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Geometry has existed since the time of the Babylonians and Egyptians. It wasn't until
about 300 B.C., however, that Euclid of Alexandria finally organized this geometric
information and wrote his book The Elements. He formulated five specific postulates
that led to almost 500 geometrical statements and theorems. For over 2000 years,
mathematicians used Euclid's ideas to experiment with geometric designs.

In 1763, however, G.S. Klugel decided to evaluate the postulates Euclid proposed, and
found that by eliminating some of the postulates, new types of geometry emerged (Ryan,
1-3). One of these emergences is called Affine Geometry which is the basis for my
research of doubly-transitive designs in affine space.

Professor Tom Sibley’s (SJU) intuitive knowledge as well as John Morrison’s (class of
‘93, SJU) exploration of different 2-transitive designs have provided a foundation for my
research. By expanding on their ideas, I have been able to extend the study of doubly-
transitive designs to affine space.

We will begin with some primary definitions and theorems related to transitivity. Next,
we will explore affine space and the properties that make it unique. Lastly, we will apply
our definitions and theorems to find doubly-transitive designs in affine space.

My research involves sets of points and a generalization of a distance relation on pairs of
these points. A pair of distinct points A,B is called an edge and denoted AB (in
n-dimensions this edge is denoted a”b™, where a” and b~ are vectors). The generalized
relation is called an equidistance relation, denoted =.

Definition 1: Let (S,=) be a set S (whose elements will be called points), together with a
relation = on pairs of distinct points in S. We say (S,=) is an equidistance space if and
only if:

1) = is an equivalence relation.

2) Forall A and B in S, AB=BA.
*Note: An equidistance space will be denoted (S, =).



For example, let S = {0,1,2,3,4} be the vertices in the following coloring of a pentagon,
(Ks), and suppose that AB=CD if and only if AB and CD are the same color.

01=12=23=34=40
2 02=24=41=13=30

3

This figure is an equidistance space since:
1) = is an equivalence relation on pairs of points. When we examine the edges of K;, we
find the relation = is reflexive, symmetric, and transitive.

a) Reflexive: For all AB in K, AB=AB. e.g., 02=02.

b) Symmetric: For all AB, CD in K, if AB=CD, then CD=AB. e.g., 02=14 and

14=02.
¢) Transitive: For all AB, CD, EF in K, if AB=CD and CD=EF then AB=EF.
e.g., 12=23,23=34, and 12=34.

2) Forall A and Bin S, AB=BA. e.g., 14=41.

The equidistance relation can be interpreted in several ways. Two edges can be
equidistant if their lengths are the same. Yet others can be equidistant if they are parallel,
perpendicular, etc. Equidistance does not necessarily hinge on distance. However, we
call the relation an equidistance relation.

Definition 2: The figure K, is the set of n vertices such that each pair of distinct vertices
is connected by some edge.

All equidistance relations can be described as edge colorings of the complete graph on n
vertices, K, The vertices of K, are the points of the set S, and the colored edges of K,
represent the equidistance relation =.

To demonstrate the interpretation of equidistance relation in terms of length, let us
examine the following coloring of K,.



The lengths of edge 01 and edge 32 are the same, therefore we color these edges the
same color. We denote this relationship 01=32. Similarly 12=30 and 02=13. The actual
distance does not matter, only that the distances are equal.

Now that we have an understanding of the equidistance relation, we begin the explanation
of transitivity, which hinges on the permutation of the points of an equidistance space.

Definition 3: A similarity, f, is a permutation on an equidistance space (S, =) that
preserves the equidistance relation. That is, f preserves = if and only if for all AB, CD in
S, if AB=CD, then f(A)f(B)={(C)f(D).

For example, given the following coloring of K,, the function f (x) = x+1 mod 4 permutes
the points, sending 0—1, 1-2, 2—3, and 3—0. Note that horizontal edges are sent to
vertical edges, vertical edges to horizontal edges, and diagonals to diagonals under this
mapping.

