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Abstract 
 Photodynamic therapy (PDT) is a method of combating cancerous tumors. PDT 

works when certain molecules called photosensitizers absorb light and transfer that 

energy to dissolved oxygen in solution. Next, this singlet oxygen will interfere with 

nearby molecules that are necessary for cancer cells to function. This research focuses on 

the kinetics (rates) of the reaction with respect to the photosensitizer, light, and the target 

molecule. A laser set at 514nm was used in photolysis with the photosensitizer 

5,10,15,20-Tetrakis(2,3,5,6-tetrafluorophenyl)porphyrin (TPP). To mimic cancer cells 

and monitor the effectiveness of the chosen photosensitizer, 9,10-Diphenylanthracene 

(DPA) was used as the target molecule. In knowing the kinetics of the reaction, practical 

things like the dosage of the photosensitizer can be better determined for PDT. In this 

research, consistent data was found that allows for the prediction of the decomposition of 

DPA when the concentrations of TPP and DPA and the intensity of the laser light are 

known. Also, using Carbon-13 NMR, the product of the photolysis was analyzed. 
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Introduction 

Photodynamic Therapy (PDT) is a method that can be used to combat cancer 

using a light-sensitive drug to destroy tumors
1
. This technique has been widely used for 

thirty years, but research is still necessary to improve the performance of the drugs. PDT 

only works when light and oxygen are present with the drug, and the treatment can be 

described in a few steps. First the drug is administered to a patient, and then that person is 

shielded from light before the therapy
2
. Once the drug has accumulated on the cancer, a 

specific wavelength of light is directed onto the tumor. This activates the drug which then 

transfers its excitation energy to dissolved oxygen molecules to form excited singlet 

oxygen which will then kill tumor cells
1,3

. Tumor specificity is highly important because 

if the drug becomes activated on non-cancerous tissue, unwanted side effects result
4
. 

Also, easily metabolized drugs are favored to reduce the longevity of sensitivity to light. 

Another important aspect of PDT is the penetration of the light waves into the body. 

Longer wavelengths are able to travel further into the skin; therefore, drugs that are 

activated at longer wavelengths are desirable
5
. PDT’s drawbacks are that the therapy can 

only affect cancerous material on the external parts of the body, its current drugs are not 

as tumor specific as preferred, and it results in patients having easily damaged, light-

sensitive skin. 

Porphyrin is a photoactive molecule that is most studied for PDT
6
. In this 

research, porphyrin with substituted phenyl rings containing fluorine atoms is used as the 

light absorbing molecule. While other molecules were used, the molecule used most often 

was 5,10,15,20-Tetrakis(2,3,5,6-tetrafluorophenyl)porphyrin (TPP). Fluorine is 

substituted onto the phenyl groups mainly to test its influence. Since the fluorine atoms 
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seem to have no effect on rates of photolysis, it is useful to show that they can be 

attached to the porphyrin since fluorine improves metabolic stability and affects protein 

binding affinity
7
. Medicinal chemists in the future may find variation of the fluorine 

substitutions useful, but this research does not include any in vivo experiments. Porphyrin 

works as a catalyst to produce singlet oxygen. 

It is known that cancer cells tend to be disrupted by singlet oxygen that is 

produced by photosensitizers, so in order to measure the effectiveness of a 

photosensitizer, any method of measuring the amount of dissolved singlet oxygen will do. 

In the following experiments, 9,10-diphenylanthracene (DPA) is used as the target 

molecule as it is sensitive to these excited oxygen molecules. Specifically, the absorption 

spectrum of DPA changes after it comes into contact with singlet oxygen. DPA normally 

has five absorbance peaks between 262nm and 394nm, but as soon as it interacts with 

singlet oxygen, these peaks disappear. This interaction forms 9,10-diphenylanthracene 

endoperoxide (DPA EPO) which has extremely low absorbance values, if any, since it 

has a significantly interrupted conjugated system
8
. 

In this paper, multiple experiments were done. Early experiments were done to 

learn more about how concentrations affected the rate of photolysis and how much these 

solutions absorbed light so that desired concentrations could be found. After finding a 

suitable wavelength at which to photolyze, kinetics experiments were performed in order 

to determine the kinetic orders of the reactants. The orders were found with respect to 

TPP and DPA. How the power of the laser affects photolysis rate was studied, and lastly, 

evidence that an enderperoxide was formed was found using Carbon-13 NMR. 
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Experimental 

 Stock solutions were diluted to concentrations between 0.5mmM and 100mmM 

for most solutions. Most solutions used chloroform or 1,4-Dioxane as the solvent.  

