College of Saint Benedict and Saint John's University

Digital Commons@CSB/SJU

Honors Theses, 1963-2015 Honors Program

1997

Simulation of Living Processes Utilizing Concurrency and Object-
Oriented Programming

Aaron Ziegler
College of Saint Benedict/Saint John's University

Follow this and additional works at: https://digitalcommons.csbsju.edu/honors_theses

b Part of the Computer Sciences Commons

Recommended Citation

Ziegler, Aaron, "Simulation of Living Processes Utilizing Concurrency and Object-Oriented Programming”
(1997). Honors Theses, 1963-2015. 637.

https://digitalcommons.csbsju.edu/honors_theses/637

Available by permission of the author. Reproduction or retransmission of this material in any form is prohibited
without expressed written permission of the author.

https://digitalcommons.csbsju.edu/
https://digitalcommons.csbsju.edu/honors_theses
https://digitalcommons.csbsju.edu/honors
https://digitalcommons.csbsju.edu/honors_theses?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.csbsju.edu/honors_theses/637?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages

Simulation of Living Processes
Utilizing Concurrency and
Object-Oriented Programming

A THESIS
The Honors Program
College of St. Benedict/St. John's University

In Partial Fulfillment
of the Requirements for "Departmental Distinction"
and the Degree Bachelor of Arts
in the Department of Computer Science

Advisor
Dr. J. Andrew Holey

by
Aaron L. Ziegler
May 3, 1997

PROJECT TITLE: Simulation of Living Processes
Utilizing Concurrency and Object-Oriented
Programming.

Approved by:

J. Andrew Holey 7 0 MZW////J %)/ e,

58001ate Professor Computer cience

James Schnepf

Assistant Profegé@, Computer Science

John Miller M L %//g

uc tor, Computer Sclence

Noreen Herzfeld J{GUM Ff)’mﬁm
Chizir; 1Comp telf Science

Margaret Cook %W\J«/ géﬂ/

DlrectoU Honors Thesis Program

Anthony Cunningham WL M
rector,/fﬁ)nors Ppe(gram

2

gimulation of Living Processes Utilizing Concurrency and Object-

Oriented Programming
A Thesis by Aaron Ziegler

Section 1: Introduction.ttt ittt nrssananencecsss Page
Section 2: The Definition of Life.........ciiiiiianao.. Page
Section 3: The History of Artificial Life.............. .. Page

-—Von Neumann

--Horton Conway’s “Game of Life”
--Viruses

--Thomas Ray’s ‘Tierra’

Section 4: Object-Oriented Programming........ceoeveeeees Page
--Objects, methods, and messages
--Why A-Life forms should be treated as objects

~—Java
Section 5: Concurrency: A Vital Element.................. Page
Section 6: My Own Attempt at A-Life....... i Page

—--Description of my a-life
~--A few scenarios, and my observations
--Improvements that could be made

Section 7: My CoOnCluSionS. v v oesesssnnsssnnnes Page
Bibliography .. cvv et ittt it tsisnnsssrosssaacnsssrssreens Page
Appendix A: Von Neumann’s Self-Replicating Automaton..... Page
Appendix B: A Few ‘Game of Life’ Structures.............. Page
Appendix C: Java Code. ...ttt irrterrrssennsnrnssnssas Page

——-LifeGrid class
--gridSquare class

Appendix D: HTML Code. ...ttt ntnseniansennnnsan ty1y0r-FAgE
--Main page :
-—-Scenerio pages

13

21

23

34

35

36

37

38

78

Introduction

Legend and literature is filled with stories of people whe fry
to create life. In the stories of Prague’s famous Rabbi Ldw, with
God’s help, lifeless clay is brought to life to create a Golem
capable of serving and defending Prague’s oppressed Jewish

population. In Mary Shelley’s popular Frankenstein, a scientist,

obsessed with learning the secrets of life and death, animates a
horrifying monster from the remnants of dead corpses. With the
advent of science fiction, the world became flooded with stories
of artificial people, some good, existing alongside humankind,
others kad, running amok and turning on their creators. It weould
seem clear that the idea of creating artificial life is a long
debated one, with many questions unanswered and many more still
unasked. One thing is certain, however: There is a certain
attractiveness in the idea of creating a new form of life.

S0, I decided to give it a shot.

As a first step, T needed to find a medium to work with., If
literature was to be believed, life didn't necessarily have to be
found in fleshy, organic shells; rather, a life-form could be
crafted from any of a number of materials. As my Hebrew was
decidedly rusty, the Golem would seem not to be an option, and I
lacked the cadavers necessary for the construction of a Monster.

It would seem that machines would be my best route. My creatures

4
would be electronic programs, interacting with each other within
a world of silicon and circuiltry. But were electronic life forms
really alive? What criteria did something have to meet to be
considered ‘alive’ anyway? Was 1t possibkle that computers would
never be good for more than merely simulating life, that they
would never be able to synthesize it? Before I could answer these
questions, I needed to find a reasonable definition of life, one
that wouldn’t lead me off on dozens of philosophical tangents. (I
was, of course, unable to find one, but I did manage to politely
ignore the philosophical tangents associated with the definition
I found.)

My next step was to choose a programming language to write in.
What scort of language wouid be best able to produce the results I
was looking for? This was a question I had answered before, in my
own research paper, “Simulation in Object-Oriented Programming
Languages”. Object-Oriented programming languages, by their very
structure contained numerous parallels Lo reality, making them
ideal for simulating--or synthesizing--life. Naturally, there are
many Object-Oriented programming languages, but I had many
reasons for choosing Java, including its clear structure, easy
graphical interface, and, most of all, its convenient routines
for implementing conrcurrency.

What, vyou may ask, is concurrency, then? And how would it be

useful here? Concurrency allows one to run several ‘threads’ or

independent processes at the same time in a multiprocessing
environment. Non-concurrent processes must wailt for one prccess
to finish before taking their own turn. In reality, creatures all
live, breathe, and interact with one another constantly. If real
creatures don’t take turns, neither should artificial creatures,
after all.

Now, I had my tools. However, I was not so foolish as to
believe that I was the first programmer to try to create
artificial life. My research was to begin by exploring the
advances computer science had already made in the field of
artificial life. Along the way, many of my preconceived notions
were crushed, while others were upheld--~and I learned a few
things about A-Life (or artificial life) that surprised even ne.
In the end, I had become convinced that computers could do more

than merely simulate life. They could synthesize it as well.

The Definition of Life

Before proceeding further, it would be wise to define life,.
This is never an easy task. What qualities do such diverse
objects as puppies, paramecia, bread mold, mandrake, and
anabacteria all have in common, anyway? The best answer I could

find was in Claus Emmeche’s The Garden in the Machine, where he

himself refers to J. Doyne Farmer and Aletta d’A. Belin. Life has
the following properties:

1. Life is a pattern in space/time {rather than a specific
material object). In other words, life is a distinct form of
organization. We are, after all {and fortunately), more than
what we eat. The molecules in our bodies and the cells in
our tissues are renewed and exchanged ilnnumerable times
during our lifetimes.

2. Life loves self-repreoduction {even mules, which are
sterile, are created via a reproductive process).

3. Life is associated with information storage of a self-
representation; that is, a partial description of itself (or
of certain components necessary for production of the
remainder under the system’s continual self-organization).

4, Life thrives with the aid of metabolism; [it is distinct
from its external envirconment and exchanges materials with
its surroundings].

5. Life enters into functional interactions with the
envircnment. (That is, organisms can adapt, but they also
create and control their respective local environments.)
Organisms have the ability to selectively respond to
external stimuli (what the oid physiologists called
‘irritability’).

6. Parts of living things have a critical internal
dependency on each other (which means that organisms can
diej.

7. Life exhibits a dynamic stability in the face of
perturbations (it can maintain form and organization up to a
certain limit).

8. Life, not the individual but its lineage, has the ability
to evolve. (Emmeche, p.38)

This definition, while very exacting, leaves a lot of leeway
as to what can be alive. It doesn’t demand that the creature be
carbon-basgsed, for example. It doesn’t even regquire that the
creature be physical, in any real sense, as long asg it has an
environment to exist in and interact with. This was a very
convenient definition. Faced with the possibility that it was,
perhaps, a little too convenient, I questioned whether or not an
object’s construction should be taken into account. After all,
all the life on Earth seems to be carbon based. Could that be
necessary for life? However, the other definitions I came across

{in a variety of texts, including Games of Life, Artificial Life:

Explorer’s Kit, and a variety of different definitions from The

Garden in the Machine) seemed to agree that the materials didn’t

matter. Just because life on Earth is carbon-based doesn’i mean

that other types of life are impossible.

The History of Artificial Life

Definition in hand, I looked to the past, to previous attempts
to create life. One of the earlier names I came across was John
von Neumann, who, in the 1940's, devised an algorithm describing
an artificial life-form (see Appendix A for diagram). This
creature would consist of four parts: First, the ‘A’ general
constructor, which is a “factory” that must be given instructions
from which it will fabricate some object using components from
its environment. Next, the ‘B’ duplicator which takes an data
input and returns two data outputs, each identical to the input.
Then, ‘C’, the contrcller, which sends data to ‘B’, sends one of
the two copies thus received to ‘A’, and the other to whatever
‘A’ constructs using that data, while keeping the original data
itself. Lastly, and perhaps most importantly, is ‘D' which is a
piece of data which, if fed tc ‘A’, would enable ‘A’ to create a
copy of YA', '‘B’, and ‘C’--so ‘D’ is a self-description of the
total machine. So, if ‘D’ is fed to ‘C’', the machine will
replicate itself, and send a copy of ‘D’ to the replica, enabling
the copy to replicate itself, and so ¢n. This machine satisfies
all but a few of the recquirements for 1ife, and, with the
addition of a fifth, mutatable component ‘E’, can even evolve.

But von Neumann was not satisfied with this device. In itself,

it needed too many extra components (such as sensors, to detect

9
the proper materials ‘A’ needs to do its construction). With the
heip of Stanislaw L. Ulam, he devised a new, simpler type of
algorithm: Cellular Automata. Cellular Automata are composed of
cells, each of which determines its state by observing the states
of cells around them. This discovery was to prove pivotal in the
development of artificial life, as it set the stage for Horton
Conway to develop his famous “Game of Life”.

The “Game of Life” is deceptively simple. Start with an
{ideally) infinite grid of square cells, each having eight
neighbors {cne adjacent to each edge, and one adjacent to each
corner). Each cell can either be on {alive) or off {(dead). The
game proceeds in generations, with each cell determining its
state by the states of its neighbors in the previocus generation.
If a cell has two neighbors that are alive, its state remains the
same, either alive or dead. If it has three neighbors that are
alive, it comes alive if it was dead, or remains alive if it was
already alive. In all other cases, the cell either remains dead
or dies. |

Experimenting with this simple cellular automaton, Conway soon
discovered something interesting. While cells would often turn on
and off in wild, random patterns, there were a few stable
patterns that caught his attention (see Appendix B for diagrams).
The most basic, a square block of four adiacent living cells, was

a stable pattern. A row of three living cells was somewhat

10
stable; it switched from a horizontal row to a vertical in one
generation, and back the next. Also fascinating was a group of
four living cells which he referred to as a ‘glider’, which, over
a period of four generations, would move scutheast by one cell.

Conway was not satisfied, however. He unleashed his idea onto
the programming world, asking people to find new patterns. And
patterns were found: The ‘glider gun’, which spits out a glider
every thirtieth generatiocn, without being altered itself. The
‘Eater’ which can destroy or reverse the course of a glider
apprecaching it suitably. The ‘Puffer Train’, which moves steadily
east, leaving a messy trail of blocks, gliders, and random clouds
cf living cells in its wake. As more new patterns were
discovered, those in the computfer world became more and more
enthralled by Conway’s simple game.

Despite its name, Conway’s “Game of Life” was not artificial
life itself. Neither were any of the patterns it produced. (Some
of the patterns did emulate a few of the requirements; the
‘glider’ moved through its environment, while the ‘glider gun’
produced offspring-~or, perhaps, wastes--in the form ¢f gliders.)
But many in the scientific community thought that maybe his gane,
or something like it, might be a basis for real artificial life.
Just as an organic creature’s living cells are composed of
nonliving components, so might an artificial life form be

composed of the cells of a cellular automaton.