=
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3 2 1
In Figure A, edges that are horizontal are equidistant, as are vertical edges and diagonal
edges. In Figure B, horizontal edges are still equidistant, as well as vertical and diagonal
edges. The equidistance relation has been preserved. Therefore, f (x) = x+1 mod 4 isa
similarity.

Definition 4: An equidistance space (S,=) is said to be 1-transitive if for any A and A'in

(S,=) there exists a similarity f such that f (A) = A'".

Definition 5: An equidistance space (S,=) is said to be 2-transitive if, given any four
points A, B, A', and B'in (S,=), where A#B, A"#B’, there exists a similarity f such that f
(A)=A"and f (B)=B'.



We will apply these definitions of transitivity to affine space. Theorems which provide
us with ways to show a given equidistance relation on an affine space (F", =) is 1- or 2-
transitive will follow an explanation of affine space and its properties.

Let F be any field, and let F" be the n-dimensional vector space over F. Note that a
1-dimensional subspace of the space F" is of the form {av™:a € F} for some v eF", v"#0.

Definition 6: A line is defined by {av'+w™ : a € F} for some v",w~ € F" and v~ #0.
Thus, lines are cosets of 1-dimensional subspaces.

Definition 7: An affine space is defined as the vector space F" , together with a set of
lines.

Structures can be defined by distance between vertices, linearity, angles, or other
geometric properties. Affine space is one example of a structure. The following are the
axioms of an affine plane. The importance of these axioms is that they focus on linear
structure.

Axioms of an Affine Plane:[Blumenthal, 55]
1) For each pair of points P,Q there exists a unique line L on P and Q.
2) For each point P and for each line L not on P, there exists a unique line M
parallel to L such that P is on M. (See Appendix B for definition).
3) There exists a point P and a line L such that P is not on L.
4) For each line L there exist at least 3 points on L.

Let us examine the affine plane of 9 points to see how these axioms affect the structure.
This plane contains 12 lines.

—a } ~
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Figure 1 Fi gl_li'é" 5

Figures 1,2,3 and 4 are simply a breakdown of figure 5 into groupings of parallel lines.



Each point has 8 incident edges.

>
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Since each line contains three points, there are three edges on each line; one edge between
each pair of points.

There are many different types of permutations of points in affine space. The following
are examples.

Definition 8: A translation of F" is a mapping of the form Q (x”) = x™+q" for q"eF".
*Note: Translations take lines to lines.

Definition 9: An affine transformation of F" is a mapping of the form
o(x”) = Mx™ + q for q”€F and an invertible nxn matrix M.

Definition 10: AGL (F,n) is the group of all affine transformations on the n-dimensional
affine space F".

Fact 1: AGL (F,n) is 2-transitive on F".

*Note: It is standard group theory to say that a group is 1-transitive on a set S if for all a,
b in S, there exists a g in G such that g(a) =b. We have called the space itself 1-
transitive. The same situation applies to 2-transitive.

Fact 2: The subgroup H={€Q: q"€F"} is a one-transitive subgroup of AGL (F,n).

Fact 3: Every 2-transitive subgroup of AGL (F,n) has H as a 1-transitive (normal)
subgroup.

Fact 4: The set of similarities of a 1-transitive space forms a group under function
composition.

Given the previous definitions and facts relating to affine space (Beth, 255), we are now
able to prove two theorems which provide us with ways to show a given equidistance
space is 1- or 2-transitive.



Theorem 1: Let (F", =) be an equidistance space where F" is affine, and a” a fixed point
in F". Suppose if f is a similarity, then ' is a similarity. If for any point a’~ in F", there
exists a similarity f,. such that f,.(a”) =a’", then (F",=) is 1-transitive.

Proof:

Let b™,c” € F". Given a particular point a~ in F", let f, and f, be similarities such that

f, (@) =b" and f, (a”) =c”. Show there exists a similarity g that takes b~ to ¢”. Pick
g=1,(f"). Theng (b)) =1, (f, (b)) =1, (a") =c". We know g is a similarity since f" is
a similarity and the set of similarities is closed under function composition.

(See appendix C).

Therefore, (F",=) is 1-transitive.

