
In their report, Stolz and Paschkis [3 ], stated the importance of
heat transfer coefficient for regulation of the material hardness

with the quenching process. By performing a series of quenching



experiments in oll, Stolz, Paschkis et., al,.,, obtained a complete
range of heat transfer coefficient data covering all the regimes

of boiling [1]. Three different kinds of 0il, designated as slow,
intermediate and fast and two inch diameter silver spheres were used
as quenchents and solids respectively. In the referenced data, the
initial temperature of the solid was 1600° F and the bulk temperature
of the liquld was 1100 F. From the measured values of the interior
temperatures, Stolz obtained the surface temperature of the sphere by
a special numerical technique [4]. The method used to obtain the heat
transfer coefficient from the surface temperature is described in
detail in [1] and [4]).

Heinlhofer [5)], and later Grossman and Ashimow [6)] assumed con-
stant heat transfer coefficient during boiling. However, Stolz,
Paschkis et. al. [1] considered the importance of a variable heat
transfer coefficlent during quenching.

Engel [7], Wever and Rose [8] and Rose [9] performed quenching
experiments to compare the cooling rates of silver spheres. Their
experimental techniques were later taken up by Stolz, Paschkis et. al.
[1], Russel [10] and Yoshida [11, 12, 13] who were also interested in
determining heat tranafer coefficlents for different combinations of
solids and liquids. A brief review of their work has already been
given in [1] and hence need not be repeated here.

A complete range of heat transfer coefficient data for all the
regimes of boiling are also presented by Merte and Clarke [Ih] and
Veers and Florschuetz [15] for two different combinations of solid
and liquid., Merte and Clarke obtained their data with a copper

sphere - liquid nitrogen system at standard and near zero gravity
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using a transient technique. Veers and Florschuetz compared the steady
state and transient pool boiling data for a copper sphere -~ freon 113
systen.

Another study on quenching and heat transfer coefficients
has been made by Paschkis [16]. Other available papers on quenching
[17, 18, 19, 20, 21, 22, 23, 24, 25] mostly deal with metallurgical
aspects of quenching.

In this portion of the review, a brief discussion of the past
literature, dealing with nonlinear heat conduction is made, A
useful comparative study can, therefore, be made between the other
method and the present author's method. However, since an extensive
discussion of the past literature concerning radiatlon boundary
conditions, has already been made by Crosbie [29], the present dis-
cussion will be limited to the pertinent literature which was not
discussed by Crosbie.

For convenience, this portion of the review is presented in a
tabular form, naming the author(s), the problem statement and the
methods of solution. Unless mentioned in the table, all the problems
discussed are one dimensional transient heat conduction problems with
constant physical properties.

After study of the table, and from the literature survey of
Crosbie [29], it can be seen that most of the techniques used for the
solution of nonlinear heat conduction problems are different com-
binations of analytical and numerical ones. Analytical techniques
have been adopted to transform the general heat conduction equation

(1inear or nonlinear) with a set of nonlinear boundary conditions
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into a more desired form. Numerical techniques are then employed for
the practical solution of the problem. Some of the most common ana-
lytical techniques are the heat balance integral method, Biot's var-
iational calculus method and the Laplace transformation method.

Some of the numerical solutions listed in the table are presented
in a general form. Gaumer [26] and Gay and Cameron [31] have not
discussed the solution of a nonlinear conduction problem, in particular,
but have compared the use and applications of different finite dif-
ference methods in transient heat conduction problems. A table of
comparative studies of five different finite difference techniques is
provided in [31] from which a particular method can be selected
according to the suitability of the problem. Mason [36 ] in her numer-
ical solution of a radiating surface has mostly concentrated on show.
ing the advantages of the implicit Runge-Kutta method over the ex-
plicit one. However she has not mentioned any particular geometry.

Reference should be made to the investigations of Rosen [41],
since among other things, he has also treated the temperature dependent
heat transfer coefficient problem. However, he assumed a power law
variation of the heat transfer coefficient. Although this assumption
is a definite improvement over the assumption of a constant heat
transfer coefficient, it is still a long way from the actual case.
Thus, his proposed solution for the temperature distribution in a
gsemi-infinite solid with a temperature dependent heat transfer coef-
ficient, cannot be generalized to account for all regimes of boiling.

From this review of the past literature, 1t can be concluded that

besides the work of Rosen [41], not much attention has been given to
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nonlinear convective boundary condition problems. Previous work on
nonlinear boundary condition problems have mostly centered around
radiation boundary conditions. Some exact results for this case,
have been reported for the semi-infinite solid, plate, cylinder anmnd
sphere. A method is considered exact in the sense that any degree of
accuracy can be achieved. In all cases studied, the body was assumed
initially at a uniform temperature and free of heat sources. But so
far, no exact solution has been proposed for the transient heat

conduction problem with nonlinear convective boundary conditions.



Author(s)
Reference No.

Gaumer [26]

Ivanov and
Salomatov [27]

Crosbie and
Viskanta {28]

Crosbie [29]

Winter [30]

Gay and
Cameron [31]

B. Tabular Form

Geometry, boundary condition
and nature of the problem

13

Method of solutian

slab, cooling or heating by
conduction, convection or
radiation.

one dimenaional solid, heat
conduction with time depen-
dent heat transfer coeffic.
ient.

one dimensional solids;
heating or cooling by
radiation

one dimensional solids,
heated or cooled by
convection and/or radiation.

semi-infinite solids with
parallel walled cavities;
cooled by conduction in the
interior and radiation

at the surface.

plate, radiation and
adiabatic boundary
condition.

forward, central and
backward finite differ-
ence; stability of
different methods
compared.

approximate analytical
technique.

using Laplace transfor-
matlions the surface
temperature expressed
in terms of a Volterra
integral equation;
solved numerically by
successive approxim-
ations.

method of solution
same as [28); some
approximate methods
also proposed.

numerical solutions;
similar calculations
performed for the
same material without
cavities; results of
two cases compared.

five different finite
difference methods
considered and a
comparative study
made.



Author(s)
Reference No,

Crosbie and
Viskanta [32]

Adarkar and
Hartstook [33]

Vardi and
Lamlich [34]

Vadin [35)

Crosbie and
Viskenta [36]

Mason [37]

Geometry, boundary condition
and nature of the problem

14

Method of solution

plate, heating or cooling by
combined convection and
radiation.

gsemi-infinite solid; heat
conduction with time varying
radiation boundary condition.

finite cylinder, steady
state heat conduction with
radiation houndary condition
and with distributed heat
source; two dimensional
problen.

infinite slab, simultaneous
convection and radiation at
the boundary.

one dimensional solid,
heated or cooled by
radiation.

slab; radiating boundary
condition.

method same as [28]

integral method.

finite difference;
graphical results.

integral equation of
temperature distribu-
tion s0lved by iter.
ation method assuming
a cubic temperature
profile.

kernel of the trans
formed Volterra
integral equation
approximated by a
separable kernel}
resulting nonlinear
differential equation
solved numerically;
solution not practical
for small time.

implicit Runge-Kutta
method which is uncon-
ditionally stable and
much faster than the
explicit method.



