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ABSTRACT 

 Accurate characterization of the dielectric properties of the laminate materials 

used in printed circuit board fabrication is critical for maximizing the performance of 

modern high speed circuitry.  While many techniques exist for characterizing dielectric 

materials, most existing techniques are either limited in accuracy or highly impractical 

for use with planar, copper-clad laminate sheets.  A common method involves forming a 

cavity from the printed circuit board material and calculating the permittivity and 

dissipation factor from the measured resonant frequencies and quality factor of the cavity.  

This resonance technique makes the assumption of an ideal cavity, which leads to errors 

in both measured permittivity and dissipation factor.  A more accurate model is proposed 

that de-embeds the effects of dielectric loss, surface conductivity and reactance, surface 

roughness, and cavity coupling efficiency.  The influence of each of these non-ideal 

effects on measured dielectric parameters is quantified through mathematical analysis and 

numerical simulation.  Measurements on physical cavities are performed to verify the 

new model. 
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NOMENCLATURE 

 

Symbol Description 

𝐄 Electric field vector 

𝐃 Electric flux density vector 

𝐇 Magnetic field vector 

𝐁 Magnetic flux density vector 

𝜖 Complex permittivity 

𝜇 Complex permeability 

𝜖𝑟 Relative permittivity 

𝜖𝑑, 𝜇𝑑 Permittivity and permeability of dielectric material 

tan(𝛿𝑑) Electric dissipation factor 

𝜖0 Permittivity of free space 

𝜇0 Permeability of free space 

𝑐 Speed of light in free space 

 𝜎𝑑 Effective dielectric conductivity in (
S

m
) 

𝜎𝑠 Static field dielectric conductivity 

𝜎𝑎 Alternating field dielectric conductivity 

𝜎𝑐 Conductivity of electrical conductor 

𝜔 Angular velocity in (
rad

sec
) 

𝑣𝑝 Phase velocity 

Γ Complex voltage reflection coefficient 

𝜆 Wavelength through dielectric material 

𝑓𝑟 , 𝜔𝑟 Resonant frequency and angular velocity 

𝑓𝑖𝑑𝑒𝑎𝑙  Ideal resonant frequency 

𝑓𝐿 Resonant frequency loaded by external circuit 

𝑓𝑢 Unloaded resonant frequency 

𝑎, 𝑏, 𝑑 Cavity dimensions in (m) along  X, Y, and Z axes 

𝑚, 𝑛, ℓ Mode numbers along X, Y, and Z axes 

𝛾 Complex propagation constant 

𝛼 Attenuation constant in spatial domain 

𝛽0 Wave number in unbounded medium 

𝛽𝑥 , 𝛽𝑦 , 𝛽𝑧 Directional bounded medium wave numbers 
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𝛽𝑐 Cutoff wave number in waveguide 

𝑊𝑒 ,𝑊𝑚 Energy stored in electric and magnetic fields 

𝑄𝑚𝑒𝑎𝑠 Measured Q-factor 

𝑄𝑑 Q-factor due to dielectric loss 

𝑄𝑠𝑚𝑜𝑜𝑡ℎ Q-factor due to smooth conductor resistivity 

𝑄𝑟𝑜𝑢𝑔ℎ  Q-factor due to surface roughness losses 

𝑄𝑐 Q-factor due to conductor loss 

𝑄𝑖𝑛𝑡  Q-factor due to internal losses 

𝑄𝑒𝑥𝑡  Q-factor due to external coupling network 

𝑄𝐿  Loaded Q-factor 

𝑄𝑟𝑎𝑑  Q-factor due to radiation loss 

𝑄𝑇𝐵 Q-factor due to resistivity in the top and bottom walls 

𝑄𝑠𝑖𝑑𝑒𝑠 Q-factor due to resistivity in the side walls 

𝑅𝑠 Surface resistivity 

𝑃𝑠𝑚𝑜𝑜𝑡ℎ Power lost in the smooth conductive walls 

𝑃𝑇𝐵 Power lost in the top and bottom walls 

𝑃𝑠𝑖𝑑𝑒𝑠 Power lost in the side walls 

𝜉 Roughness loss coefficient 

𝛿 Skin depth 

ℎ𝑅𝑀𝑆 RMS roughness height in m 

𝐵𝑅𝑀𝑆 RMS roughness base width in m 

𝑠𝑅𝑀𝑆 RMS roughness spacing in m 

𝓀 Cavity coupling coefficient 

𝜌 Voltage reflection coefficient magnitude 



 

 

1. INTRODUCTION 

1.1. DIELECTRIC MATERIALS 

Material characteristics play an important role in the design of high frequency 

electronic circuits and structures.  The dielectric material through which an 

electromagnetic wave propagates affects the velocity, wavelength, and attenuation of the 

wave, as well as characteristic impedance in a transmission line.  It is of utmost 

importance, then, for high speed printed circuit board (PCB) designers to accurately 

know the dielectric properties of the materials that compose their designs. 