For example, let us examine the following coloring of K.
0 1

01=12=23=34=40
4 " Py 02=24=41=13=30

3
Applying Theorem 1, if there are similarities f which move a particular point of K, say 0,
to all points of K, then K is 1-transitive.
If f(x) =x+0mod 5 then f,(0) =0 mod 5
f{(x)=x+1 mod5 thenf,(0)=1modS5
f,(x)=x+2mod 5 then f,(0) =2 mod 5
f(x) =x+3.mod 5 then f;(0) =3 mod 5
f,(x)=x+4 mod 5 then f,(0) =4 mod 5

Therefore, since f, is a similarity for all i, K, is 1-transitive.

*Note: Recall from linear algebra that all linear transformations can be represented as
matrices with respect to a standard basis.

Theorem 2: Assume 1) The translations Q, (X”) = x™+q" preserve = for all q in F*
and 2) There exist enough matrices which preserve = to map any
particular non-zero vector to all other non-zero vectors.
Then the equidistance space (F",=) where F" is an affine space, is 2-transitive.

Proof:
Assume 1) The translations Q, (x7) = x"+q preserve = for all q in F".

9



2) There exist enough matrices which preserve = to map any particular non-
zero vector to all other non-zero vectors.
1) Leta’,b",a’",b’~ € F"witha #b”and a’”#b'". Let f, f, be translations such that
f(0)=a"andf,(07)=a". ,
Suppose f,(¢’") =b'" and f)(c”) =b”. Note that ¢c”#0, and ¢’"#0 since a” and b~ are
distinct, and a’~ and b’™ are distinct.
By assumption 2, we know there exists a matrix M such that M(c™) = (¢'7).
Then let g = fMf,". Then g(a™) = f{,Mf, (@) =f; M) =f,(0")=a"".
g(b”)=£,Mf, ' (b*) = L M(c") =fi(c™)=b"™

Therefore, given any four points a”, b”, a’", and b’” in (F",=) there exists a similarity g
such that g(a™) = a’~ and g(b™) =b’". Therefore (F", =) is 2-transitive.

*Note: The following fact can be applied using Theorem 2 to prove that any equidistance
space (F",=) where F" is an affine space, is 2-transitive.

Fact 5: In an affine space F", for each non-zero vector v_, and each non-zero vector a_,
there is a non-singular matrix M such that Ma™=v™. (See Appendix A for Proof).

We know that AGL (F,n) is 2-transitive over F" and that there are structures that are
compatible with these affine space transformations. That is, the affine transformations
preserve the equidistance relation on the structure. Using the theorems and properties of
affine space, [ have been able to find two families of compatible structures. I have also
found a structure of the affine plane that is compatible with its affine transformations.
The proofs that these spaces are 2-transitive follow.

There are two specific structures that I have extended to affine space. The first is a
coloring of K, such that parallel edges are equidistant.

01=42
12203
23=14
& 34=02
e 40=31

10



I have extended this structure to a coloring of the lines of the affine plane. In this
coloring of K., edge ab”=c™d" if and only if a™+b™ = ¢"+d” mod 5. Thus when we look
at the affine plane (Z)?*,

4 o . . . o
5 & . . 0 o
2 e . . . .
1 o . . . .
0 « L;.__q,_ —» »

0 1 2 X 4

edges a’b”"=c"d” when (a, + b,, a, + b,) = (¢, +d,, ¢, + d,). Every line of (Z;)* is colored
using the same criterion. There are 5 colors on each line, 6 different slopes, and 5 lines of
each slope, which leaves us with 150 different colors. Because this design has so many
colors, it is very difficult to represent. Therefore, I have represented 30 colors of this
design on the following page. Note that A~ AN — — - - and

represent different “colors”.

11
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I have generalized this idea to any affine space over any field. The following is a proof
that this space is two-transitive.

Theorem 3: Define = on F" by a“b-‘zc‘d‘ iffa+b =c +d and a’b " and ¢"d" are on the
same line. Then (F",=) is 2-transitive.

We can prove this theorem by using Theorem 2.

Proof:
1) Show that the translations Q (x™) = x™+ q~ preserve = forall ¢~ in F".