Author(s)
Reference No.

Abrams [38]

Ayers [39]

Ayers [40]

Rosen [41]

Graham [42]

Vujanovic [43]

Geometry, boundary condition
and nature of the problem

15

Method of solution

sphere, cooled by radiation.

cylinder; cooled by radiation

sphere; cooled by radiation

semi-infinite solid; heated
or cooled by convection and/or
radiation at the surface;
variable thermophysical pro-
perties.

one dimensional solids;
simultaneous convection and
radiation.

rod and slab; both linear and
nonlinear boundary conditions
are treated.

mathod same as [28].

finite differencej
results in graphical
forms for a wide
range of parameters.

same as [39].

heat balance integral
method; resulting
ordinary differential
squation solved
numerically.

by using Laplace and

% transformations on
the governing heat
conduction equation,

a discrete time system
of equations is obtaine
ed for digital computer
solution; results in
good agreement with
[28].

variational technique;
solution expressed in
analytic closed form;
results are in good
agreement with known
solutions.
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III MATHEMATICAL FORMULATION OF THE PROBLEM

This investigation is concerned with the transient surface
temperature of a sphere, initially heated to a uniform temperature
and then suddenly Dplaced in a cool liquid. The initial temperature
difference between the sphere and the liquid is large enough such that
£ilm, transition and nucleate boiling and free convection occur at the
surface of the sphere during cooling. The heat transfer coefficient
under this circumstance is a strong function of the surface temperature
and hence the governing boundary condition becomes extremely nonlinear.

Following are the baslc assumptions made in the investigation:

1. The heat conduction is one dimensional.

2. The sphere is isotropic, homogenous and opaque to thermal
radiation.

3. The physical properties ( o, Cp and k ) are independent of
temperature.

4. The bath temperature remains constant.

5. The heat transfer coefficient h is independent of the diameter
of the sphere.

Special mention should be made about the last assumption. The
values 0f h used in this analysis were determined for a 2 inch diameter
silver sphere (Bi = ,50) by Stolz et. al. [1]. In the experiments
performed by Stolz et. al., the surface temperature was measured and
then a lumped parameter technique was applied to calculate h. Hence,
the analytical solution for the temperature of the sphere becomes
trivial, since the surface temperature was already measured to deter-

mine h., However, it is not always convenient to make laboratory
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measurements of the surface temperatures for a wide range of physical
situations., Hence, with the knowledge of h for one particular dlamster
of the sphere and with the assumption No. 5, the surface temperature
for a wide range of diameters can be determined numerically. Also
when the dependency of h on the diameter of the sphere can no longer
be ignored, the technique of Reference [1] can be employed to deterw
mine h by employing a hollow sphere so that the lumped parameter
approximation can be applied (essentially true for a small Bi). With
these known values of h, the solution technique can then be sultably
applied to determine the surface temperature of a solid sphere of the
same external diameter as the hollow one.

The differential equation governing the transient temperature

distribution, therefore, is

9T _ -3 2 37T
Bt”—gz 57, (%1 %w, ) (1)

1 1

The initial and boundary conditions are

r ( rI,O ) = Ti (2a)
2 T
-k =T r = R -.-.h(Ts)[Ts-Tc] (2v)
1 1
_Ei_T_ =0 (2¢)
ar r, =0

To simplify the analysis, the basic equation (1) and the initial
and boundary conditions (2a, 2b, and 2c) are expressed in dimension

less forms by the following substitutions:
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at r T(r, t)
— and u(r, t) = —m———
R R Ti

e ]
n

2 u 2 Ju ou
5 2 * T Tr T ot (3)
and
u(r,0) = 1 (4a)
Su
57 | r =1 = 8 [u )] (4b)
L.l =0 (k)
In equation (4Db)
g [u(t)]l=B1 a (u_ - 68)
s 8 (o
max (44d)
h R
max

where Bi = ”

The solution of the above set of equations (3), (4a), (4b), (4¢), and
(4d) remains incomplete unless the values of h are explicity known
for all the surface temperatures, In this regard, Reference [1] was
consulted,

Figure (3) in Reference [1] represents the behavior of h with
surface temperature for a particular quenching experiment using
0il as a quenchent. The bulk temperature of the quenchent was 110° F
and the initial temperature of the spherical sample was 1600o F,
h is represented in the semilogarithmic scale in Figure (3) from

Reference [1] and thus the interpolation of h becomes difficult.
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Fig. 3 Variation of Heat Transfer Coefficient with Surface Tempera-
ture as used in this analysis.




However, several data points were selected carefully from this graph.
These points were tested by a suitable interpolation routine. Testing
was done numerically on a digital computer and minor adjustments in
the input data were made until a smooth curve was obtained through
these points. Figure (3) represents the final form of the h - TB
relationship used in the solution.
The numerical program had to be run a number of times because
of the abrupt behavior of h where a change from one boiling regime
to the next takes place. In these regions, as can be seen from
Figures (1a) and (3), h is very sensitive to minor changes in T_.
The interpolating routine failed to interpolate the desired value
correctly unless more data points were added to these regions. The
nature of this particular interpolating routine is such that the
routine picks up three input values on both sides of the desired
point and computes the value based on the information provided by
these six points. Hence, if the input points on either side are quite
far apart, the interpolation method fails to pick up the nature of
the curve correctly. After several trieal and error runs, a total of
136 points were used and smooth curve of h versus 'I's was obtained.
Following the procedure of Crosbie [29], the partial differential
equation (3) along with the initial and boundary conditions (4a),
(4b) and (4c) is transformed into a single nonlinear Volterra in-
tegral equation of the second kind by the use of the Laplace trans-
formation with respect to time t and the application of the convolution
theorem. The Laplace transformation of equations (3), (4b) and (4¢)

produces the following ordinary differential equation:
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d~ u 2 du -
+ = - . 88U = 1 (5)
drz r dr

with the transformed boundary conditions

4

dr r =0 =0 (62)

4 lu, )

dr r el 8 (6v)

The solution to the above set of equations is

i) = 2280 F(r, 0] (7)

where the function f‘(r, 8) is expresses as, Reference [ 38])

ainh( 1/—5 r) (8)

F(r,s) = —
Ve cosh +# - 8inh Y8

The inverse of equation (7) is then symbolically given by

-1
u(r,t) = 1 - 4 [g(ns) - F (r,s)] (9)

L B

The inverse of the right hand side of the above equation follows
imwmediately with the help of the convolution theorem., The

convolution property is stated as follows:

t
fo uw(T)v(t=T)ar

Thus, with the help of the convolution theorenm

-1

(10)
- - t
L legt) F(rn)]= fog [u ( T)IF (x,t-T )d T

Substitution of equation (10) into equation (9) yields

. |
a(r,t) =1 -2 fo g [u, (TIIF (rye? )l (11)



22

Equation (11) is the integral equation of the problem. However,
it is not yet usable as a solution since the unknown function

g [u8 (t) ] which was defined earlier appears under the integral sign.
Hence F(r,t) has to be explicitly found by using the inversion theorenm

for the Laplace Transformations.

