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Synthesis and Characterization of Nanoparticle-Coupled Proteins in Human Serum 

Albumin 

An Honors Thesis submitted in partial fulfillment of the requirements for Honors in Physics. 

By: Kyle Mahoney 

Under the mentorship of Dr. Li Ma 

Abstract 

Recently, cancer has become an ever-growing issue and has led to many researchers 

attempt to unravel the mystery of the disease. This research has led to a promising field of 

treatment: nanotechnology-coupled pharmaceuticals. Nanoparticles act as a whole unit when 

in conjugation with other molecules and add to the carrier molecule, most often proteins, 

benefits the nanoparticles themselves possess. One such carrier protein that can be 

conjugated with nanoparticles is Human Serum Albumin (HSA). Albumin is of interest in 

cancer research for two reasons: it is native to the human vasculature so it does not elicit 

immunological reactions, and it has tumor specificity. HSA made its main debut in cancer 

treatment when it was used to encapsulate Paclitaxel, an FDA approved cancer drug, to 

improve the drug delivery capabilities to hypoxic tumor cores via poly-nitroxylated 

nanoparticles. The primary goal of this study was to modify nitroxyl-decorated human serum 

albumin to stabilize Paclitaxel in order to synthesize a spin-albumin-stabilized Paclitaxel 

nanoparticle that will act as a cancer carrying protein with improved targeting of hypoxic 

tumor cores for cancer drug delivery while also having the nanoparticles add additional 

therapeutic properties to the drug complex: namely acting as an antioxidant and vasodilator. 

Data obtained from High Pressure Liquid Homogenization indicated that Paclitaxel was 

successfully loaded into nitroxyl-decorated HSA and nanoparticles formed in the correct size 

range of 100-200nm. Electron Spin Resonance data and spectroscopy data also confirmed the 

loading of Paclitaxel and allowed for the quantification of the number of loaded drug 

molecules. 

 

Thesis Mentor:___________________ 

Dr. Li Ma 

Honors Director:___________________ 

Dr. Steven Engel 

December 2015 

Physics 

University Honors Program 
 



1 
 

Acknowledgements 

 I would like to thank my parents, Stephen and Angela Mahoney, for supporting me 

through my tenure at Georgia Southern University. Without them I would never have been 

able to pursue my research and would not have the deeper appreciation for education based 

research that I have today. I would also like to thank my fiancé, Rhiannon Pinsonneault, for 

the ample emotional support she provided me while I worked on this project. I could always 

count on her to help brighten my day when I was bogged down in a research related issue. 

Another big thanks goes out to a few of my fellow physics majors, Gil Salazar and Brennan 

Coheleach, as well as my good friend Frank Parr for helpful insights and hands-on help with 

the project along the way. I would also like to say thank you to the University of South 

Dakota for allowing us to use their High Pressure Liquid Homogenizer to make our samples. 

Finally, and most importantly, I would like to express my most sincere gratitude and 

appreciation to Dr. Li Ma. Dr. Ma mentored and encouraged me on this project from the time 

when I read my first piece of literature (which she provided me with) to analyzing the last bit 

of data. It was truly an honor to work with someone so intelligent and inspiring; all that I 

have learned through this research project can be tied back to Dr. Ma in some way. 

Introduction 

In recent years, caner has become an ever-growing issue in the eyes of the public and 

with such attention, has led to the focus of many medical and scientific researchers being 

shifted towards unravelling the mystery of the disease. Although there are many different 

types of cancer, all of them have certain characteristics at the cellular level which are 

indicative of cancerous cells. Such characteristics include having self-sufficient growth 

signals, an insensitivity to antigrowth signals, ability to invade tissues (and reach metastasis 
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in the invaded tissues), a limitless potential for replication, sustained angiogenesis, and an 

ability to evade apoptosis (Lodish et. al., 2000). Although cancers can become specific to a 

certain tissue or region, it is these similarities among the different types of cancer that have 

allowed researchers to made strides towards more effective treatments for cancer patients. 

