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Abstract

The traditional game of Nim comprises of two players who take turns removing objects
from distinct piles. The player who takes the last object is the winner. We consider the
game Nim on Cayley graphs of finite groups, where the piles are located on the vertices and
the number of objects in each pile is denoted as the weight of the vertex. In this version of
the game, a player wins by trapping the opponent on a vertex with weight zero so he or she
is unable to further reduce the weight of that vertex. We examine winning strategies for Nim
on Cayley graphs of cyclic groups, dihedral groups, and the Quaternions, among others.
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Chapter 1

Introduction

1.1 Introduction of Nim

Nim is a simple mathematical game that has existed for years. In fact, many believe it orig-
inated in China and is one of the oldest games in the world [8]. The name Nim is attributed
to Charles Bouton and is said to be related to the German term zu nehmen, or “to take”
[8]. Nim has been played using three distint piles of anything from stones, matchsticks,
tokens, or any other counter [2]. Each pile contains some amount of stones, but there may
be different numbers of stones among the piles. In its basic form, two players compete to be
the one to take the last stone of the game. Players alternate turns until there is a winner.
On each turn, a player chooses a single pile to remove stones. The player may remove as
many stones as desired, as long as it is at least one, from the single pile chosen. Then the
other player takes a turn. Nim continues in this fashion until a player takes the last stone.
Then that player wins because there are no more stones to remove.

According to Bouton [2], the winning strategy for the traditional game of Nim is based
on the set of numbers a player leaves at the end of the turn. If a player leaves a certain set of
numbers on the table and plays without mistake, then the other person cannot win. Bouton
designates these winning strategies as safe combinations. He shows if a player leaves a safe
combination at the end of a turn, then the other person cannot leave a safe combination.
Thus the player will always take the last counter and win. This is one example of how win-
ning strategies of Nim are determined. The strategies employed for ordinary Nim, however,
are not applicable to Nim on groups.

The game of Nim can be quite flexible. Simple variations include altering the number of
piles and the number of tokens in the piles. Other variations on the structure of Nim games
have been proposed and studied. Previous research involving Nim on graphs was introduced
in papers by Fukuyama [5] and [6]. The game was also extended by Erickson [3]. In their
variation of Nim, arbitrary weights are assigned to the edges of different graphs, including
bipartite and multiple edge graphs among others. The object of Nim on graphs is to trap
the other player on a vertex in which all adjacent edges have a weight of zero. Fukuyama
uses Grundy numbers to generate winning strategies, which are based on certain positions
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of the graph. Erikson provides results for Nim on paths, cycles, and complete graphs.

I follow a similar procedure in constructing the game Nim on groups. In my variation,
the gameboard is the directed Cayley graph of a group. Instead of placing the weights on
the edges, I place the weights on the vertices of the graph. Each Nim game we examine
will differ in the structure of the gameboard. The winning strategies presented account
for any possible weight distributions. In fact, we will see the weight distribution is often
the determining factor in gameplay. The goal of this research is to yield interesting group
properties based on the behavior of Nim on Cayley graphs.

1.2 Basics of Groups

The following section is a brief review of basic concepts of group theory the reader should
be familiar with before proceeding. It contains formal definitions necessary in building the
gameboards on which we play Nim. We start with defining a group [9].

Definition 1.1. A group G is any set with an operation (denote by juxtoposition) that

satisfies the following four axioms:

1. There is an identity element e ∈ G such that eg = g = ge for all g ∈ G.

2. For every g ∈ G, there is an element g−1 ∈ G such that gg−1 = e = g
−1
g.

3. For every g, h, k ∈ G, (gh)k = g(hk).

4. For every g, h ∈ G, (gh) ∈ G.

The order of a group G, denoted |G|, is the number of elements in the set G. A group
G is abelian if gh = hg for all g, h ∈ G, and non-abelian if there is some g ∈ G and some
h ∈ G such that gh �= hg. We will be working with the Cayley graphs of both abelian and
non-abelian groups. Here we take some time to define what it means to be a Cayley graph.

1.3 Constructing Cayley Graphs

Since the entirety of this paper relies on Cayley graphs, it is important to grasp exactly how
we construct these gameboards for Nim. We first define a Cayley graph as seen introduced
in [4].

Definition 1.2. Let G be a finite group and let S ⊆ G be a subset. The corresponding

Cayley graph C(G,S) has a vertex set equal to G. Two vertices a, b ∈ C(G,S) are joined by

a directed edge from a to b if and only if there exists s ∈ S such that b = as. We then call

S the generating set with all s ∈ S generators of G.

Note the Cayley graph will always contain a representation of every element in the corre-
sponding group. Then there are |G| vertices in the Cayley graph of G. We will only consider
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finite groups, which contain a finite number of elements.

We first designate a group G on which to play the game Nim. To construct the corre-
sponding Cayley graph, we start with assigning each x ∈ G to a vertex. Then there are |G|
vertices, with each vertex labeled as its corresponding element name in G. Next we must
choose a generating set. Let S = {g1, g2, ..., gk} be a generating set for G. There are k

edges directed from every vertex x to xgi for 1 ≤ i ≤ k. These edges determine the players’
movements in the game. For example, if there exists a gi such that b = agi for any vertex a, b

in the Cayley graph, then the player may move from a to b. The edge would be a directed
arrow pointing from a to b. The player may not move from b to a, however, unless there
exists some gj ∈ S such that a = bgj. If this is the case, then the edge would be a double
sided arrow connecting a and b.

The following is an example of how we construct the Cayley graph of a cyclic group with
a single generator S = {1}. Chapter 2 defines cyclic groups explicitly.

Example 1. For the Cayley graph of Z4, we first draw and label a vertex corresponding to

each element of Z4.

0 1

23

Then we draw the edges using the generator 1. We draw an arrow from each vertex x to

x+ 1.

0 1

23

This gives us the Cayley graph of Z4.

The next example shows how we construct the Cayley graph of a group with multiple
generators. Consider the Cayley graph of a dihedral group with the generating set S = {r, s}.
Chapter 3 defines dihedral groups explicitly.
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Example 2. For the Cayley graph of D3, we first draw and label a vertex corresponding to

each element of D3.

r
2 r

e

r
2
s rs

s

Now we consider the generator r. We draw an arrow from each vertex x to xr.

r
2 r

e

r
2
s rs

s

Finally we consider the generator s. We draw an arrow from each vertex x to xs. Since

(xs)s = x, the arrows between x and xs will be double-sided arrows.

r
2 r

e

r
2
s rs

s

This gives us the Cayley graph for D3.
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Finally we will construct the Cayley graph of D3 using different generators. Consider the
generating set S = {rs, s}.

Example 3. Again we first draw and label vertices that correspond with the elements of D3.

r
2 r

e

r
2
s rs

s

Now we consider the generator s. We draw an arrow from each vertex x to xs.

r
2 r

e

r
2
s rs

s

Now we consider the generator rs. We draw an arrow from each vertex x to xrs.

r
2 r

e

r
2
s rs

s

We can rearrange these vertices to obtain the Cayley graph of D3 with generators s and

rs.

5



r
2

r

e

r
2
s rs

s

These examples illustrate the Cayley graphs of different groups as well as different gen-
erating sets within the same group.

1.4 Basic Rules of the Game

We define the weight of a vertex similarly to the weight of an edge found in [3].

Definition 1.3. Given a graph G with a vertex set V(G), the non-negative integer value

assigned to each v ∈ V (G) is the weight of the vertex. We denote wv as the weight of v.

To begin a game of Nim, we first construct the Cayley graph G of the group of choice as
outlined in the previous section. We will associate G with the vertices and edges of C(G,S)
and use the names accordingly. Then we assign each vertex v ∈ G an initial weight, denoted
wv,0. The vertex weight must be assigned such that wv,0 > 0. Note that wv,0 is the initial
vertex weight, while wv is the current weight at any other point in the game.

Nim proceeds according to a general set of rules.

1. Player 1 begins at the identity vertex e.

2. Player 1 reduces we by some amount r such that 1 ≤ r ≤ we.

3. Player 1 moves to some egi ∈ G, where gi ∈ S.

4. Player 2 reduces wegi by some amount s such that 1 ≤ s ≤ wegi .

5. Player 2 moves to some egigj ∈ G, where gj ∈ S.

6. Players continue to alternate turns until there is a winner.

A player wins if his or her opponent starts a turn at vertex m with wm = 0. The oppo-
nent cannot remove any more weight since the weight of any vertex can never be less than
0. Then the opponent is said to be trapped, and the player wins.

Note that Nim on groups differs from the general game in that it might not be the case
that all weight is removed from the graph before the game is over. All it takes to win in this
variation is for a player to move to a single vertex with weight 0. We will use the Player

and the Opponent to differentiate between players in a general sense. We use these terms
consistently when describing strategic moves that can be made by either player. Note that
the winning strategies for Nim on each group will always be presented in terms of Player 1
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and Player 2. In developing the proofs of these strategies, we assume that a player with a
winning strategy will choose to use it, and a player will avoid moving to a vertex which gives
the opponent a winning strategy.
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Chapter 2

Cyclic Groups

2.1 Introduction

We first look at the game of Nim on cyclic groups.

Definition 2.1. Let G be a group and let a ∈ G. Then the subgroup

�a� = {an : n ∈ Z}

is called the cyclic subgroup of G generated by a.

Every cyclic group of order n is isomorphic to Zn, so we can consider every cyclic group
of the form Zn = �1� with the binary operation of addition modulo n. The generating set is
given by S = {1} and |Zn| = n.

To begin Nim on cyclic groups, we must construct the gameboard. In the directed Cayley
graph of Zn, vertices are labeled {0, 1, 2, ..., n − 1} with 0 as the identity vertex. Define a
vertex as even if it is labeled as 2i for some i ∈ Z and odd if it is labeled as 2i+ 1 for some
i ∈ Z. The following example displays the gameboard for Nim on Z5.

Example 4. This is the Cayley graph for the cyclic group Z5 when S = {1}.

0

1

2

3

4
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2.2 Nim on Zn

We are able to determine the winning strategy for Nim on cyclic groups assuming each vertex
has a positive initial weight and the game proceeds according to the basic rules of Nim. We
start with the odd cyclic groups.

Theorem 2.1. Let G be the Cayley graph for the cyclic group Zn. If n is odd, then Player

1 has winning strategy.

Proof. Suppose n is odd. Then n = 2m+1 for some 0 ≤ m ∈ Z. Player 1 will start the game
by setting w0 = 0 and proceeding to 1. Note Player 1 will always reduce w2k and Player 2
will reduce w2k+1 for k ≤ m. Since wr,0 > 0 for all r ∈ G, no player can lose until a player
returns to the identity vertex. Then Player 2 must reduce w2m+1 = wn = w0. Since w0 = 0,
Player 1 wins.

We conclude Player 1 will always have the winning strategy for odd cyclic groups. We
now turn to Nim on the Cayley graph of even cyclic groups.

Theorem 2.2. Let G be the Cayley graph for the cyclic group Zn, where n is even and

w0, w1, ..., wn−1 are the weights of G where w is the minimum weight of all vertices x ∈ G.

Let m ∈ {0, 1, ..., n− 1} be the least such that wm = w. Then if m is even, Player 2 has the

winning strategy. If m is odd, Player 1 has the winning strategy.

Proof. Suppose m is even. We will induct on wm,0. For the initial case, suppose wm,0 = 1.
Then wx,0 ≥ 2 for x ∈ {0, 1, ...,m − 1} if m > 0. If m = 0, then Player 1 will reduce wm,0

to 0. Otherwise, Player 1 will start the game by reducing we,0 by some amount and moving
to 1. Player 2’s strategy is to reduce the weight of each odd vertex by 1 and proceed to the
next vertex. Since m is even and wm,0 = 1, Player 1 is forced to set wm,0 to 0. Play will
continue until a player returns to e because wi,0 > 0 for all 0 ≤ i ≤ n − 1. Since n is even,
Player 1 will necessarily reduce we again. Since Player 2 reduced the odd vertices by 1 and
wx,0 ≥ 2, Player 2 will not lose on x for 1 ≤ x ≤ m−1. If Player 1 reduced wx,0 to 0 for some
x ∈ {0, 1, ...,m− 1}, then Player 1 loses at x. Otherwise, wm = 0 and Player 1 is unable to
further reduce wm. Therefore Player 1 loses when wm,0 = 1.

For the induction step, suppose Player 2 has the winning strategy for 1 ≤ wm,0 ≤ k.
Consider wm,0 = k + 1. Then wx,0 ≥ k + 2 for x ∈ {0, 1, ...,m− 1}. Player 2’s strategy is to
reduce the weight of each odd vertex by 1 and proceed to the next vertex. Since m is even,
Player 1 will be forced to reduce wm,0 to wm ≤ (k+1)− 1 = k. Play continues until a player
returns to e; since n is even, this player is necessarily Player 1. This can be considered a
new game on Zn. Since wm ≤ k, the minimal weight of this new game is at most k. Then
by the induction hypothesis, Player 2 has the winning strategy.