-1 ¢ +im

F(r,t) = & [;‘(r,s) ] = F(x,s) exp (st)dt

1
2mT4 'cfz-ia)

(12)
: ¢ +im

= [ sink( Vzr) oxp (zt) d
27l ‘- 1w zZ cosh /T ~ sinh /Z z

where ¢ is a positive constant in the complex plane lying to the
right of the singularities of the integrand. Equation (12) is
integrated by means of contour integration and the Cauchy Residue

theorem with the result:

A
F(r,t) =3r +2 ) sin Ty T exp (- )‘kzt) (13)

k=l A
sin Kk

where the eigenvalues Ak are defined by tan Xk = )‘k’ the A = 0

case excluded. Substitution of (13) into (11) yields

t ®
u(r,t) =1 - fo g [u (T ][3"2}:; r sin X

(14)
exp (- A5 (6 - T)]aT

Equation (14) implies that the surface temperature u must be known
as a function of time before any interior temperature can be found.
The integral equation for the surface temperature is obtained simply

by putting r equal to unity in equation (14):
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t (s o}
u (t) =1 - 16 g [ u, (1) I3 +27 exp (-
k=t

2
Ak

(15)
(t=1N]arT

Thus, the problem of transient cooldown of a sphere with a uniform
initial temperature distribution and subject to nonlinear convective
boundary conditions can be reduced to the solution of a single
nonlinear Volterra integral equation of the second kind for the
surface temperature, equation (15). Once the surface temperature
us(t) is known from equation (15), the interior temperature at any
position and time can be determined by substituting the value of
us(t) in equation (14) and then by subsequent integration for any

known time.



2h

IV SOLUTIONS OF THE INTEGRAL EQUATION

(A) Modified Successive Approximation Method

The integral equation (15) is solved by a modified successive
approximation method. The use of the term 'modified?! seems justified
here since, as is described later, the present method breaks the
total time into a convenient number of intervals and a successive
approximation is applied over each of these intervals. But in the
standard method of successive approximations an approximation is
applied over the entire time period.

Equation (15) can be rewritten with the substitution Y(t) =:u8(t)
(for convenience)

4] .
W =1- [F e [XpIs ez oo A Fmdan
(16)

(t > 0)

To obtain the solution of the above equation, the entire time range
for which the solution is desired, is divided into a suitable number

of intervals. For the first time interval, 0 <t ¢ tI’

an approx-
imation for the unknown temperature is made., With this initial value,
successive‘approximations of the temperature are made for the first
time interval using equation (16). Thus, the (n <+1)th approximation

is given by

. ®
L@ =1- [0 el (DIl3+2 ] exp 2, -mlar

k=1
(17)
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Each of the following approximations is improved from the preceding
one until the difference between the last two approximations becomes
less than a predetermined error criterion.

For the second time interval, the integral equation (16) is
broken into two parts, the first being the time interval for which

the solutione are already known from (17). This results in:

(1]
Y, () =1 fo'“ el XTI 3 +2 k21 exp (- Aka(t-T)) 1dT
‘ (18)
@ 2
- [Fely(mls 42 [ exp (A G- ]aT
% K=l
(¢, £t 5 t)

The second term of the above equation is completely known for all
time t . Hence, an approximation for the unknown temperature is
made for the time interval t1 ‘g t f; ta. Again by the method of
successive approximations, each of the following approximations is
improved in equation (18), until the difference between the last two
approximations meets the error criterion.

In general, for m time intervals, equation (18) takes the form

Y o4 (B =1- tmgl¥(T))N3 +2 ‘Y exp (-kkz(t-T))]dT
! 0 k=l
® (19)
- ]: gly (1)][3 +2 ) exp (-?\kz(t-T))]dT
m kel

(ba 5t 5ty

This process is continued until the surface temperature for all

desired time is known,
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Although the process may seem theoretically simple, an analytical
solution of equation (19) is, in general, highly impractical. For
example, if we start with a simple initial approximation Yo =1,
assuning ec = 0, the dimensionless flux term in equation (17) is

glven by:
g[Yo(T)]=Bi %—9-)- [1-0] =B1 H(YO) (20)
max

denoting h(Yn)/hmax by H(Yn).

Next the approximation Y, £ is, therefore, given by:

1

t a 2
Y, =1 - fo BLE() [3+42 ] exp (-2, “(t-T))]aT (21)
k=1 »

(0 ité t,)
It is evident from the above equation that determination of Y1
involves the calculation of an infinite series and the values of
H(1).

Determination of the next approximation Ya, as can be seen from
equation (18), will then depend upon a new value of H(Yl) and the
gubstitution of new limits on the infinite series. Thus, the cal-
culations of subsequent approximations becomes too complicated to
solve manually even with a simple starting value, Hence the use of
a numerical technique, in this case, becomes an obvious necessity.

Since a suitable numerical technique makes the use of an analytical
solution practical, a brief description of the numerical procedure
should be given., Each time interval is subdivided equally into as

many points as necessary so that a curve can be fitted for a numerical
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interpolation formula to produce an error less than that desired of
the surface temperature. This interpolation formula is necessary for
the use of the Gaussian Quandrature formula [51] for evaluation of the
integrals of equation (18). 1In this method, the ordinary Gaussian

integration formula is used to evaluate

t )
]Om g (M3 +2 ) exp(~ Akz (t- T))]aT

k=1
and a modified Gaussian formula is used to evaluate

t w >
[, ey, (113 +2 ] exp (2" (t-7))]drT
m k=1

The two forms of Gaussian integration formulas are as follows:

P b-a © b b+
-8 -3 a
fa f(y) dy = y w, f(yi), i =5 Xy ¢t (= ) (22)
i=1
and
b lo o]
- 2
f. o) ey =2 mm ] w1y,
i=1 (23)
where y, =a + (b=a)(l-x )2
i~ i
The Gaussian‘weights wi and wi(Zn) and the abscissa xi are defined in

Reference [51].