One such method of treatment that has gained much attention in the recent years of 

study is the use of nanotechnology-coupled pharmaceuticals. Nanoparticles, although 

nanoscopic in size, act as a whole unit when in conjugation with other molecules and add to 

the carrier molecule any benefits the nanoparticles themselves possess as part of their 

physical or chemical properties. Nanoparticles also have the ability to accumulate at sites of 

inflammation making them suitable for targeted drug delivery (Das et al., 2005). In the case 

of cancer treatment, the use of stable nitroxyl radicals (nitroxides) can be made into 

nanoparticles that provide the carrier protein with the added benefit of acting as an 

antioxidant. Theses antioxidant allow for the stabilization of harmful free radicals in the 

blood in addition to the vasodilation of the vasculature in which they are present. This 

expansion of the blood vessels has been demonstrated by Kaul et al. in the treatment of sickle 

cell adhesion using antioxidants. Similar usage of nitroxides with albumin has also led to 

observed decreases in the infarct size of hemorrhages in rats (Beaulieu et al., 1998). 

The results of each of these studies not only depended on nitroxide nanoparticles, but 

also on the type of carrier protein the nitroxide groups were conjugated with. One such 

carrier protein is Human Serum Albumin (HSA). HSA is a monomeric protein found in 

human blood that transports hormones, fatty acids, and other compounds (Purcell et al., 

2000). Its role as a natural transport protein makes it an ideal candidate for conjugation with 

nanoparticles. Since HSA is a component of the blood plasma, about 5%, it is naturally 
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soluble and therefore can act as a carrier for hydrophobic drugs and medicines. Recently, 

HSA has been combined with nitroxyl free radical groups to create spin-labeled albumin that 

will hopefully become the next step in effective cancer treatment (Miele et al., 2009). 

In 1982, a cancer drug, Paclitaxel (Taxol), was approved by the Food and Drug 

Administration for the treatment of cancer. However, due to Taxol being relatively insoluble 

in the blood stream, new methods were employed to help the delivery of the drug. Such 

research resulted in the formation of a new cancer drug: Abraxane (Abraxane BioScience, 

2006). Abraxane is an albumin-stabilized Paclitaxel nanoparticle that acts as a mitotic 

inhibitor. In 2005, this drug was also approved by the FDA for the treatment of cancer; 

however, there was still a need for improvement in the delivery of the cancer drug to the 

cancer cells as shown by Matsumura and Kataoka in their study of anticancer agent-

incorporated polymer micelles (Matsumura and Kataoka, 2009). The cutting edge research 

that is focusing on improving the current cancer treatments has utilized a new cancer treating 

agent: Vaxol. This new drug is a combination of Paclitaxel and VACNO (Vascular Albumin 

with Caged Nitric Oxide, Polynitroxyl Albumin). The combination of the PNA with 

Paclitaxel allows for the treatment of mitotically rampant cancerous cells while also 

destabilizing the condensed core of malignant tumors via the nitroxide free radicals (Desai et 

al., 2006). However, the current research utilizing VACNO or PNA are all in animal models 

and future research is aiming to replicate those results in human studies. 

Although Paclitaxel has shown much promise in its ability to improve cancer 

treatment, it still poses some difficulties to researchers attempting to use it for pharmaceutical 

purposes. Paclitaxel, as previously mentioned, is unstable in the blood stream and in fact, in 

most aqueous solutions, as was demonstrated in a study conducted by Amini-Fazl et al. using 
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multiple aqueous solvents (Amini-Fazl et al., 2013). Therefore, it is commonly dissolved in 

ethanol, a solvent which is dangerous to inject intravenously in high concentrations. How 

then does one resolve the issue of conjugating Paclitaxel with a protein found commonly 

throughout the blood stream? The answer lies within a High Pressure Homogenizer. 

High Pressure Homogenization (HPH) has recently become a popular method for 

suspending hydrophobic and insoluble drugs in a carrier medium (Nanjwade et al., 2010). 

Published studies by Shelar et al. and Jacobs et al. have demonstrated how HPH can be used 

in tandem with other methods to fabricate isradipin and tarazepide nanosuspensions, both 

hydrophobic drugs, respectively (Shelar et al., 2013; Jacobs et al., 2000). The former of these 

studies also showed that this method allowed for more bioavailability of the synthesized 

drug; which was a major reason in choosing this method as the fabrication method for the 

drug-protein complex for this study. 