The electric flux density 𝐃 is related to the electric field 𝐄 by [1] 

 

 𝐃 = 𝜖𝐄 (1) 

   

where 𝜖 is called the permittivity and is, simply put, a representation of a material’s 

ability to concentrate an electric field.  The magnetic flux density 𝐁 is likewise related to 

the magnetic field 𝐇 by the material’s permeability 𝜇: 

 

 𝐁 = 𝜇𝐇 (2) 

 

The parameters 𝜖 and 𝜇 are complex quantities given by  

 

 𝜖 = 𝜖′ − 𝑗𝜖′′ (3) 

 

 𝜇 = 𝜇′ − 𝑗𝜇′′ (4) 

 

The real parts of 𝜖 and 𝜇 relate to the material’s ability to concentrate electric and 

magnetic fields, respectively.  The imaginary components represent frequency dependent 

loss due to electric or magnetic conductivity in the material. 

In free space, the permittivity and permeability take the values of 

𝜖0 =  8.854 ×  10−12
As

Vm
  and 𝜇0 = 4𝜋 × 10

−7 Vs

Am
.  The speed of light in a vacuum 𝑐 is 

dependent upon the values of 𝜖0 and 𝜇0 
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𝑐 = √
1

𝜇0𝜖0
 (5) 

 

It is common when referring to dielectric materials to normalize the values of 𝜖 and 𝜇 

against their respective free space values, such that 

 

 
𝜖𝑟 =

𝜖′

𝜖0
 (6) 

 
𝜇𝑟 =

𝜇′

𝜇0
 (7) 

 

where the subscript “r” means “relative”.  In the materials typically used in PCB 

fabrication, 𝜇 = 𝜇0.  Thus, to model the behavior of a PCB dielectric material, it is only 

necessary to characterize the permittivity.  Relative permeability is almost always 

assumed to be 1.   

Dielectric loss is caused by a combination of static electrical conductivity 𝜎𝑠 and 

alternating field dipole hysteresis 𝜎𝑎 = 𝜔𝜖
′′ [2].  The effective dielectric conductivity 𝜎𝑑 

is the sum of 𝜎𝑠 and 𝜎𝑎 

 

 𝜎𝑑 = 𝜎𝑠 + 𝜎𝑎 (8) 

 

A common term for describing dielectric loss is the dissipation factor tan(𝛿𝑑), which is 

expressed by 

  

 tan(𝛿𝑑) =
𝜎𝑑
𝜔𝜖′

 (9) 

 

In most dielectric materials, 𝜎𝑠 ≪ 𝜔𝜖′′.  The dissipation factor can then be written as 

 

 tan(𝛿𝑑) =
σs + 𝜔𝜖

′′

𝜔𝜖′
≅
𝜖′′

𝜖′
 (10) 
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1.2. COMMON METHODS FOR DIELECTRIC CHARACTERIZATION OF  

PLANAR MATERIALS 

A good overview of techniques for dielectric characterization is given in [3], 

though many of the techniques listed are not suitable for use on PCB substrates because 

of the presence of conductive layers on the material.  A few specialized techniques take 

advantage of the conductive layers and use them as part of the testing procedure.  The 

simplest of these techniques treats the PCB panel as a parallel plate capacitor.  Given a 

known plate surface area and dielectric thickness, the capacitance of the panel can be 

measured using an LCR meter or impedance analyzer.  Material 𝜖′ can then be calculated 

from the measured capacitance and tan(𝛿𝑑) from the capacitor’s dissipation.  The 

capacitance technique is limited in accuracy by the fringing fields near the plates’ edges.  

Additionally, this technique only works at lower frequencies where the capacitive 

structure is electrically small.  At higher frequencies, the lumped element capacitor 

assumption is no longer valid. 