One interesting thing to note is that equation (23) eliminates
the singularity of the integral, Reference [52, 53]. The efficiency
of the Gaussian quadrature method is much higher than other standard
numerical integration techniques [52, 53 ).

The basic difference between the numerical and analytical approach
is that the method of successive approximations is carried out point
by point instead of integrating over the entire time interval,

The initial guess in the method of successlve approximations is of
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vital importance for a fast convergence of the method to the exact
solution, This is particularly true for the present problem where
the heat transfer coefficient changes drastically with a small
change of time in certain regions of cooling as can be seen from the
h versus T_ curve, Figure (3). The rate of change of temperature is
very high in these regions, compared to the other regimes of cooling.
Hence, unless the initial approximation of the temperature at these
points of sudden changes is sufficiently close to the exact solution,
much of the computer time will be lost in attaining a suitable con-
vergence. Thus, the method for obtaining a suitable initial value is
of particular interest.

The method of intersection as used by Crosbie [29], was initially
employed for determining the initial values. But it was found that
for a Biot number larger than 1.0, this method failed to produce a
convergence within a preset number of iterafiona. Obviously the
guess was too far away from the actual value to produce a suitable
convergence. Hence a method for obtaining a closer approximation
to the actual case was sought.

The infinit§ thermal conductivity solutions are found to be
close approximations to the actual cases and hence are used as the
initial guesses in the present problem. This particular method of
solutions has been discussed in detail under the heading of 'Separable
Kernel Method! in the following section and hence need not be repeated
here. Strictly speaking, infinite thermal conductivity solutions
used as the initial guesses differ from the standard approach. The
total time period, as has been mentioned previously, is broken into

different time intervals. Initial guesses for all but one point
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in any time interval are determined exactly in the same manner as
that of standard infinite thermal conductivity solutions. Only the
calculation of the first point in any subsequent interval is based
on the exact value of the last point of the preceding interval.

Mathematically this can be shown as
d.Y1 / dt = <33 (Y,) t .<___ t ?_t
where Y1(tm) = Y(tm)

Y(tm) represents the exact value of the last point in the preceding

time interval, t st st

M1 m

As illustrated in References [54] and [55] and as can be seen from
Figure (4), the ideal solution, in which infinite thermal conductivity
was assumed, closely follows the exact solution for small time except
at points of sharp changes in temperature. For large time, there is
practically no deviation from the exact solution. Hence only at the
critical points of sharp changes, initial guesses are comparatively
far away from the exact solutions and therefore, require more
iterations for convergence.

The particular method of solution for the cooling of a sphere
with nonlinear convective boundary conditions can also be applied to
other geometries. It can also take into account the effect of non-
uniform initial temperature, heat sources and some other forms of
nonlinear boundary conditions. The major difference in the integral
equations between the sphere and other geometries is the kernel
F(x,t). The kernel for the surface temperature f(t-T) is obtained

by replacing x by O for a semi-infinite solid and by 1 for other



geometries in F(x,t).

For a seni.infinite solid:
£(t-T) = [w(t-T)]-%

For a plate:
®

£(8=T) =1 +2 ) oxp(,}\kz(t-T))
k=1

with eigenvalues sin )k =0 or Xk =k T.

For a Cylinder:

a

£(t-T) =2 +2 ) exp(-A ka (=T ))

k=1

30

(24)

(25)

(26)

with the eigenvalues given by J1( )‘k) = 0., Physically a plate,

cylinder and sphere behave like a semi-infinite solid over a small

time period.
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(B) Separable Kernel Method

An alternate method for solution of the Volterra integral
equation which determines the surface temperature of the sphere
is described in this section., The method is based on approximating
the kernel by a separable kernel, The method is exact except for
very small time. The natural appeal of this method is its ease of
application and the independence of each approximation,

The integral equation for the surface temperature, (Y(t) = us(t))

of the sphere is as follows:

t
Wt) =1« [p8[¥(T)]eCk-T1)ar

®

where the kernel f(t-T) is 3 +2 ) exp (- xi (t- T)).

k=1

The zeroth order approximation is obtained by neglecting all the terms
of the infinite series of the kernel. The first order approximation
is obtained by including the first term of the series, the second
order approximation by including the second term, the third order
approximation by taking up to the third tern and so on depending
upon the degree of accuracy required. Evidently the greater the
number of terms, the better will be the accuracy since the kernel 1s
represented more accurately.

The zeroth order approximation gives the following integral

equation:
t
T(t) =13 jo g [Y(r)lar (27)

Differentiating the above with respect to time transforms the above

equation into a first order nonlinear differential equation:
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dy

*® = ~3g[Y ] (28)

with the initial condition Y(0) =1.

The ordinary differential equation (28) describes the temperature
history of the sphere with infinite thermal conductivity. The solution
of equation (28) is the large time solution of equation (16) since the

infinite series of the kernel tends to zero as time approaches infinity.

Lim oxp[- Aka (t-T)] =0.

t T @

The first order approximation as explained, can be obtained by
replacing the kernel by 3 + 2 exp[-2 12(t-T )]l.

The resulting integral equation is:

t t
Y(¢) = 1 -3 fo g[Y(T)]dT - 2 exp (-77\121:) Jo exn( L\‘zT)

(29)
g[Y(T)]ar
This equation can be rewritten as
= 0
Y(t) ..Yo(t) +2‘1(t.) (30)
t
where Y (t) =1-3 [ g[¥(T)] dr (31)
t
and Y,I(t) = -2 oxp (= kizt) fo exp( )\12 T) g[¥(T)]dT. (32)

Differentiation of equations (31) and (32) with respect to time

yields two first order linear differential equations of the following

forms:

ayY
.- (33)
= = -3gl[y(t)]
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2

dY1
-Et—- = g[ Y(t)]- )\1 Y,(t) (34)

The two equations (33) and (34) are provided with two initial
conditlions

YO(O) =1
and (35)

Y1 (0) =0

These two first order linear differential equations can be easily
solved by numerical means,
In general the Mth order approximation can be found by replacing

the infinite series by

M

y  expl- Aka(t- T)]
k=1

and, therefore, the resulting integral equation is

t M t
1) =1-3 f e[¥(T)]aT -2 ki J, exp - A Z(-T)]
=' T w(m)ar (36)
As before, Y(t) can be assumed to be composed of M + 1 parts as
follows:

Y(¢) =Yo(t) +Y1(t) +Y2(t) oo - +YM(t) (37)
t
where Y (t) =1 -3 f, sl¥(T)]ar
2 ¢ 2
T (4) == 2 exp(- 2 %0) Joexp( A, T) g[¥(T)]JaT

t
T,(4) == 2 exp(- 1,26) fo exp( 2,5 T) g[¥(M]aT
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t