Suppose m is odd. Then Player 1 has the winning strategy by similar reasoning.

Together the above theorems yield winning strategies for every possible weight distri-
bution. Thus we are able to say the game Nim on the Cayley graph of cyclic groups is
completely solved.
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Chapter 3

Dihedral groups

3.1 Introduction

We now turn to dihedral groups, which maintain the form of cyclic groups to some extent
and add additional structural components. We start with the definition of a dihedral group

as seen in [9].

Definition 3.1. Let n ≥ 3. We define the nth dihedral group Dn to be the group of rigid

motions of a regular n-gon. The group Dn has order 2n, and the elements consist of all

products of r, s satisfying the relations

r
n = e s

2 = e srs = r
−1

Notice r refers to a rotation and s refers to a reflection when viewing Dn in terms of
rigid motions. We first construct the gameboard for Nim on dihedral groups using the gen-
erating set S = {r, s}. The Cayley graph of Dn has |Dn| = 2n vertices. Each element in
Dn can be written in the form r

i
s
j where 0 ≤ r ≤ n − 1 and j ∈ {0, 1}. Thus we label

each vertex appropriately. We define a vertex to be odd if i+j is odd and even if i+j is even.

The edges are directed from any vertex x ∈ G to xg, where g ∈ S = {r, s}. Then
each vertex has 2 initiating edges, which means G has 4n edges. We call the cycle formed
by r

i the Rotation Cycle. Notice we can write r
i
s = sr

n−i by dihedral group properties.
Then the cycle formed by r

i
s is the Reflection Cycle. Each cycle is graph isomorphic to

Zn and contains no overlap since r
i is never equal to r

j
s for any i, j ∈ {0, 1, ..., n − 1}.

These cycles account for 2n of the edges. The other 2n edges connect r
i to r

i
s. Since

(ri)s = r
i
s and (ris)s = r

i(ss) = r
i, these are double sided arrows. Finally, when a

vertex from the Rotation Cycle is multiplied by r we have (ri)r = r
i+1 and the exponent

of r increases. When a vertex from the Reflection Cycle, however, is multiplied by r we
have (ris)r = (srn−i)r = s(rn−i

r) = sr
n−i+1 = r

n−(n−i+1)
s = r

i−1
s and the exponent of r

decreases. Thus we have shown the Rotation Cycle and the Reflection Cycle have opposite
orientations.
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Example 5. This is the Cayley graph of D3 with S = {r, s}.

r
2 r

e

sr
2 sr

s

We say a player switches cycles if the player moves from r
i to r

i
s or from r

i
s to r

i.
Switching cycles is a move that will be important in developing winning strategies for Nim
on dihedral groups.

3.2 Techniques

We first examine the general game play techniques for Nim on dihedral groups that we will
use to create winning strategies. Since these moves apply to both Player 1 and Player 2,
we will consistently refer to one player as the Player and the other as the Opponent. The
following lemmas exemplify such game play techniques.

Lemma 3.1. A Player is guaranteed victory if the Opponent sets a vertex weight wx to 0
and moves to xs such that wxs �= 0.

Proof. Let the Opponent begin the turn on some vertex x where wx �= 0 and wxs �= 0.
Suppose the Opponent sets wx to 0 and moves to xs on the opposite cycle. Since wxs �= 0,
the Player reduces wxs by 1 and moves to xss = x. Since wx = 0, the Opponent is unable
to reduce wx and the Player wins.

Therefore, a player should avoid switching cycles after setting the weight of a vertex to
0 to avoid defeat unless the weight of the vertex in the opposite cycle happens to already be
0. In this case, the player would move to xs to win the game and it would not matter how
the player reduced wx.

Lemma 3.2. Let a Player move to r
i such that wri ≤ wris. Either the Player wins or the

Opponent moves to r
i+1. Similarly, the Player can force the Opponent to move from r

i
s to

r
i−1

s whenever wris ≤ wri.

Proof. Let the Player move to r
i where wri ≤ wris. We will induct on wri . For the initial

case, suppose wri = 1. The Opponent reduces wri,0 to 0 and moves to either r
i
s or r

i+1.
Suppose the Opponent does not move to r

i+1. Then the Opponent moves to r
i
s, and the

Player wins by Lemma 3.1 since 1 = wri,0 ≤ wris,0.
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For the induction step, assume the Player wins or the Opponent moves to r
i+1 for 1 ≤

wri ≤ k. Consider wri = k + 1. The Opponent reduces wri,0 by some amount and moves to
either ris or ri+1. Suppose the Opponent does not move to r

i+1. Then the Opponent moves
to r

i
s. The Player reduces wris,0 by 1 and moves to wri . Now the Opponent is at ri. Since

wri ≤ wri,0 − 1 = (k + 1)− 1 = k, either the Player wins or the Opponent moves to r
i+1 by

the induction hypothesis.
Suppose the Player moves to r

i
s where wris ≤ wri . Then either the Player wins or the

Opponent moves to r
i−1

s by similar reasoning.

We refer to the situation in the above theorem as the Forced Play Strategy. The Player
can use the Forced Play Strategy whenever the Opponent tries to switch cycles by moving
from a vertex with a lesser weight to a vertex with a greater weight. This strategy will be
referred to frequently when defining winning strategies in the next section.

The next strategic technique requires the following foundational definitions. Note the
subscript “R” is for “rotation” and “F” is for “reflection” or “flip.”

Definition 3.2. We define the Rotation Triumph Set as

LR = {ri : wri ≤ wris;wri+1 > wri+1s} 0 ≤ i ≤ n− 1,

and we define the Reflection Triumph Set as

LF = {ris : wris ≤ wri ;wri−1s > wri−1} 1 ≤ i ≤ n.

We use these sets as a way to pick out a Rotation Triumph Vertex and a Reflection

Triumph Vertex that meet the conditions below.

Definition 3.3. Let k ∈ {0, 1, ..., n − 1} be the least such that rk ∈ LR. Then the vertex

r
k ∈ LR is the Rotation Triumph Vertex, which we will denote tR. Let l ∈ {1, ..., n} be the

most such that rls ∈ LF . Then the vertex r
l
s ∈ LF is the Reflection Triumph Vertex, which

we will denote tF .

For the remainder of the chapter we will use tR and tF to denote the Rotation Triumph
Vertex and the Reflection Triumph Vertex, respectively. We define tR = r

k as even if k is
even and tF as odd if k is odd. We define tF = r

l
s = r

l
s
1 to be even if l + 1 is even and tF

to be odd if l + 1 is odd.

Lemma 3.3. Let the Player move to r
i where wri+1 > wri+1s. Then the Player wins if the

Opponent reduces wri such that wri < wris. Similarly, let the Player move to r
i
s where

wri−1s > wri−1. Then the Player wins if the Opponent reduces wris such that wris < wri.

Proof. Suppose the Opponent reduces wri such that wri < wris. The Player forces the
Opponent to move to r

i+1 by Lemma 3.2.
Consider this a new game in which the Player starts on r

i+1 and the current weights
of the vertices are now the initial weights for this new game. Let wm be the minimum
of {wri,0, wri+1,0, wri+1s,0, wris,0}. Since wri,0 < wris,0 and wri+1,0 > wri+1s,0, then we know
wm = wri or wm = wri+1s. We will induct on wm. For the initial case, suppose wm = 1.

12



The Player reduces wri+1,0 by 1 and moves to r
i+1

s. Now wri+1s,0 ≤ wri+1 . If wm = wri+1s,
then the Opponent must reduce wm to 0 and move to r

i
s to avoid defeat by Lemma 3.1. If

wm �= wri+1s, the Opponent reduces wri+1s,0 such that wri+1s < wri+1 and is forced to move
to r

i
s by Lemma 3.2. Then the Player reduces wris,0 by 1 and moves to r

i. If wm = wri , the
Opponent reduces wm to 0, and the Opponent moves to r

i+1 to avoid defeat by Lemma 3.1.
Otherwise, the Opponent reduces wri,0 such that wri < wris and is forced to move to r

i+1

by Lemma 3.2. Now we are back to the initial vertex where either wri+1s = 0 or wri = 0.
The Player reduces wri+1 by 1 and moves to r

i+1
s. If wri+1s = 0, the Opponent is unable to

reduce wri+1s, and the Player wins. Otherwise, the Opponent reduces wri+1s and is forced to
move to r

i
s by Lemma 3.2. The Player reduces wris by 1 and moves to r

i. Since wri = 0,
the Opponent is unable to reduce wri , and the Player wins. Notice that since we started
with wri,0 < wris,0 and wri+1s,0 < wri+1,0, and since Player 1 always reduces by 1, then it is
always true that wri ≤ wris and wri+1s ≤ wri+1 .

For the induction step, assume the Player wins for 1 ≤ wm ≤ k. Consider wm = k+1. The
Player reduces wri+1,0 by 1 and moves to r

i+1
s. If wm = wri+1s, then the Opponent reduces

wm,0 such that wm ≤ wm,0 − 1 = (k + 1) − 1 = k, and the Opponent moves to r
i
s to avoid

defeat by Lemma 3.1. Otherwise, the Opponent reduces wri+1s,0 such that wri+1s < wri+1

and is forced to move to r
i
s by Lemma 3.2. Then the Player reduces wris,0 by 1 and moves

to r
i. If wm = wri , the Opponent reduces wm such that wm ≤ wm,0 − 1 = (k + 1) − 1 = k,

and the Opponent moves to r
i+1 to avoid defeat by Lemma 3.1. Otherwise, the Opponent

reduces wri,0 such that wri < wris and is forced to move to r
i+1 by Lemma 3.2. Now we are

back at the starting vertex where either wri+1s ≤ k or wri ≤ k. Then the Player wins by the
induction hypothesis.

Suppose the Opponent reduces wris such that wris < wri . Then the Player wins by
similar induction.

Lemma 3.3 lets us assume a player will avoid defeat by keeping wri ≥ wris whenever
wri+1 > wri+1s and keeping wris ≥ wri whenever wri−1s > wri−1s. This reduces the number of
ways a player can reduce the weight of a vertex before moving, which is more efficient when
determining winning strategies. The following lemma relates Triumph vertices to Lemma
3.3. While we just saw what a player should avoid doing, the next lemma is about what a
player should do.

Lemma 3.4. A Player is guaranteed victory if he or she moves to tR. Similarly, the Player

is guaranteed victory if he or she moves to tF .

Proof. Let the Player move to tR. The Opponent reduces wtR,0 such that wtR < wris,0 and
is forced to move to r

i+1 by Lemma 3.2. Then the Opponent loses by Lemma 3.3.

Then the Player wins if he or she moves to tF by similar reasoning.

Since moving to a Triumph Vertex guarantees victory, we see how they are named ap-
propriately. We refer to this strategy as the Triumph Cycle Strategy where a Triumph Cycle

is defined as the sequence of vertices used in determining a Triumph Vertex. The sequence

r
i
, r

i+1
, r

i+1
s, r

i
s
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is a Triumph Cycle as long as ri ∈ LR. Another Triumph Cycle is

r
i
s, r

i−1
s, r

i−1
, r

i

as long as ris ∈ LF .

Example 6. A Triumph Cycle is illustrated below.

r
i

r
i+1

r
i+1

sr
i
s

wri ≤ wris

wri+1 > wri+1s

Triumph Cycles affect the game in two central ways. The Player is able to create a
Triumph Cycle through general game play; however, this results in victory for the Opponent,
as proved by Lemma 3.3. The Player is also able to move into a Triumph Cycle via the
Triumph Vertex, which would result in victory as proved by Lemma 3.4. Both of these
situations are illustrated in the following examples.

Example 7. If Player 1 reduces the identity so we < ws, the Player 2 wins by the Triumph

Cycle consisting of vertices with initial weights {6,3,1,4}.

5 3

6
e

5 1

4
s
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Example 8. Player 1 can move to the Rotation Cycle Triumph Vertex and win along the

Triumph Cycle consisting of vertices with initial weights {3,5,2,4 }.

5 3
tR

6
e

2 4

1

Thus Triumph Cycles can be both beneficial and detrimental to a player’s game play.
These two strategies, Forced Play and Triumph Cycle, create the foundation from which we
deduce winning strategies for Nim on dihedral groups.

3.3 Strategic Explanation

The strategies for Nim on Dn, like Nim on cyclic groups, depend exclusively on the initial
conditions of the gameboard.