Aims of Study 

The primary goal of this study was to modify nitroxyl-decorated human serum 

albumin to stabilize Paclitaxel in order to synthesize a spin-albumin-stabilized Paclitaxel 

Nanoparticle that will act as a cancer carrying protein with improved targeting of hypoxic 

tumor cores for cancer drug delivery. The goal is to also have the nanoparticles add 

additional therapeutic properties to the drug complex: namely acting as an antioxidant and 

vasodilator. It is hypothesized that the synthetic complex will form as a tetramer comprised 

of four identical spin-labeled albumin monomers. In order to test if the synthesis was 

successful, numerous biochemical and physical analytical methods will be employed to 

quantify the carrier protein’s size, structure, and properties. If the synthesis is a success, the 

next step would be to test the synthesized carrier protein in preliminary pharmaceuticals to be 
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used on animals in order to test for effectiveness in the reduction of malignant tumors and 

cancerous cells. The latter of the two goals for this study is time sensitive and also relies on 

the success of the first step of the project. 

Materials and Methods 

Chemicals 

 Human serum albumin and modified human serum albumin, or polynitroxylated 

human serum albumin were used at the protein carriers in this experiment. Paclitaxel (Figure 

1) was used as the anti-cancer agent that was to be loaded into the aforementioned protein 

carriers. Chloroform and ethanol (9:1 v:v) were used as solvents for preparing Paclitaxel to 

be loaded while phosphate buffer (pH 7.4) was used as the solvent for HAS and PNA. 

  

Figure 1. The structure of Paclitaxel. 

Preparation of Human Serum Albumin 

 Human serum albumin ( HSA), obtained from Baxter, was diluted from a 25% w/v 

stock solution to 5% w/v using 0.9% w/v aqueous sodium chloride. The stock HSA had 

stabilizers as well as fatty acids attached to it that were removed prior to protein 

modification. The stabilizers were removed by filtration using a Millipore peristaltic pump 

and a 30kDa cassette filter. This filtration technique separated the solution based on the 

differences in the molecular sizes of the protein versus the stabilizer allowing for the protein 
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to be isolated. Next, the HSA solution was treated with activated carbon in order to remove 

the fatty acids that were conjugated with the protein. The method used to carry out the 

treatment followed the guidelines published by Raymond Chen in The Journal of Biological 

Chemistry (1967). Finally, the HSA was filtered through a 0.22µm syringe filter and the 

solution’s pH was adjusted to biological levels (pH=7.4). An aliquot of the purified HSA was 

kept to serve as a control during the analysis of the final synthesized product. 

Drug Loading 

 In order to load Paclitaxel into HSA and PNA respectively, a high pressure liquid 

homogenizer (Nano DeBEE) was used. For each 20mL processing volume of the protein-

drug solution at 10mg/ml concentration, 20mg of Paclitaxel was dissolved in 0.4mL of a 9:1 

solution of chloroform and ethanol while 20mL of 1% w/v HSA or PNA was formed using a 

5mM Phosphate buffer solution (PBS, pH 7.4). The two solutions were gently mixed together 

and then emulsified using high pressure liquid homogenization. The samples were 

homogenized for two cycle times at a pressure of 1500 psi followed by homogenization for 

two cycle times at 3000 psi, and finished with 8 cycles at 30,000 psi. Following 

homogenization, the final dispersion underwent rotary evaporation under reduced pressure 

(40°C, 15 min) in order to remove chloroform from the solution. Next, the nanoparticles 

were removed by centrifugation at 6000 rpm; however, it should be noted that lower 

rotational speeds may be needed depending on the state of the final dispersion in order to 

preserve the composition of the nanoparticles. Finally, the supernatants for each sample 

obtained by centrifugation were lyophilized and stored at -20°C until analysis. 
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Analysis of Synthesized Product 

 After the protein carrier complex is loaded with the cancer treatment drug and spin-

labeled with nitroxides, numerous analytical techniques were used to verify the structure of 

the modified Taxol. The results of the analytical tests were used to quantify the level to 

which the synthesized product matched the hypothesized complex that was expected to form. 