YM(t).-:-Zexp(-?\Mzt) / exp(}\MaT)g[Y(T)]dT

0
Differentiation of the above set of equations yields

4y,
'&";ﬂz -3 gl 1(t)]

dY1 >
T -2l 1w 2y

(39)

. 2g[ ()] -2(=1,7) exp(- 1 ,°¢)

t
o exp(xma'r) gl ¥(t)ldr
2
= -2g[ w;r(t)}--xM Ty (t)

For these M 4+ 1 nonlinear differential equations (39), the initial
conditions are

1,(0) =1 and Y,(0) =7Y,(0) =Y3(O) =~ === Y (0) =0 (40)

which makes

Y(0) = Yo(o) +Yl (0) + YE(O) e YM(O) =1

Therefore, these M + 1 linear, interlinked, first order differential
equations with the given initial conditions are easily solvable with
the use of a digital computer. There are some standard subroutine
packages in the computer built-in library which can be conveniently
used. This author has used subroutine RKGS from System/360 Scientific
Subroutine Package, (360 A - CM - 03X) version III of IBM Fortran

language. The zeroth order solution was also computed by the use
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of a standard fourth order Runge-Kutta method and the Adams Moulton
corrector predictor method.

The separable kernel method was also discussed and presented by
Crosbie and Viskanta [36 ] but their final form of the differential
equations was different from the one presented here. The basic
approach of replacing the infinite series of the kernel f(t-T ) by
a finite number of terms is the same. In this presentation, the
temperature Y(t) in equation (37) is broken up in (M + 1) different
parts. In Reference [36], Y(t) was differentiated successively
(M + 1) times resulting in (M + 1) integrodifferential equations of
different orders. By the simultaneous elimination of the integral
terms from these equations an (M + 1)th order differential was
obtained. The M + 1 initial conditions were also presented to solve
the differential equation.

The present method has some advantages over Crosbie and
Viskanta's, In the present formulation, no simultaneous elimination
of integral terms is necessary. The set of (M + 1) nonlinear first
order equations, egquations (39), is obtained by simple substitutions.
The differential equation obtained in Reference [36], contains the
derivatives of the unknown term g on the right hand side of the
equation. 'g' is a function of the unknown temperature Y and hence
the presence of different order derivatives of g makes the solution
complicated. In the present formulation, equations (39) do not
contain any derivative term of g. Also the initial conditions of
the present method are much simpler to work with than in Reference [36 ].
Thus, the present method is an improvement over Crosbie and Viskanta's

separable kernel method.
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(C) Modified Separable Kernel Method

A modified version of the separable kernel method is presented
in this section. In the preceding section Y(t) was represented by
a summation of M +1 terms of equal weights, equation (37). But

here Y(t) has been assumed to be of the following form:

Y(t) =Y0(t) +Y‘(t) +!2(t) A AR (t) (41)

In the above equation ex is a weighted coefficient for the last
term and can be determined as follows.
The kernel f£(t) for the sphere from equation (13) is given by:

£(t) =3 +2]  exp(-2, %) (42)
k=l
T 2
or £(t) =3 =2) exp(=A t) (43)
k=1

The infinite series in the above equation can be represented by a

finite number of terms with a weighted coefficient in the last ternm.

fM(t) -3 =2 exp(-?\lat) + 2 exp(= 7\22‘»;) + 2 exp(~ ?\321:)

2 (44)

If both sides of equation (43) are integrated from 0 to o with

respect to t, the expression becomes

@ @ @

[, [£t) =3]at =2 Y L ezp(-')\kzt)dt
k=1
(¢3]
(
=2 ) = 45)
k=t Mk

By referring [52] and [53], the infinite series in equation (45) is

calculated and found to be
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@
) -1 = e
k=1 A 10 (46)

Therefore, from equations (45) and (46)

1 2
t)- = T=
.ro [ £(t)=3]) = 2 lggl -)\kz 10 (47)

Integration of equation (44) from O to ® with respect to t yields

® ®
.Gn [£,(t)-3]at =2 MZI OXP(-?\kzt) + 2€y expl 7\M2)
k=1 ?\ka '}\HZ
Y 0
M-1
=2 ) Ly + 2%u (48)

k=l ?\kz "';\'T

M

Since equation (43) is approximately represented by equation (44),
they are assumed to be equal, Therefore, by equating the right hand

sides of equations (47) and (48), we get

7 1 2 Ey 2
2 —— +— = =
el 3" Ay 19
1 tal 1 2
or € x=|70- z W RM (49)
k=l k

Hence, equation (49) determines the value of the weighted coefficient
in terms of the known eigenvalues, to be used in equation (41). The
rest of this proposed solution is exactly similar to that of the
preceding section. The form of the derivatives of different terms,
equation (39), and the initial conditions, equation (40), remain the
same in this method also. The only difference between the methods

presented in section (b) and in the present section lies in the mode



38

of presentation of equations (37) and (41).

The efficiency of the present solution is much higher than that
obtained with the ordinary separable kernel method. It has been
found that, after the computation of a few values of Y(t), all the
terms except the first two or three in equation (40), rapidly go to
zero. Thus, the effect of additional terms beyond the first two or
three, becomes almost nil in the following computations., Hence, the
expected improvement by the representation of the kernel with a
larger number of terms is not efficiently achieved in the ordinary
separable kernel method. But the addition of a weighted coefficient
in equation (44) in the modified, largely improves the effect of all
the terms up to the last one in the computations of Y(t). Proper
participation of all the terms up to any desired value of Y(t) is
thus assured in equation (44). The proposed solution requires
fewer terms to represent the kernel f(t) and still to achieve the
same amount of accuracy as the ordinary separable kernel method,

The increase in efficiency in the modified technique is, therefore,

obvious.
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V_RESULTS

An inspection of equation (15) reveals that the dimensionless
surface temperature Y(t) is a function of heat flux g but which in
turn is a function of the surface temperature and the heat transfer
coefficient. As has been mentioned in Chapter 5, the heat transfer
coefficient data for the different surface temperatures used in this
study was taken from Reference [1]. The values of h were based on
the quenching of a two inch diameter silver sphere in oil at a con-
stant temperature of IIOo F as used in the experiment by Stolz et. al.
[1). Hence h and in turn g are expected to be different for a dif-
ferent o0il temperature. But it has been found by Stolz et. al. [1]
that there is virtually no change in the values of h with the change
in the o0il temperature as long as the o0il temperature remains within
the region of sub-cooled boiling, (less than 600°F for the kind of
0il used in their experiment). Hence the values of h with oil as
quenchent can be considered to be independent of the oil temperature
for sub=cooled boiling. With these values of h, results for surface
temperature have been obtained in this study, for four different
Biot numbers (i.e. four different size spheres). Once the surface
temperature ug has been found from equation (15), the interior
temperature at any time can be found by the substitution of ug in
equation (14) and subsequent integration for any known time. With
the knowledge of heat transfer coefficients at different surface
temperatures, heat fluxes at the boundary have been calculated
(described later in this chapter).