A Shimadzu 2401 PC Recording UV-Vis Spectrophotometer was the machine 

used to measure the absorbance of TPP and DPA. Data was collected between 200nm 

and 800nm. Clean quartz cuvettes were used for all experiments except for the NMR 

photolyses in which SOG (glass) cuvettes were used. Data from the UV-Vis was saved as 

a data print table and was later transferred to Excel. 

 To perform a photolysis experiment, a laser was used as the excitation source. 

The Coherent I90 Argon Ion laser was set at 514nm for all experiments in this paper, but 

other wavelengths like 488nm and 635nm were tested. The argon ion laser was typically 

set at 50 mWatts, but in the power study, this wattage was systematically varied. The 

photolysis experiments consisted of shining the laser through a cuvette containing a 

sample solution and recording UV-Vis spectra at regular intervals. C-13 NMR spectra 

were recorded for the DPA solution (approximately 1.09mM) and for the photolyzed 

solution. The solvent used during NMR was deuterated chloroform.  

 Data analysis was performed in Excel 2010. Using the solver function, 

coefficients of the spectra of pure samples of TPP and DPA were optimized by 

minimizing the sum of squares of the residual difference between linear combinations of 

these individual spectra and the spectra of the photolysis solution. In doing this, the 

percent contribution to peaks in the combined solution could be ascertained for TPP and 

DPA separately. This allowed for the quantification of the percent decrease of each 

molecule over the course of the photolysis.  
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Data and Discussion 

 Figure 1 through Figure 10 and Images 1 and 2 are included to explain this 

research. Understanding this data is important in understanding the rest of the study. 

 

Figure 1. ABS vs. Wavelength for 2,5-DiFTPP in Dioxane at 4 concentrations  

 

Figure 2. ABS vs. Conc - Beer’s Law Plot of 2, 5 DiFTPP in Dioxane at 4 concentrations 

 

Figure 1 is the spectrum of 2,5-DiFTPP at four different concentrations. These 

spectra show the peaks of porphyrin to be around 413nm and 507nm. The absorbance is 

known to be a result of the porphyrin ring and not of the groups substituted to it; although 

some substituents may change the wavelength absorbed, all substituents in the following 

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

370 420 470 520

2,5-DiFTPP in Dioxane

6-21-11
0.9mmM

0.75mmM

0.5mmM

0.25mmM

y = 0.3872x + 0.0055

R² = 0.9997

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

A
B

S

Concentration (mmM)

Peak at 413nm

6-21-11



7 
 

experiments did not. Another peak that is smaller than the other two is at 584nm but is 

not shown on the graph. Figure 2 is a graph of the absorbance value at the top of the peak 

at 413nm for the four concentrations. Since this graph is linear, it shows that Beer’s Law 

holds true for the absorbance of this molecule. Beer’s Law is used to determine the 

remaining percent of reactants in all following experiments. 

 

 

 

 

 

Figure 3. 9,10-Diphenylanthracene in Dioxane-high concentration 
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Figure 4. 9,10-Diphenylanthracene in Chloroform-low concentration 

 

 

 

 

Image 1. 9,10-Diphenylanthracene (DPA) – Hydrogen atoms are left off for clarity 
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Figure 5. 5,10,15,20-Tetrakis(2,3,5,6-tetrafluorophenyl)porphyrin (TPP) 

 

 

Image 2. 5,10,15,20-Tetrakis(2,3,5,6-tetrafluorophenyl)porphyrin (2,3,5,6 TPP) 

  Hydrogen atoms are left off for clarity 
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Figure 3 and Figure 4 are absorbance spectra of 9,10-Diphenylanthracene (DPA) 

in dioxane and chloroform respectively. The differing appearances of the spectra are not 

due to the solvent choice; instead, the difference stems from the change in concentration. 