The first analytical method that was employed was testing for electron spin resonance. This 

method used an induced magnetic field to identify the presence of any unpaired electrons in 

the complex by measuring the change in energy between the electrons with spins parallel to 

the magnetic field lines and those that are flipped anti-parallel when in resonance with 

microwave radiation. This analysis was only performed on modified albumin and modified 

albumin- paclitaxel since they are decorated with nitroxide groups which have unpaired 

electrons between nitrogen and oxygen atoms, whereas HSA does not have any free electrons 

and appears as EPR inactive. The concentration of free radicals was determined in the drug 

loaded sample and compared to the control sample (modified albumin) to ensure that the 

addition of Paclitaxel did not alter the free radical density of the initial PNA molecule. 

 Next, the lyophilized samples were reconstructed in distilled water and centrifuged to 

half volume through a 3kDa microfilter and the filtrate was collected in order to determine 

the concentration of unbound paclitaxel. To determine amount of bound and unbound 

paclitaxel, the retentate was then titrated with EtOH in order to precipitate any free proteins 

and then centrifuged once more (10 min, 13.4 krpm) in order to isolate the Paclitaxel-loaded 

proteins in the supernatant. Both the filtrates and supernatants had absorbance data collected 

and from them and a loading factor for the synthesized drug carrier was calculated by 
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observing the difference in absorption at 227nm, which is the absorption peak for Paclitaxel. 

(Zhao et al., 2010). 

Results 

High Pressure Homogenization (HPH) 

 As previously mentioned, High Pressure Homogenization (HPH) is one of the few 

methods that can combat the issues that arise when attempting to form drugs with molecules 

that are unstable or immiscible in aqueous and organic media. Since Paclitaxel falls into this 

category of immiscible drugs, HPH was used to load the drug into both HSA and PNA. The 

average sizes of these proteins before undergoing HPH and drug loading are listed in Table 

1; these values were used as standards in order to determine if nanoparticles were 

successfully formed. The average molecular diameters of the control proteins as well as the 

drug loaded proteins after undergoing HPH are listed in Table 2. When compared to the pre-

HPH sizes, it was confirmed that this method produced nanoparticles for both control 

proteins as well as both drug-loaded samples. 

 

Table 1. Comprehensive physical data summary of control protein sizes, HSA and PNA, before 
undergoing high pressure liquid homogenization. 

Sample Name Z-Ave PdI Pk 1 
Mean Int 

Pk 2 
Mean Int 

Pk 3 
Mean Int 

Pk 1 
Area 
Int 

Pk 2 
Area 
Int 

Peak 3 
Area 

Intensit
y 

  d.nm  d.nm d.nm d.nm % % % 

PNA Original  11.26 0.224 12.57 2.623 0 94.5 5.5 0 

HSA Original  30.24 0.651 100.2 8.495 0 73 27 0 
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Table 2. Comprehensive data summary of control protein sizes, HSA and PNA, along with 
experimental drug loaded protein sizes, HSA-PTX and PNA-PTX, after undergoing high pressure liquid 
homogenization. 

Sample 
Name 

Z-Ave PdI Pk 1 Mean 
Int 

Pk 2 Mean 
Int 

Pk 3 
Mean Int 

Pk 1 Area 
Int 

Pk 2 
Area 
Int 

Peak 3 
Area 

Intensity 

  d.nm  d.nm d.nm d.nm % % % 

Free 
albumin 

149.5 0.226 187.2 0 0 100 0 0 

PNA  133.7 0.437 188.7 10.09 0 92.8 7.2 0 

HSA-PTX 1765 1 69.46 0 0 100 0 0 

PNA-PTX 375.9 0.388 204.1 0 0 100 0 0 

 

Figure 2 shows the size distribution peaks versus peak intensity for the two drug 

loaded samples, HSA-PTX and PNA-PTX, respectively. However, these figures only show 

intensity data in the domain for nanoparticles and it should be noted that there were large 

absorption peaks outside of this range that were centrifuged out after the average diameters 

were measured, therefore the average molecular sizes in the table are skewed from the 

purified samples that were collected following the measurements. 