11

While Conway was poking around with his “Game of Life”,
another, far more sinister type of artificial life was innocently
being created by unsuspecting programmers at AT&T Bell
Laboratories and Xerox Corporation. The name of the game was
“Core Wars”, and programmers would craft special programs to
destroy the programs created by their opponents. In short, they
had created the first computer viruses. Innocuous enough at
first, “these simple viruses soon displayed their unpredictable
nature when one strain went out of control on a Xerox 530,
forcing management to call a halt tc the programmer’s games.”
(Walnum, p.71) In subsequent years, computer users everywhere
would come to know and leoathe those diabolical programs known as
computer viruses. Ironically, viruses might be the first computer
programs to meet every reguirement of the definition of life
given above. They maintain their form to a limit. they reproduce,
and can die. They metabolize (the same as any program, they
utilize system resources and reguire electricity to maintain
themselves), and can alter their environment. As that faterful
event in the “Core Wars” showed, they can also evolve.

Probably the best attempt to create ‘natural’ (not created for
a purpose, as viruses are) artificial life was made by Thomas
Ray. His “Tierra” project was deliberately designed to allow a
few simple electronic life forms the chance to evolve on their

own (the programs evolved by virtue of certain routines designed

12
to add an occasional random element when a creabture reproduced).
After several generations, a multitude of different types of
creatures developed (all originating with the simple, original
type of creature). There were ‘parasites’, which depended on
other creatures toc do theilr reproducing for them, and
‘hyperparasites’, which did the same to parasites.
‘Hyperparasites’ often gathered in social groups to reproduce,
which gave small ‘cheater’ programs a chance to slip in and trick
the ‘hyperparasites’ into reproducing them for them. As CPU time
was at a premium for these creatures, there were even some small
programs, called ‘liars’ that tricked the CPU scheduler into
thinking that they were larger than they were, earning themselves
extra CPU time. The original creature had “evolved to 3,280
separate genotypes, though some of them may not have reproduced.”
(Thro, p.97) This impressive bit of programming was far beyond
anything I had thought possible, and is probably the most

advanced type of artificial life in existence.

13

Object-Oriented Programming

Suitably awed by the achievements of those that had gone
before, I proceeded to take my turn. My tocl of choice was Java,
an Obiject-Oriented programming language. Why Object-Oriented? My
reasons were many.

Object-Oriented programming, by its very structure, 1is
organized in much the same way as reality. The ways that
creatures interact with their environment and one another can be
very similar to the ways that objects interact with one another
in a programming environment. There are many parallels. Objects
consist of bits of data and ‘methods’, or functicns, for
manipulating that data, and for interacting with other objects.
Live creatures, tco, have methods and data. The data could be the
state of each nerve in the body, for example, or the pattern of
the DNA. The methods would be how the creature responds to
various internal and external stimuli. As a creature becomes
hungry, it activates methods for seeking out and consuming food.
If a creature’s environment becomes too warm, it activates
methods to move it to another, cooler location (provided that it
is a mobile creature). If another creature attacks 1it, 1t
responds with its own methods for defense and counterattack. All
these stimuli could be considered ‘messages’, the means by which

objects communicate with themselves and each other. An object

14
uses methods to manipulate its own data, to send signals to
itself and other objects, and occasionally to manipulate the data
of other objects. In the case of living creatures, manipulating
data might include physically sinking one’s teeth into another
creature (altering the state of its skin), but the parallel
remains.

Another very convenient parallel is the class hierarchy of
objects in an Cbject-Oriented language. Any object is an
implementation of a class, which defines all the characteristics
shared by objects of that class. A class ‘List’, might allow one
to create several different List objects, but all would have
certain things in common, such as the ability to add new items to
the list, or to remove old ones. But there might also exist a
class called Orderedlist, which creates okjects that have all the
characteristics of a List, but add the additional feature that
any items on the list are kept in some sort of order. OrderedList
could ‘inherit’ all of the methods and data necessary to be a
list from the List class, as well as add a few new methods of its
own, such as a routine for ordering data. So, every OrderedList
would be a List, but not every List would be an OrderedList. The
List class would be higher on the class hierarchy than the
OrderedList class.

It is easy to see how a class hierarchy can be applied to

living creatures. One could imagine a general class Animal, which

15
has several of the characteristics necessary to differentiate
Animals from other living creatures, such as the ability to move,
and to gather ncurishment by eating other creatures. Mammal might
be a subclass of Animal. All Mammals share the characteristics
necessary to be an Animal, but have a few more requirements as
well, such as producing live young, and nourishing them with
milk. Rabbit might be a subclass of Mammal, including small
creatures with large ears that breed often and eat only members
of the Plant class. Rabbits would, of course, have all the traits
shared by Mammals and Animals as well. CuteFuzzyWuzzyBunnies
might be an even more specific subclass of Rabbit, including only
those Rabbits that are cute, fuzzy, and undoubtedly wuzzy as
well, COne could proceed to subdivide ad nauseum, but I have made
my point.

However, there are glaring exceptions to this hierarchy in
nature. In an inheritance hierarchy in Timothy Budd's An

Introduction to Ubject-Oriented Programming, Mammal has a

subclass Platypus. Now, a Platypus is a Mammal, but it fails one
of the determining factors (bearing live young). So, Platypus has
an "exception" to this factor. 8o, how deoes an Object-Oriented
programming language handle exceptions like this? In most C-0
languages, a characteristic of an inherited class can cften be
"overridden" by writing "a method in a subclass having the same

name as a method in the superclass, combined with a rule for how

16
the search for a method to match a specific message is
conducted." [Budd, p. 8] Many systems, when given a message, will
start with the lowest, most specific, class, and try tc match the
message to one of the methods there, if that fails the system
goes up the hierarchy a step and tries to match it there. When an
‘exception’ is written, a method will stop there before it has a
chance to step up the hierarchy. So, if a test was made to
determine if a Platypus is a Mammal, the Platypus would have an
exception stating that, despite the fact that Platypil lay eggs, a
Platypus is a Mammal.

It would seem, then, that the Object-Oriented approach is the
best way to create artificial life. As real life forms behave
like objects, artificial life forms should as well. An argument
might be raised at this point. 0~0 programming might be a
wonderful tool for simulating life, but surely the mechanics
behind the methods and the passing of messages must make some
difference. If one has a robot that is designed to eat and digest
cat food, and a cat that does the same, the robot cannot be said
to be alive, can 1it?

The response to this dilemma is a hazy one. It depends on the
situation. For example, 1f the robot is merely a construct
designed to eat cat food without purpose, it could hardly be said
to be alive. One might as well say that crystals are alive

because they grow and retain their pattern. But consider a cat

17
robot that was designed to respond just as a cat would under a
given stimulus (allowing for the fact that two real cats might
not necessarily respond the same way to that stimulus), including
the ability to become hungry, the ability to reproduce, the
ability to respond to painful sensations or pleasurable ones, and
anything else that a cat might be able to do. Perhaps this
artificial kitty could be indistinguishable from cther real cats
to everyone but {possibly) its creator. Is this cat alive? Many
would agree that it would be, in spite of the fact that it
behaves the way 1t does because it was programmed to. In fact, it
might be said to seem even more lifelike than other real
creatures that are unconditionally categorized as life, such as
your average hunk of coral. So, whether a creature acts a certain
way because of billions of lines of code or because of an
arrangement of billions of specialized cells has little bearing
on whether a creature is alive or not.

Convinced of the superiority of the Object~-Oriented paradigm
for the creation of artificial life, I was then presented with
another choice. There are many Object-Oriented programming
languages available. So why Java?

Java, unlike some Object-Oriented programming languages has a
clear Object-Oriented structure. Just about everything in Java is
an object, with the exception of some of the primitive data

types, like integers and characters {though special classes are

18
provided that allow you to treat even these as objects when
necessary) . Every function must be a method of some cbject, which
in turn must be an instance of some class. When an object is
passed by a function call, or message, one doesn’t need to worry
about allocating pointers {variables containing the address of an
cbject in memory) or dereferencing variables. Whenever an object
is passed, the cbject received by the function called is always
the same object that had been passed, rather than a copy. Any
changes made to that object within the function affect the object
that was passed. In one sense, it could be said that a pointer to
the object has been passed, though that terminology is not quite
accurate (technically, the address contained within a pointer can
be read as a value in such languages as C++; this is not the case
in Java). As a veteran C++ programmer, I found this to be
refreshing, rather than confining. On those rare occasions when I
need to create a copy of an object, rather than alter the
original, I can easily create routines to do so—--and I have never
come across a situation where I needed to know the address
contained within a pointer.

Another advantage to Java that some might consider oppressive
was the sensible class hierarchy. Any given class ‘extends’
{inherits from) exactly one superclass {the class that it is a
subclass of). This is a sharp contrast to the multiple

inheritance found in such languages as C++, where a given class

19
can have several superclasses. Multiple inheritance can be a
powerful tool 1f used preoperly, but is difficult to implement and
can cause many problems if implemented improperly. To make up for
the lack of power that multiple inheritance could provide, Java
provides ‘implementation’. When a class implements another class,
it becomes able to use any of the available functions of that
class, but is not considered to be of that type. To take a
mythical example, a Griffin class might extend the Lion class and
implement the Eagle class. In that case, a Griffin would be a
type of lion, but able to call upon Eagle functions like Squawk,
or Fly, or MoltFeathers. However, it would not be a type of
Eagle. A class can extend only one other class, but it can
implement many (a class Manticore would, again, extend Lion,
while also implementing Scorpion, and HumanBeing) . The advantage
to this is that a class has exactly one lineage, and cverridden
functions can be easily called from superclasses, a task which is
somewhat trickier under multiple inheritance.

One of the most attractive features Java had for me in this
case, however, were easy, built-in routines for generating
graphics and for implementing concurrency. As Java was a language
originally designed to create spiffy graphics for Internet web
sites easily, it came equipped with a number of routines for
drawing images and displaying them. This saved me the effort of

calling upon some independent graphics tool, like OpenGL to draw

20
my pictures. (On a pertinent note, it must be realized that
graphical images are not at all necessary for artificial life.
The important thing is whether or not they behave like life
within their own environment. The graphics were one of the last
things I implemented when creating my own programs, and only
after I was satisfied that my artificial creations were behaving
the way I had expected them to.) Even better, by utilizing Java's
Applet class, I created a final product that would be viewable on

any computer with a web browser with Java capability.

21

Concurrency: A Vital Element

What about concurrency? What is it, and why is it important to
artificial life? Concurrency is the ability to run several
‘threads’ or independent processes at the same time. Often, it is
advantageous for a program to start a process running while
continuing to run itself. For instance, a web page might display
a bit of animation while still zllowing the user to access the
other functions of a web page. The animated picture would be an
independent thread, running on its own while the web browser
continued to run the web page itself (in this way, any Applet
could be said to be a thread of a web page).

One distinct trait of living creatures is that they are all
living at the same time. An animal doesn’t sit and wait while all
the other animals take their turns before moving itself. I
decided that it would be to my advantage to create my own life
under the same conditions, with each of my artificial creatures
acting on its own, rather than in sedquence.

0ddly, while it is useful for artificial life forms to operate
concurrently with other artificial life forms, it is not
necessary. Thomas Ray’s aforementioned Tierra project was created
cn a uniprocessor system, without any concurrency at all. Each of
his independent program-creatures operated on a turn-based

sequence, with each creature utilizing the CPU for a time before

allowing the next creature in line to have a turn. Despife the
fact that there is never more than one creature operating at a

time, Ray’s project still seems to be artificial life.

22

23

My Own Attempt at A-Life

It was time to begin my own programming project. Inspired by
Conway’s ‘Game of Life’, I decided that my project would be a
modification of his. Unlike his, however, the rules that my
little cell creatures would follow would be far more complex.
Every one of my cells was a thread, running concurrently with all
the other cells, and constantly rerunning its own behavicor loop.
Each cell could either be empty, or it could contain one of four
different types of creatures, Vegglie, Herbie, Omnie, or Carnie.
fn any case, the cell would have a value assigned to a variable
called scentTraces, which would indicate what type of creature
had last occupied that square, and how long ago that had
occurred. Certain types of creatures would be able to use the
value of scentTraces to track down other types of creatures. Each
cell also contains a random number of soilNutrients, which
Veggies need to thrive. If a cell is occupied, several other
variables are assigned values, including Vitality, which
indicates how much life a creature has, and creatureType, which
determines what type of creature occupies the cell.

Now it was time to program the really gritty part of my
artificial life: the behaviors of the cells under certain
conditions. If a cell was empty {or Emptie, as I called them), a

cell did very little each ‘turn’, or cycle through its loop. All

24
it would do was subtract an amcunt from its scentTraces, so that
the scent would fade over time. The fun part was deciding how a
cell would act if it contained a creature. First off, it was
important to incorporate death into my project. Each creature
starts with a certain amount of Vitality (100 for Veggies, 200
for Herbies, 300 for Omnies, and 400 for Carnies) Each turn,
every creature ‘diesg’ by 10 points. If the Vitality of any
creature drops below 50, the creature dies and is converted into
a certain number of scilNutrients, which are then added to the
cell it occupied.