The photolysis process involves radical electrons, and while chloroform could cause 

radicals in solution, it is not believed to be a part of the reaction. To rule out that the 

solvent is a part of the reaction, 1,4-Dioxane is used since it does not add radical 

electrons. Photolysis is successful in both of these solvents. Oxygen is a part of the 

photolysis reaction, and 1,4-Dioxane and chloroform are have different oxygen 

solubilities that can affect the photolysis if the oxygen concentration depletes hours into a 

photolysis. In Figure 3, four peaks can be seen at 341nm, 357 nm, 375nm and 396nm. In 

Figure 4, which is at a much lower concentration, another peak can be accurately found at 

262nm. Image 1 is of DPA.  In Figure 5, although the baseline is slightly off, it can be 

seen that TPP has 3 peaks that occur at 413nm (the Soret band), 507nm and 584nm (the 

Q bands). This variation of porphyrin is 5,10,15,20-Tetrakis(2,3,5,6-

tetrafluorophenyl)porphyrin (2,3,5,6 TPP) and is the main catalyst for photolysis used in 

the following experiments. 2,3,5,6 TPP can be seen in Image 2. DPA is the molecule used 

to indicate the effectiveness of the porphyrin in all of the following experiments.  
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Figure 6. Photolysis of 2, 5 DiFTPP and DPA in Dioxane at 514nm 

 

 

Figure 7. Percent vs. Minutes - Percent 2,5-DiFTPP and DPA remaining at a given time 

Figure 6 is a photolysis with DPA and 2,5-DiFTPP. Concentrations are not the 

focus of this graph; instead, what species decrease in photolysis is the focus. It can be 

seen that the peaks at 341nm, 357 nm, 375nm and 396nm decrease over time, and it can 

be seen that the peaks at 413nm and 507nm do not decrease. This indicates that the DPA 
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all photolyses in this paper were done at 514nm, a photolysis can be done at any 

wavelength at which TPP absorbs light, but as mentioned before, longer wavelengths are 

preferred because they can penetrate deeper into body tissue. That being said, not much 

photolysis occurred at 635nm because TPP does not absorb as well at that wavelength. 

 

Figure 8. Cell media absorbance before 4 Amino TPP was added 

 

 

Figure 9. Cell media absorbance after 4 Amino TPP was added 
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One problem that was not solved concerns a solubility issue with the porphyrin. A 

variant of porphyrin called 4-amino TPP, which is more polar than other variants used in 

these experiments, could not be dissolved in cell media, which is a polar solvent. This can 

be seen in the lack of a peak at 413nm between Figure 8 and Figure 9. There was also no 

success in dissolving the porphyrin in water. Pharmacologists may be able to solve this 

polar solubility problem with encapsulation or chemical modification of the porphyrin 

itself. 

  

Figure 10. Photolysis with 2,3,5,6 TPP 1.25mmM and DPA 90mmM in Dioxane 

 

Figure 10 emphasizes some of the same points in Figure 6. The area under the 

peaks (at 341nm, 357 nm, 375nm and 396nm) that is attributed to DPA was used to 
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Figure 11. Photolysis Kinetics Experiment-TPP 2.44mmM-Percent Remaining 

 

 

 

Figure 12. Photolysis Kinetics Experiment-TPP 2.44mmM-Natural Log of initial rate 
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Figure 13. Photolysis Kinetics Experiment-TPP 2.44mmM-Inverse Function 
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Figure 14. Photolysis Kinetics Experiment-TPP 0.98mmM-Percent Remaining 

 

 Figure 14 demonstrates a photolysis in which the concentration of TPP was 

lowered and in which the interval of taking absorbance values was shortened. The slope 

in Figure 15 is a measurement of the initial rate from data described in Figure 14. 
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Figure 16. Photolysis Kinetics Experiment-TPP 0.98mmM-Natural Log 
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Figure 17. Photolysis Kinetics Experiment-TPP 0.49mmM-Percent Remaining 

 

 

  

 

Figure 18. Initial Rate of Photolysis in Figure 17 
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Figure 19. Photolysis Kinetics Experiment-TPP 0.49mmM-Natural Log 
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Figure 20. Photolysis 2,3,5,6 TPP 0.98mmM and DPA 14.5mmM in Chloroform 12-4-13 
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Further Kinetic Analysis 
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It was already shown that the photolysis is first order with respect to DPA. Using 

Table 1 and the equations above, it is possible to find the order with respect to TPP (y). 