(a) 

 

  

 

 

 

 



10 
 

(b) 

 

Figure 2. Size distribution by intensity of (a) drug-loaded HSA and (b) drug-loaded PNA 

synthesized via high pressure liquid homogenization before lyophilization. 

 In order to preserve the nanoparticles after homogenization the samples were freeze 

dried via lyophilization. Following lyophilization the average molecular sizes of the 

nanoparticles were measure once again (Table 3).  

Table 3. Comprehensive data summary of control protein sizes, HSA and PNA, along with 

experimental drug loaded protein sizes, HSA-PTX and PNA-PTX, after undergoing lyophilization. 

Sample 
Name 

Z-Ave PdI Pk 1 
Mean 

Int 

Pk 2 
Mean Int 

Pk 3 
Mean Int 

Pk 1 
Area 
Int 

Pk 2 
Area 
Int 

Peak 3 
Area 

Intensit
y 

 d.nm  d.nm d.nm d.nm % % % 

Free HSA 1 124.4 0.328 175.9 0 0 100 0 0 

HSA-PTX 1 804.2 0.716 86.81 9.169 0 89.1 10.9 0 

Free PNA 1 180.9 0.284 10.1 82.77 0 55.1 44.9 0 

PNA-PTX 1 719.5 0.787 59.63 7.34 0 82 18 0 

 

Additionally, the two drug-loaded samples had their molecular diameters measured 

against their peak intensities after being lyophilized. It was observed that the freeze drying 

process resulted in the reduction of the average nanoparticle size in both drug-loaded samples 

(Figure 3). Similar to the skewing that occurred with the average molecule sizes before 

lyophilization, the same patterns in the data was observed in Table 3 when compared to the 

nanoparticle signals recorded for the drug loaded samples. Once again, this was due to the 
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size distribution by intensity only recording data over a set range whereas the comprehensive 

data in Table 3 averaged all molecule sizes present in the sample. 

(a) 

 

 (b) 

 

Figure 3. Size distribution by intensity of (a) drug-loaded HSA and (b) drug-loaded PNA 

synthesized via high pressure liquid homogenization after lyophilization. 

Electron Spin Resonance (ESR) 

 The nitroxide density on the synthesized drug carrier was determined using Electron 

Spin Resonance (ESR). After a series dilution was performed in order to create a standard 

curve of concentration versus second integration values for stock PNA (100mg/mL), the 

second integration values for the reconstructed PNA and PNA-PTX nanoparticles were 

measured and converted to concentrations, as shown in Figure 4.  
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Figure 4. Standard curve produced by a series dilution of stock modified albumin of electron 

spin resonance second integration values versus concentration of modified albumin. The 

concentrations of reconstructed PNA and PNA-PTX are shown as intersections of their 

second integration values with the standard curve. 

These values were then used along with dilution factors and absorbance values at 

280nm in order to calculate the ratio of nitroxide free radicals on the surface of PNA and 

PNA-PTX. These ratios were then compared to the ratio present in the stock solution of 

modified albumin (Figure 5). 

 

Figure 5. Standard curve produced by a series dilution of stock modified albumin of 

absorption values at 280nm versus concentration. The concentrations of reconstructed PNA 

and PNA-PTX are shown as intersections of their absorption values with the standard curve. 

Absorbance Spectra 

 Once it was determined that the addition of Paclitaxel only slightly altered the surface 

composition of the free radicals, the number of loaded drug molecules were calculated as a 

ratio of milligrams of Paclitaxel to milligrams of PNA. This ratio was determined by 

y = 35.109x - 32.757
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examining normalized absorption spectra for the drug-loaded samples and comparing them to 

the unloaded samples. The filtrates and supernatants from both controls and experimental 

proteins were analyzed via spectroscopy (Figures 6 and 7). Specifically, the difference in 

absorption peaks at 227nm was quantified, as this is the absorption wavelength for Paclitaxel, 

and used in conjugation with a standard curves for PNA absorbance at 280nm and Paclitaxel 

absorbance at 227nm (Table 4, Figure 5, and Figure 8). 