The only way to gain Vitality is by eating, something which
each creature does in its own way. A Veggie, being immcbile,
feeds by subtracting 30 soilNutrients from the cell it occupies
and adding 30 to its own Vitality. A Herbie is capable of
consuming only Veggies, so it will wander around until it becomes
adjacent to a Veggie, at which point it will subtract 20 Vitality
from it every turn, increasing its own Vitality by the same
amount until the Veggie dies. A Carnie can only eat Herbies or
Omnies. By observing the scentTraces of the squares around it,
the Carnie would move in the direction of the Herbie or Omnie
that had most recently been nearby. Once it finds its prey, it
subtracts an amount from its prey’s Vitality (the amount is equal
to one-tenth of the Carnie’s Vitality, so the healthier the

Carnie, the more damage it can do), and adds that amount to its

25
own Vitality. Omnies eat in much the same fashion, but are less
choosy. While they prefer to eat Herbies or Carnies, they will
eat Veggies if neither of the former are nearby. (Like the
Carnie, the size of the bite that an Omnie can take varies with
the size of the Omnie, but, as Omnies are less dependent on meat,
they do only one-fifteenth of their Vitality in damage. Taken in
conjunction with their lower average Vitality, this means that an
Omnie rarely wins a one-on-one fight with a Carnie.)

It is worth mentioning that a Herbie is the only creature with
a sense of self-preservation. If it finds itself next to a Carnie
or an Omnie, it will flee in a direction away from its predator.
If it can’'t flee, it will stand and fight feebly, taking 5
Vitality from its attacker each turn, This is pitifully
inadeguate, unless the Carnie or Omnie happens to be very weak,
and the predator will usually win.

For any creature, if it eats enough so that it doubles its
initial Vitality, the creature will spawn a new creature into an
adjacent cell. This new creature will be of the same creatureType
as the parent creature, and will have half of its parent’s
Vitality. The parent, accordingly, will lose half of its
Vitality. Any creature will spawn to any unoccupied adjacent
cell, except for the Veggie, which is a little more selective.
The Veggie will look for the adjacent cell with the largest

nunber of soilNutrients, and will place its offspring there,

26
ensuring that the child has a better chance of breeding on its
own.

I mentioned that several creatures have the ability to move
from place to place {whether it be to hunt for food or to flee
predators). The mechanics behind this troubled me, at first. The
best way to move a creature was to have a cell copy its creature
into an adjacent cell, and then to erase the creature from
itself. But was this really lifelike? In reality, creatures don't
move from place to place by copying themselves into each new
iocation, and erasing the old. Or do they? It might make for an
interesting philosophical discussion to theorize on the real
mechanics of movement (when someone moves, is the person they are
in the new location the same person as was in the o0ld?), but such
a thecretical discussion 1s beyond the scope of this paper. I
decided that, as the new creature was identical in ail
discernable ways to the old, it would not be unreascnable to
consider it to be the same creature. After all, they do it all
the time on Star Trek.

Aside from the philosophical difficulties, I ran into some
physical difficulties that I had expected, but not looked forward
to. Concurrency can be dangerous to handle. I discovered that
some of my creatures were doing odd things, like two creatures
would each try tc move to the same cell, destroying one, or a

creature would spawn an offspring on top ¢f ancther creature. My

27
problem arose from the fact that a creature checked once to see
if a cell is occupied before filling it {(with itself cr a spawn).
As the cells were running concurrently, two creatures could
decide upon the same cell as a target area before either had the
chance to move in. So, both would be running their moving or
spawning routines, and whoever occupied the cell second would
overwrite the one that moved in first. I solved this dilemma by
noting that certain routines (notably, those dealing with moving
or spawning) needed to obtain a mutually exclusive hold on the
target cell--a lock. So, I added a new boolean variable to my
class of cells, one called Locked. Whenever Locked was true, that
thread would cease all behavioral activity until it became
unlocked, and no creature could try to occupy it. A cell could
activate the lock on another cell when it wanted to move in or
spawn to it, achieving the sole permission to do so. After it was
finished, the cell would release its lock, allowing the now-
occupied cell to begin running again.

My concurrency problems were the last problems I needed to
solve before finishing my artificial life program. Now, with my
critters eagerly waiting to be unleashed, I needed only to test
them to ensure that they behaved in the ways that I expected,
and, hopefully, in some valid ways that I didn’t quite expect.

To test them, I devised a number of test scenarios. The first

I entitled ‘The Kudzu Factor’, which unleashed a few Veggies on

28
an otherwise empty 10X10 grid of cells. As I expected, with no
Herbies tc eat them, the Veggies quickly spawned and filled every
available square. The apparently random choices they made in
choosing a square led me to believe that they were, indeed,
choosing the most soilNutritious neighboring sguares to spawn to,
as I had intended.

The next scenaric, which I called ‘Eden’, placed three Herbies
in a 5X5 grid with five Veggies. The Herbies would wander around
aimlessly (Veggies have no scent, and Herbies can’t smell anyway,
so Herbies are forced to move in random directions and hope that
they stumble across food) until they came adjacent to some
Veggie. The Veggies, in the meantime would spawn rapidly, just as
in ‘The Kudzu Factor’. Often, they would cover every square
except for those occupied by Herbies. After a while, though, the
Herbies would eat their way to an area that they could spawn to,
at which point the Herbie population would begin to grow. When
there were enough Herbies, they would invariably push back the
Veggies, eventually consuming every last one. When the last
Veggie was gone, the Herbies would stagger blindly around until
they all starved to death. Perhaps ‘Eden’ was a poor choice for a
title. Obviously, Herbies need some sort of predator to hold
their population in check.

And so, I created ‘Bambi Vs Godzilla’ to introduce the Carnie.

This scenario consisted of one Carnie and one Herbie, on a

29
variable sized grid. The Herbie was a special one that began with
399 Vitality rather than the usual 200, to prevent it from
starving to death before the Carnie had a chance to catch it. In
this scenario, the Herbie would flee the Carnie, which would
pursue by following its scentTraces. I intended this scenario
merely to be a demonstration of the Carnie’s ability to track by
scent. The outcome of a Carnie battling a Herbie, no matter how
big the Herbie was initially, was never in question.

My fourth scenario, ‘The Great Hunt’ was designed to discover
how superior Carnies were to Omnies as far as meat-eating was
concerned. Six Omnies were pitted against two Carnies on a 5X3
grid. It’s a pretty even fight. About half the time, most of the
Omnies will concentrate on one Carnie before attacking the other,
and so will overwhelm the Carnies by sheer numbers. At other
times, they will attack in waves of two or three Omnies, which
the Carnies can usually defeat. Occasionally, a Carnie will even
gorge itself on enough Omnies to spawn a third Carnie, at which
point the battle is hopeless for the remaining Omnies. This was
prebably the most entertaining scenario I set up.

My fifth scenario was entitled ‘Pit Fighter’, and I created it
more or less in a fit of whimsy. In a 5X5 grid, I placed a
Veggie, a Herbie, an Omnie, and a Carnie, to see which would be
the victor. Surprisingly, the winner usually turned out to be the

Veggie. If the Veggie could survive until the Carnie had finished

off the Omnie and the Herbie, it was free to spawn until every
cell but the Carnie’s was occupied. It could take the Carnie’s
cell after it starved to death. If the Herbie and the Omnie
finished off the Veggie, the Carnie usually won. But on rare
occasions, if the Carnie was really unlucky in finding the scents
of the Omnie and the Herbie, the Omnie could eat the Herbie and
then feed on Veggies (which have usually reproduced by now) until
there were enough Omnies to overwhelm the Carnie. The Herbie
never won, though I hypcothesized that it might if both the Omnie
and the Carnie died before picking up its scent. All in all, an
interesting experiment.

Lastly, I perfected the general random creature generator that
I had done most of my initial experiments with, and entitled it
‘Random Genesis’. This can take any size grid, and fills it with
creatures at random. Aware of the dangers of having too many
Carnies, or too few Veggies, I made sure that a cell had a
greater chance of being one type of creature than another (a cell
has a 20% chance of being a Veggie, 15% of being a Herble, 10% of
being an Omnie, and 5% of being a Carnie). It was with this
scenaric that I really began to notice imbalances in my
creatures. Normally, Carnies, no matter how few of them there
were, would rapidly finish off the Omnies and Herbies, dooming
themselves to starve among the Veggies. If the Carnies were

unable to finish off the Omnies, the Omnies would usually do the

31
finishing, and then proceed to eat all of the Veggies until they
were left on a foodless grid. Sometimes, 1f the Veggies spawned
rapidly enough and the Carnies ate all the Omnies, the Herbies
would sit and eat peacefully as the few remaining trapped Carnies
starved to death. Then, the Herbies would gradually overwhelm the
Veggies until they, too, were left without food.

So, how do my creatures stack up against the eight rules of
life? Each creature does retain a specific, if simplistic,
pattern. It has the same traits and general qualities whether it
is newborn or several cycles old. These creatures dc¢ reproduce--
in fact, it’'s the primary goal of their lives. Each creature has
a single data iltem explaining what it is {creatureType), and this
data is used to define itself and its functions. My life does
metabolize. They eat whatever they eat, and eventually produce
offspring as a result. My creatures interact with their
environment. Most of them move around, and even Veggies search
around for fertile squares when reproducing. My organisms can
die. They are dependent on the value of their Vitality for
continued survival. Unless they reach a low enough Vitality
value, my creatures retain their identity as represented by their
creatureType. The last rule of life is the only one where I fall
short. My creatures have no method by which they can evolve. No
matter how many times it spawns, a Herble is a Herbie is a

Herbie. So, while my program dcoes come very close to qualifying

32
ags artificial life, it still falls short.

There are many ways that I could improve my program. First,
and more importantly, I could give it the status of real
artificial life by giving it some kind of factor by which its
creatures could evolve~~perhaps by introducing a random element
that allows some Herbies to develop better defenses. These
Herbies could fight off Carnies and Cmnies more efficiently, and
so survive to produce more powerful offspring, as the less
defensive Herbies die. Or, perhaps I could give some Carnies the
ability to eat Veggies if no other food can be found. It would be
difficult, but, as Thomas Ray showed, hardly impossible.

Another improvement that might be beneficial would be to
create subclasses of ny single gridSquare class for each type of
creature. As matters stand, the defining characteristics of every
type of creature is contained in the same class. To create a
Veggie class, a Herbie Class, an Omnie class, and a Carnie class
would make my program much more readable, and make its structure
more similar to reality. T would also be able to add new creature
types much more easily, like, perhaps, a Scavie, which is a
mobile creature with the abilify to consume scilNutrients.

Another improvement I could make is to try to find a way to
make my random scenario a little more balanced. As Carnies so
offen seem toc eat everyone else too guickly, perhaps I could make

them a little less voracious, or allow other creatures to spawn

33
more quickly. Veggies seem to spread too quickly, so, perhaps I
need to reduce the number of soiiNutrients that are added to a
cell when a creature dies. There are a number of ways I could
improve things merely by tinkering with a few variables.

This is the real value of my program. Artificial 1life, or
merely simulated life, it can still be used in a variety of ways.
With the proper adjustments, it could be used to simulate the
balance of predators, herbivores, and plants in nature., With a
few other adjustments it could make an interesting game, if not

quite on par with the popularity of Conway’s ‘Game of Life’.

34

My Conclusions

In researching this project, I discovered many things about
artificial life. Probably most importantly, I learned that it
wasn’t very difficult to create. “In fact, it’s quite easy to
create life,” (Emmeche, p.3) as Thomas Ray once noted in a
lecture. Quite easy, but only after one has decided just what
life is. The definiticon I used, created by Farmer and Belin, is
very clinical and precise. But is it really enough? I believe so,
but I also believe that belief is not enough to make a thing so.

However, there seems to be little doubt that artificial life
can be at least as lively as much of the 1life that we take for
granted every day. It may be a long time in the future before we
see artificial life of a complexity even nearing that of, for
instance, a cockroach. But in the meantime, Ravy’s creations are

still evelving. Who knows what they may someday become?

35
Bibliography!:

Budd, Timothy. An Introduction to Object-Oriented Programming.
Reading, Mass.: Addiscon-Westley, 1921.

Cornell, Gary, Cay S. Horstmann. Core Java. Mountain View, CA:
sunsoft Press, 1996.