Surface temperature versus time curves for Biot numbers of
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0.50, 1.0, 5.0 and 10.0 have been plotted in Figure (4), on the same
scale. The results corresponding to Bi = 0.50 are of particular
interest since experimental results for this case are available,
Reference [1]. Strictly speaking, based on the available data for
k at 68° F, Bi for the case of Reference [1] turns out to be 0.54
which is 8% higher than 0.50. But it is to be noted that the value
of k for silver changes considerably with temperature (237 Btu/hr.
t °F at 32° F to 208 Btu/hr. ft °F at 752° F). Also the value of
hmax used in the calculation of Bi = hmax R/ k was read from a semi-
logarithmic graph. Hence considering the errors involved, the
value of Bi = 0.50 has been accepted as a close approximation for
the experimental results in Reference [1]. The values calculated
in this study compare favorably with those of Stolz et. al. [1].

In Figure (4), the infinite thermal conductivity solutions
(i.e. separable kernel method with one equation) are also presented
for all four Biot numbers., The infinite thermal conductivity
solutions are shifted along the time scale a distance which is
inversely proportional to the ratios of the Biot numbers. This
shift can be explained from the mathematical expression obtained

with the infinite thermal conductivity assumption.

From equation (31)

dY/dt =-3 Bi h/hmslx (Y- ec) (50)

With the substitution of t* = Bi t, equation (50) takes the form

ay/dt" = =3 h/h o (Y - 6) (51)

It is evident from the above equation that the solution for Y in

terms of t* is independent of Bi. Thus for all values of Bi there



Fig. 4 Surface Temperature Distribution during the Cooling of a Sphere for both Infinite Thermal
Conductivity and Exact Solutions for Different Biot Numbers (Bi = .5, 1, 5 and 10).
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is just one solution for Y in terms of t". Comparison of the solutions
for BL = 5.0, 10.0 and the solution of equation (51) are graphically
shown in Figure (5). t* is the product of t and Bi., Thus, for a fixed
value of Y, the desired value of t is given by t = t*/Bi, Y being

held constant. This essentially means that t varies inversely with

Y. Hence, if the curves for Y versus t are plotted for all values

Y and different Bi, they will be linearly shifted along the time

scale a distance which is inversely proportional to the ratios of

Biot numbers.

The modified successive approximation solutions (henceforth
called exact) as plotted in Figures (4) and (5) do not exhibit the
same behavior as the infinite thermal conductivity solutions. This
deviation is because both the internal and surface resistance to heat
transfer of the sphere are correctly represented in the exact
solutions. Mathematically speaking, the temperature distribution
in the exact case is given by equation (16), which can not be trans-
formed to an equation independent of Bi. Hence the curves for the
exact solutions are not shifted along t axis by the linear ratios
of the Biot numbers.

Temperature-time curves for each Biot number along with the
separable kernel approximations are shown graphically in Figures (6)
through (13). The case for Bi = 0.1 is also included in this set
as a limiting case of small Biot number. A comparison of Figures
(6) through (13) and Figure (4) reveals that the spread between
the exact and the infinite thermal conductivity solutions increases

with the increase of Bi.

Bi can be interpreted as the ratio of the internsl and external
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Fig. 5 Variation of Surface Temperature with the product of Biot
Number and Time (Bi = 5 and 10, k = o case).
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Fig. 6 Comparison between the Exact Solution and Separable Kernel
Approximations (Bi = .1).
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Fig. 8 Comparison between the Exact Solution and Separable Kernel
Approximations (Bi = .5, large scale).
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resistance to heat transfer of the solid concerned. The infinite
thermal conductivity solution is based on a zero internal resistance
assumption., As the Bi increases, the internal resistance becomes
progressively comparable with the external resistance. Hence with
the increase of Bi, the exact solution increasingly shifts away from
the ideal approximation of a zero internal resistance and thus the
spread between the two solutions become apparent.

For Bi = 10, the spread, particularly in the region where a
sudden drop in temperature takes place (henceforth will be called
critical region in this study), is much larger than for Bi = 0.10.
This essentially means that during cooling, the infinite thermal
conductivity solutions compare poorly with the exact solution for
large Biot numbers. But with a decrease of Bi, as seen in Figures
(6), (7) and (9), the infinite thermal conductivity solutions tend
to approach the exact solutions. Therefore, for the small Biot
number case, as can be seen from Figure (6) for Bi =0.10, the
exact solution can be approximated by the infinite thermal con-
ductivity assumption. Figures (6), (7) and (9) represent the tem-
perature distribution on the surface of a sphere for a wide range
of time for three different Biot numbers (0.10, 0.50 and 1.0)
whereas the rest of the Figures in the set (6) through (13) indicate
the temperature distribution for the critical region in a much
larger scale for four different numbers (Bi =0.5, 1.0, 5 and 10).

It is to be observed that the spread between the exact and the
infinite thermal conductivity solution is particularly noticable
in the critical regions (most of the nucleate and transition boiling

regimes), where a large change in temperature occurs with a small
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change in time, This can be explained from the h - 'I‘B curve,

Figure (3). In this curve, the heat transfer coefficient has a

sharp peak around 900o F. Hence, in the vicinity of this temperature,
a major portion of the energy is lost from the solid and consequently
a sharp drop in temperature takes place. But the infinite thermal
conductivity solution is based on the assumption of a uniform tem-
perature throughout the solid. Hence, to maintain the uniformity

of the interior temperature, the response of the solid to the sudden
changes in the heat transfer coefficient at the surface, has to be
slower than the exact solution. Therefore, in the case of the infinite
thermal conductivity assumption, the critical region occurs at a
later stage than in the exact solution. The drop in temperature also
becomes smoother.

As can be seen in Figures (6) through (13), the infinite thermal
conductivity solutions always indicate higher values of temperatures
than the exact solutions for the same values of time up to a certain
point. But at some point well beyond the eritical region, the in-
finite thermal conductivity solution crosses the exact solution and
jndicates lower values of temperature than the exact solution along
the time scale. Although solutions for large time have not been
shown in these graphs, numerical results indicate that for large
time, the infinite thermal conductivity solution very nearly co-
incides with the exact one.