Given a”b” = ¢"d” and any translation . Show Q(a")Q (b™)=Q (c")Q,(d").

Since ab” = ¢°d™ we know that
a+b  =c+d”
a +b +2q = cT+d+2q”
a+q+b+q = c+q+d+q”
Qq(a‘)+ Q.q(b*)= Qq(c‘ M+ Qq(d“)

and since translations take lines to lines, edges Q (a™)Q,(b”) and Q(c™)Q,(d") are still on
the same line. Therefore, the translations Q (x™) = x™+ ¢~ preserve = for all ¢~ in F".

2) Show there exist enough matrices that preserve = to map any particular non-zero
vector to all other non-zero vectors.

Define o(x™)= Mx~, where M is any non-singular nxn matrix.

Given a’b™=cd”. Show a{a )a(d )=a{c ya{d™).

Since a b =c”d” we know that

a+b” =c+d”
M(a™+b™) = M(¢™+d")
Ma +Mb" = Mc +Md"™
(@ )+ (b )= o(c )+ a(d™)

and since matrices take lines to lines, edges M{(a™")M(b™) and M(c™)M(d") are still on the
same line.

Therefore, since all matrices preserve =, and by application of Fact 5, there exist enough

matrices that preserve = to map any particular non-zero vector to all other non-zero
vectors. Hence, this design is two-transitive by Theorem 2.

13



The following definition is necessary for understanding the next design.

Definition 11: The absolute value of a vector x~, denoted |x~|, is the set {x, -x"}.
e.g., if x'=(1,-2,3), then |x7|={(1,-2,3), (-1,2,-3)}.

The next design that I have extended to affine space is the following.

\></ 01=12=23=34=40
By ] 32 02=24=41=13=30

Note that |0-1|= |1-2|=|2-3|, etc. for edges of the first color, and similarly |0-2 |=
|1-3 |=|2-4 |, etc. for edges of the second color.

One line of the corresponding affine plane would look like the following:

I have generalized this idea to affine spaces of any dimension over any field. The proof
that this design is two-transitive follows.

Theorem 4: Define = on F"by a™” = ¢"d™ if and only if |a™ - b”| = |¢” - d”|. Then
(F",=) is 2-transitive.

Proof:
1) Given a’b"=c"d"and any translation 3, show that Q (a")Q (b”)=Q,(c")Q (d").

Since a“b"=c”d” we know that
la”-b7l=lc™-d"l
la™-b™+q"-q I=lc”-d"+q"-q"|
I(a™+q")-(b™+q")I=l(c™+q7)-(d"+q")l
IQq(a‘)-Qq(b‘)l=qu(c‘)-Qq(d‘)I

Therefore, the translations Q (x™) = X~ + q~ preserve = for all ¢~ in F".

14



2) Define a(x”)= Mx", where M is any non-singular nxn matrix.
Given a’b =c"d” show that a(a”)a(b ) =a(c )a(d™).

Since a’b =c¢~d” we know that

la”-b7I=lc™-d"l
IM(a™-b )H)l=IM(c™-d")l
IM(a™)-M(b))=IM(c™)-M(d")I
loe(a™)-oe(b™)l=loc(c™)-a{d ™)l

Therefore, since all matrices preserve =, and by application of Fact 5, there exist enough
matrices that preserve = to map any particular non-zero vector to all other non-zero
vectors.

Hence, (F°,=) is two-transitive by Theorem 2.

This last design is my favorite because it has required the most thought and hard work. It
originated by using the normal inner product to define perpendicular lines. Usually we
define (a,, a)*(b,, b,)=a,b,+ab, and (a,, a,) is orthogonal to (b, , b,) if and only if their
inner product is 0. For a number of fields, such as Z, and Z,, this inner product works
because distinct lines are perpendicular. For others, such as Z,, this usual inner product
doesn’t work. For example, (1,2)*(1,2) = 0 mod 5, but we don’t want a vector to be
perpendicular to itself. Therefore, it was necessary to change the definition of inner
product.