Emmeche, Claus. {Trans. by Steven Sampson). The Garden in the
Machine. Princeton, NJ: Princeton University Press, 1994.

Flanagan, David. Java in a Nutshell. Bonn: O’Reilly & Associates,
Inc., 1996.

Mcintosh, Harry. Talk Java to Me. Corte Madera, CA: Waite Group
Press, 1996.

Sigmund, Karl. Games of Life. Oxford: Oxford University Press,
1993.

Simons, Geoff. Are Computers Alive. Thetford, Great Britian:
Thetford Press Ltd., 1983.

Thro, Ellen. Artificial Life Explorer’'s Kit. Carmel, IN: Sams
Publishing, 1993,

Walnum, Clayton. Adventures in Artificial Life. Carmel, IN: Que
Corporation, 1993.

Special thanks to Lynn Ziegler, whose ‘testGrid’ and ‘gridThing’
programs were pivotal in helping me to learn to program
Cellular Automata in Java.

Appendix A:

Von Neumann’s Self-Replicating Automaton

36

37

Appendix B: A Few ‘Game of Life’ Structures

? . 4 ’h :
Y
i o

Block Stoplight Ship Glider

o0

tm
| L.—t
00
®
®
o
oo

.\
%

o e

S,
. 4 A.‘.A
i
e dhy bl

e

00
® 0o |

Glider Gun (with Glider)

|
-
oo_oceee oo

T

Fater (or Pentadecathlon)

Appendix C: Java Cecde
LifeGrid,. java

import java.awt.*;
import java.util.*;
import java.applet.Applet;

public class LifeGrid extends Applet
{
static Color darkGreen = new Color (0, 122, 0);
static Color darkOrange = new Color {122, ¢1, 0);
public int size = 10;
public gridSquare myLifeGridl[][]=
new gridSquare[sizelisize];
public int running = 0;
public int scenerio = 6;
Graphics offScreenGraphics;
Image offScreenlmage;

public void init{)
{
offScreenimage = createlmage (size () .width,
size() .height);
offScreenGraphics = offScreenlmage.getGraphics();
scenerio = Integer.parselnt (getParameter ("scenerio)):;
size = Integer.parselnt (getParameter ("gridsize™));
for(int 1 = 0; 1 < size; i++)
{
for(int § = 0; j < size; J++}
{
myLifeGrid[i]l []j]=
new gridSquare(i, Jj, size, size,
size(}.width,
size () .height,
scenerio,
myLifeGrid, this);

}

public void update (Graphics g)
{

paint (offScreenGraphics);
g.drawlmage (offScreenImage, 0, G, null);

}

public void paint (Graphlcs qg)

g.setColor (darkOrange) ;
g.fillRect (0, 0, size().width, size{).height);
g.setColor{Color black):;
g.drawRect (0, 0, size{).width, size () .height);
g.drawRect (1, 1, size().width - 1, size() .height - 1};
g.drawRect {2, 2, size().width - 2, size().height - 2);
for (int i = 0; 1 < size; i++)
{
for (int 37 = 0; 3 < size; J++)
{
int x = 0;
int v = 0;

// Choose the color

(dependant on the creature type).
if (myLifeGrid[i] []].creatureTyp
myLifeGrid[i]l[j].emptie}

g.setColor(darkOrange}
else if

else if

else

if ({(sizel()

{
}

else

{

(myLifeGrid[i]

(myLifeGrid[i]

== myLifeGrid]|

(myLifeGrid['][j]

[]

[]

== myLifeGridl[i
g.setColeor{Color.blue);

] .creatureType
== myLifeGrid{i] [j].veggie}
g.setColor (darkGreen) ;

] .creatureType
] .herbie)

g.setCcolor(Color.yellow};
else 1if

1103

11103

g.setColor {Color.red);
// Draw a circle in the appropriate place,
// program if the drawing area is too small.

.width / size)

({size() .height / size)

System.exit (0);

X

if
{

L

(((2 * 1) + 1)
/ size) [/ 2)
(((2 * 3J) + 1)
/ size) / 2)

*

(s

- 10;

*

(s

- 10y

illoval (%, vy, 20,
(myLifeGrid (il [j]

20

creatureType

].omnie)

or abort the

< 20)
< 20)

ize()
i1ze ()

) ;

I
)

.width

.height

.creaturefType != 0)

g.setColor (Color.black):;

g.drawOval (%,

Y

20,

20)

39

40

}

public boolean mouseDown (Event e, int x, int vy)

{

if (running == 0)
{
for (int 1 = 0; i < size; i++)
{
for (int j = 0; j < size; J++)

{
nyLifeGrid[i] [J].start(};
}
}
running = 1;
1
else if {running == 1}
{
for (int i = 0; 1 < size; i++)
{
for (int § = 0; j < size; Jj++)
{
myLifeGrid{il[]j].stop(}:
}
}
destroy();
running = 2;
}
else
{
running = 0;
init (),
}
return true;
}
//{{DECLARE CONTROLS
AN

gridSguare.java

import java.awt.*;
import java.util.*;
import java.lang.Math;

class gridSquare extends Thread

{

// Creature types:

final
final
final
final
final

// The grid:

int emptie = 0;
int veggie = 1;
int herbie = 2;
int omnie = 3}
int carnie = 4;

private
private
private
private
private
private

LifeGrid BigDaddyMain;
gridSquare grid[][];
int xSize;

int ySize;

int appXSize;

int appY¥Size;

public int scenerio;
// Stats for this gridSgquare:;

public
public
public
public
ruklic
public
public
public
pruklic
public
puklic
public
public
public

// A lock variable,

int gridX:

int gridy;

int creatureType;

int vitality;

int soilNutrients;

int scentTraces;

int biteSize = 0;

int trail = 0;

int predLocY = 0;

int predLocX = 0;

int preyLocX = 0;

int preylLocY = 0;

boolean nextToPred = false;
boolean nextToPrey = false;

for mutual exclusion.

Whenever a

// thread wishes to alter this thread in such a way that

// a third thread might interfere harmfully,

// become true, disallowing any other thread access to

// this cne.
public boclean Locked = false;

public gridSquare{int xLoc,

sizeY, int appX,

gridSquare ingrid([]1[],

int yLoc,
int appY,

Locked will

int sizeX, int
int s,
LifeGrid dad)

41

//
!/

First, set a few variables that the gridSquare needs to
know, like where it is and how big the grid is.

gridX = xLoc;

gridY = yLoc;

xSize = sizeX;

ySize = size¥Y;

appXSize = appX;

app¥Size = appY;

grid = ingrid;

BighaddyMain = dad;

scenerio = 33

Next, decide what creature, if any, is initially in
the gridSquare. Each creature type has it's own
initial wvitality level. Several scenerioes are
avallable.
switch (scenerio)
{
case (0):
THE KUDZU FACTOR
This shows the affect of unrestrained Veggies. It
assumes a 5X5 or larger grid.
{
if ({({gridX == 0) && {gridY == 4)) ||
((gridX == 1) && {gridY¥ == 0))} ||
({gridX == 2} && (gridY == 1)) ||
({gridX == 3) && (gridY == 0)) ||
({(gridX == 4) && (gridY == 1)))
{
creatureType = veggile;
vitality = 100;
gscentTraces = 0;
1
break;
t
case (1):
{
EDEN
An idyllic scenerio, where Herbies romp and play among

the Veggies, doing their best to keep the plant

population down. Again, a 5X5 minimum.
if (((gridX == 0) && (grid¥ == Q)) {1
((gridX == 0) && (gridY == 1)) ||
((gridX == 1) && (gridY == 0)) ||
((grid¥X == 1} && {gridy == 1)} ||
((gridX == 4) && (gridY == 0)))

creatureType = veggie;
vitality = 100;

42

scentTraces = 0;

}

if (((gridX == 4) && (gridY == 4)) ||
((gridX == 2) && (gridy == 4)) ||
((gridX == 3) && (grid¥Y == 3}})

creatureType = herbie;
vitality = 200;
scentTraces = 102;
1
break;
}
// BARMBI VS. GODZILLA
// Watch a Carnie track down and kill a few Herbies.
// Notice how it follows the Herbie's path by following
// its scent traces. Requires 3X5 grid minimum.

case (2):
{
if ((gridX == 0) && (gridy == 0))
{
creatureType = carnie:;
vitality = 400;
scentTraces = 104;
}
if {((grid¥x == 1} && (gridY == 1))
{
creatureType = herbie;
vitality = 399;
scentTraces = 102;
}
break;

}
// THE GREAT BUNT
// Can six Omnies take down two Carnies?
// B¥X5 grid minimum.

case {3):
{
if {{{gridX 0y && {gridy == 0)) ||

{ (gridX 2) && {gridy == 0)) ||
({gridX == 4) && (gridY == 0)) ||
{{gridX == 0) && (gridY == 4)) ||
((grid¥ == 2) && (gridY == 4)) ||
({(gridX == 4) && (gridY == 4)})

creatureType = omnie;
vitality = 300;
scentTraces = 103;

44

if {{{(gridX == 1) && (gridY¥ == 2)) {]
{({gridX == 3) && (gridY == 2)}))
{
creatureType = carnie;
vitality = 400;
scentTraces = 104;
}
break;
}
// PIT FIGHTER
// A Veggie, a Herbie, an Omnie, and a Carnie. Who will
// be the victor? 5X5.
case (4):
{
if ({gridX == 2) && {gridY¥ == 2))
{
creatureType = veggilie;
vitality = 100;
scentTraces = 0;

1f {{gridX == 2) && (gridY¥ == 0))

creatureType = herbie;
vitality = 200;
scentTraces = 102;

if ((grid¥X == 0) && (gridy == 4))

creatureType = omnie;
vitality = 300;
scentTraces = 103;

if ((gridX == 4) && (gridy == 4})

creatureType = carnie;
vitality = 400;
scentTraces = 104;
}
break;
t
// RANDOM GENESIS
// This is the cfficial, random creature generator. It
// works well with any grid size.
// Statistics:
// There is a 50% chance that the square will be Emptie.
// There is a 20% chance that it will be a Veggie.
// There is a 15% chance that it will be a Herbie.
// There is a 10% chance that it will be an Omnie.

// There is a 5% chance that it will be a Carnie.

/7
l/

//
//

default:

{

}
}

double creatureChoice;
creatureChoice = Math.random(};
if (creatureChoice < 0.5)
{
creatureType = emptie;
vitality = 0;
scentTraces = 0;
}
else if (creatureChoice < 0.7)
{
creatureType = veggie:
vitality = 1G0;
scentTraces = 0}
}
else 1if (creatureChoice < 0.85)
{
creatureType = herbie;
vitality = 200;
scentTraces = 102;
}
else if {(creatureChoice < 0.95)
{
creatureType = omnie;
vitality = 300;
scentTraces = 103;
}
else
{
creatureType = carnie;
vitality = 400;
scentTraces = 104;
1

break;

Then, decide how nutritious the soil for the
gridSquare is.

soilNutrients = {(int) (1000 * Math.random{)):

and draw it.

update () ;

}

My implimentation of the update(} function, which calls
the main class to activate its paint()

redraw the picture.

function,

45

//

/Yl

/Y

//

/7

public void update ()
{

BigbhaddyMain.repaint ()
t

And now, the Run routine.

public void run()
{
while (true)
{
try{elieep(500);}
catch (InterruptedException e) {1}
while (Locked) {}
Here's where the behavior of each type of creature is
executed, First, if a square is Emptie:
if (creatureType == emptie)
{
scentTraces = scentTraces - 5;
if (scentTraces < 0)
scentTraces = 0;
}
Next, if a square contains a veggilie:
else 1if (creatureType == veggie)
{
vitality = vitality - 10;
If the Veggie is dead, kill it.
if {vitality < 20)
{
vitality = 0;
creatureType = emptie;
soillNutrients = scoiliNutrients + 300;
update () ;
t
Ctherwise, feed it,
else if (soilNutrients == Q)
{
vitality = vitality + 0;
}
else if (soilNutrients < 30}
{
vitality = vitality + soilNutrients;
sollNutrients = 0;
}
else
{
vitality = vitality + 30;
sollNutrients = scilNutrients - 30;

46

}
// This unpleasant bit of code allows a Veggie to spawn,
// 1if there is a square available to spawn to.