Another technique involves measuring the phase and attenuation constants along a 

planar transmission (e.g. microstrip or stripline).  In this method, vector transmission 

measurements are made using a vector network analyzer (VNA) to extract the necessary 

transmission line parameters.  To avoid the influence of return loss, it is necessary to 

perform de-embedding of the connector-to-line transition.  This travelling wave 

technique provides information on the effective dielectric constant, which is influenced by 

surrounding media, dielectric anisotropy, and conductor geometry and surface roughness.  

In some instances, knowledge of the effective dielectric constant for a particular line 

geometry is preferred to that of the physical dielectric constant (i.e., the dielectric 

constant of the material itself).  If an accurate characterization of the physical dielectric 

constant is needed, then the travelling wave technique is not ideal. 

If a PCB panel is used as a cavity resonator, then 𝜖′ can be determined from the 

resonant frequency and tan(𝛿𝑑) from the resonant quality factor.  The IPC-TM-650 

standard [4] outlines such a technique, which IPC calls the “full sheet resonance” (FSR) 

method.  In this test standard, two conductive planes of a dielectric panel are driven 

against each other to excite the cavity formed between the conductors.  The top and 

bottom planes are not connected to each other along the edges of the sheet, resulting in a 
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substantial amount of radiation loss.  Non-ideal effects such as surface roughness and 

finite conductivity are also neglected.  The IPC standard does not recommend this 

method for use in absolute measurements of 𝜖′ or tan(𝛿𝑑), both of which will be 

rendered inaccurate because of the assumptions made.  This technique does, however, 

provide a simple way to compare the properties of two or more dielectric sheets.  If an 

accurate characterization on a single panel has been performed using another method, 

then the FSR results of this “calibrated” panel can be compared to results from other 

panels to identify deviations in dielectric properties across a production batch. 

If the non-ideal effects neglected by the FSR technique can be calculated and 

mathematically removed in post-processing, then it should be possible to characterize the 

absolute dielectric properties of a material using a sheet resonance method.  Such analysis 

is the purpose of this thesis.  

 

1.3. STRUCTURE OF THIS THESIS 

Section 2 presents the basic conditions of resonance for electromagnetic 

resonators and discusses the behavior of ideal rectangular waveguide cavities.  A 

simplified methodology is presented to calculate 𝜖′ and tan(𝛿𝑑).  Section 3 provides 

mathematical analysis for each aspect of a cavity’s non-ideal behavior.  The effects of 

each assumption on dielectric measurement accuracy are explored using a hypothetical 

example cavity.  A step-by-step guide to using the techniques presented herein is 

included at the end of Section 3.  Section 4 presents full wave numerical simulation 

results and compares the results to those calculated analytically in Section 3.  

Measurements of a physical cavity are made in Section 5, as are final comments on the 

accuracy of the proposed methodology. 
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2. IDEAL CAVITY RESONANCE 

2.1. GENERAL CONDITIONS OF RESONANCE  

An electromagnetic resonator can be thought of as a section of a wave guiding 

structure with each end terminated in a non-matched impedance.  The wave guiding 

structure can be of any type, including coaxial cable, microstrip lines, and hollow 

waveguides.  Because of the applications of the work in this thesis to planar materials, 

however, only rectangular waveguide cavities are analyzed herein, as rectangular 

geometries are the simplest to fabricate out of PCB material.  Nevertheless, the following 

discussion of ideal resonance conditions applies to all guided wave resonators. 

 If an electromagnetic wave is coupled into the wave transmission section of a 

resonator, it will propagate until reaching an impedance discontinuity located at the 

resonator ends.  This discontinuity can be in the form of an open-circuit (resulting in 

reflection coefficient, Γ, of +1 or 1∠0°) or a short circuit (Γ = −1 or 1∠ − 180°).  

 After being reflected off the discontinuity at one end of the resonator, the 

travelling wave will then propagate in the other direction until being reflected by the 

discontinuity at the other end of the line.  Thus, the wave will be continually reflected in 

alternating directions along the structure.  If the travelling wave is in phase with the 

excitation wave after a round-trip through the line, the condition for resonance is 

satisfied.  This phase matching occurs when the phase shift along the line is an integer 

multiple of 2𝜋 radians.  In other words, the electrical round-trip length of the line must be 

an integer multiple of the wavelength of the travelling wave for resonance to occur.  