(a)           (b) 

 
Figure 6. (a) Normalized absorption spectrums for HSA (4x dilution) and HSA-PTX (4x 

dilution) filtrates. (b) Normalized absorption spectrums for HSA (1H2O:7EtOH and 4x 

dilution) and HSA-PTX (1H2O:7EtOH and 4x dilution) supernatants. 

(a)           (b) 

  

Figure 7. (a) Normalized absorption spectrums for PNA (4x dilution) and PNA-PTX (4x 

dilution) filtrates. (b) Normalized absorption spectrums for PNA (1H2O:7EtOH and 5x 

dilution) and PNA-PTX (1H2O:7EtOH and 4x dilution) supernatants. 
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Table 4. Differences in absorbance at 227nm for the filtrates and supernatants of the drug-

loaded samples compared to their respective controls. 

Compound 
HSA/HSA-PTX 

Filtrate 

HSA/HSA-PTX 

Supernatant 

PNA/PNA-PTX 

Filtrate 

PNA/PNA-PTX 

Supernatant 

Absorption 

Difference at 

227nm 

-0.056956212 0.199381791 -0.019078095 0.124223441 

 

 

Figure 8. Standard curve produced by a series dilution of 9mM Paclitaxel of absorption 

values at 227nm versus concentration. The concentration of reconstructed PNA-PTX is 

shown as an intersection of its absorption values with the standard curve. 

Discussion 

 Paclitaxel is an FDA approved cancer treatment that has been shown to have 

beneficial consequences for impacting the size of tumors in patients with cancer. Despite its 

potential benefits, Paclitaxel still had issues with respect to its ease of delivery that made 

treatment with the drug especially difficult. Paclitaxel’s instability in aqueous solutions leads 

to low efficiency in intravenous injections and its solubility in ethyl alcohol is incompatible 

with the human bloodstream. As a result, much research has been conducted to come up with 

a potential answer to these drug delivery issues: carrier proteins. 

 Protein conjugation has made great strides in assuaging the difficulties of effective 

cancer treatment with Paclitaxel, such as increasing the stability and half-life of the drug in 

human vasculature (Kratz, 2008). However, despite the success protein conjugation has had 
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with making the drug more stable, it did not make the drug completely ideal. Most notable of 

the remaining issues with the drug was its ability to target and penetrate tumors. In 2009 

Desai and coworkers attempted further understand the drugs targeting issue by studying the 

extent to which Paclitaxel conjugated albumin penetrated tumors located in the cerebral and 

cervical region of patients. What they found was that patients whose tumors had higher 

SPARC secretion had an increase in drug delivery efficiency. These results were concluded 

to be a consequence of SPARC’s albumin-binging properties.  

What then for the patients who do not have high SPARC expression to help improve 

drug targeting? According to the previously mentioned 2006 study conducted by Kaul et al., 

one of most effective antioxidants used in the study for inhibiting sickle cell adhesion was 

PNA. PNA was shown to result in no post-capillary blockage by adhered sickle cells as well 

as almost complete inhibition of said adhesion by PNA. Therefore it was hypothesized for 

this study that if Paclitaxel was loaded onto PNA instead of HSA, then the antioxidant nature 

of the protein carrier would target the hypoxic core of metastasized tumors, thus improving 

drug delivery efficiency for SPARC positive and SPARC negative patients alike. 

In order to synthesize this new modified albumin drug carrier protein HPH was used 

so as to preserve the chemical structure of Paclitaxel in an otherwise unstable solvent. The 

size data obtained from the high pressure homogenizer before lyophilization indicated that 

the synthesized nanoparticles were of the correct size range (100-200nm) to be effective in 

medicinal use for both HSA and PNA. However, after lyophilization there was a noted 

decrease in the nanoparticle sizes for PNA. After preserving the samples by rapid freeze 

drying, the analytical steps of the project were then carried out. 
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One of the main draws of using PNA as a drug carrier versus HSA is that the free 

radical groups allow the protein to target and penetrate the hypoxic core of tumors. 