1f {vitality >= 200)

{

Il

int spawnX gridX;
int spawnY = gridy;
int fruitful = 0;
for {int i1 = -1; 1 < 2; i4++)
{
for (int j = -1; 3 < 2; Jj++)
{
if (((gridY + J) >= 0) && ((gridX
+ i) >= 0) && ((gridy + J) <
ySize) && ((gridX + 1} <
%Size) && ((3 1= 0) ||
(1 '= 0)}))

if {((gridlgridX + i][gridy¥ +
j].creatureType == emptie)
&& (grid{gridX + 1] [gridy¥
+ j].soilNutrients >
fruitful) && !gridgridX +
il [gridY + jJ].Locked)

fruitful = grid[gridX +
il {gridy +
j]l.sollNutrients;
spawnX = gridX + 1i;
spawnY = grid¥ + 73,

}
}
if {{spawnX != gridX) |! (spawny¥ I[=
grid¥) && !grid[spawnX] [spawnY].Locked)
{
grid{spawnX} [spawn¥}.Locked = true;
gridispawnX] [spawnY] .creatureType =
veggie;
grid[spawnX]} [spawn¥].vitality =
vitality / 2;
vitality = vitality / 2;
grid[spawnX] {spawn¥}l.Locked = false;
update() ;

// Now, the instructions for the Herbie:
else if (creatureType == herbie}
{
scentTraces = 102;
vitality = vitality - 10;
// Is the Herbile dead? If so, kill it and make the square
// Emptie. Skip the rest.
if (vitality < 50)
{
creatureType = emptie;
vitality = 0;
sollNutrients = soilNutrients + 267;
update{);
1

else

{
// First, the Herbie scans the area for food or foes:

nextToPred = false;

for {(int i = -1; 1 < 2; i++)
{
for (int j = -1; J < 2; J++)
{
if (((gridX + i) >= 0) && {(gridX +

i < x8ize) && ((gridY + j) >=
0) && ((grid¥ + J) < ySize) &&
grid{grid¥X + i][(grid¥ +

(

3] .creatureType == omnie) |1
(gridigrigX + il {gridy +
j].creatureType == carnie)))

nextToPred = true;
predLocX = 1i;

predLocY = 7;
}

}
}
nextToPrey = false;
for (int i = -1; 1 < 2Z; 1i++)
{

for {(int § = =-1; 3 < 2; j++)

{
if {{(gridX + i) >= 0) && ({gridX
+ 1) < xSize) && ({(grid¥ + j})
>= 0} && {{gridY + j) < ySize)
&& {(grid[gridX + i][gridy¥ +
j].creatureType == veggie))

nextToPrey = true;

48

i

preyLocX i
preyLocY = 7j;

'
}
// 1If there is scomething about to chew on it, the Herbie
// tries to flee. If there's nowhere to run, it makes a
// feeble attack.
if (nextToPred)
{
if (predLocX == 0)
{
if (((gridY - predLocY) >= 0} &&
({gridY¥ - predLocY; < yS3Size)
&% (gridigridX][grid¥ -
predLocY] .creatureType ==
emptie) && !gridlgridX] [gridy
- predlocY].Locked)

grid[gridX] [gridY -
predLocY] .Locked = true;
grid[gridX] [gridY -
predLocY] .creatureType =
herbie;
grid[gridX] [gridY -
predLocY] .vitality =
vitality;
grid{gridX] [gridY -
predLocY] .scentTraces = 102Z;
creatureType = emptie;
vitality = 0;
gridi{gridX}igridy¥ -
predLocY] .Locked = false;
update () ;
}
else if {(({gridY¥ - predLocY) >= 0)
&& ((grid¥ - predLlocY) <
ySize) && (({gridX =- 1) >
0) && (grid{gridX -
1] [gridy -
predLocY] .creaturetfype

== emptie) && !grid[gridX -

1] [gridY -
predlocY] .Locked)

grid{gridX - 1][gridY¥ -
predLocY] .Locked = true;
grid(gridXx - 11 [gridy -

49

50

predlocY] .creatureType =
herbie;
grid[gridX - 1] [gridY -
predLocY] .vitality =
vitality;
gridlgridX - 1] [gridy -
predlLocY] .scentTraces =
102;
creatureType = enptie;
vitality = 0;
grid(gridX - 1] [gridY -
predLocY] .Locked = false;
update () ;
}
else if {{(gridY = predLocY) >= 0)
&& {{gridY¥ - predlocY) <
ySize) && ((gridX + 1) <
®xSize) && (grid[gridX +
17 {gridy -
predlLocYl.creatureType ==
emptie) && !grid{gridX +
1iigridy
- predLocY] .Locked)

gridigrid¥ + 1]{gridy -
predlocYl . Locked = true;
gridlgridX + 1] [gridY -
predLocY].creatureType =
herbie;
gridigridX + 1]lgricdy -
predLocY] .vitality =
vitality:
grid{gridX + 1] [gridYy -
predLocY] .scentTraces =
102;
creatureType = emptie;
vitality = 0;
grid{gridX + 1] [gridy -
predLocY] .Locked = false;
update () ;
}
else
{
gridlgridX + predLocX] [gridY +
predLocY] .vitality =
grid[gridX +
prediocX] [gridY +
predLocY] .vitality - 5;

51

}
}
else if (predLocY == Q)
{
if {{{gridX - predLocX) >= 0) &&
({gridX - predLocX) < xSize)
&& (grid[gridX -
predLocX] [gridY] .creatureType
== emptie) && !gridi{grid¥X -
predlLocX] {gridY] .Locked)

grid[gridX -
predLocX] [gridY] .Locked
= frue;
gridlgrigx -
predLocX] [gridY¥].creatureType
= herbie;
gridlgridX -
predLocX] [grid¥].vitality
= vitality;
grid[gridX -
predLocX] [gridY].scentTraces
= 102;
creatureType = emptie;
vitality = 0;

grid[gridX -~
predLocX] [gridY] .Locked
= false;
update () ;
1
else if {{{gridX - predLocX) >= 0)

&& {{grid¥X - predLocX) <
XxSize) && {{gridY - 1) >=
0) && {gridfgridX -
predLocX] [gridY -

1] .creatureType ==
emptie) && !grid[gridX -~
predLocX] [gridY

- 1] .Locked)

grid{gridX - predLocX] [gridY -
1] .Locked = true;

gridigridX - predLocX] {grid¥ -
1] .creatureType = herbie;

grid[gridX - predLocX} {grid¥ -
1l.vitality = vitality;

grid[gridX - predLocX] [grid¥ -
1] .scentTraces = 102;

52

creatureType = emptie;
vitality = 0;
grid[gridX - predLocX] [grid¥Y -
1] .Locked = false;
update ()
}
else if {{{gridX - prediocX) >= 0)
&& {{gridX - prediLocX) <
xSize) && ((gridY + 1) <
y3ize) && {(grid[gridX -
predLocX] [gridY +
1] .creatureType ==
emptie) && !'grid{gridX -
predLocX] [gridY +
1} .Locked)

gridlgridX - predLocX! [grid¥ +
11.Locked = true;
grid[gridX - predLocX] [grid¥ +
1} .creatureType = herbie;
grid[grid¥ - predLocX] [gridY +
1} .vitality = vitality:
grid[gridX - predlLocX] [gridY +
1] .scentTraces = 102;
creaturelype = emptis;
vitality = 0;
gridlgridX - predLocX] [gridY +
1].Locked = false;
update (};
}
else
{
grid[gridX + predLocX]} [gridY +
predlLocY] .vitality =
grid({grid¥ + predLocX] [gridY¥ +
predLocY].vitality - 5;

}

else

{

if (({grid¥X - predLocX) >= 0) &&

{{gridX - prediLocX) < x3ize)
&& ((gridY¥ - predlocY) >= 0)
&& ((gridY - prediocY) < ySize)
&& (gridigridX - predLocX} igridY
- predlLocY].creatureType ==
emptie) && lgridigridX -
predLocX] fgrid¥ -

33

predLocY] .Locked)

grid[grid¥ - predLocX] [gridyY
praedLocY] .Locked = true;

grid[gridX - predlocX] [gridY
predLocY] .creatureType =
herbie;

grid{gridX - predLocX] [gridyY
predLocY] .vitality =
vitality;

grid[gridX - predLocX] [gridY
predLocY] .scentTraces =
102;

creatureType = emptie;

vitality = 0;

grid[gridX - predLocX] [gridY -
predLocY] .Locked = false;

update ()

l

}
else 1f ({{grid¥X - predLocX) >= 0)

&& ({gridX - predLocX) <
xSize) && (grid[gridX -
predLocX] [gridY].creatureType
== emptie) && !grid[gridX -
predLocX] [gridY] .Locked)

grid[gridX -
predlLocX] [gridY].Locked
= frue;

grid[gridX -
predlocX] [gridY] .creatureType
= herbie;

grid[gridX -
predLocX] [gridY] .vitality
= vitality;

grid[gridX -
predLocX] [gridY] .scentTraces
= 102;

creatureType = emptie;

vitality = 0;

grid(gridX -
predLocX] [gridY] .Locked
= false;
update () ;
i
else if (((gridY¥ - predLocY) >= 0)

&& ((gridY - predLocY) <
ySize) && (gridigridX}igridy

}

- predLocY] .creatureType
== empltie) &&
'gridigridX}i {grid¥

- predLocY] .Locked)

gridigridX] [gridY -
predlocY]) .Locked = true;

grid[gridX] [gridY -
predlocY] .creatureType =
herbie;

grid[gridX] [gridY -
predLocY] .vitality =
vitality:;

gridlgridX] [gridY -
predLocY] .scentTraces =
102;

creatureType = emptie;

vitality = 0;

grid{gridX] [gridY -
predLocY] .Locked = false;

update (};

else if {(({(gridX - predLocX) >= 0}

}

((gridX - predLocX) < xSize}

&&

&& {(gridl{gridX - predLocX] [grid¥

+ predLocY].creaturefType ==
emptie) && !grid|[gridX -
predLocX] [gridyY +

predLocY] .Locked)

grid[gridX - predLocX] [gridY +
predlLocY] .Locked = true;
grid(gridX -~ predLocX] [gridY +

predlocY] .creatureType =
herbie;

grid(gridX ~ predLocX] [gridY +
predLocY] .vitality =
vitality;

grid{gridX - predLocX] [gridyY
predLocY] .scentTraces =
102;

creatureType = emptie;

vitality = 0;

gridlgridX - predLocX] {grid¥ +
predLocY] .Locked = false;

update () ;

+

else if (((gridY - predLocY) >= 0)

54

55

&& ((gridY¥ - predLocY} < ySize)
&& (grid{gridX + predLocX] [grid¥
~ predLocY] .creatureType ==
emptie) && !grid[gridX +
predLocX] [gridY -

predLocY] .Locked)

grid[gridX + predLocX] [gridY
prediocY] .Locked = true;

grid{gridX + predLocX] igridY
predLeocY] .creatureType =
herbie;

gridigridX + predLocX] {grid¥
predLocY].vitality =
vitality:;

grid[gridX + predLocX] [gridY
predlocY}.scentTraces =
102;

creatureType = emptie;

vitality = 0;

grid{gridX + predLocX] [gridY -
predLocY] .Locked = false;

update () ;

}

else

{
grid{gridX + predLocX}[gridY +
predLocY] .vitality =
grid{gridX + predLocX] [gridY¥ +

predlocY] .vitality - 5;

}
}

// If no predators are present, the Herbie nibbles on any
// nearby Veggies.
else if {(nextToPrey)
{
if {(gridlgridX + preyLocX] [gridY +
preyLocY].vitality < 20)
{
vitality = vitality +
grid[gridX + preyLocX] [gridY +
preyLocY] .vitality;
grid{grid¥ + preyLocX] [gridY +
preyLocY] .vitality = 0O;
i
else

{

56

vitality = vitality + 20;
grid{grid¥X + prevLocX] [gridY +
preyLocY].vitality =
grid[gridX + preyLocX][grid¥ +
preyLocY].vitality - 20;
t
// 1f, after eating, the Herbile is lively enough, and there
// is enough space, it spawns.
if (vitality >= 400)
{
int spawnX = gridX;
int spawnY = grid¥;

for {(int i = -1; 1 < 2; i++)
{
for {(int § = -1; 3 < 2; J++)
{
if {(({gridy¥ + 3) >= 0) &&
({gridX + 1) >= 0) &&
{({gridy + 3) < ySize) &&
((gridX + i) < xSize)} &&
({3 1=0) || {1 '= Q)))

if ({grid[gridX + i] [gridy
+ jl.creaturelype ==
emptie) && !grid[gridX +
i} [gridy + j].Locked)
{
spawn¥X = gridxX + i;
spawn¥ = grid¥ + j;

}
}
if ({spawnX != gridX) || (spawnY l=
gridY) &&
'grid[spawnX] [spawn¥] .Locked)
{
grid[spawnX] [spawnY] .Locked = Lrue;
grid[spawnX] [spawnY] .creatureType =
herbie;
grid[spawnX] [spawnY].vitality =
vitality / 2;
grid(spawnX] [spawnY].scentTraces =
102;
vitality = vitality / 2;
grid[spawnX] [spawnY] .Locked = false;
update () ;

}
}

If neither prey nor predators are around, the Herbie
moves in a random direction, assuming there's anyplace
to go. But first, one more chance to spawn.
else
{
Normally, a Herbie will only spawn after eating. But it
is technically possible for a Herbie to become
surrounded while having more than 400 life. So, we need
to repeat the spawning process here.
if {vitality >= 400)
{
int spawnX = gridX;

int spawn¥Y = gridy;
for {int 1 = -1; 1 < 2; 1i++)
{
for {int j = -1; 3 < 2; J++)
{
if (((gridy + 3) >= 0) &&
{ (gridX + 1) >= 0) &&
((gridy + j) < ySize) &&
{(gridX + i) < xS8ize) &&
((3 t=0) || (L t= 0)))
{
if ((gridi{gridX + 1] ({gridy
+ jl.creaturelype ==
emptie) && !gridigridX +
il{gridY¥ + j].Locked)
{
spawn¥X = gridxX + i;
spawnY = grid¥ + Jj;
}
}
}
}
if ((spawnX != gridX) || (spawn¥ !=
gridy) &&

lgrid{spawnX] {spawn¥] .Locked)

{
grid[spawnX] [spawn¥] .Locked = true;

grid([spawnX] [spawnY] .creatureType =
herbie;
grid[spawnX] [spawn¥].vitality =
vitality / 2;
grid[spawnX] [spawn¥].scentTraces =

102;

vitality = vitality / 2;

57

}

// Now lel's move it!