Definition 12: For peF, p#0 we define a new inner product (a,, a ) (b,,b,) = pa,b,+ab,.
Equivalently, we can represent the inner product », by a matrix P iT po

ot

Then a“-pb"za‘TPb‘, where a”,b™ are column vectors.

Definition 13: For a™#b™, ¢c"#d7, a’b™ is parallel to ¢"d” if and only if there exists a non-
zero keF such that (d"-¢7) = k(b™-a™). We write a’b " c"d".

Definition 14: For a”#b”, ¢c"#d", a’b” is perpendicular to ¢"d" if and only if
(b™-a7)e(d"-c")=0, where », is a new inner product. We write a™b™1 ¢"d".

15



Theorem 5: On F?, for a™#b", ¢"#d", define a’b™=c”d” if and only if a™b™|c"d" ora™b™1,,
c"d”. Then (F?, =) is 2-transitive, provided p satisfies px*+y* = 0 for all x, y €F, such that
X,y are not both 0.

Proof:

1) Given: a"b"=c”d” and any translation Q(x") = x™+q". Show
Q. (a)Q,(b7)=Q,(c)Q(d).

Letab =c™d".

Case 1) Assume thata™"1,¢"d". So(b™-a") e, (d"-¢")=0.

(b™-a") e, (d-c)=0
[((b™+q")-(a™+q")] o, [(d+q)-(c"+q )] =0
[Q,(b7)-0,(a")] », [Q(d)-Q(cH] =0
Q,(a")Q,(b7) 1, Q(cTQ(dD)
Therefore, Q(a7)Q,(b7)=0Q (c)Q,(d").
Case 2) Assume that a'b7|c"d”. So for some keF, where k=0, (d"-¢")=k(b"-a").
(d™-¢) =k(b™-a")
[(d™+q7)-(c™+q 1= k[(b™+q")-(a™+q7)]
[Q,(d)-Q,(c)] = k[Q(b7)-Q(a")]
Q,(a)Q,(bIQ (R (d™)
Therefore, Q (a7)Q,(b7)=Q,(c7)Q(d). |

2) Show there exist enough matrices that preserve = to map any particular non-zero
vector to all other non-zero vectors.

Define a(x™) = Mx™ where M is a non-singular 2x2 matrix ‘ :]
such that p(g)(h)+(i)}(m) = 0 and p(g*)+(*) = plp(h*}+(m?)].

Proof that these matrices exist;

Since M is non-singular, (g,j)eF*#(0,0). Show there exists (h,m)eF? such that pgh+jm = 0
and p(g’)+(*) = plp(h*)+m*)].

Suppose g#0, let m = g or -g, and set h= (-jm)/(pg) = = j/p. Note that pgh+jm = 0, and

16



that h is well-defined unless p or g = 0. We know p#0 because +, is an inner product and
we have stated that g=0.

We show p(g2)+j* = p[p(h®)+m?].

plp(h*+m’] = plp{G*m>/(p’g" }+&*]
= p[p{ G’/ (P’ }+g*]
= (pP)/p*+pg’
= pg+j*.

Now we consider the case when g = 0.
Given (0,j) find (h,m) such that

1) pgh+jm =0 and

2) p(g’H+5* = plp(h*)+m?].

Letm=0and h ==+ (/p)
Then pgh+jm = p(O)h+j(0) = 0, and p[p(h®)+m?] = p’(/p)*+pm’® = pg’+j*.

Therefore, these matrices exist.
Now, show these matrices preserve =.

Suppose a’b"=c"d”. Show a(a )a(b™)=a(cH)a(d").

Case 1) Assume thata™b™1 c°d", so (b™-a")"P(d"-¢”) = 0. Let the matrix A = (b™-a"),
B = (d"-c"). Then A"PB = 0. To show (MA)'P(MB) = 0, first note that (MA)P(MB) =
A™™TPMB. Therefore it suffices to show that MTPM = AP where A€F, A=0, since by
substitution: ATMTPMB = A"APB = A(ATPB) = A(0) = 0.

Show that M"PM = AP. Let A=ph? + m?, and note that h,m are not both 0 since the matrix
is non-singular. Then

plph?+m?) 0
0 (ph?+m?)

p 0
01

g h

Jjom

pgti* pghejm
gh+jm phi+m?

g J & hy _pg J
h m j m h m

Then M"PM = AP.