Therefore, it was important to verify that conjugating Paclitaxel with PNA did not interfere 

with the nitroxide groups on the protein’s surface that provide the previously mentioned anti-

tumor benefit. In order to determine if the drug loaded had any effect on the PNA’s free 

radical surface density Electron Spin Resonance was used as the first analytical technique for 

determining the physical characteristics of the newly synthesized drug carrier protein 

complex. The samples of PNA-PTX and PNA had concentrations similar to samples 

produced for the standard curve based on their second integration values, therefore the 

sample’s intensity peaks and absorption values at 280nm were used to calculate a ratio of 

nitroxides on the samples which were then compared to the known nitroxide density on the 

stock PNA from which the samples were made. 

𝐹𝑟𝑒𝑒 𝑅𝑎𝑑𝑖𝑐𝑎𝑙 𝑅𝑎𝑡𝑖𝑜(𝐹𝑅𝑅) =
(𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐸𝑆𝑅)(𝐸𝑆𝑅 𝑆𝑒𝑐𝑛𝑜𝑑 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒)

(𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛)(𝐴𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 𝑎𝑡 280𝑛𝑚)
 (1) 

PNA: 𝐹𝑅𝑅 =
(160)(317.7001)

(.084455)(10)
= 60,188.28489   (2) 

PNA-PTX: 𝐹𝑅𝑅 =
(133.5406277)(387.89486)

(.10634)(10)
= 48,711.41911  (3) 

  
𝑃𝑁𝐴−𝑃𝑇𝑋 𝐹𝑅𝑅

𝑃𝑁𝐴 𝐹𝑅𝑅
=

48,711.41911

60,188.28489
= 0.809      (4) 

 Based on the data and above calculations (Equation 1-4), there was a 4:5 ratio of nitroxides 

on the reconstructed PNA versus the reconstructed PNA-PTX. These values suggest that the 

addition of Paclitaxel to the proteins slightly altered the number of free radicals that were 

originally present in each molecule by a 20% reduction. However, since the drug loaded 

protein and original sample are still comparable in free radical density, the vasodilation 

effects may still be present in both; however further research would be needed in order to 
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conclude this hypothesis. Also, it is not clear the mechanism of the reduction during the 

formation of nanoparticles.      

Following EPR, the samples were centrifuged and filtered according to the methods 

listed above in order to isolate the bound Paclitaxel-protein complexes. Absorption spectra 

were then obtained for the filtrates and supernatants of all samples to be used in calculating 

the number of loaded drug molecules on each protein. The calculations in equations 5-9 were 

performed using multiple standard curves (Figures 5 and 8) as well as of the absorption 

difference at the wavelength 227nm, the absorbance peak for Paclitaxel. 

           𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 
4𝑚𝑔 𝑃𝑁𝐴−𝑃𝑇𝑋

10𝑚𝐿 𝐻2𝑂
 𝑎𝑡 227𝑛𝑚: 0.83573 → 207.548𝑥 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟  (5) 

1

207.548
(9 ∙ 10−3 𝑚𝑜𝑙

𝐿
) (

853.906𝑔

1𝑚𝑜𝑙
) (

1𝐿

1000𝑚𝐿
) (

1000𝑚𝑔

1𝑔
) = 0.0362

𝑚𝑔 𝑃𝑇𝑋

𝑚𝐿 𝐻2𝑂
  (6) 

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 
4𝑚𝑔 𝑃𝑁𝐴−𝑃𝑇𝑋

10𝑚𝐿 𝐻2𝑂
 𝑎𝑡 280𝑛𝑚: 0.23319 → 335.847𝑥 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 (7) 

1

335.847
(100

𝑚𝑔 𝑃𝑁𝐴

𝑚𝐿 𝐻2𝑂
) = 0.29775

𝑚𝑔 𝑃𝑁𝐴

𝑚𝐿 𝐻2𝑂
     (8) 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒𝑠 =
(0.0362

𝑚𝑔 𝑃𝑇𝑋

𝑚𝐿 𝐻2𝑂
)

(0.29775
𝑚𝑔 𝑃𝑁𝐴

𝑚𝐿 𝐻2𝑂
)

= 0.122
𝑚𝑔 𝑃𝑇𝑋

𝑚𝑔 𝑃𝑁𝐴
   (9) 

It was determined that the modified HSA molecules had an average of 0.122mg of Paclitaxel 

per 1mg of PNA. The amount of loaded Paclitaxel molecules on PNA was comparable to the 

amount loaded to unmodified HSA in commercially available Paclitaxel (11.1%).  