58

grid[spawnXi {spawnY].Locked = false;

update () ;

double temp = Math.random(};

if

({temp < 0.125) && ((gridX - 1) >=
0} && ((gridy - 1} >= 0} &&
(grid{gridX - 1] [gridYy -

1} .creatureType == empltie) &&
'grid[gridX - 11 [gridy -

1] .Locked)

grid{gridX - 1] [gridy -
1].Locked = true;
grid{gridX - 1] [gridYy -

1] .creatureType = herbie;
grid[gridX - 1] [gridY -

11.vitality = wvitality;
grid[gridX - 1] [gridY -

1] .scentTraces = 102;
creatureType = emptie;
vitality = 0;
grid[gridX - 1] [gridY -

1] .Loccked = false;

update ()

}

elge if

((temp < 0.25) && ((grid¥ - 1)
>=) && (grid[gridX][gridY -
li.creatureType == emptie) &&
'grid[gridX] [gridY - 1].Locked)}

gridigridX} [grid¥ -

1] .Locked = true;

gridigridX} {gridy -

1] .creatureType = herbie;

gridlgridX] (gridY -

i1l.vitality = vitality:

grid[gridX] [gridY -

1}.g8centTraces = 102;

creatureType = emptie;
vitality = 0;
gridlgridX] [gridY -

1] .Locked = false;

update () ;

}

else 1f

{{temp < 0.375) && ({(gridX + 1)
< xSize) && ((gridY - 1} >= 0)

}

59

&& (grid[gridX + 1] [gridYy -

1] .creatureType == emptie) &&
lgrid{gridX + 1] ([gridYy -
1] .Locked)

grid{gridxX + 1] [gridY -
1].Locked = true;
grid(gridX + 1] {gridy -

1] .creatureType = herbie;
gridlgridx + 1] {gridy -

1] .vitality = vitality;
grid{gridX + 1}{gridy -

1] .scentTraces = 102;
creatureType = emptie;
vitality = 0;
gridigridX + 11[{gridy -

1].Locked = false;
update ()

else if ((temp < 0.5) && (({(gridX - 1)

}

>= () && (gridlgrid¥ -

1} {grid¥Y].creatureType ==
emptie) && !gridigridX -
1] [gridyY] .Locked)

grid[grid¥X -

1] [gridY] .Locked = true;
gridigrid¥ -

1] [grid¥Y] .creatureType

= herbie;
grid{gridX -

1] [gridY].vitality = vitality;
grid[grid¥X -

1] [grid¥] .scentTraces = 102;
creaturelype = emptie;
vitality = 0;
grid[gridX -

11 [gridY].Locked = false;
update () ;

else if ((temp < 0.625) && {(gridX + 1)

< xSize} && (grid[gridX +
1] {grid¥].creatureType ==
emptie} && lgrid[gridX +
1] [grid¥Y] .Locked)

grid[gridX +
1] [grid¥].Locked = true;

60

grid[gridX +
1] [gridY].creatureType
= herbie;
grid[gridX + 1} {gridY¥].vitality
= vitality;
grid{gridX +
11{grid¥!.scentTraces = 102;
creatureType = emptie;
vitality = 0;
gridigridx +
11 igrid¥] .Locked = false;
update () ;
}
else if ((temp < 0.75) && ((gridx - 1)
»>= () && ({(gridY¥ + 1) < yS3ize)
&& (gridlgridX - 1] [gridY +

1]} .creatureType == emptie) &&
'grid{gridX - 1] [gridY +
1] .Locked)

grid[gzridX - 1] [gridY +
1] .Locked = true;
gridlgridX - 1] {gridY +
1] .creatureType = herbie;
gridigridX - 11{gridy +
1] .vitality = vitality;
grid({gridX - 1] [gridY +
1] .scentTraces = 102;
creatureType = enmptie;
vitality = 0;
grid[gridX - 1] [grid¥ +
1].Tocked = false;
update () s
t
else if ((temp < 0.875) && ((gridY + 1)
< ySize) && (gridigridX]igridy

+ 1] .creatureType == emptie)
&& !'grid[gridX}igrid¥ +
11 .Locked)

grid{gridX] [gridY +

1] .Locked = true;
gridlgridX] [gridY¥ +

1] .creatureType = herbie;
grid{gridX] [gridY¥ +

1].vitality = wvitality;
gridlgridX] [gridY +

1] .scentTraces = 102;

creatureType = emptie;
vitality = 0;
gridigridX] [gridY +
1] .Locked = false;
update () :
}
else if ((temp <= 1.0) && ((gridxX + 1)
< x8ize) && ((gridYy + 1} <
ySize) && (gridlgridX +
1] [gridy + 1].creatureType ==
emptie) && !grid[gridX +
1) [gridY + 1] .Locked)

gridlgridX + 1] [gridY +

1] .Locked = true;
grid{gridX + 1] [gridyY +

1] .creatureType = herbie;
grid{gridX + 11[gridy¥ +

1].vitality = vitality;
grid{gridX + 1] [gridY¥ +

1] .scentTraces = 102;
creatureType = emptie;
vitality = 0;
grid{gridX + 1] [gridy +

1] .Locked = false;
update () ;

}
}
// Next, we handle the case of the omnie:
else if (creatureType == omnie)
{
scentTraces = 103;
vitality = vitality - 10;
// If the Omnie snuffs it, wipe it out.
if {vitality < 50}
{
creatureType = emptie;
vitality = 0;
sollNutfrients = soilNutrients + 233;
update () ;
}
else
{
// Though they prefer tc eat meat, Omnies eat just about
// anything but other Omnies. Look in the immediate area
// for Herbies and Carnies. If neither are available, look

61

// for Veggies.

nextToPrey = false;
for (int i = =1; i < 2; i++)
{
for {int j = -1; 3 < 2; Jj++)

{
if {{{gridX + i) >= 0) && ((gridx
+ i) < xSize) && {{gridY¥ + i)
>= 0) && ((gridY +) < ySize)
&& {{grid[gridX + i][gridYy +

3] .creatureType == herbie) ||
(grid[gridX + i][gridy +
j].creatureType == carnie)))

nextToPrey = true;
prevylocX = 1i;
prevLocY = 7J;

}

t
if {!nextToPrey)

{

for (int 1 = -1; 1 < 2; i++)
{
for (int 4 = -1; 94 < 2; Jj++)
{
if ({{grid¥X + 1) >= 0) &&
({gridX + i) < xSize) &&
{{gridY + 3} >= 0) &&
({gridyY + 3j) < ySize) &&
(grid[gridX + i) [gridy +
jl.creatureType == veggie})

nextToPrey = true;
preylocX = 1i;
preyLocY = j;

}

}
// The Omnie tears a hunk out of its prey. The bigger the
// Omnie, the bigger the hunk.
biteSize = vitality / 15;
i1f (nextToPrey)
{
if (gridlgridX + preyLocX] [gridY +
preyLocY].vitality < biteSize)
{

62

63

vitality = vitality +
gridlgridX + preyLocX][gridY +
preyLocY].vitality;
gridlgridX + preyLocX] [gridY +
preyLocY].vitality = 0;
}
else

{
vitality = vitality + biteSize;

grid{gridX + preyLocX] [gridY +
preyLocY] .vitality =
grid(gridX + preyLocX] [gridY +
preyLocY].vitality - biteSize;

}

// Once an Omnie blecats to the proper size, it spawns.
if (vitality »= 600)
{

int spawnX = gridX;

int spawny grid¥;

for (int i -1y 1 < 2; i++)

{

I}

for (int 7 = -1; 3 < 2; j++)
{
if (({(gridy + j)} >= 0) &&
({gridx + 1) >= 0) &&
((gridY¥ + j)} < ySize) &&
{((grid¥ + 1) < xSize) &&
((3 '=0)] (1 t= 0)))

if ((grid[gridX + i][gridy
+ jl.creatureType ==
emptie) && !gridlgridX +
il{gridyY + j1.Locked)
{
spawnX = gridX + i;
spawn¥ = grid¥ + j:

}

}
if ((spawnX != gridX) || (spawn¥ !=

grid¥) &&

tgrid[spawnX] [spawnY].Locked)

{
gridi{spawnX] [spawnY].Locked = true;

grid{spawn¥X} {spawn¥].creatureType =
omnie;
grid[spawnX] [spawnY].vitality =

64

vitality / 2;
grid[spawnX} {spawn¥}.scentTraces
103;
vitality = vitality / 2;
grid[spawnX] [spawnY}.Locked = false;

update () ;

'
i

// The Omnie takes a whiff. If it smells any Herbies or
// Carnies nearby, it heads towards the strongest scent.
// Otherwise, it moves in some random direction.
else
{
// Like the Herbie, the Omnie might need to spawn before
// it begins moving.
if (vitality >= 600)
{
int spawnX = gridX;
int spawnY = gridY¥;
for (int i = =-1; 1 < 2; i++)
{
for {(int j = -1; 3 < 2; j++)
{
if (((gridYy + 3j) >= 0) &&
((grigx + i) >= 0) &&
({(gridY¥ + 7j) < ySize) &&
({(gridX + i) < xSize) &&
((3 t=0) Il (L = 0)))
{
if ((grid[gridX + i] [gridY
+ jl.creatureType ==
emptie} && !gridi{gridX +
il (gridY + jl.Locked)
{
spawnX = gridX + i;
spawn¥Y = gridY + 37
1
}
}
I
if ((spawnX != gridX) || (spawnyY !=
gridY) &&

tgrid[spawnX] [spawnY].Locked)
{
grid[spawnX] {spawnY]
gridispawnX] {spawn¥]
omnie;

Jocked = true;
.creatureType

grid{spawnX] [spawn¥].vitality =
vitality / 2;
gridispawnX] [spawnY].scentTraces =
103;
vitality = vitality / 2;

65

grid[spawnX] [spawnY] .Locked = false;

update () ;

}

// Now let's move it!

preyLocX = gridX;
preylLocY = grid¥;

scentTraces > trail) &&
(grid{gridX + i][gridY¥ +

for (int i = -1; 1 < 2; i++)
{
for (int j = -1; 3 < 2; Jj++)
{
if (((gridX + 1) >= 0) &&
({grid¥ + j) >= 0) &&
{(gridX + 1) < xSize) &&
({(gridY + j) < ySize) &&
(grid[gridX + i] [gridY +
31.
{

9] .scentTraces % 5 == 2] ||
(grid{gridX + i][gridY +
J].scentTraces % 5 == 4))

&& (grid{gridX + 1] [gridY +

jl.creatureType == emptie)
&& lgrid{gridX + 1i][gridY +
j].Locked)

trail = grid[gridX +

1] [gridY + ij].scentTraces;
preyLocX = gridX + 1i;
preyLocY = gridY + 73;

)