Mathematically, this is represented by: 

 

 
2𝜋

𝜆
(2𝐿𝑙𝑖𝑛𝑒) + ∠(Γ1) + ∠(Γ2) = 2π𝑘 (11) 

 

where 𝜆 is the wavelength of the travelling wave in the guided wave structure, ∠(Γ1) and 

∠(Γ2) are the phases of reflection coefficients at each end of the line, 𝐿𝑙𝑖𝑛𝑒 is the length 

of the line, and 𝑘 is an integer representing the number of wavelengths present in the 

round-trip length of the structure.  The presence of 𝑘 in (9) indicates that multiple 
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resonant frequencies are supported by a single resonator geometry.  Each of these 

multiple resonances is called a resonant “mode”.  Modes are identified based on the 

number of half-wavelengths established along the resonator.  In an ideal resonator, an 

infinite number of modes can be supported, though the characteristics of physical 

materials provide a limit on the highest frequencies achievable.  It is worth noting that 

(11) can be satisfied when both ∠(Γ1) and ∠(Γ2) are either 0° or 180°.  This leads to the 

conclusion that, at least in ideal resonators, the reflectors can be either both open or short 

circuits with no change in resonant frequency. 

 The in-phase reflected travelling waves will add constructively to form a standing 

wave along the length of the resonator.  Waves at frequencies other than those of the 

resonant modes will undergo destructive interference and decay in amplitude.  The rate of 

decay depends upon the difference in frequency from the resonant standing wave.  In a 

resonator that contains no losses, all waves at frequencies other than the resonant modes 

will remain at the amplitude of excitation, while the resonant frequencies will add 

constructively to a theoretical infinite amplitude.  In a lossy resonator, waves at the 

resonant frequencies will also decay to some extent.  This decay is expressed in terms of 

quality factor (also called Q-factor or simply “Q”).   The Q is a unitless quantity defined 

as the ratio between power stored by the resonator and power lost to heat and other 

mechanisms. 

 

 𝑄 =
𝑃𝑠𝑡𝑜𝑟𝑒𝑑
𝑃𝑙𝑜𝑠𝑡

 (12) 

 

 A sample resonance is shown in Figure 2.1.  This figure shows the simulated |S11| 

response of a rectangular cavity excited with a swept-frequency source.  The resonant 

frequency 𝑓𝑟 is found at the center of the null occurring at 1.882 GHz.  The null in |S11| 

indicates that power is being stored in the resonator at this frequency.  As frequency 

moves away from 𝑓𝑟, |S11| begins to increase until nearly all the input power is reflected 

at the edges of the displayed frequency span.  In the figure, Δ𝑓 represents the width of the 

resonance at an arbitrary value of |S11|.  The method for calculating Q from 𝑓𝑟 and Δ𝑓 is 

presented in Section 3.5. 
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Figure 2.1.  Diagram of a general reflection resonance.  fr = 1.882 GHz and 

Δ𝑓 =  7.3 MHz. 

 

 

 

2.2. RESONANCE IN RECTANGULAR ELECTROMAGNETIC CAVITIES    

While the principles outlined in Section 2.1 are applicable to all electromagnetic 

resonators, individual resonator types must be analyzed separately to account for their 

unique geometries and boundary conditions.  The mathematical formulation of resonance 

behavior for ideal rectangular waveguide cavities is presented in this section.  An ideal 

cavity is filled with a lossless dielectric material and has perfectly conducting walls.  As 

will be seen in later sections, these assumptions of ideality lead to errors in modelling the 

resonance. 

 The discussion in Section 2.1 pertained to a wave guiding structure in which wave 

propagation was limited to a single direction.  In the case of a generalized rectangular 

cavity resonator, standing waves can be established along each of the three Cartesian 

axes.  The number of 
𝜆

2
 standing waves along the 𝑎, 𝑏, 𝑑 dimensions of the cavity are 

denoted by positive integers m, n, and ℓ along the X, Y, and Z axes, respectively, as 

shown in Figure 2.2.  In this notation, 𝑏 ≤ 𝑎 ≤ 𝑑.   