We first look at the Triumph Vertices, tR and tF , because if the Player moves to one
of these vertices, the Player wins the game. The next step is to determine whether or not
the Player can actually reach the Triumph Vertices based on the Opponent’s moves in the
game. There are two variables to determine if this happens. The first is the placement of
the Triumph Vertices. If the Triumph Vertex is even, only Player 2 has a chance of moving
to it. If the Triumph Vertex is odd, only Player 1 has a chance of moving to it. The next
variable is the relationship between the initial weights of the vertices in the Rotation Cycle
and the Reflection Cycle. This will determine whether the Opponent can successfully switch
cycles before the Player reaches a Triumph Vertex. Note if tR = r

k, then wri ≤ wris for all
i ≤ k. Similarly, if tF = r

k
s, then wris ≤ wri for all i ≥ k. These conditions follow from the

way we defined tR and tF to be the vertices in the Triumph Sets which are the closest to the
identity vertex. Once the Player reaches a Triumph Vertex, the Player wins the game along
the Triumph Cycle.

If there happens to be no Triumph Vertex, we look at the vertices with the minimum
initial weight. Again, we look at whether the minimum vertex is even or odd, and then we
look at the relationship between the initial weights of vertices along the Rotation Cycle and
the vertices along the Reflection Cycle to determine whether the Player can move to these
minimum weight vertices. Then the Player can use the Forced Player Strategy to force the
Opponent to reduce the weights of the minimum vertices to win the game. This is the basic

15



way we determine which player has a winning strategy.

Given any initial weight distribution for any game of Nim on Dn, there exists a winning
strategy for either Player 1 or Player 2. As long as the Player with the winning strategy
moves according to defined strategy, the Player is guaranteed victory. The following diagram
outlines all possible initial game conditions identifying which player has the winning strategy.
In the next section, we will prove each part of the diagram.

Nim on Dn

we ≤ wes

tR odd tR even no tR

P1 wins P2 wins n even n odd

mR odd mF even P1 wins

P1 wins P2 wins

we > wes

tF odd tF even no tF

P1 wins tR even tR odd n odd n even

P2 wins wr1 ≤ wr1s wr1 > wr1s tR e tR not e mF odd mF even

P1 wins P2 wins P2 wins P1 wr1 = wr1s wr1 > wr1s P1 wins

tR even tR odd P2 wins

P2 wins P1 wins

16



3.4 Winning Strategy

Now we look at proofs of all possible Nim games on dihedral groups. Each theorem will
prove a section of the chart, which will be highlighted in red.

Nim on Dn

we ≤ wes

tR odd tR even no tR

P1 wins P2 wins n even n odd

mR odd mF even P1 wins

P1 wins P2 wins

we > wes

tF odd tF even no tF

P1 wins tR even tR odd n odd n even

P2 wins wr1 ≤ wr1s wr1 > wr1s tR e tR not e mF odd mF even

P1 wins P2 wins P2 wins P1 wr1 = wr1s wr1 > wr1s P1 wins

tR even tR odd P2 wins

P2 wins P1 wins

Theorem 3.1. Let G be the Cayley graph for Dn. Let we ≤ wes and tR ∈ G. If tR is odd,

Player 1 has the winning strategy. If tR is even, Player 2 has the winning strategy.

Proof. Let we ≤ wes and tR = r
k ∈ G. Suppose tR is odd. Player 1’s strategy is to reduce

the even vertices by 1 and move to the next odd vertex along the Rotation Cycle. We know
wrj ≤ wrjs for 0 ≤ j ≤ k since tR = r

k. Then Player 1 can force Player 2 to continue on the
Rotation Cycle for all rj by Lemma 3.2. Since tR is odd, Player 1 will eventually move to
tR. Then Player 1 continues along the Triumph Cycle and wins by Lemma 3.4.

Suppose tR is even. Player 2’s strategy is to reduce the odd vertices by 1 and move to
the next even vertex. Since wrj ≤ wrjs, Player 2 can force Player 1 to continue along the
Rotation Cycle for all rj by Lemma 3.2. Since tR is even, Player 2 will eventually move to
tR. Then Player 2 continues along the Triumph Cycle and wins by Lemma 3.4.

17



Nim on Dn

we ≤ wes

tR odd tR even no tR

P1 wins P2 wins n even n odd

mR odd mF even P1 wins

P1 wins P2 wins

we > wes

tF odd tF even no tF

P1 wins tR even tR odd n odd n even

P2 wins wr1 ≤ wr1s wr1 > wr1s tR e tR not e mF odd mF even

P1 wins P2 wins P2 wins P1 wr1 = wr1s wr1 > wr1s P1 wins

tR even tR odd P2 wins

P2 wins P1 wins

In order for tR to exist, there must be at least one vertex such that wri > wris. Since
Theorem 3.2 presumes wri ≤ wris for all ri, ris ∈ G, it is implied that there is no tR in
this particular game situation. Also note that in Theorem 3.2, rk corresponds to mR in the
diagram.

Theorem 3.2. Let G be the Cayley graph for Dn where n is even. Let wri ≤ wris for all

r
i
, r

i
s ∈ G. Let min{we, wr1 , ..., wrn−1} = w. Let k ∈ {0, 1, ..., n − 1} be the least such that

wrk = w. Then if k is even, Player 2 has the winning strategy. If k is odd, Player 1 has the

winning strategy.

Proof. Since wri ≤ wris, each player can confine the other to the Rotation Cycle by Lemma
3.2. Then the game reduces to Zn and Player 2 wins if k is even and Player 1 wins if k is
odd by Theorem 2.2.

Nim on Dn

we ≤ wes

tR odd tR even no tR

P1 wins P2 wins n even n odd

mR odd mF even P1 wins

P1 wins P2 wins

we > wes

tF odd tF even no tF

P1 wins tR even tR odd n odd n even

P2 wins wr1 ≤ wr1s wr1 > wr1s tR e tR not e mF odd mF even

P1 wins P2 wins P2 wins P1 wr1 = wr1s wr1 > wr1s P1 wins

tR even tR odd P2 wins

P2 wins P1 wins
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Theorem 3.3. Let G be the Cayley graph for Dn when n is odd and wri ≤ wris for all

r
i
, r

i
s ∈ G where i is odd. Then Player 1 has the winning strategy.

Proof. Player 1 first reduces we to 0 and continues play along the Rotation Cycle. Since
wri ≤ wris for all odd i, Player 1 forces Player 2 along the Rotation Cycle by the Forced
Play Strategy of Lemma 3.2. Then the game reduces to Zn, and Player 1 has the winning
strategy by Theorem 2.1.

Nim on Dn

we ≤ wes

tR odd tR even no tR

P1 wins P2 wins n even n odd

mR odd mF even P1 wins

P1 wins P2 wins

we > wes

tF odd tF even no tF

P1 wins tR even tR odd n odd n even

P2 wins wr1 ≤ wr1s wr1 > wr1s tR e tR not e mF odd mF even

P1 wins P2 wins P2 wins P1 wr1 = wr1s wr1 > wr1s P1 wins

tR even tR odd P2 wins

P2 wins P1 wins

Theorem 3.4. Let G be the Cayley graph for Dn and we > wes. If tF ∈ G is odd, Player 1

has the winning strategy.

Proof. Let tF = r
k
s ∈ G be odd. Player 1 starts by reducing we by 1 and moving to wes.

Since tF = r
k
s, we know k is the greatest integer such that wrk−1s > wrk−1 . Thus wrjs ≤ wrj

for k ≤ j ≤ n. Then Player 1 can force Player 2 to move along the Reflection Cycle by the
Forced Play Strategy of Lemma 3.2. Since tF is odd, Player 1 will eventually move to tF .
Then Player 1 continues along the Triumph cycle and wins by Lemma 3.4.
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Nim on Dn

we ≤ wes

tR odd tR even no tR

P1 wins P2 wins n even n odd

mR odd mF even P1 wins

P1 wins P2 wins

we > wes

tF odd tF even no tF

P1 wins tR even tR odd n odd n even

P2 wins wr1 ≤ wr1s wr1 > wr1s tR e tR not e mF odd mF even

P1 wins P2 wins P2 wins P1 wr1 = wr1s wr1 > wr1s P1 wins

tR even tR odd P2 wins

P2 wins P1 wins

Theorem 3.5. Let G be the Cayley graph for Dn and we > wes. Suppose there exists tF ∈ G,

which is even. Let tR ∈ G. If tR is even, then Player 2 wins.

Proof. Let tF = r
k
s ∈ G be even. Suppose tR is even. Player 1 starts by reducing we by

some amount and moving to either es or r
1. If Player 1 moves to es, Player 2’s strategy

is to force Player 1 along the Reflection Cycle by the Forced Play Strategy of Lemma 3.2.
Since tF is even, Player 2 wins by moving to tF and continuing along the Triumph Cycle by
Lemma 3.4.

Now suppose Player 1 moves to r
1. If wr1 > wr1s, then Player 1 must set we ≥ wes

to avoid losing by Lemma 3.3. Player 2 reduces wr1 by 1 and moves to r
1
s. Then Player

2 can force Player 1 along the Reflection Cycle by Lemma 3.2. Since tF is even, Player 2
will eventually move to tF . Then Player 2 continues along the Triumph Cycle and wins by
Lemma 3.2.

If wr1 ≤ wr1s, then Player 2 reduces wr1 by 1 and moves to r
2. Player 2 forces play

along the Rotation Cycle by Lemma 3.2. Since tR is even, Player 2 moves to tR and wins by
Lemma 3.4.
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Nim on Dn

we ≤ wes

tR odd tR even no tR

P1 wins P2 wins n even n odd

mR odd mF even P1 wins

P1 wins P2 wins

we > wes

tF odd tF even no tF

P1 wins tR even tR odd n odd n even

P2 wins wr1 ≤ wr1s wr1 > wr1s tR e tR not e mF odd mF even

P1 wins P2 wins P2 wins P1 wr1 = wr1s wr1 > wr1s P1 wins

tR even tR odd P2 wins

P2 wins P1 wins

Theorem 3.6. Let G be the Cayley graph for Dn and we > wes. Suppose there exists tF ∈ G,

which is even. Let tR ∈ G. If tR is odd then Player 1 wins if wr1 ≤ wr1s and Player 2 wins

if wr1 > wr1s.

Proof. Let tF = r
k
s ∈ G be even. Suppose tR is odd and wr1 ≤ wr1s. Player 1 starts by

reducing we by 1 and moving to wr1 . Since wr1 ≤ wr1s, we know wrj ≤ wrjs for 1 ≤ j ≤ k.
Then Player 1 can force Player 2 to continue on the Rotation Cycle for all rj by the Forced
Play Strategy of Lemma 3.2. Since tR is odd, Player 1 will eventually move to tR. Then
Player 1 continues along the Trumph Cycle and wins by Lemma 3.4.

Now suppose wr1 > wr1s. Player 1 starts by reducing we by some amount and moving to
either es or r1. If Player 1 moves to es, then Player 2 will move along the Reflection Cycle.
Since wrjs ≤ wrj for k ≤ j ≤ n, Player 2 can force Player 1 along the Reflection Cycle by
Lemma 3.2. Since tF is even, Player 2 will eventually move to tF . Then Player 2 continues
along the Triumph Cycle and wins by Lemma 3.2.

Suppose Player 1 moves to r
1. Player 1 must leave we ≥ wes by Lemma 3.3. Then Player

2 reduces wr1 by 1 and moves to r
1
s on the Reflection Cycle. Now wr1s ≤ wr1 , wes ≤ we,

and wrjs ≤ wrj for k ≤ j ≤ n, and Player 2 wins by the above argument.
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Nim on Dn

we ≤ wes

tR odd tR even no tR

P1 wins P2 wins n even n odd

mR odd mF even P1 wins

P1 wins P2 wins

we > wes

tF odd tF even no tF

P1 wins tR even tR odd n odd n even

P2 wins wr1 ≤ wr1s wr1 > wr1s tR e tR not e mF odd mF even

P1 wins P2 wins P2 wins P1 wr1 = wr1s wr1 > wr1s P1 wins

tR even tR odd P2 wins

P2 wins P1 wins

In order for tF to exist, there must be at least one vertex such that wris > wri . Since
Theorem 3.2 presumes wris ≤ wri for all r

i
, r

i
s ∈ G, it is implied that there is no tF in this

particular game situation. Also notice that in Theorem 3.7 we refer to the case where tR

exists. We will discuss the no tR case in Theorem 3.8.

Theorem 3.7. Let G be the Cayley graph for Dn where n is odd. Suppose we > wes and

wri,0 ≥ wris,0 for all 1 ≤ i ≤ n − 1. Let tR ∈ G. Then Player 2 has the winning strategy if

tR is even and Player 1 has the winning strategy if tR is odd.