1

if (((preyLocX != gridX) {i (preylLocY
'= grid¥)) &&
lgrid[preyLocX] [preyLocY] .Locked)

grid([preylLocX] [preyLocY] .Locked
= frue;

gridiprevylocX] [preyLocY] .creatureType
= omnie;

grid{preyLocX] [preyLocY].vitality
= yitality:;

gridi{preyLocX] [preyLocY] .scentTraces
= 103;
creatureType = emptie;
vitality = 0;
grid[preyLocX] [preyLocY] .Locked
= false;
update () ;
}
// If there are no Veggies, Carnies, or Herbies, or even
// the slightest scent of Carnie or Herbie, the Omnie sets
// off in a random direction.
else
{
double temp = Math.random{);
if ((temp < 0.125) && {{gridXx - 1)
>= 0) && {{gridy - 1) >= 0) &&
(grid[gridX - 1] [gridy -

1] .creatureType == emptie) &&
lgrid[gridX - 1] [gridY -
1] .Locked)

gridigridX - 1}{gridy -
1] .Locked = true;
gridigridX - 11{gridy¥ -
1] .creatureType = omnie;
gridi{gridX - 1iigridy -
1l .vitality = vitality;
grid{gridX - 1}{gridy -
1l.scentTraces = 1G3;
creatureType = emptie;
vitality = 0;
grid(gridX - 1] [gridY -
1] .Locked = false;
tpdate(};
1
else if {({temp < 0.25) && ((gridy
- 1) »>= 0) &&
(grid{gridX] [gridY -

1] .creatureType == emptie)
&& !gridigrid¥] [gridyY -
1] .Locked)

grid[gridX] [gridY -

1] .Locked = true;
grid[gridX] [gridY -

1] .creatureType = omnie;
grid[gridX] [gridY -

1] .vitality = vitality;

66

67

grid{grigX] {grid¥ -
1}.scentTraces = 103;
creatureType = emptie;
vitality = 0;
gridi{gridX] [gridY -
1] .Locked = false;
update () ;
}
else if ((temp < 0.375) && ((gridX
+ 1) < xS8ize) && ((gridY
- 1) >= 0) &&
(grid{gridX + 11 [gridyY -

1] .creatureType == emptie)
&& !gridlgridX + 1] [gridy
- 1] .Locked)

grid[gridX + 1] ([gridY -

1] .Locked = true;
grid(grid¥ + 1] ([gridYy -

1] .creatureType = cmnlie;
grid(gridX + 1] {gridy -

1] .vitality = vitality;
gridigridX + 1] {gridY -

1] .scentTraces = 103;
creatureType = emptie;
vitality = 0;
gridigridX + 1}{gridy -

1] .Locked = false;
update () ;

}

else if ((temp < 0.5) && ((grigX -
1) »>= 0) && (grid{gridX -
1} [gridyY].creatureType ==
emptie) && !grid{gridX -
1] [grid¥] .Locked)

grid[gridX -
Ti{grid¥].Locked = true;
grid[gridX -
1] [grid¥] .creatureType
= omnie;
gridlgridX -
1] [gridyY].vitality =
vitality:;
grid{gridx -
1] {gridY].scentTraces = 103;
creatureType = emptie;
vitality = 0;

68

grid[gridX -
11igridY}.Locked = false;
update () ;
}
else if ((temp < 0.625) && {({(gridX
+ 1) < x8ize) &&
(grid[grid¥ +
ii{grid¥] .creatureType ==
emptie} && l!lgridlgridX +
13 [grid¥] .Locked)

grid[grid¥ +
1] (gridY].Locked = true;
grid[gridX +
1] [grid¥] .creatureType
= omnie;
grid[gridX + 1] [grid¥].vitality
= vitality;
grid(gridX +
11 {gridY].scentTraces = 103;
creatureType = emptie;
vitality = 0;
grid(gridX +
11 {grid¥] .Locked = false;
update ()} ;
}
else if ((temp < 0.75) && {{gridX
- 1} >= 0} && ((gridY + 1)
< ySize) && (grid[gridX -
1] {gridy +
1] .creatureType == empitie)
&& l!grid{gridX - 1] [gridy
+ 1] .Locked)

grid[gridX - 1] [gridY +

11.Locked = true;
gridlgridX - 1] [gridyY +

1] .creatureType = omnie;
grid(gridX - 1][gridY +

1}.vitality = vitality;
grid[gridX - 1] [gridY +

1] .scentTraces = 103;
creatureType = emnptiie;
vitality = 0y
grid{gridX - 1] [gridY +

1] .Locked = false;
update () ;

// And,

}

}
finally,

else if ((temp < 0.875) && ((gridy
+ 1} < ySize) &&
(grid[gridX] [gridY¥ +

1] .creatureType == emptie)
&& lgridlgridX] [gridY +
11 .Locked)

gridl{gridX] [gridY +
1] .Locked = true;
grid[gridX] [gridY +
1] .creatureType = omnie;
grid(gridX] [gridY +
1].vitality = wvitality;
gridlgridX] [gridY +
1] .scentTraces = 103;
creatureType = emptie;
vitality = 0;
grid{gridX}igridY +
1] .Locked = false;
update () ;
}
else if ((temp <= 1.0) && ((gridX
+ 1) < xSize) && ((gridY
+ 1) < ySize) &&
(grid[gridX + 1] [gridy +
11.creatureType == emptie)
&& !gridi{gridX + 1} [gridY
+ 11.Locked)

grid{grid¥x + 1] {gridy +
11.Locked = true;
gridlgridX + 1]igridy +
1} .creatureType = omnie;
grid(gridX + 1]{grigy¥ +
1l.vitality = vitality;
grid[grid¥ + 1] [gridy +
ii.scentTraces = 103;
creatureType = emptie;
vitality = 0;
grid{gridX + 1][gridy +
1] .Locked = false;
update (};

the code for the common carnie:

69

70

else 1f {(creatureType == carnle)
{
gcentTraces = 104;
vitality = vitality - 10;
// Has the Carnie bought the farm? If so, kill it and make
// the square Emptie. Skip the rest.
if (vitality < 50)
{
creatureType = enmptie;
vitality = 0;
soilNutrients = soilNutrients + 200;
update () ;
}

else

{

// First, the Carnie sniffs around for food, that is,
// Herkies or QOmnies. Carnies aren't cannibals.
nextTcoPrey = false;

for (int 1 = -1; 1 < 2; i++)
{
for (int 4 = ~1; J < 2; ++)
{
if ({{gridX + i) >= 0) && ((gridX

+ 1) < xSize) && {{gridY + 7)
>= () && ((gridyY + j) < ySize)
&& ((grid(gridx + i][gridYy +

jl.creatureType == herbie) ||
grid{gridX + i] [gridY +
jl.creatureType == comnie))

nextToPrey = true;
preyLocX = i;
preyLocY = 3J;

}
}

// Dinnertime! The carnie snarfs some grub. The amount of
// life taken with each bite depends on the size of the
// Carnie.
biteSize = vitality / 10;
if (nextToPrey)
{
if {(grid[gridX + preyLocX] [gridy +
preyLocY].vitality < biteSize)
{
vitality = vitality +
grid[gridX + preyLocX] [gridY +
preyLocYl.vitality;

grid[gridX + preyLocX] [gridY +
preyLocY].vitality = 0;
}
else
{
vitality = vitality + biteSize;
grid{gridX + preyLocX] [gridY +
preyLocY].vitality =
grid[gridX + preylLocX] [gridY +
preyLocY] .vitality - biteSize;
t
// 1If the Carnie 1is massive enough, it spawns.
if (vitality >= 800)
{

int spawnX gridX;
int spawnY = grid¥;

for (int i = -1; i < 2; i++)
{
for (int 4 = -1; 3 < 2; j++)
{
if (({(grid¥ + 3) >= 0) &&
((gridX + 1) >= 0) &&
((grid¥ + j) < ySize) &&
({gridX + 1) < xSize) &&
((3 = 0) 1§ (2 1= 0C)))

if ((gridigridX + i} igridy
+ j1.creatureType ==
emptie) && !grid[gridX +
iligrid¥ + j1.Locked)
{
spawnX = gridX + 1i;
spawn¥ = grid¥ + 7j;

}
t
if ((spawnX != gridX) || (spawnY i=
gridy) &&
lgridfispawnX] [spawn¥] .Locked}
{
grid{spawnX] [spawnY] .Locked = true;
grid{spawnX] [spawnY] .creatureType =
carnie;
grid[spawnX] [spawn¥] .vitality =
vitality / 2;
grid[spawnX] [spawnY] .scentTraces =
104;

71

lgrid[spawnX] [spawn¥]

}
}

If no prey 1s nearby,

72

vitality = vitality / 2;
gridi{spawnX] [spawnY] .Locked = false;
update () ;

the Carnie sniffs at the scent

traces around its square to find where the nearest

food might be.
else
{

Cnce more,

needs to.

if

{

grid[spawnX] [spawnY] .
grid{spawnX] [spawn¥].

carnie;

grid[spawnX] [spawn¥]

give the Carnie a chance to spawn if it

(vitality >= 800}
int spawnX = gridX;
int spawn¥ = gridY;
for (int 1 = -1; 1 < 2; i++)
{
for (int j = -1; J < 2; j++)
{
if ({({gridy + j) >= 0} &&
({gridX + i) >= 0} &&
({gridY + j) < ySize} &&
({gridX + 1) < x8ize) &&
({3 t= 0) || (i !'= 0}}))
{
if ((grid{gridX + i][gridy
+ j].creatureType ==
emptie) && !gridlgridX +
il [gridY + j].Locked)
{
spawnX = gridX + 1:
spawnY = gridY + j;
}
}
}
}
1if {{spawnX != gridX) || (spawny !=
gridy}) &&
.Locked)

Locked = true;
creaturelype =

Jvitality =

vitality / 2;

grid([spawnX] [spawn¥].

scentTraces =

104;
vitality = vitality / 2;

73

grid[spawnX] [spawn¥] .Locked = false;

update () ;

t

// Now let's move it!
preyviocX = gridX;
preyLocY = gridY;

for {(int 1 = -1; i < 2; i++)
{
for {int § = -1; 3 < 2; 3++)
{
if {{{gridX + 1) >= 0) &&
gridY + j) >= 0) &&
gridx + 1) x5ize) &&

{{

{{

{{ <

{{gridY + j) < ySize) &&
(gridgridX + i][gridy +
3] .scentTraces > trail) &&
({grid[gridX + i] [gridY +
i].scentTraces % 5 == 2) |}
(gridlgridX + i] [gridY +
31 E

.scentTraces % 5 == 3})
§& (grid(gridxX + 1i][gridY +
1] .creatureType == emptile)}
&& 'gridlgridX + 1i][gridY +
3] .Locked)

trail = grid[gridX +

i] [gridY + j].scentTraces;
preyLocX = gridX + 1;
preyLocY = grid¥ + j;

}

}
if (((preyLocX != gridX) || ({preyLocY

= gridY)) &&
'gridi{preyLocX] [preyLocY] .Locked)

gridipreyLocX] [preyLocY] .Locked
= true;
gridipreyLocX] [preyLocY] .creaturelype
= carnie;
gridipreyLocX] [preyLocY].vitality
= vitality;
gridipreyLocX] [preyLocY] .scentTraces
= 104;
creaturefype = enptie;

vitality = G;
gridi{preyLocX] [preyLocY] .Locked
= false;
update () ;
1
// If the Carnie can't smell any prey, it wanders in a
// random direction, hoping to find a scent.
else
{
double temp = Math.random(};
if ((temp < 0.125) && ((gridX - 1)
>= 0) && ({(gridy - 1) >= 0) &&
(grid[gridX - 1] [gridYy -

1] .creatureType == emptie} &&
'grid[gridX - 1] [gridYy -
1] .Locked)

grid(gridX - 1] [gridy -

1] .Locked = true;
grid{gridX - 1] [(gridYy -

1] .creatureType = carnie;
grid[grid¥ - 1] [gridY -

1] .vitality = vitality:
grid[gridX - 1] [gridYy -

1] .scentTraces = 104;
creatureType = emptie;
vitality = 0;
grid(gridX - 1] [gridy -

1] .Locked = false;
update () ;

}

else if ((temp < 0.25) && ((gridy
- 1) >= 0) &&
(grid[gridX] [gridY -

1] .¢reatureType == emptie)
&& lgridgridX][gridy -
1] .Locked)

grid[gridX] [gridY -

1] .Locked = true;
grid(gridX] [gridY -

1] .creatureType = carnie;
grid[gridX] [gridY -

1].vitality = vitality:;
grid{gridX] {gridY -

1] .scentTraces = 104;
creatureType = emptie;
vitality = 0;