The above-mentioned behavior of the infinite thermal conduc-
tivity solution can be explained in the following manner. At the
end of the cooling, the sphere must have reached the bath temperature

regardless of whether or not the infinite thermal conductivity
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assumption has been included in the model. During the entire process
of cooling, an equal amount of energy is lost for both the cases.

The heat loss is proportional to the area below the corresponding

Y versus t curves. Hence, if in the earlier part of cooling, the
infinite thermal conductivity solution indicates higher values of
temperature along the time scale, during the later part of cooling

it must indicate a lower value of temperature than the exact solution.
At some intermediate point, therefore, the infinite thermal conduc-
tivity solution must cross the exact solution.

It is seen from Figures (6) through (13), that as Bi is in-
creased, the dip in the critical region becomes steeper and steeper.
In the case for Bi = 10, there is a very sharp drop in temperature
at t = 0.264 with almost no change in dimensionless time. This
sharp drop cah be attributed by the fact that with the increase in
Bi, the total time region (t = « tl/Ra) for cooling has been shrunk
and correspondingly, the time range for the critical reglion has also
been reduced. But the same temperature drop must take place during
the reduced dimensionless time range. Hence the Y - t curves become
steeper with the increase of Bi.

Separable kernel solutions with more than one equation are also
presented in graphical form in Figures (6), (8) and (10) through
(13). As the number of equations is increased, the separable kernel
solution seems to approach the exact solution. The reason for this
behavior is simple. With an increase in the number of equations,
the kernel is represented more accurately. However, an indefinite

increase in the number of equations is undesirable because the rate
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of convergence of the separable kernel method to the exact solution
becomes progressively slower with an increase in the number of
equations. This means that the change in the rate at which the
sparable kernel method approaches the exact solution resulting

from the increase in the number of equations from 10 to 20 is much
less than the change in the rate resulting from an increase in the
number from 1 to 2. Hence, it is expected that a stage will be
reached when virtually no improvement in the efficiency will be
observed by increasing the number of equations. In the present study,
solutions for the separable kernel method with up to 20 equations
have been presented.

Values of surface temperature are also computed by the modified
separable kernel method for Bi = 1. For comparison purposes, these
are presented in Figure (11) along with the ordinary separable
kernel method and the exact solutions. The increase in efficiency
with the use of the modified method over the ordinary one is obvious
from this figure. The modified method needs only 3 equations to
attain almost the same solution as the ordinary method with 10
equations. Also, the modified method gives a much closer approxi-
mation to the exact solution with just 5 equations than the ord-
inary method with 10 equations. The same kind of behavior can be
expected for other Biot numbers.

Surface heat fluxes for different Biot numbers have been deter-
mined numerically and plotted against time in Figures (14) and (15).
Full logarithmic graphs have been used for the plots because of the

large variation in the heat flux with temperature. A brief descrip-
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tion of the numerical method for the determination of the heat
fluxes seems necessary here. The determination of heat transfer
coefficient h has already been discussed. Once the surface temp-
erature Y for a particular time is known, the value of h corresponding
to that surface temperature can be determined from Figure (3) or by
numerical interpolation if a better accuracy is desired. The
product of h and the temperature difference between the sphere
and the liquid, therefore, determines the flux at a particular time.
In Figure (14), heat fluxes for the infinite thermal conductivity
solution in the case of Bl = 5 have also been calculated and com-
pared with the exact solution. As expected from the temperature
behavior from the preceding Figures (5) through (13), there is a
sharp peak in each of these four graphs of heat flux versus time
representing a small region where the heat flux is well above the
average value (peak nucleate bolling regime). This peak indicates
a large loss of energy during a small period of time. These spikes
become steeper and steeper with increasing Bi which again is consis-
tent with the temperature behavior. It is also noted that, for large
time, the heat fluxes become negligibly small compared to the average
value of the flux, This is explained by the fact that at large
time, the temperature difference between the solid and the coolant
becomes very small and the value of h is also considerably reduced
with the reduced surface temperature of the solid, Figure (3). The
heat flux for the infinite thermal conductivity solution for Bi =5,
as shown in Figure (14), closely follows the exact solution. But the
position of the peak heat flux is shifted towards the right along the

time scale and at some point beyond this peak heat flux position,
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the value of the heat flux for the infinite thermal conductivity
solution continues to be less than the exact solution. This behavior
1s again consistent with the temperature behavior of the infinite
thermal conductivity solution discussed previously.

The time rate of change of the surface temperature indicates
how rapidly the surface of the sphere cools. These rates
(dY/dt = A ¥/ At) have been calculated from the numerical results
of the surface temperatures by forward and central difference
techniques. The calculation of dY/dt is important because it is
frequently used for the determination of h from experiments. In
experiments, normally the temperatures are measured and hence Y
and dY/dt can be evaluated. With the assumption of a thermally
lunmped solid, heat flux is then determined. In mathematical form

this can be expressed as

/A = -(M cp /A)dT/dt1

where q/A is the heat transfer per unit area

and M is the mass of the solid.
Division of the heat flux by the temperature difference between the
surface of the solid and the liquid then yields the heat transfer
coefficient h. Small or hollow spheres are commonly used in the
experiments so that the assumption of a thermally lumped solid
(£.e. infinite thermal conductivity assumption) can be made.

The rates have been calculated for both the exact and infinite

thermal conductivity solutions for the Blot numbers of 0.1, 0.5,
1.0, 5 and 10 and are plotted in Figures (16) through (20). It is

observed from these graphs that only in case of small Biot numbers
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Fig. 18 Variation of the Time Rate of Change of the Surface
Temperature with Time for both the Exact and Infinite
Thermal Conductivity Case (Bi = 1).
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Fig. 19 Variation of the Time Rate of Change of the Surface
Temperature with Time for both the Exact and Infinite
Thermal Conductivity Case (Bi = 5).
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(0.1 and 0.5), the exact and infinite thermal conductivity solutions
are very close to each other. The exact solution can be approximated
by the infinite thermal conductivity solution for these cases. With
the increase of Bi, however, the infinite thermal conductivity
assumption breaks down in comparison with the exact case, particularly
in the regions of the sharp rise of the magnitude of the derivatives
or in the peak regions. In these regions, the error between the
infinite thermal conductivity solution and the exact solution is

more than 400% for Biot numbers of 5 and 10 and the location of the
peak for the infinite thermal conductivity solution occurs much

later than the exact solution. Although this error for Bi = 1.0

i8 of the order of 300% in the peak regions, for the remaining
portion of the curve, the infinite thermal conductivity solution
closely follows the exact solution. Hence, for the Bi = 1.0 case,
the infinite thermal conductivity solution can be used with a less
than 10% deviation from the exact solution except in the region
around the peak value of the curve.