Plugging in the values from Table 1 into the last equation gives y=0.9423. This value is 

reasonably close to 1, which would mean the photolysis reaction is first order with 

respect to TPP as well. With further experimentation, the order of TPP can be more 

accurately measured, but from this experiment, it can be seen that the reaction is at least 

close to first order with respect to TPP.  

 

Table 1. Summary of Initial Rates from Figures 15 and 18 

[TPP] mmM [DPA] mmM Initial Rate 

0.98 14.5 0.0196 

0.49 14.5 0.0102 

 

 In a photodynamic therapy, there are four components to the reaction that takes 

place. These components are the photosensitizer, target molecule, light and oxygen. After 
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finding that the reaction was first order with respect to TPP and DPA, the order of light 

intensity was chosen as the next project. As seen in Figures 21, 22, 23 and 24, four 

photolyses were conducted in which the only variation was the wattage of the laser.  

 

Figure 21. Light Intensity Rate Experiment – Laser set at 0.025W   

 

 

Figure 22. Light Intensity Rate Experiment – Laser set at 0.040W 
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Figure 23. Light Intensity Rate Experiment – Laser set at 0.051W 

 

Figure 24. Light Intensity Rate Experiment – Laser set at 0.076W 
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student April Berlyoung. April removed the oxygen from a solution containing TPP and 

DPA by an involved process in which an unphotolyzed mixture of DPA and TPP in 

dioxane was frozen at liquid nitrogen temperature. The mixture was then pumped on 

using a vacuum pump and then thawed. This “freeze-pump-thaw” process was repeated 

three times and the solution was then photolyzed. Very little destruction of DPA 

occurred. 

 

Table 2. Slopes of Photolyses in Light Intensity Rate Experiments 

Watts Slope of Photolysis 

0.025 -0.001766 

0.04 -0.002607 

0.051 -0.003545 

0.076 -0.004620 

 

 

Figure 25. Slope of Photolysis vs. Wattage of Laser 
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Figure 26 shows carbon 13 NMR spectra for DPA before and after photolysis. 

Carbon-13 NMR spectra are useful in determining the different “types” of carbon in a 

molecule. This method is able to identify carbons that are dissimilar. Carbons that are 

symmetrically the same in a molecule show up as the same peak in a C13 NMR 

spectrum. From Image 1, it is known that all carbons in DPA are sp2 hybridized. In the 

top spectrum in Figure 26, there are two groups of peaks. The peaks near 77 ppm are 

from deuterochloroform, and these peaks appear in the aliphatic region. The peaks on the 

left between 140 and 125 ppm represent DPA, and they appear in the aromatic region. 

After the photolysis, a new peak at 84 ppm emerges. This is thought to be the new sp3 

hybridized carbons in DPA EPO as seen in Image 3 since these peaks are in the aliphatic 

region. The sp3 hybridized carbons are the ones that are bound to the endoperoxide 

bridge. Also, numerous peaks between 141 and 123 ppm are in the second spectrum that 

are not in the first. This is thought to be due to the fact that the photolysis was not 

complete leaving behind original DPA peaks. But also some of the peaks due to carbon 

atoms near the bridgehead carbon atoms would be expected to shift giving rise to new 

peaks seen in the lower spectrum of Figure 26. In short, the C13 NMR spectra indicate 

that a new type of carbon is being produced during photolysis, and this is hypothesized to 

be sp3 hybridized carbons bound to an endoperoxide bridge that is a result of reacting 

with singlet oxygen.  
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Figure 26. NMR Spectra of DPA before and after a photolysis 
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Image 3. 9,10-diphenylanthracene endoperoxide (DPA EPO) 

 

Conclusion 

 The focus of this study was to find the kinetic orders of the reactants in a 

particular photolysis reaction. The kinetic orders of TPP, DPA and light intensity were all 

found to be one. The only reactant that was not studied was oxygen. Since it is known 

that oxygen is essential to the photolysis reaction, further research is needed to determine 

the order of oxygen. Purely to learn more about the chemistry, more data should be taken 

to learn about the DPA EPO product of this photolysis reaction. Further PDT research 

dealing with porphyrin molecules should focus on finding a method of delivery into the 

body because TPP only dissolves in nonpolar solutions.  
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