Overall Implications of Research 

As previously mentioned, cancer has become a very “hot-button” issue with the 

public and thus has been the focus of many recent scientific research projects. This field of 

study is of particular interest because of new methods of drug delivery that offer promising 

results with respect to treating cancer patients. For example, it has recently been shown that 
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spin labeled albumin can increase blood flow while also increasing the permeability of the 

drug into tumors in mice (Sugawara et al, 2001). Therefore it was this project’s goal to 

combine the tumor specific benefits of nitroxides with the protein carrier benefits of 

Paclitaxel loaded PNA to increase the efficiency of drug delivery to tumors in cancerous 

patients. If this project is a success, then the result would be an increased effectiveness in 

cancer treatment by incorporating the ability to break up the tightly packed core of tumors to 

an FDA approved cancer treatment drug. This added benefit, which stems from the 

nanoparticles being in a complex with Paclitaxel, ultimately would allow for the cancer 

treatment to be more effective in that it could deliver the drug into the core of the cancerous 

cell cluster instead of just to the surface. Also, the antioxidants would have the added benefit 

of intercepting harmful radicals in the body as well as alleviating hypertension and vascular 

blockage; however, more research would be needed to validate these side effects. 

Conclusion 

 This study aimed to synthesize Paclitaxel conjugated polynitroxylated albumin 

nanoparticles to be used as a means of increasing the effectiveness of cancer treatment by 

specifically enhancing the specificity of the drug-carrier for hypoxic tumor cores via 

nitroxide free radicals. Results showed that the anti-cancer drug was successfully conjugated 

with modified albumin by means of high pressure homogenization and that nanoparticles of 

the associated molecules were able to be isolated by centrifugation. Data from the high 

pressure homogenizer showed that the isolated nanoparticles were of the correct size, 100-

200nm, to be used medicinally. Analysis of the electron spin resonance data showed that 

loading Paclitaxel only slightly altered the nitroxide density initially present in the stock 

solution of modified albumin used in the experiment. This suggests that the vasodilation and 
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tumor targeting benefits of the free radicals would most likely be present upon application of 

the synthesized molecules intravenously; once again, further study would be needed in order 

to test this. Finally, the absorption data obtained from this study allowed for the 

quantification of the number of Paclitaxel molecules that were loaded to each modified 

albumin proteins. When compared to the number of loaded Paclitaxel molecules loaded to 

unmodified human serum albumin observed in other studies, as well as the Paclitaxel to HSA 

ratio found in commercially available Paclitaxel, this method allowed for an equal number of 

Paclitaxel molecules to be loaded to modified PNA. (Paál et al.). 

 In order to fully quantify the physical characteristics of the synthesized protein 

complex, more analytical processes will be conducted in the future. One such method will be 

High Performance Liquid Chromatography (HPLC). The data obtained from running an 

HPLC analysis will determine the different forms of Paclitaxel that are bound to the modified 

albumin and the extent to which the cancer drug degraded during preparation. Pending the 

results of the HPLC analysis, the next step in determining the effectiveness of the 

synthesized drug carrier protein would be in vitro testing with cancerous cells. 

 When comparing the absorption peaks in figures 2 and 3 it was observed that there 

was a decrease in nanoparticle size upon lyophilization. This decrease in size was not 

expected and further study would be needed in order to determine, and fix, the cause for the 

change in nanoparticle size. Despite this issue, this study was successful in producing 

Paclitaxel conjugated polynitroxylated albumin nanoparticles that could prove useful in more 

effective cancer treatment. 
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