It is to be noted that the curves of Figures (16) through (20)
are similar in shape to the heat flux versus time curves, Figures
(14) and (15). But the peaks of these derivatives seem to have
sharper rise than the heat flux cases. As expected, the peaks of
the infinite thermal conductivity solutions are shifted to the
right from the exact solution along the time scale. With the in-
crease in Bi, the shift between the exact and the infinite thermal
conductivity solutions become more and more pronounced. This shift
i8 due to the very nature of a zero internal resistance assumption

in the solid. The solid under this assumption is always in a process
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of maintaining a uniform temperature throughout. Hence, in main-
taining this criterion, more time will be needed for the solid to
adjust itself to the sudden changes in the surface conditions than
the exact solution. Hence, if the Biot number is increased (i.e.
by increasing the diameter of a solid), the solid will take more
time to adjust itself for maintaining a uniform condition to the
sudden change in the surface condition. Thus, the peak will be
more and more shifted to the right with the increase of Bi.

It has been mentioned that both the forward and central dif-
ference techniques have been employed for the calculation of dY¥/dt.
Some improvement in the results was observed, particularly in those
regions where a change in time step was made, by the application
of central difference over the forward difference technique. This
18 quite understandable since the central difference computation is
based on the information from both sides of the point at which the
value 18 to be computed whereas the information from only one side
of the point is required for the forward difference computation.

A few words of caution should be mentioned about computer time,
It has been found that to attain a reasonable amount of accuracy in
case of a large Bi (say 10), a considerable amount of computer time
is required for the successive approximation method. Cases for
Biot numbers greater than 10 were not calculated in this study.
However, from the trend of the computer time spent on Bi =0.1, 0.5,
1, 5 and 10, it can be inferred that for very large Biot numbers
(say 50 or 100), a large amount of computer time would be required.
Computer time does not vary directly with the ratios of Biot numbers

but progressively increases with the increase of Bi. However, this is
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not a unique disadvantage of the successive approximation method,
since this will essentially be true for all other numerical methods
because of the sensitive nature of the Y versus t curve. Also

for large Biot numbers, a careful choice of time steps has to be

made, particularly in the critical region, Otherwise the solution
will fail to converge within a finite number of iterations. This
choice of step size does not follow the linear ratios of Bi. Suitable
time steps have to be determined by trial and error and experience.
This is a painstaking and laborious process and requires a lot of
computer time. Again this is not a limitation for this particular

method since this is true for all other numerical techniques.
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VI CONCLUSION

A practical method for obtaining an 'exact' solution for the
unsteady state temperature distribution in a sphere subject to a
nonlinear convective boundary condition has been presented. Surface
temperature results for different Biot numbers are presented in
graphical form and compared. Heat flux and rate of change of
temperature with respect to dimensionless time (Fourier number) are
also calculated for different Biot numbers and a comparative study
has been made. Two approximate methods of solution for the surface
temperature have been proposed and the modified separable kernel
method has been found to be more efficient than the ordinary one.
The limiting case of infinite thermal conductivity solution is also
investigated and found to give good results for large tinme,

The modified successive approximation method as presented in
this thesis, can take into account any change in geometry of the
s0lid and a wide range of temperature between the solid and the
coolant., However, as a prerequisite to the problem, values of heat
transfer coefficient h must be known for all temperatures in order
to fulfill the requirement of a complete set of boundary conditions,
equations 4(a), (b), (c) and (d). With known values of h, the
techniques presented in this study, can be used to calculate the
surface and thereby the interior temperature, for different Biot
numbers.

The accuracy of the numerical techniques used for the solution
of equation (16) 18 good enough for all practical purposes. Where

a high degree of accuracy (within 1 to 2 percent of the exact solution)
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is not desired, either of the separable kernel methods can be used
to the best advantage. A large number of equations essentially
increases the efficiency of either of the separable kernel methods
but this also necessitates the determination of an equal number of
eigenvalues and the solution of a large number of interlinked
differential equations. Hence a suitable compromise should be made.

From the discussion of the results, it can be conveniently
concluded that for the cases of Biot numbers higher than one, the
infinite thermal conductivity solution breaks down compared with the
exact one. The error in approximation becomes significantly large
in the critical region (or the nucleate boiling region) where a
rapid rate of heat flow is observed. However, the error is con-
siderably less for Biot numbers less than 1.0. Hence, for the case
of Biot number less than one, the exact solution can be approximated
by the simple assumption of lumped thermal system.

In the previous chapter, it has been discussed how the time
rate of the change of the surface temperature (dY/dt) is calculated
and a comparative study of these rates for different Biot numbers
has been presented. The knowledge of dY/dt is useful, particularly
for the smaller Biot number cases, For a small Biot number, the
sphere can be assumed to be thermally lumped and hence the simple
form of the heat flux expression ¢/A = (-Mc p/A) a'r./d'c1 can be applied.
With the knowledge of the heat flux, the heat transfer coefficient
h can be easily determined. Normally in experiments, small spheres
are used to ensure a small Biot number so that the approximation

of a thermally lumped solid can be made. This avoids a lot of

lengthy and laborious calculation.
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As mentioned previously, this particular method of solution is
flexible enough to account for other one dimensional geometries. Hence
a direct extension of the present problem can be the solution for
the temperature history of a slab, cylinder or a semi-infinite solid
subjected to nonlinear convective boundary conditions, This can be
accomplished simply by changing the expressions of the kernels for
different geometries, equations (24), (25) and (26) and substituting
in equation (16) for the determination of the surface temperature
corresponding to that particular geometry. Elgenvalues for the
different geometries will also he different, In the present problen,
the interior temperature history of the solid has not been sought,
although the method for its determination has been briefly discussed
in the previous chapter. Thus, the avenue for the exploration of
the interior temperature of the sphere and other geometries is left
open, With the knowledge of the interior temperature, a suitable
comparison between the interior and the surface temperature of the
solid for the particular cases can be made. In the process the
response behavior of the solid to the changes in surface conditions
can be obtained.

The present solution is based on the available heat transfer
coefficient data for a paraffinic-.type 0oil, designated as intermediate
0il [1 ). The same problem can be solved for different fluids, if
heat transfer coefficient data is available for the entire range of
boiling. Mention of the cryogenic fluids should be made here since
heat transfer coefficient data for some of them are available. How-
ever, when cryogenic fluids are used as quenchents, proper steps

must be taken to account for the temperature dependency of the
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physical properties of the solid. The solution obtained by using
a different fluid may be considerably different from the present
solution depending upon the nature of the heat transfer coefficient -

temperature curve, for the particular fluid.
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