Proof. Suppose tR = r
k ∈ G is even. Player 1 starts by moving to either es or r1. If Player

1 moves to es we have a new game in which wris ≤ wri for 1 ≤ i ≤ n − 1. We see this
game is equivalent to that of Theorem 3.3, the only difference being Player 2 wins along
the Reflection Cycle instead of the Rotation Cycle. Thus, Player 1 will move to r

1 to avoid
defeat. Also note that Player 1 must reduce we ≥ wes,0 if wr1 > wr1s to avoid losing by
Lemma 3.3. (If wr1 = wr1s, then how Player 1 reduces we is nonapplicable to the outcome
of the game.)

Player 2’s strategy is to reduce the weight of all odd vertices by 1 and continue along the
Rotation Cycle. At each even vertex r

j, there are 2 possible scenarios for Player 1.
Case 1: wrj ,0 = wrjs,0. Then Player 2 can force Player 1 to continue along the Rotation

Cycle by Lemma 3.2.
Case 2: wrj ,0 > wrjs,0. Since tR = r

k, then wri ≥ wris for all 0 ≤ i ≤ j since the players
reduce to avoid defeat by Lemma 3.3. Then if Player 1 moves from r

j to r
j
s, we have a

game that is equivalent to that of Theorem 3.3 as seen above.
Then play continues along the Rotation Cycle. Since tR is even, Player 2 will move to tR

and wins along the Triumph Cycle by Lemma 3.4.
Suppose tR is odd. Player 1’s strategy is to reduce the weight of the even vertices by

1 and continue along the Rotation Cycle to eventually reach tR. Player 1 will reach tR by
similar reasoning from above.
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Nim on Dn

we ≤ wes

tR odd tR even no tR

P1 wins P2 wins n even n odd

mR odd mF even P1 wins

P1 wins P2 wins

we > wes

tF odd tF even no tF

P1 wins tR even tR odd n odd n even

P2 wins wr1 ≤ wr1s wr1 > wr1s tR e tR not e mF odd mF even

P1 wins P2 wins P2 wins P1 wr1 = wr1s wr1 > wr1s P1 wins

tR even tR odd P2 wins

P2 wins P1 wins

In Theorem 3.8, there is no tR and no tF since all the weights on the Rotation Cycle are
strictly greater than all the corresponding weights on the Reflection Cycle.

Theorem 3.8. Let G be the Cayley graph for Dn where n is odd. Suppose wri,0 > wris,0 for

all ri, ris ∈ G. Then Player 1 has the winning strategy.

Proof. Player 1 reduces we,0 such that we = wes,0 and moves to r
1. Player 1’s strategy is to

reduce the weight of the even vertices rj such that wrj = wrjs and move along the Rotation
Cycle to r

j+1. The remainder of the strategy depends on Player 2’s choices at r
i where i

is odd. We may assume Player 2 reduces wri,0 such that wri ≥ wris,0 to avoid creating a
Triumph Cycle for Player 1 to win as seen in Lemma 3.3. Then Player 2 can either move to
r
i
s or ri+1.
Suppose Player 2 switches cycles and moves to r

i
s. Player 1 reduces wris,0 to 0. Notice

we have that wrks ≤ wrk for 0 ≤ k ≤ n− 1. Thus Player 1 wins by Theorem 3.3. The only
difference is that in this case Player 1 wins along the Reflection Cycle, which is equivalent
to the Rotation Cycle of Theorem 3.3. Then we may assume Player 2 always moves to r

i+1

to avoid defeat.
Play continues until Player 2 moves to the even vertex r

n−1. Now Player 1 reduces wrn−1,0

to 0. We have wrn = wrns, wr2 = wr2s, ..., wrn−2 = wrn−2s because of Player 1’s strategy up to
this point. If we consider the new game in which r

n−1 is the initial vertex, we see this game
fulfills the hypothesis of Theorem 3.3. Then Player 1 has the winning strategy.
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Nim on Dn

we ≤ wes

tR odd tR even no tR

P1 wins P2 wins n even n odd

mR odd mF even P1 wins

P1 wins P2 wins

we > wes

tF odd tF even no tF

P1 wins tR even tR odd n odd n even

P2 wins wr1 ≤ wr1s wr1 > wr1s tR e tR not e mF odd mF even

P1 wins P2 wins P2 wins P1 wr1 = wr1s wr1 > wr1s P1 wins

tR even tR odd P2 wins

P2 wins P1 wins

Notice if wr1 < wris and wri ≥ wris for 2 ≤ i ≤ n, then we see tF = r
2
s since wr2s ≤ wr2

and wr1s > wr1 . Since the following two theorems assume there is no tF , we see the case
where wr1 < wr1s is non applicable, and therefore, we do not need to include it.

Theorem 3.9. Let G be the Cayley graph for Dn where n is even. Let we > wes, wr1 = wr1,

and wri ≥ wris for 2 ≤ i ≤ n − 1. Let tR ∈ G and min{wr0s, wr1s, ..., wrn−1s} = w. Let

mF ∈ {1, 2, ..., n} be the most such that wr
mF s = w. Suppose mF is odd. Then if tR is odd,

Player 1 has the winning strategy, and if tR is even, Player 2 has the winning strategy.

Proof. Suppose tR = r
k ∈ G is odd. Player 1’s strategy is to reduce the weight of the even

vertices ri by 1 and continue along the Rotation Cycle. So Player 1 starts by reducing we by
1 and moving to wr1 . Since wr1 = wr1s, we know wrj ,0 = wrjs,0 for 1 ≤ j ≤ k. Then Player
1 can force Player 2 to continue on the Rotation Cycle for all rj by Lemma 3.2. Since tR is
odd, Player 1 will eventually move to tR and win by Lemma 3.4.

Suppose tR is even. Player 1 either moves to r
1 or es. If Player 1 moves to r

1, Player 2
moves to r

2 and forces Player 1 to continue along the Rotation Cycle by Lemma 3.2 since
wrj ,0 = wrjs,0 for 1 ≤ j ≤ k. Since tR is even, Player 2 eventually moves to tR and wins
along the Triumph cycle by Lemma 3.4.

Suppose Player 1 moves to es. If Player 1 reduced e such that we < wes, Player 2 can
move back to e and can force Player 1 to continue along the Rotation Cycle by Lemma 3.2.
Assume Player 1 sets we ≥ wes and moves to es. Since wris ≤ wri for all ris, ri ∈ G, the
game is reduced to a game on Zn. Player 2’s strategy is to force Player 1 to continue along
the Reflection Cycle by Lemma 3.2. Since mF is odd, Player 2 has the winning strategy by
Theorem 2.2.
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Nim on Dn

we ≤ wes

tR odd tR even no tR

P1 wins P2 wins n even n odd

mR odd mF even P1 wins

P1 wins P2 wins

we > wes

tF odd tF even no tF

P1 wins tR even tR odd n odd n even

P2 wins wr1 ≤ wr1s wr1 > wr1s tR e tR not e mF odd mF even

P1 wins P2 wins P2 wins P1 wr1 = wr1s wr1 > wr1s P1 wins

tR even tR odd P2 wins

P2 wins P1 wins

Theorem 3.10. Let G be the Cayley graph for Dn where n is even. Let we > wes, wr1 > wr1s,

and wri ≥ wris for 2 ≤ i ≤ n − 1. Let w be the minimum of {wes, wr1s, ..., wrn−1s}. Let

mF ∈ {1, 2, ..., n} be the most such that wr
mF s = w. If mF is odd, Player 2 has the winning

strategy.

Proof. Suppose mF is odd. Player 1 reduces we and can either move to es or r1. Suppose
Player 1 moves to es. Then the game is reduced to Zn since Player 2 can force Player 1
to continue along the Reflection Cycle. Player 2’s strategy is to reduce the weight of each
vertex by 1 and continue along the Reflection Cycle. Since mF is odd, Player 2 has the
winning strategy by Theorem 2.2.

Suppose Player 1 moves to r
1. We assume Player 1 sets we ≥ wes to avoid defeat by

Lemma 3.3. Then Player 2 reduces wr1 by 1 and switches cycles to r
1
s. Since wris ≤ wri for

all ris, ri ∈ G, then again Player 2 has the winning strategy by Theorem 2.2.
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Nim on Dn

we ≤ wes

tR odd tR even no tR

P1 wins P2 wins n even n odd

mR odd mF even P1 wins

P1 wins P2 wins

we > wes

tF odd tF even no tF

P1 wins tR even tR odd n odd n even

P2 wins wr1 ≤ wr1s wr1 > wr1s tR e tR not e mF odd mF even

P1 wins P2 wins P2 wins P1 wr1 = wr1s wr1 > wr1s P1 wins

tR even tR odd P2 wins

P2 wins P1 wins

Theorem 3.11. Let G be the Cayley graph for Dn where n is even. Let we > wes and wri ≥
wris for 1 ≤ i ≤ n−1. Let w be the minimum of {wes, wr1s, ..., wrn−1s}. Let mF ∈ {1, 2, ..., n}
be the most such that wr

mF s = w. If mF is even, Player 1 has the winning strategy.

Proof. Suppose mF is even. Player 1 reduces we by 1 and moves to es. Then we have
wris ≤ wri for all r

i
, r

i
s ∈ G. The game is then reduced to Zn since Player 1 can force Player

2 to continue along the Reflection Cycle by Lemma 3.2. Then since mF is even, Player 1 has
the winning strategy by Theorem 2.2.
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Example 9. Sample Nim Game

1 2

3 e

2 2

5

Player 1 will trap Player 2 on the identity vertex e in the above example according to
Theorem 3.3.

Example 10. Sample Nim Game

3

4
e

2

3 tR

2
tF

2 5

4

Player 2 wins on the game above according to Theorem 3.4 since tF is even and tR is
even.
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Chapter 4

Finite Groups of Two Involutions

We now consider Nim on Cayley graphs of dihedral groups with generators other than r

and s. Consider D4 generated by rs and s, pictured below. The Cayley graph is a cy-
cle of length 8 with double sided arrows instead of the single arrows we saw in the cyclic
groups Zn. In fact, this is true for all other generating sets for Dn of order 2. These include
{rs, s}, {r2s, rs}, {r3s, r2s}, {r3s, s}. Notice these generators are involutions, which means
for each generator g, xgg = x for all x ∈ Dn. The Cayley graph of Dn generated by two
involutions is isomorphic to the Cayley graph of Zn, the only difference being double sided
arrows connect the vertices rather than the single sided arrows we dealt with in Chapter 2.

Example 11. The Cayley graph of D4 generated by rs and s.

e rs r r
2
s

r
2

r
3
sr

3s

All groups generated by two involutions will have Cayley graphs similar to that above.
We generalize our results from dihedral groups to obtain all winning strategies for Nim on all
groups of two involutions. The basic strategy is for Player 1 to choose to move either clock-
wise or counterclockwise depending on where the advantage lies. The only way Player 2 can
win is if Player 2 has the advantage from both sides. The exact strategies are outlined below.

Consider the Cayley graph of a group G of order n with generating set S = {g : xgg =
x, ∀x ∈ G} such that |S| = 2. Label the n vertices of G as {0, 1, 2, ..., n − 1} where i is
connected to i+ 1 for i = 0 to i = n− 1, and n− 1 is connected to 0. An odd vertex x ∈ G

is a vertex labeled with an odd number and an even vertex x ∈ G is a vertex labeled with
an even number. As defined previously, wx,0 will refer to the initial weight of the vertex x

and wx will refer to weight of vertex x at any other point in the game.
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Theorem 4.1. Let G be the Cayley graph of any group generated by two involutions where

|G| = n. Let x be the least such that wx,0 ≤ wx+1,0 for x ∈ G. If x is odd, then Player 1 has

the winning strategy.

Proof. Suppose x is odd. Let wx,0 = m. Then wi,0 > wi+1,0 for 0 ≤ i < x. We will induct
on m. For the initial case, let m = 1. Player 1’s strategy is to reduce the weight of every
even vertex by 1 and move to the next odd vertex, eventually x. Player 1 starts the game
by reducing w0,0 by 1 and moving to 1. Player 2 reduces w1,0 and moves to either 0 or 2.
If Player 2 moves to 0, Player 1 can move back to 1 since w0 ≥ w1. Player 2 will be forced
to move to 2 to avoid losing by reasoning similar to that in Lemma 3.1. Play continues as
above and Player 1 will move to x since x is odd. Player 2 reduces wx,0 to 0 and either moves
to x− 1 or x+1. Either way, Player 1 will reduce the weight of wx−1 or wx+1 by 1 and move
to x. Since wx = 0, Player 1 wins.

For the induction step, assume Player 1 has the winning strategy for 1 ≤ m. Consider
wx = m + 1. The game begins as described above. Play continues and Player 1 will move
to x since x is odd. Player 2 reduces wx,0 such that wx ≤ wx,0 − 1 = m + 1 − 1 = m and
either moves to x− 1 or x+ 1. Define a new game where the identity vertex is either x− 1
or x+ 1 depending on where Player 2 moves. Then we have a game where wx = m. Player
1 will reduce the weight of the identity in the new game wx−1 or wx+1 by 1 and move to x.
Then Player 1 wins by the induction hypothesis.