74

75

grid{gridX] [gridY¥ -
1].Locked = false;
update (};
t
else if {{temp < 0.375) && {{gridX
+ 1) < xSize) && {{gridy¥
- 1) >= 0) &&
{(grid[gridX + 1] [gridy -

1] .creatureType == emptie)
&& tgrid[gridX + 1] [gridY
- 1} .Locked)

grid{grid¥ + 1]{grigy¥ -
1] .Locked = true;
grid{gridX + 1l{gridy -
1] .creatureType = carnie;
grid{gridXx + 11{gridy -
11.vitality = vitality:
gridlgridx + 1][gridy -
1i.scentTraces = 104;
creatureType = empltie;
vitality = G;
gridlgridX + 1] [gridy -
1}.Locked = false;
update ()
}
else 1if ((temp < 0.5) && ((gridX -
1) >= 0) && (grid[gridX -
1] [grid¥].creatureType ==
emptie) && lgridlgridX -
1] {grid¥] .Locked)

grid{gridX -

1] [gridY].locked = true;
grid{gridX -

1] [grid¥].creatureType

= carnie;
grid{gridX -

1] [gridY].vitality =

vitality;
grid[gridX -

1] [gridY].scentTraces = 104;
creatureType = emptie;
vitality = 0;
grid[gridX -

1] [gridY].Leccked = false;
update () ;

76

else if ((temp < 0.625) && ((gridX
+ 1) < x8ize) &&
(grid{gridX +
11 {gridY¥] .creatureType ==
emptie) && !gridi{gridX +
1] [grid¥Y].Locked)

grid[gridX +
1] {gridY] .Locked = true;
grid[gridX +
1] {grid¥].creaturelype
= carnie;
grid[gridX + 1][gridyY].vitality
= vitality;
grid[gridX +
1] [gridY] .scentTraces = 104;
creaturelype = emptie;
vitality = 0;
grid[grigdX +
1] [gridY].Lecked = false;
update () ;
t
else if ((temp < 0.75) && ((gridX
- 1) >= 0) && {(gridY + 1)
< ySize) && (grid{gridX -
1] [gridy +
1].creatureType == emptie)
&& 'grid[gridxX - 1] [gridY
+ 1} .Locked)

gridlgridX - 1]{gridy +
1} .Locked = true;
grid[gridX - 1] [gridY +
1} .creatureType = carnie;
grid{gridX - 1] [gridY +
1] .vitality = vitality;
grid[grid¥X - 1] [gridy¥ +
1] .scentTraces = 104;
creatureType = emptie;
vitality = 0;
grid{gridX - 1] ([gridy +
1] .Locked = false;
update ()7
}
else if {({temp < 0.875) && ({gridy
+ 1) < ySize) &&
(grid[gridX] [gridY +
1] .creatureType == emptie)

77

&& !'gridigrid¥ligridy +
11.Locked)

grid{gridX] [gridY +
1}1.Locked = true;
grid(gridX] [gridY +
1l.creatureType = carnie;
grid[gridX] [gridY +
1l.vitality = vitality;
grid(gridX] [gridY +
1].scentTraces = 104;
creatureType = emptie;
vitality = 0;
grid{gridX] [gridY +
1] .Locked = false;
update () ;
}
else if ((temp <= 1.0} && ((gridx
+ 1) < xSize) && ((gridy
+ 1) < y3ize) &&
(gridlgridX + 1] [gridy +
1] .creatureType == emptie)
&& lgridlgridxX + 1] [gridY
+ 1] .Locked)

grid{gridX + 1] [gridyY +

1] .Locked = true;
gridigridX + 1] {grid¥ +

1] .creatureType = carnie;
gridigridX + 1] {gridy¥ +

1].vitality = vitality;
gridlgrid¥ + 1] [gridy +

1] .scentTraces = 104;
creatureType = emptie;
vitality = 0;
gridlgridX + 1] [grid¥ +

1] .Locked = false;
update () ;

t

}

try{sleep (500);}
catch{InterruptedException e} {}

}

78
Appendix D: HTML Code
Alife .HTML

<html>

<title>Artificial Life</title>

<body bgcolor="00aaff" text="000000" link="890000"
v1link="898989">

<center><H1>And They Called Me Mad at the University...</Hi>
<H3>But what do they know of madness?!?
Is it madness to vearn
for the

eternal secrets of life?
Is it madness to delve into the
unknown?
To seek

that which unenlightened fools would dare suggest humankind was
not meant

to know?
IS IT?!7?2<p>

If madness it is, then it is with pride that I call myself a
madman .
Those

so-called scholars were fools to deny my work.
But I'11l show
them!
I1'1l1l

show them all!</H3>

<Hl>For I have created...LIFE!!!</H1>

0Ominous Thunder<p>

<cgenter></center>

<Hl>Allow me to introduce you to my creations...</Hl></center>
Gridecritters come in four varieties: Veggies, Herbies, Omnies,
and Carnies.

Each critter has a certain amount of life (Vitality), and can
absorb a certian

amount of Vitality from its prey, depending on the amount of
Damage it can

deal. Any ¢gridcritter that manages to double its initial Vitality
will spawn a

new creature into an adjacent grid square. Any creature whose
Vitality falls

below 50 will die, and be absorbed into the grid square as a
certain amount of

s0il nutrients. To keep any creature from living forever, I've
added

entropy to the system (every creature loses 10 Vitality each
turn,

whatever else it does). And now: the gridcritters.<p>
<center><H2>VEGGIE</H2></center>
<HE3>Statistics</H3>

Color: Green

Vitality: 100

»Damage: 30 (only te soil nutrients)

Eats: Soil Nutrients<p>

79

Ah, the Veggie, possibly the most insidicus of my little toys. It
Seems so

harmless, completely unable to move under its own power. Yet a
single veggie can

smother an entire grid in moments. The Veggie breeds faster than
any cther

creature--a necessity, considering the fact that a Veggie begins
life with a

pitifully small vitality. The Veggie is also the only gridcritter
that is

choosy aboul where it spawns to. When spawning, a Veggie will
place its

offspring into the neighboring square that has the most Soil
Nutrients.<p>

<center><H2>HERBIE</H2></center>
<H3>Statistics</H3>

Color: Yellow

Vitality: 200

»Damage: 20 (5 against predators, no Vitality gained)
Fats: Veggies<p>

A luckless creature, the Herbie. The weakest of the mobile
gridcritters,

Herbies run from predators when they can, and fight back with a
pitifully

inadeguate attack when they cannot. Fortunately, Herbies breed
fairly rapidly,

and can easily overwhelm the defenseless Veggies that they prey
upon. Utterly

blind, Herbies will wander aimlessly if not next to food, and in
time will

starve to death.<p>

<center><H2>QMNIE</H2></center>
<H3>Statistics</H3>

<ii>Cclor: Blue

Vitality: 300

Damage: 1/15 X Vitality

Eats: Veggies, Herbies, Carnies<p>

A very adaptable creature, the Omnie can eat 3just about anything
but each

other, though they prefer to eat meat, and will attack Herbies
and Carnies

before eating Veggies, if there are Herbies or Carnies in the
immediate area.

In the absence of food, Cmnies hunt for Herbies and Carnies by
smell, following

the scent traces left behind by these creatures in the grid
squares they have

occupled.<p>

80

<center><H2>CARNIE</H2></center>
<H3>Statistics</H3>

»Color: Red

Vitality: 400

Damage: 1/10 X Vitality

<li»Eats: Herbies, Omnies<p>

The bad boys of the grid, Carnies are veritable living tanks. If
their large

starting Vitality wasn't encugh, Carnies are also loaded for
bear. A well-fed

Carnie can deal as much as 79 damage per strike, which is enough
to make short

work of just about anything. In the absence of food, Carnies,
like Omnies, hunt

by smell. Their dependence on meat is their only shortcoming, as
a few Carnies

are enoudgh to sweep the board of every non-Veggie in short order,
at which point

the Veggies grow out of control and smother them. No one said
they were bright.

Fortunately, these suckers breed very slowly.<p>

<center></center>

<center><H1>0Observe the gridcritters in action...</H1>

<H2Z>»Scenerio One: The Kudzu
Factor</H2>

Observe the unimaginabkle horror of Veggies unleashed!
A
handful of Veggies

quickly overwhelm a 10x10 grid!
0h, the humanity!
THE
HUMANITY ! 1!

<H2>Scenerio Two: Eden</H2>

An idyllic paradise...or is 1it?
Three Herbies are allowed to
graze unchecked,

The Veggiles initially seem to conguer the 5x5 area, but the
Herbies will not be

denied. ..

<HZ>S5cenerio Three: Bambi Vs
Godzilla</H2>

A lone Herbie flees for its life as a ravenous Carnie chases it
across a iGxieC

grid.
(Parental discretion advised)

<H2>Sceneric Four: The Great
Hunt</H2>

Just how tough are Carnies?
Their muscle is put to the tfest,
as six Omnies

sguare off against two Carnies on a 5xb grid.

<H2>Scenerio Five:; Pit Fighter</H2>

It's Veggie vs Herbie vs Omnie vs Carnie in a one on one on one
on one fight to

81

the finish!
Who will emerge triumphant from this 5xb5 field of
blood?
 (Hint:

Probably not the Herbie.}

<H2>Scenerio six: Random
Genesis</H2>

The true goal of my work, Random Genesis generates a random

setting of
creatures on a 10x10 grid.
Each grid square has
a 20%

chance of being a
Veggie,
a 15% chance of being a Herbie,
a 10% chance of

being an Omnie,
and
a 5% chance of being a Carnie.
Start 'er up, and watch

the fun!<p>

<H4>Return to Raron’s/Dark Id's homepage.</center>
</body>

</html>

Kudzu.html

<html>

<title>THE KUDZU FACTOR</title>

<body bgcclor="00aaff" text="000000">
<center>

<applet code="LifeGrid.class" width=500 height=500>
<param name=sceneric value=0>

<param name=gridsize value=10>

</applet>

<H1>INSTRUCTIONS<HI>

<H3>»Click on the grid once to start.<p>

Click on the grid a second time to stop.<p>
Click on the grid a third time to reset.</H3>
</center>

</body>

</html>

82

Eden.html
<html>
<title>EDEN</title>
<body bgcolor="00aaff" text="000000">
<center>

<applet code="LifeGrid.class" width=250 height=250>
<param name=scenerio value=1>

<param name=gridsize value=b>

</applet>

<H1>INSTRUCTIONS<H1>

<H3>Click on the grid once tec start.<p>

Click on the grid a second time to stop.<p>
Click on the grid a third time to reset.</H3>
</center>

</body>

</html>

83

Bambi.html

<html>

<title>BAMBI VS GODZILLA</title>

<body bgcolor="00aaff" text="000000">
<center>

<applet code="LifeGrid.class" width=500 height=500>
<param name=scenerio value=2>

<param name=gridsize value=10>

</applet>

<H1>INSTRUCTIONS<H1>

<H3>Click on the grid once to start.<p>

Click on the grid a second time to stop.<p>
Click on the grid a third time to reset.</H3>
</center>

</body>

</html>

84

Hunt.htmi

<html>

<title>THE GREAT HUNT</title>

<body bgcolor="00aaff"” text="000000">
<center>

<applet code="LifeGrid.class" width=250 height=250>
<param name=sceneric value=3>

<param name=gridsize value=5>

</applet>

<HI>INSTRUCTIONS<H1>

<H3>Click on the grid once to start.<p>

Click on the grid a second time to stop.<p>
Click on the grid a third time f£c reset.</H3>
</center>

</body>

</html>

85

Pit.html

<html>

<title>PIT FIGHTER</title>

<body bgcolor="00aaff" text="000000">
<center>

<applet code="LifeGrid.class" width=250 height=250>
<param name=gscenerio value=4>

<param name=gridsize value=5>

</applet>

<H1>INSTRUCTIONS<HI1>

<H3>Click on the grid once to start.<p>

Click on the grid a second time to stop.<p>
Click on the grid a third time to reset.</H3>
</center>

</body>

</html>

86

Genesis.html

<html>

<title>RANDOM GENESIS</title>

<body bgcolor="00aaff" fext="000000">
<center>

<applet code="LifeGrid.class" width=500 height=500>
<param name=scenerio value=5>

<param name=gridsize value=190>

</applet>

<HI>INSTRUCTIONS<H1>

<H3>Click on the grid once te start.<p>

Click on the grid a second time to stop.<p>
Click on the grid a third time to reseb.</H3>
</center>

</body>

</html>

87

	Simulation of Living Processes Utilizing Concurrency and Object-Oriented Programming
	Recommended Citation

	tmp.1510674811.pdf.jcrcW