- 2+2p0
{(ph m)[0 ll

17



Case 2) Assume that a”b™ || ¢"d", so for some scalar keF, (d7-¢™) = k(b™-a").
Let the matrix A = (b™-a™), B =(d"-¢”). Then B = kA. Show MB = kMA.

Since B = kA, then MB = M(kA) = kMA
Therefore, a(a )a(b)=a(c )a(d™).

Hence, the set of matrices M preserve =, and we have shown there exist enough 2x2
matrices to take the vector (1,0) to all other non-zero vectors (g,j). Therefore there exist
enough matrices M that preserve = to map any particular non-zero vector to all other non-
Zero vectors.

Therefore, (F%,=) is two-transitive.

The exciting part of researching doubly-transitive design in affine space is the fact that I
used many different disciplines of mathematics. It was terrific seeing how linear algebra,
geometry, and algebraic structures could all fit together into one project. This subject
area has not been widely explored and there are many different avenues one could take in
continuing with this research. Since the last theorem has only been proven for 2
dimensions, it would be interesting to see if the inner product design could be generalized
into all dimensions. I would also like to know why the new definition of inner product
WOrks.

Other designs to pursue include those which arise from combining designs. For
example, the parallel and absolute value designs could be combined. My intuition tells
me these are strong possibilities for doubly-transitive designs, however, time hasn’t
permitted me to explore them. :

One area that I did examine was the projective plane. I found early on, however,
that structures of this plane are not doubly transitive using just affine transformations. I
challenge the next honors student to delve in.

18



Appendix A

Fact 5: In an affine space F", for each non-zero vector v, and each non-zero vector a’,
there is a non-singular matrix M such that Ma "=v".

Proof:

Let b™=(1,0,0,0,....,0). Let v’ =(a,;, a5, @3, ...y, ....8;,), Where a,, #0.

Let M be the nxn matrix with the following stipulations: Let the first column vector of M
=v~. Thenleta,=1,a,=0,anda;=1fori> 1,1=Kk. Letall other terms be O.

aHOO...l..O
10
01

ap

Then M(b™)=| |

Show that M is non-singular:

The columns of M form a basis. Therefore, every vector can be written as a combination
of these n column vectors. .

Therefore: n = column rank of M (Fraleigh, 146) = rank M (Fraleigh, 149).

Since the rank of the nxn matrix M = n, M is non-singular (Fraleigh, 150).

Thus, for each non-zero vector v, there is a non-singular matrix M such that
M(1,0,0,......0)=v".

Now, let M,, M, be non-singular nxn matrices such that M (b™) =a” and M ,(b™) = v~
where b™ = (1,0,0,....,0).

Show that there exists a non-singular nxn matrix M such that M(a™") = v™.
LetM=MM,". Then M(@")=MM, (@) =M, (b)) =v".

Therefore, for each non-zero vector v~, and each non-zero vector a~, there is a non-
singular matrix M such that Ma™=v™.
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Appendix B
Two distinct lines with a point in common are called intersecting and are said to intersect;

if they do not intersect, they are mutually parallel. If two lines are mutually parallel,
each is said to be parallel to the other, and vice versa (Blumenthal, 55).
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Appendix C
Proof that the set of similarities is closed under function composition:

Let R be the set of all similarities on an equidistance space (S, =).
Let f, and f, e R. Show g=1f, e R.

Assume f(E) =1 f.(A)=E
fi(F) =1 f,(B)=F
£(G)=K £(C)=G
f;(H)=L f,(D)=H

Then g(A) = ff,(A)=1{(E)=1
g(B) =ff,(B)=f(F)=]
g(O) =f,(C)=1(G)=K
g(D) = flfz(D) =f(H) =L

Let AB=CD then since f, € R, EF=GH, and since f, € R, then [J=KI..
But IJ = g(A)g(B) and KL = g(C)g(D). Therefore g(A)g(B)=g(C)g(D). Thus g € R.
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