Theorem 4.2. Let G be the Cayley graph of any group generated by two involutions where

|G| = n. Let x be the least such that wx ≤ wx+1 for x ∈ G. If x is even, look for the greatest

vertex y ∈ G such that wy ≤ wy−1. If y is odd, Player 1 wins. If y is even, Player 2 wins.

Proof. Suppose y is odd. The proof is similar to Theorem 4.1. Instead of moving from 0 to
1, Player 1 will move from 0 to n− 1 and proceed in this direction. Then Player 1 wins by
previous argument.

Suppose y is even. Player 1 starts the game by reducing w0 and moving to either 1 or
n − 1. If Player 1 moves to 1, Player 2 starts a new game on 1 as the identity. Then x is
odd in relation to the identity in the new game, and Player 2 will take the role of Player 1
to move to x. Then Player 2 wins by Theorem 4.1. If Player 1 moves to n − 1, Player 2
starts a new game on n− 1 as the identity. Then y is odd in relation to the identity of the
new game, and Player 2 will take the role of Player 1 to move to n− 2. Then Player 2 will
reach y and win according to the above strategy.

Then we have winning strategies for all Cayley graphs of groups generated by two invo-
lutions.

29



Chapter 5

Quaternions

5.1 Introduction

We now consider another non-abelian group, the Quaternions. From [9] we have the following
definition.

Definition 5.1. Let

1 =

�
1 0
0 1

�
i =

�
0 1
−1 0

�

j =

�
0 i

i 0

�
k =

�
i 0
0 −i

�

where i2 = −1. Then the quaternion group is of order 8 and we write Q8 = {±1,±i,±j,±k}.
Notice |Q8| = |D4| = 8; however these two groups have different structures. Consider the

generating set S = {i, j}. Then we obtain the relations

ij = k ji = −k

jk = i kj = −i

ki = j ik = −j

Now we are able to construct a Cayley graph of the Quaternions.

Example 12. The Cayley graph of Q8 generated by {i, j}.

−i

1 i

−1

j

k −j

−k
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5.2 Winning Strategy

We begin to define strategy for Nim on Q8 with the following Lemma.

Lemma 5.1. Let the Player move to a vertex x ∈ Q8. Then the Player can move to x as

long as the game continues.

Proof. Let G be the Cayley graph of Q8. Suppose the Player moves to x ∈ G. Then the
Opponent can either move to xi or xj, since S = {i, j}.

Case 1: Suppose the Opponent moves to xi. Then the Player moves to xii = x(−1) = −x.
Again the Opponent can either move to −xi or −xj. If the Opponent moves to −xi, the
Player moves to −xii = −x(−1) = x and we are done. If the Opponent moves to −xj, the
Player moves to −xjj = −x(−1) = x. Then we conclude whenever the Opponent moves to
xi, the Player will always be able to move back to x.

Case 2: Suppose the Opponent moves to xj. Then the Player can return to x by similar
reasoning.

Lemma 5.1 is important because it allows a player the choice to return to that same
vertex as long as the game continues. The other variable that will determine the winning
strategy is the weight of the vertices. We define the minimum weight of Q8 as the following.

Definition 5.2. Define the minimum set M as the set of all vertices in Q8 with the minimum

initial weight m. Let m be the minimum of {w±1, w±i, w±j, w±k}. Then M = {x ∈ Q8 : wx =
m}.

Using this definition, we see how a player wins by moving to some x ∈ M .

Lemma 5.2. Let the Player be the first to move to a vertex x ∈ M . Then the Player has

the winning strategy.

Proof. We will use proof by induction. Suppose the Player moves to x ∈ M . Then wx = m.
For the initial case, let m = 1. The Opponent must reduce wx,0 to 0 and move along an
allowable edge. Note the Player always reduces the weight of the vertex by 1 to keep wx ≤ wy

for all y ∈ Q8. By Lemma 5.1, the Player will move to x after a cycle of play. Since wy,0 > 0
for all y ∈ Q8, the game will continue until the Player moves back to x. Then the Opponent
loses because wx = 0.

For the induction step, suppose the Player has the winning strategy for 1 ≤ m ≤ n.
Consider wx,0 = n+1. The Opponent must reduce wx,0 such that wx ≤ wx,0−1 = n+1−1 =
n. By Lemma 5.1, the Player will move to x after a cycle of play since the Player always
reduced by 1 to keep wx ≤ wy for all y ∈ Q8. Then Player wins at x by the induction
hypothesis. Note if the Opponent happened to reduce wy,0 such that wy < wx,0−1 = n+1 = n

for some y ∈ Q8, then the Player wins on y by the induction hypothesis.

We refer to the above strategy as the Copycat Strategy. The Player will always be able to
move to a vertex x as long as the Player moves along the edge with the same generator as the
edge the Opponent moves along. According to the Copycat Strategy, if the Opponent moves
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along the i generator, the Player moves along the i generator. Similarly if the Opponent
moves along the j generator, the Player moves along the j generator. We now apply this
technique to generalize all winning strategies for Nim on Q8.

These are the list of cases that will need to be proved. The number of the list corresponds
with the Theorem number.

1. 1 ∈ M

2. i ∈ M or j ∈ M [and 1 �∈ M ]

3. −1 ∈ M [and 1, i, j �∈ M ]

4. k and −k ∈ M [and 1, i, j,−1 �∈ M ]

5. M = {k} or M = {−k}

6. M = {−i} or M = {−j} or M = {−i,−j}

7. M = {k,−i} or M = {−k,−j}

8. M = {k,−j} or M = {−k,−i}

9. M = {k,−i,−j} or M = {−k,−i,−j}

Theorem 5.1. Let G be the Cayley graph of Q8. If 1 ∈ M , the Player 2 has the winning

strategy.

Proof. Suppose 1 ∈ M . Then w1 ≤ wx for all x ∈ Q. At the start of the game Player 1
reduces w1,0 such that w1 ≤ w1,0−1. Player 1 starting the game at 1 is equivalent to Player 2
moving to 1 to start the game. Thus we apply Lemma 5.2 to show Player 2 has the winning
strategy.

Theorem 5.2. Let G be the Cayley graph of Q8. If i ∈ M or j ∈ M , then Player 1 has the

winning strategy as long as 1 �∈ M .

Proof. Suppose i ∈ M and 1 �∈ M . Then wi < w1. Player 1 reduces w1 by 1 and moves to
i. Since wi ≤ wx for all x ∈ Q8, Player 1 wins by Lemma 5.2.

Now suppose j ∈ M . Then Player 1 has the winning strategy by similar argument.

Theorem 5.3. Let G be the Cayley graph of Q8. Suppose 1, i, j �∈ M . If −1 ∈ M , then

Player 2 has the winning strategy.

Proof. Player 1 starts the game by reducing w1. Player 1 can either move to i or j. Player
2 reduces either wi or wj by 1 and moves to −1. Then Player 2 wins by Lemma 5.2.

Theorem 5.4. Let G be the Cayley graph of Q8. If k,−k ∈ M with 1, i, j,−1 �∈ M , then

Player 2 has the winning strategy.
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Proof. Suppose k,−k ∈ M . Player 1 starts the game by reducing w1 by some amount and
moving to either i or j. If Player 1 moves to i, then Player 2 moves to k ∈ M and wins by
Lemma 5.2. If Player 1 moves to j, then Player 2 moves to −k ∈ M and wins by Lemma
5.2.

Theorem 5.5. Let G be the Cayley graph of Q8. If M = {k} or M = {−k}, then Player 2

has the winning strategy.

Proof. Suppose k ∈ M . Player 1 starts the game by reducing w1 by some amount and
moving to i or j. If Player 1 moves to i, Player 2 reduces wi by 1 and moves to k ∈ M .
Then Player 2 wins by Lemma 5.2.

If Player 1 moves to j, then Player 2 reduces wj by 1 and moves to −k. Player 1 reduces
w−k by some amount and moves to either −j or i. Regardless, Player 1 moves to k ∈ M

and wins by Lemma 5.2.
Now suppose −k ∈ M . Then Player 2 wins by similar argument.

Theorem 5.6. Let G be the Cayley graph of Q8. If M = {−i}, M = {−j}, or M =
{−i,−j}, then Player 1 has the winning strategy.

Proof. Suppose M = {−i}. Player 1 reduces w1 by 1 and moves to i. Player 2 either moves
to k or −1. Either way, Player 1 can move to −i ∈ M . Then Player 1 wins by Lemma 5.2.

Suppose M = {−j}. Player 1 reduces w1 by 1 and moves to j. Player 2 either moves to
−k or −1. Either way, Player 1 can move to −j ∈ M . Then Player 1 wins by Lemma 5.2.

Suppose M = {−i,−j}. Player 1 wins by similar reasoning.

Theorem 5.7. Let G be the Cayley graph of Q8. If M = {k,−i}, then Player 2 has the

winning strategy. If M = {−k,−j}, then Player 2 has the winning strategy.

Proof. Suppose k and −i are the only 2 elements in M . Player 1 starts the game by reducing
w1 and moving to either i or j. If Player 1 moves to i, then Player 2 moves to k ∈ M and
wins by Lemma 5.2.

If Player 1 moves to j, then Player 2 reduces wj by 1 and moves to −k. Now Player 1
can move to either −j or i. Either way, Player 2 can move to k ∈ M and wins by Lemma
5.2.

Suppose −k and −j are the only 2 elements in M . Then Player 2 has the winning
strategy by similar reasoning.

Theorem 5.8. Let G be the Cayley graph of Q8. If M = {k,−j}, then Player 1 has the

winning strategy. If M = {−k,−i}, then Player 1 has the winning strategy.

Proof. Suppose k and −j are the only 2 elements in M . Player 1 starts by reducing w1 by 1
and moving to j. Player 2 can either move to −1 or −k. Either way Player 1 can move to
−j ∈ M and win by Lemma 5.2.

Suppose −k and −i are the only 2 elements inM . Then Player 1 has the winning strategy
by similar reasoning.

Theorem 5.9. Let G be the Cayley graph of Q8. If M = {k,−j,−i}, then Player 1 has the

winning strategy. Similarly if M = {−k,−j,−i}, then Player 1 has the winning strategy.

33



Proof. Suppose k,−i,−j ∈ M . Player 1 reduces w1 by 1 and moves to j. Then Player 2 can
either move to −k or −1. Either way, Player 1 can move to −j ∈ M and wins by Lemma
5.2.

Suppose −k,−i,−j ∈ M . Player 1 reduces w1 by 1 and moves to i. Then Player 2 can
either move to k or −1. Either way, Player 2 can move to −i ∈ M . Then Player 2 wins by
Lemma 5.2.

These Theorems account for all weight distributions for Nim on Q8. The following table
nicely summarizes the results whenever 1, i, j,−1 ∈ M .

Table 5.1: Nim on Q8 Results Part 1
x ∈ M x �∈ M Winner Reference Theorem

1 P2 5.1
i or j 1 P1 5.2
-1 1, i, j P2 5.3

Thus all the cases where 1, i, j, or −1 ∈ M are accounted for. Now we need to consider
when M is a combination of ±k,−i,−j. If |M | = 1, there are exactly four possible cases of
M :

{k}, {−k}, {−i}, {−j}

If |M | = 2, there are exactly six possible cases of M :

{k,−k}, {k,−i}, {k,−j}, {−k,−i}, {−k,−j}, {−i,−j}

If |M | = 3, there are four possible cases of M :

{k,−k,−i}, {k,−k,−j}, {k,−i,−j}, {−k,−i,−j}

Finally if |M | = 4 there is only one case of M :

{k,−k,−i,−j}

If |M | > 5, then there must be some x ∈ M such that x ∈ {1,−1, i, j}, and we have
covered those cases in the above chart. Thus there are 15 cases, which are summarized in
the following table.
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Table 5.2: Nim on Q8 Results Part 2
M Winner Reference Theorem

{k} P2 5.5
{-k} P2 5.5
{-i } P1 5.6
{-j} P1 5.6
{-i,-j} P1 5.6
{k, -i} P2 5.7
{-k,-j} P2 5.7
{k, -j} P1 5.8
{-k,-i} P1 5.8
{k,-k} P2 5.4
{k,-k,-i} P2 5.4
{k,-k,-j} P2 5.4
{k, -j, -i} P1 5.9
{-k,-j,-i} P1 5.9
{k,-k,-i,-j} P2 5.4
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Chapter 6

Abelian Groups of the form Z2 × Zn

6.1 Introduction

We now direct our attention back to abelian groups. Recall a group G is abelian if for any
a, b ∈ G, ab = ba. The structure of the abelian groups we are interested in follow from the
Fundamental Theorem of Finite Abelian Groups.

Theorem 6.1. Every finitely generated abelian group G is isomorphic to a direct product of

cyclic groups of the form

Z
p
α1
1

× Z
p
α2
2

× ...× Zp
αn
n

where the pi’s are primes, but not necessarily distinct.

We will be looking at Nim on the specific group, Z2 ×Zn. Let G be the Cayley graph of
the group Z2×Zn for 2 < n ∈ N and generating set S = {(1, 0), (0, 1)}. Note that Z2×Z2 is a
group generated by 2 involutions, which is covered in Chapter 4. Then G has |Z2×Zn| = 2n
vertices, with 2 edges initiating from each vertex giving G a total of 4n edges. Let i, j ∈ Z.
The vertices are labeled (i, j) for 0 ≤ i ≤ 1 and 0 ≤ j ≤ n. We define a vertex (i, j) to be
odd if i+ j is odd and even if i+ j is even.

We call the cycle formed by (0, j) the Zero cycle and the cycle formed by (1, j) the One

cycle. We say a player switches cycles if the player moves from (0, j) to (1, j) or vice versa.
Each cycle is graph isomorphic to Zn and contains no overlap since (0, k) never equals (1,m)
for k,m ∈ Z. These cycles account for 2n of the edges. The other 2n edges connect (0, j) to
(1, j). Since (0, j) + (1, 0) = (1, j) and (1, j) + (1, 0) = (0, j), these are double sided arrows.
Finally since (0, j)+ (0, 1) = (0, j+1) and (1, j)+ (0, 1) = (1, j+1), the Zero and One cycle
have the same orientation, unlike the Cayley graphs of dihedral groups we saw earlier.
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Example 13. The Cayley graph for Z2 × Z3 with S = {(1, 0), (0, 1)} is below.

(0, 2) (0, 1)

(0, 0)

(1, 2) (1, 1)

(1, 0)

6.2 Winning Strategy

Now that we have our gameboard, we start with playing techniques for Nim on Z2 × Zn.

Lemma 6.1. Let j ∈ {0, 1, ..., n − 1} be even. Then Player 1 can move to either (0, j + 1)
or (1, j) using only (0, 1) and neither player hits a vertex twice.

Proof. Let (0, j) be a minimum counterexample. Then Player 1 can move to either (0, j−1)
or (1, j−2) using only (0, 1) without repeating vertices. Suppose Player 1 moves to (0, j−1).
If Player 2 moves to (1, j − 1), then Player 1 moves to (1, j) and we have a contradiction.
So Player 2 moves to (0, j). Then Player 1 moves to (0, j + 1) and we have a contradiction
again. Then we have shown if Player 1 moves to (0, j − 1), then Player 1 can move to either
(0, j + 1) or (1, j), which contradicts the fact that (0, j) is a counterexample.

Suppose Player 1 moves to (1, j− 2). If Player 2 moves to (1, j− 1), then Player 1 moves
to (1, j) and we have a contradiction. So Player 2 must move to (0, j − 2). Then Player 1
moves to (0, j − 1). But since this is a counterexample, it is impossible to get to (0, j − 1)
using only (0, 1) generator with no repeats. Then either Player 1 used (1, 0) or there was a
repeat. Since Player 1 only uses (0, 1), it must have been a repeat. Note there was not a
repeat when Player 1 moved from (1, j − 3) to (1, j − 2). Then Player 2 moved to (0, j − 2)
and Player 1 moved to (0, j − 1). This means (1, j − 2) or (0, j − 2) must have been used in
paths to (1, j − 3). But the second component is non-decreasing until we get back to n, so
we have a contradiction. Then this is not a counterexample.

Lemma 6.2. Let G be the Cayley graph for the group Z2 × Zn. Player 1 can move to any

odd vertex (i, j) ∈ Z2 ×Zn with each vertex being used no more than once. Similarly, Player

2 can move to any even vertex (i, j) ∈ Z2 × Zn with each vertex being used no more than

once.

Proof. Let (0, j) be odd. By Lemma 6.1, Player 1 moves to either (0, j− 2) or (1, j− 1) only
using the (0, 1) generator with no repeat vertices.
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Case 1: Player 1 moves to (0, j − 2). If Player 2 moves to (0, j − 1), then Player 1 moves
to (0, j) with no repeats since the second component is nondecreasing and we are done. If
Player 2 moves to (1, j−2), then Player 1 moves to (1, j−1). If Player 2 moves to (0, j−1),
Player 1 moves to (0, j). If Player 2 moves to (1, j), then Player 1 moves to (0, j). There are
no repeats up until (0, j − 2) by Lemma 6.1. Notice in any of the above paths, each vertex
gets used at most one. Then we are done with this case.

Case 2: Player 1 moves to (1, j − 1). If Player 2 moves to (0, j − 1), then Player 1 moves
to (0, j) and we are done since no vertex was used twice. If Player 2 moves to (1, j), then
Player 1 moves to (0, j) and we are done. Note again there are no repeating vertices since
the second component is nondecreasing.

Let (1, j) be odd. Then Player 1 can move to (1, j) by above reasoning.

Similarly, if (i, j) is an even vertex, then Player 2 can move to (i, j) using each vertex at
most once.

Lemma 6.2 lets Player 1 move to any odd vertex and Player 2 move to any even vertex
with each vertex along the path being used no more than one time. The strategy behind
the lemma is that the Player who wishes to move to a specific vertex (i, j) can always move
along the generator (0, 1) to guarantee that no vertex gets hit twice on the way to any even
or odd vertex. The only time the Player will move using the generator (1, 0) is if the Player
is trying to ultimately get to (1, 0) or if the Opponent moves to (i − 1, j), which lets the
Player to move to (i− 1, j) + (1, 0) = (i, j).

An important point to note in Lemma 6.2 is that every vertex along the way gets hit at
most once. In terms of weight, this means if Player 1 is trying to get to some odd vertex
(i, j), where w(i,j) < w(k,l) for all odd vertices (k, l) where k < i, l < j, then once Player 1
moves to (i, j) we still have that w(i,j) ≤ w(k,l) − 1, assuming that Player 1 always reduces
the vertex weight by 1. This strategy will be illustrated in the following winning strategies
for Nim on Z2 × Zn. Here are the results.
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Nim on Z2 × Zn

n odd n even

P1 wins m0,m1 m odd

P1 wins

m even

P2 winsno L L exists

m0 even

P2 wins

m0 odd

P1 wins

m0 even m0 odd

w(0,L) < w(1,L)

P2 wins

w(0,L) > w(1,L)

P1 wins

w(0,L) < w(1,L)

P1 wins

w(0,L) > w(1,L)

P2 wins

We will prove each part of this diagram, as we did for Nim on Dn.

Nim on Z2 × Zn

n odd n even

P1 wins m0,m1 m odd

P1 wins

m even

P2 winsno L L exists

m0 even

P2 wins

m0 odd

P1 wins

m0 even m0 odd

w(0,L) < w(1,L)

P2 wins

w(0,L) > w(1,L)

P1 wins

w(0,L) < w(1,L)

P1 wins

w(0,L) > w(1,L)

P2 wins

Theorem 6.2. Let G be the Cayley graph for the group Z2×Zn where n is odd. Then Player

1 has the winning strategy.

Proof. Suppose n is odd. Player 1 starts by reducing w(0,0) to 0 and moving to (0, 1). Player
1 can continue to move along the generator (0, 1) no matter how Player 2 moves. Using the
strategy outlined in Lemma 6.2, Player 1 can move to (0, n) since n is odd without using
any vertex more than once. Since all initial weights must be greater than 0 and each vertex
could only have been reduced at most once, then no player loses before Player 1 moves to
(0, n). Notice (0, n) = (0, 0). Since w(0,0) = 0, Player 2 is unable to reduce w(0,0) and Player
1 wins.
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The case where n is even does not simplify as easily. The following definition defines the
minimum vertex on the Cayley graph of Z2 × Zn where n is even and n > 2.

Definition 6.1. Let w to be the minimum of the set

{w(0,0), w(0,1), ..., w(0,n−1), w(1,0), ..., w(1,n−1)}.

Then w is the minimum weight of G. Let

h0 = min{j : w(0,j) = w}

h1 = min{j : w(1,j) = w}
Define

m =

�
(0, h0) if h0 < h1

(1, h1) if h0 > h1.

If h0 = ∅, then m = (1, h1). Similarly if h1 = ∅, then m = (0, h0). We will refer to m

as the minimum vertex. If h0 = h1, we have 2 minimum vertices where m0 = (0, h) and

m1 = (1, h) for h = h0 = h1. We refer to m0 as the Zero Cycle minimum and m1 as the

One Cycle minimum.

Then the minimum vertex m = (i, j) is the vertex that has the minimum weight and
is the least distance from the identity in terms of j. Theorem 6.3 addresses the case where
there is only one minimum vertex m. Theorems 6.4, 6.5, and 6.6 address the case where
there are two minimum vertices, m0 and m1.

Nim on Z2 × Zn

n odd n even

P1 wins m0,m1 m odd

P1 wins

m even

P2 winsno L L exists

m0 even

P2 wins

m0 odd

P1 wins

m0 even m0 odd

w(0,L) < w(1,L)

P2 wins

w(0,L) > w(1,L)

P1 wins

w(0,L) < w(1,L)

P1 wins

w(0,L) > w(1,L)

P2 wins

Theorem 6.3. Let G be the Cayley graph for the group Z2 ×Zn where n is even and n > 2.
Let m ∈ G be the unique minimum vertex. If m is odd, Player 1 has the winning strategy.

If m is even, Player 2 has the winning strategy.
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Proof. Suppose m = (i, j) is odd. We will induct on wm. For the initial case, suppose
wm = 1. Player 1’s strategy is to reduce the weight of each vertex by 1 and move along
the (0, 1) generator. Since m is odd, Lemma 6.2 states Player 1 can move to m using each
vertex along the way no more than one time. Then Player 2 must reduce the wm to 0 and
move to either (i+ 1, j) or (i, j + 1). Consider the new game in which (i+ 1, j) or (i, j + 1)
is the starting vertex. In this new game, we define m = (i, j) = (i, j + n). Since n is even,
m remains odd in this new game. Then Player 1 moves to m by Lemma 6.2. If Player 2
reduced w(k,l) to 0 for any odd vertex (k, l) where k < i, l < j, then Player 2 could lose before
Player 1 reaches m. Notice that for every even vertex (x, y), w(x,y) ≥ w(x,y),0 − 1 ≥ 1, which
means Player 1 will not lose on any even vertex (x, y) because Lemma 6.2 guarantees every
vertex will be reduced no more than one time. Since wm = 0, Player 2 is unable to reduce
wm and Player 1 wins.

For the induction step, assume Player 1 has the winning strategy for 1 ≤ wm ≤ k.
Consider wm = k + 1. Again Player 1’s strategy is to reduce the weight of each even vertex
by 1 and move along the (0, 1) generator. Sincem is odd, Player 1 moves tom by Lemma 6.2.
We know no player loses before Player 1 moves to m since w(x,y) < wm for all x < i, y < j.
Then Player 2 reduces wm such that wm ≤ wm,0 − 1 = (k + 1)− 1 = k and moves to either
(i+1, j) or (i, j+1). Consider the new game in which either (i+1, j) or (i, j+1) becomes the
starting vertex. Then m = (i, j) = (i, j + n) where wm ≤ k in this new game unless Player
2 previously reduced a vertex x such that wx < wm. Either way we have that wx ≤ wm for
all x Player 1 moves to. Then Player 1 wins by the Induction Hypothesis.

Suppose m is even. Then Player 2 wins by similar argument.

Now we have the winning strategies for Nim on Z2×Zn when there is only one minimum
vertex. The case not covered is if h0 = h1. Basically in this situation, the two vertices with
the minimum weight share the same j ∈ Zn coordinate lined up, but are located in opposite
cycles. If (0, h0) is odd, then Player 1 wants to keep play along the (0, 1) generator. On
the other hand, if (1, h1) is odd, then Player 1 wants to keep play along the One cycle also
along the (0, 1) generator. Once Player 1 moves to the minimum odd vertex before Player 2
can move to the corresponding even minimum vertex, then Player 1 is wins by Lemma 6.2.
Once Player 1 moves to the minimum odd vertex, Lemma 6.2 states Player 1 can move back
to that vertex using each vertex along the way only once. Then the determining factor of
winning strategy on these games is the initial weights of the vertices before the minimum
vertices.
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Example 14. The situation when h0 = h1 on Z2 × Z6.

5
(0, 0)

8

(0, 1)

6
(0, 2)

3
(0, 3)

m05

(0, 4)

9
(0, 5)

6
(1, 0)

7
(1, 1)

4
(1, 2)

3
(1, 3)

m17
(1, 4)

3
(1, 5)

In the above game we see w = 3, m0 = (0, 3) and m1 = (1, 3). Notice either m0 is odd
and m1 is even or m1 is odd and m0 is even. Then the Zero Cycle minimum and the One
Cycle minimum cannot be both even or both odd.

The following theorem defines the winning strategy on these types of games. First we
need the following definition of L.

Definition 6.2. Let L be the largest positive integer such that

• L < h

• L ≡ h mod 2 for h = h0 = h1 as defined above

• w(0,L) �= w(1,L)

If L does not exist, then we can assume w(0,k) = w(1,k) for all k ≡ h mod 2.
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Example 15. In this game, L=1 since w(0,L) �= w(1,L). Player 2 has the winning strategy by

Theorem 6.4

5
(0, 0)

8

(0, 1)

6
(0, 2)

3
(0, 3)

m05

(0, 4)

9
(0, 5)

6
(1, 0)

7
(1, 1)

4
(1, 2)

3
(1, 3)

m17
(1, 4)

3
(1, 5)
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Nim on Z2 × Zn

n odd n even

P1 wins m0,m1 m odd

P1 wins

m even

P2 winsno L L exists

m0 even

P2 wins

m0 odd

P1 wins

m0 even m0 odd

w(0,L) < w(1,L)

P2 wins

w(0,L) > w(1,L)

P1 wins

w(0,L) < w(1,L)

P1 wins

w(0,L) > w(1,L)

P2 wins

Theorem 6.4. Let G be the Cayley graph for the group Z2 ×Zn where n is even and n > 2.
Let h0 = h1 = h. Assume L exists. Suppose m0 is odd. Player 1 has the winning strategy if

w(0,L) < w(1,L). Player 2 has the winning strategy if w(0,L) > w(1,L).

Proof. Suppose m0 = (0, j) is odd and w(0,L) < w(1,L). Player 1 starts by reducing w(0,0),0

by 1. Player 1’s strategy is to move along the (0, 1) generator and eventually move to (0, L)
whether it be along the (0, 1) or (1, 0) generator. Since m0 is odd, we know h is odd and
thus L ≡ h mod 2 is odd. Then Player 1 can move to (0, L) by Lemma 6.2. Either Player
1 reduced w(1,L) or w(0,L−1) before moving to (0, L). Notice if Player 1 reduced w(1,L),0,
then when Player 1 moves to (0, L) we have w(0,L),0 ≤ w(1,L). If Player 1 reduced w(0,L−1),0,
then we have w(0,L),0 < w(1,L),0. Player 2 reduces w(0,L) and is forced to move along the
Zero Cycle to (0, L + 1) by Lemma 3.2. Player 1 continues to move along the Zero Cycle.
Since w(0,k),0 = w(1,k),0 for all odd k < j, Player 1 can force Player 2 to continue along the
Zero Cycle by Lemma 3.2. Then Player 1 will move tom0, and Player 1 wins by Theorem 6.3.

Suppose w(0,L) > w(1,L). Since m0 is odd, then m1 = (1, j) is even. Player 1 starts
by reducing w(0,0),0 and moving to either (1, 0) or (0, 1). Regardless, Player 2’s strategy is
to move along the (0, 1) generator and eventually move to (1, L). We know (1, L) is even
since (0, L) is odd. Then Player 2 can move to (1, L) by Lemma 6.2. Either Player 2
reduced w(0,L) or w(1,L−1) before moving to (0, L). Notice if Player 2 reduced w(0,L),0, then
when Player 2 moves to (1, L) we have w(1,L),0 ≤ w(0,L). If Player 2 reduced w(1,L−1),0, then
we have w(1,L),0 < w(0,L),0. Player 1 reduces w(0,L) and is forced to move along the One
Cycle to (1, L + 1) by Lemma 3.2. Player 2 continues to move along the One Cycle. Since
w(1,k),0 = w(0,k),0 for all odd k < j, Player 2 can force Player 1 to continue along the One
Cycle by Lemma 3.2. Then Player 2 will move to m1, and Player 2 wins by Theorem 6.3.
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Nim on Z2 × Zn

n odd n even

P1 wins m0,m1 m odd

P1 wins

m even

P2 winsno L L exists

m0 even

P2 wins

m0 odd

P1 wins

m0 even m0 odd

w(0,L) < w(1,L)

P2 wins

w(0,L) > w(1,L)

P1 wins

w(0,L) < w(1,L)

P1 wins

w(0,L) > w(1,L)

P2 wins

Theorem 6.5. Let G be the Cayley graph for the group Z2 ×Zn where n is even and n > 2.
Let h0 = h1 = h. Assume L exists. Suppose m0 is even. Player 2 has the winning strategy

if w(0,L) < w(1,L). Player 1 has the winning strategy if w(0,L) > w(1,L).

Proof. The proof is similar to the argument in Theorem 6.4.

Nim on Z2 × Zn

n odd n even

P1 wins m0,m1 m odd

P1 wins

m even

P2 winsno L L exists

m0 even

P2 wins

m0 odd

P1 wins

m0 even m0 odd

w(0,L) < w(1,L)

P2 wins

w(0,L) > w(1,L)

P1 wins

w(0,L) < w(1,L)

P1 wins

w(0,L) > w(1,L)

P2 wins

Theorem 6.6. Let G be the Cayley graph for the group Z2 ×Zn where n is even and n > 2.
Let h0 = h1 = h. Assume there is no L. Player 1 has the winning strategy if m0 is odd, and

Player 2 has the winning strategy if m0 is even.
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Proof. Suppose m0 = (0, h) is odd. We will induct on wm0 . For the initial case, suppose
wm0 = 1. Player 1’s strategy is to reduce the weight of each vertex by 1 and move along the
(0, 1) generator. Since L does not exist, then w(0,l),0 = w(1,l),0 for all l ≡ h mod 2. To start
the game, Player 1 reduces w(0,0),0 by 1 and moves to (0, 1). Player 2 reduces the weight of
(0, 1) such that w(0,1) ≤ w(0,1),0 − 1 < w(1,1),0. Then Player 1 can force Player 2 to move to
(0, 2) by Lemma 3.2. Play continues until evenutally Player 1 moves to m0. Player 2 must
reduce wm0 to 0 and move to either (0, h + 1) or (1, h). Player 1 can move along the (0, 1)
generator to either (n, 1) or (0, 1) by Lemma 6.2.

Suppose Player 1 moves to (n, 1). Then Player 2 can either move to (0, 0) or (1, 1). If
Player 2 moves to (0, 0), then Player 1 moves to (0, 1). Then since w(0,l) ≤ w(1,l) for all l ≡ h

mod 2, Player 1 can force Player 2 along the Zero Cycle by Lemma 3.2. If Player 2 moves to
(1, 1), then Player 1 reduces w(1,1) by 1 and moves to (0, 1). Then w(0,1) ≤ w(1,1) and Player
2 is forced along the Zero Cycle by Lemma 3.2. Then Player 1 moves to m0. Since wm0 = 0,
Player 1 wins.

Suppose Player 1 moves to (0, 1). Then Player 1 wins by reasoning from above.
For the induction step, suppose Player 1 has the winning strategy for 1 ≤ wm0 ≤ k.

Consider wm0 = k + 1. Player 1’s strategy is to reduce the weight of each vertex by 1 and
move along the (0, 1) generator. Since L does not exist, then w(0,l),0 = w(1,l),0 for all odd
l < h. To start the game, Player 1 reduces w(0,0),0 by 1 and moves to (0, 1). Player 1 forces
Player 2 to move along the Zero Cycle by Lemma 3.2. Play continues until eventually Player
1 moves to m0. Player 2 must reduce wm0 such that wm0 ≤ wm0,0 − 1 = k + 1 − 1 = k and
move to either (0, h + 1) or (1, h). Player 1 can move along the (0, 1) generator to either
(n, 1) or (0, 1) by Lemma 6.2.

Suppose Player 1 moves to (n, 1). Then Player 2 can either move to (0, 0) or (1, 1). If
Player 2 moves to (0, 0), then Player 1 moves to (0, 1). If Player 2 moves to (1, 1), then
Player 1 reduces w(1,1) by 1 and moves to (0, 1). Notice w(0,1) ≤ w(1,1) since Player 1 forced
Player 2 to reduce w(0,1) such that w(0,1) ≤ w(1,1) from previous round. Then we have a new
game where wm0 ≤ k. Then Player 1 wins by the Induction Hypothesis.

Suppose Player 1 moves to (0, 1). Then Player 1 wins by above argument.

Suppose m0 is even. Then Player 2 wins by similar induction.

Then we have the Winning Strategy for all possible cases of Nim on Z2 × Zn. To sum-
marize, if n is odd, Player 1 has the winning strategy. If n is even, we look at the vertex
with the minimum weight, m. If m is odd, Player 1 has the winning strategy. If m is even,
Player 2 has the winning strategy.
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Chapter 7

Open Questions

7.1 Zn × Zn Partial Solution

We next seek a general solution to Nim on Zn × Zn. However, we are not yet able to com-
pletely determine winning strategy for all initial weight distributions. We are able, however,
to define the rules of the game and provide winning strategies for select cases.

Let G be the Cayley graph of the group Zn×Zn where n is even and n ∈ N. Then G has
n
2 vertices corresponding to the n

2 elements in Zn ×Zn, and 2n2 edges because each vertex
has 2 edges initiating from it. Zn × Zn consists of n cycles of Zn. The cycles have the same
orientation. Exactly n

2 of the edges connect (i, j) to (i, j + 1). The other n2 edges connect
(i, j) to (i+ 1, j).

Example 16. The Cayley graph for Z4 × Z4 is below.

(3, 0)

(0, 0) (1, 0)

(2, 0)

(3, 1)

(0, 1) (1, 1)

(2, 1)

(3, 2)

(0, 2) (1, 2)

(2, 2)

(3, 3)

(0, 3) (1, 3)

(2, 3)
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It will be convenient to use cosets defined in [9] to define game play techniques.

Definition 7.1. Let G be a group and H be a subgroup of G. Define a coset of H with g ∈ G

to be the set

g +H = {g + h : h ∈ H}.

For G = Zn × Zn, we define the set

H = �(1, 1)� = {(0, 0), (1, 1), (2, 2), ..., (n− 1, n− 1)}

to create our cosets. The game is divided into n cosets, (i, 0)+H for each i ∈ {0, 1, ..., n−1}.
Here are some examples of cosets:

(0, 0) +H = {(0, 0), (1, 1), (2, 2), ..., (n− 1, n− 1)}

(1, 0) +H = {(1, 0), (2, 1), (3, 2), ..., (0, n− 1)}

(2, 0) +H = {(2, 0), (3, 1), (4, 2, ), ..., (1, n− 1)}

...

(n− 1, 0) +H = {(n− 1.0), (0, 1), (1, 2), (2, 3), ...(n− 2, n− 1)}

We say (i, 0) +H is odd if i is odd, and (i, 0) +H is even if i is even. Define wN to be the
min{w(x,y) : (x, y) ∈ (N, 0) +H} for N ∈ N. We call wN the minimum weight of the coset
(N, 0) +H.

Notice when a player moves from any (x, y) ∈ (N, 0) +H along the (1, 0) generator, the
player moves from (x, y) = (N, 0)+(i, i) to (1, 0)+ [(N, 0)+(i, i)] = (N +1, 0)+(i, i). When
a player moves along the (0, 1) generator, the player moves from (x, y) to (0, 1) + (x, y) =
(−1, 0)+(x+1, y+1) = (−1, 0)+(1, 1)+(N, 0)+(i, i) = (N −1, 0)+(i+1, i+1). Basically
moving along the (1, 0) generator moves from the coset (N, 0) +H to (N + 1, 0) +H, while
moving along the (0, 1) generator moves from the coset (N, 0) + H to (N − 1) + H. The
understanding of this concept is important in the following winning strategy.

In the following lemma, we use nonreduced integers in the ordered pairs. For example,
(0, 0) becomes (n, n) after a player moves from it.

Lemma 7.1. Let G be the Cayley graph of Zn × Zn. Suppose the Player moves to (N, 0) +
(h, h) for h ≤ n. Let wN < wN+1 and wN < wN−1. Define (N, 0) + (i, i) to be the vertex

with the minimum weight. That is, i is the least such that w(N,0)+(i,i) = wN and i > k. Then

the Player has the winning strategy.

Proof. We will induct on wN . For the initial case, suppose wN = 1. For h ≤ g ≤ i− 1, the
Opponent reduces w(N,0)+(g,g) by some amount and moves either along the (1, 0) generator to
(N+1, 0)+(g, g) or along the (0, 1) generator to (N, 1)+(g, g) = (N−1, 0)+(g+1, g+1). If
the Opponent moves to (N+1, 0)+(g, g), the Player reduces w(N+1,0)+(g,g) by 1 and moves to
(N, 0)+(g+1, g+1). If the Opponent moves to (N−1, 0)+(g+1, g+1), the Player reduces
w(N−1,0)+(g+1,g+1) by 1 and moves to (N, 0)+(g+1, g+1). The Player’s strategy is to always
reduce the weight of the vertex by 1 and move to a vertex in the coset (N, 0) + H. Then
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gameplay is confined to vertices in the cosets (N − 1, 0)+H, (N, 0)+H, and (N +1, 0)+H.
Since all vertices in these cosets have an initial weight greater than 0, play continues until
the Player moves to (N, 0)+(i, i). The Opponent reduces w(N,0)+(i,i) to 0. For i ≤ h+n, play
continues as described above. We claim here that the Player moves to (N, 0) + (h, h). Note
that since the Player only reduced each vertex by 1, w(N+1,0)+(g+n,g+n) = w(N+1,0)+(g,g),0−1 ≥
1 and w(N−1,0)+(g+n,g+n) = w(N−1,0)+(g,g),0 − 1 ≥ 1 for g ≤ i. Then the Player cannot lose
before moving to (N, 0)+ (h+n, h+n). If the Opponent reduces w(N,0)+(g,g),0 to 0, then the
Opponent loses at (N, 0) + (g + n, g + n). Otherwise the Opponent must reduce w(N,0)+(i,i).
Since w(N,0)+(i,i) = 0, the Player wins.

For the induction step, assume the Player has the winning strategy for 1 ≤ w(N,0)+(i,i) ≤ k.
Consider w(N,0)+(i,i) = k + 1. For h ≤ g ≤ i − 1, the Opponent reduces w(N,0)+(g,g) by some
amount and moves to either (N + 1, 0) + (g, g) or (N − 1, 0) + (g + 1, g + 1). Either way,
the Player reduces the weight by 1 and moves to (N, 0) + (g + 1, g + 1). Play continues
until the Player moves to (N, 0) + (i, i). Then the Opponent reduces w(N,0)+(i,i),0 such that
w(N,0)+(i,i) ≤ w(N,0)+(i,i),0 − 1 = (k + 1) − 1 = k. For i ≤ h, play continues as described
above. Once the Player moves to (N, 0) + (h + n, h + n), we have a new game. Note
w(N,0)+(g,g) ≤ w(N+1,0)+(g,g) and w(N,0)+(g,g) ≤ w(N−1,0)+(g+1,g+1). Then the Player wins by the
Induction Hypothesis.

We see that if the minimum weight of a coset is strictly less than the minimum weight
of the immediately preceding and following coset, then the Player who moves to that coset
first wins. The Player wins by always moving to the coset with the minimum value whenever
the Opponent moves to one of the surrounding cosets. The Player restricts play to those 3
cosets. Since one coset has a smaller minimum weight, the Player wins by constantly moving
to that particular coset, which forces the Opponent to always reduce the minimum weight.

The following lemma addresses the case where the minimum weight of cosets are equal.
The Player can still win as long as the Player moves to the vertex with the minimum coset
weight before the Opponent moves to the vertex with that same weight in either the preceding
or following coset. The inequalities at the end of the theorem basically say if the distance
to the lowest weight on (N, 0) + H is less than both the distance to the lowest weights
on (N + 1, 0) + H and (N − 1, 0) + H, then the Player wins. The inequality concerning
(N, 0) +H and (N − 1, 0) +H is strictly less than because moving once along (0, 1) from a
vertex (N, 0) + (h, h) gives us (N − 1, 0) + (k, k) where k = h + 1 while moving once along
the (1, 0) generator gives us (N + 1, 0) + (k, k) where k = h. Thus a player will move to
(N − 1, 0) + (h, h) before the other player can move to (N, 0) + (h, h), and hence the need
for i− h < d− h.

Lemma 7.2. Suppose the Player moves to (N, 0)+(h, h). Let wN ≤ wN+1 and wN ≤ wN−1.

Define the vertices with the minimum weights as below.

(N, 0) + (i, i) i = min{j ∈ {0, 1, ..., n− 1} : j ≥ h, w(N,0)+(j,j) = wN}

(N + 1, 0) + (c, c) c = min{j ∈ {0, 1, ..., n− 1} : j ≥ h, w(N+1,0)+(j,j) = wN+1}
(N − 1, 0) + (d, d) d = min{j ∈ {0, 1, ..., n− 1} : j ≥ h, w(N−1,0)+(j,j) = wN−1}

If i− h ≤ c− h and i− h < d− h, then the Player wins.
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Proof. Suppose the Player moves to (N, 0)+(h, h). The Player’s strategy is to always reduce
the weight of the vertex by 1 and move to a vertex in the coset (N, 0)+H. For h ≤ g ≤ i−1,
the Opponent reduces w(N,0)+(g,g) by some amount and moves either along the (1, 0) generator
to (N+1, 0)+(g, g) or along the (0, 1) generator to (N, 1)+(g, g) = (N−1, 0)+(g+1, g+1).
If the Opponent moves to (N + 1, 0) + (g, g), the Player reduces w(N+1,0)+(g,g) by 1 and
moves to (N, 0) + (g + 1, g + 1). If the Opponent moves to (N − 1, 0) + (g + 1, g + 1),
the Player reduces w(N−1,0)+(g+1,g+1) by 1 and moves to (N, 0) + (g + 1, g + 1). Since all
vertices in (N − 1, 0)+ (g, g), (N, 0)+ (g, g), and (N +1, 0)+ (g, g) have weight greater than
wN−1, wN , and wN+1, respectively, play will continue in this way until the Player moves to
(N, 0) + (i− 1, i− 1).

Then the Opponent moves to either (N + 1, 0) + (i− 1, i− 1) or (N − 1, 0) + (i, i). The
Player will reduce either vertex by 1 and move to (N, 0)+ (i, i). Notice that w(N+1)+(c,c) and
w(N−1)+(d,d) have not been reduced yet since d > i and c > i−1. Then the Opponent reduces
w(N,0)+(i,i) such that wN < wN+1 and wN < wN−1. The Opponent then moves to either
(N +1)+(i, i) or (N−1, 0)+(i+1, i+1). Consider the new game in which (N +1, 0)+(i, i)
or (N − 1, 0) + (i + 1, i + 1) is the starting vertex. The Player starts this new game by
reducing the starting vertex by 1 and moving to (N, 0) + (i + 1, i + 1). Since wN < wN+1

and wN < wN−1, then the Player has the winning strategy by Lemma 7.1.

Using these game play techniques, we are able to define winning strategies on some of
the initial weight conditions for Nim on Zn × Zn.

Theorem 7.1. Let G be the Cayley graph for the group Zn × Zn. Suppose there exists a

coset (N, 0) + H that fulfills the conditions from Lemma 7.2. If N = 0, Player 2 has the

winning strategy.

Proof. Suppose N = 0. Player 1 reduces w(0,0) by some amount and moves to either (1, 0) ∈
(1, 0)+H or (0, 1) ∈ (n− 1, 0)+H. Either way, Player 2 reduces the vertex by 1 and moves
to (1, 1) ∈ (0, 0) + H. Then since w(0,0)+H ≤ w(1,0)+H , w(0,0)+H ≤ w(n−1,0)+H and by the
assumption that Player 2 moves to wN before Player 1 moves to wN+1 or wN−1, then Player
2 wins by Lemma 7.2.

Theorem 7.2. Let G be the Cayley graph for the group Zn × Zn. Suppose there exists a

coset (N, 0)+H that fulfills the conditions from Lemma 7.2. If N = 1 or N = n− 1, Player
1 has the winning strategy.

Proof. Suppose N = 1. Player 1 reduces w(0,0) by 1 and moves to (1, 0) ∈ (1, 0) +H. Then
Player 1 wins by Lemma 7.2.

Suppose N = n − 1. Player 1 reduces w(0,0) by 1 and moves to (0, 1) ∈ (n − 1, 0) + H.
Then Player 1 wins by Lemma 7.2.

The general strategy so far for Nim on Zn×Zn is to check the cosets (0, 0)+H, (1, 0)+H,
and (n−1, 0)+H. If the criteria meets that of Theorem 7.1, the winning strategy is already
determined. If this is not the case, a player should try to move to the minimum initial weight
in order to trap their opponent. As of now, I have winning strategies for Zn ×Zn for n ≤ 5,
but it is unclear how to generalize these results to games of more complexity.
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7.2 Symmetric Groups Partial Solution

We also seek to complete winning strategies for Nim on the permutation groups Sn. We
define a symmetric group as found in [9].

Definition 7.2. The symmetric group on n letters, Sn, is a group with n! elements, where

the binary operation is the composition of maps.

Notice we already have the winning strategies for Nim on S3 since S3
∼= D3. We will

present the complete solution to Nim on S4 to provide possible insight to the general game
on Sn. Let G be the Cayley graph of S4 with generating set S = {(123), (34)}. We will
refer to the respective generators as r, s where r = (1, 2, 3) and s = (3, 4). Then G has 24
vertices corresponding with the 24 elements of S4. Each vertex has 2 edges initiating from
it because |S| = 2. Notice the generator (3, 4) is an involution, which means 24 of the edges
will be used to create 12 double sided arrows. The other 24 edges connect x to x(1, 2, 3) for
all x ∈ S4.

We define the 8-Triumph Cycle similarly to the Triumph Cycle we used with Dihedral
Groups. So far we have the winning strategy for S4 with the generating set S = {(123), (34)}.
I refrain from presenting results until it becomes clear how to generalize.
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7.3 Future Research

We have introduced the game Nim on the Cayley graphs of groups by completely solving the
game on Cyclic Groups, Dihedral Groups, finite groups of two involutions, the Quaternions,
and abelian groups of the form Z2 × Zn. We also have partial solutions to Nim on Zn × Zn

and Sn. The immediate goal of research is to generalize solutions on these games. A further
analysis of winning strategies would reveal which player has a better probability of winning
the game with randomly chosen initial conditions. We could even investigate the number of
moves it takes for a player to win a given game of Nim with a set of initial conditions and
seek to minimize or maximize this number. There are certainly more groups to consider,
particularly Sn, An, Dicn, and Zn × Zm. The results of Nim on these other groups have the
potential to yield significant results.

We have considered one type of game on groups using a particular set of rules. There
are many possible rule alterations to be made.

• Recall the rule that the initial weight of each vertex must be a finite number greater
than 0. What happens if we do allow vertices to begin with weight 0? Then we would
have to consider the strategy of the players to race to vertices with initial weight 0.

• What happens if we allow weights to be infinite? This would involve some further rule
restrictions, such as players can only reduce the weight to 0 or leave the weight at
infinity. Clearly this game is considerably different than the game we introduced, but
it may yield interesting results.

• How would these games go if we placed the weight on the edges instead of the vertices?

• What happens if there are more than two players? What would Nim with three players
entail?

The variations to Nim on groups are endless, and each has the potential to give us insight
to further group properties.

52



Bibliography

[1] Blass, U. (1998) How far can Nim in Disguise be Stretched?

[2] Bouton, Charles L. Nim, A Game with a Complete Mathematical Theory.

[3] Erickson, E. (2009). Nim on the complete graph. Ars Combinatoria

[4] Franc, Cameron. Cayley Graphs. (http://www.math.mcgill.ca/goren/667.2010/
Cameron.pdf).

[5] Fukuyama, M. (2003). A Nim game played on graphs. Theoret. Comput. Sci. 304, no.
1-3, 387-399.

[6] Fukuyama, M. (2003). A Nim game played on graphs II. Theoret. Comput. Sci. 304,
no. 1-3, 401419.

[7] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.12; 2008.
(http://www.gap-system.org).

[8] Jorgensen, Anker Helms. (2009) Context and Driving Forces in the Development of
the Early Computer Game Nimbi.

[9] Judson, T. (1997). Abstract Algebra.

[10] William A. Stein et al. Sage Mathematics Software (Version x.y.z), The Sage Develop-
ment Team, YYYY, (http://www.sagemath.org).

53



Nim on Groups

Approved by:

Bret Benesh

Dr. Bret Benesh, Assistant Professor of Mathematics Department

Kris Nairn

Dr. Kris Nairn, Associate Professor of Mathematics Department

Anne Sinko

Dr. Anne Sinko, Assistant Professor of Mathematics Department

Robert Hesse

Dr. Robert Hesse, Chair of Mathematics Department

Anthony Cunningham

Dr. Anthony Cunningham, Director of Honors Thesis Program

54


	Nim on Groups
	Recommended Citation

	tmp.1376337195.pdf.QEH9F