𝑓𝑟

Δ𝑓
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Figure 2.2.  Physical dimensions and mode numbers of a rectangular waveguide cavity 

 

 

 

In unbounded media, electromagnetic waves propagate in the transverse-

electromagnetic (TEM) form, where both the electric and magnetic field components of 

the wave are orthogonal to each other and the direction of wave propagation.  In 

rectangular waveguides and cavities, waves can propagate as either transverse-electric 

(TE) or transverse-magnetic (TM) waves, where either (but not both) the electric field or 

magnetic are orthogonal to the direction of propagation.  TE modes are constrained such 

that 𝑚 = 0, 1, 2, …, 𝑛 = 0, 1, 2, …, and ℓ = 1, 2, 3, …  Either 𝑚 or 𝑛 can be equal to zero, 

but not both.  In TM modes, 𝑚 = 1, 2, 3, …, 𝑛 = 1, 2, 3, …, and ℓ = 0, 1, 2, …   Because of 

the planar cavity condition that 𝑏 ≪ 𝑎 and the resulting fact that 𝑛 = 0 for the first 

several resonant modes, the planar cavity is restricted to operation in the TE modes.   

The electric field 𝑬 at position 𝑧 travelling through a dielectric medium can be written as 

[2] 

 

 𝑬(𝑧) = �̂�𝑥𝐸𝑥(𝑧) = �̂�𝑥(𝐸0
+𝑒−𝛾𝑧 + 𝐸0

−𝑒+𝛾𝑧) (13) 

   

𝑎

𝑏 𝑑

Y

X

Z

𝑚 = 1

ℓ = 1

𝑛 = 1
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In (13), 𝛾 is known as the complex propagation constant which describes how the phase 

and amplitude of a wave change with respect to position 𝑧 and is given by 

 

 𝛾 = 𝛼 + 𝑗𝛽0 = √𝑗𝜔𝜇𝑑(𝜎𝑑 + 𝑗𝜔𝜖𝑑
′ ) = √−𝜔2𝜇𝑑𝜖𝑑

′ + 𝑗𝜔𝜇𝑑𝜎𝑑 (14) 

 

where 𝜇𝑑 is the permeability of the medium, 𝜖𝑑 is the permittivity of the medium, 𝜎𝑑 is 

the conductivity of the medium, and 𝜔 is the angular velocity of the wave.  The real 

valued term 𝛼 is the attenuation constant in 
𝑁𝑝

𝑚
 and 𝛽0 is the phase constant (also called 

wave number) in 
𝑅𝑎𝑑

𝑚
.  The phase constant can also be defined as  

 

 𝛽0 =
𝜆0
2𝜋

 (15) 

 

where 𝜆0 is the wavelength in the unbounded dielectric medium.  If a lossless medium is 

assumed, then 𝜎𝑑 = 0 and  

 

 𝛽0 = 𝜔√𝜇𝑑𝜖𝑑
′  (16) 

 

In a bounded medium such as a rectangular cavity, 𝛽0 is further constrained by dispersion 

equation: 

 

 𝛽0
2 = 𝛽𝑥

2 + 𝛽𝑦
2 + 𝛽𝑧

2 (17) 

 

The 𝛽𝑥, 𝛽𝑦, and 𝛽𝑧 terms in (17) are called the directional wave numbers and are given 

by 

 

 𝛽𝑥 =
2𝜋

𝜆𝑥
 (18) 
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 𝛽𝑦 =
2𝜋

𝜆𝑦
 (19) 

 βz =
2𝜋

𝜆𝑧
 (20) 

 

Combining (16) through (20) yields 

 

 𝜔𝑟√𝜇𝑑𝜖𝑑
′ = √(

2𝜋

𝜆𝑥
)
2

+ (
2𝜋

𝜆𝑦
)

2

+ (
2𝜋

𝜆𝑧
)
2

 (21) 

 

Given the assumption of an ideal cavity and perfectly reflecting walls, (11) becomes  

 

 
2𝜋

𝜆
(2𝐿𝑙𝑖𝑛𝑒) = 2𝜋𝑘   (22) 

 

Solving for 𝜆, 

 

 𝜆 =
2𝐿𝑙𝑖𝑛𝑒
𝑘

 (23) 

 

In this equation, 𝜆 should be replaced by 𝜆𝑥, 𝜆𝑦, or 𝜆𝑧, 𝐿𝑙𝑖𝑛𝑒 by 𝑎, 𝑏, or 𝑑, and 𝑘 by 𝑚, 𝑛, 

or ℓ for each of the three Cartesian axes, respectively.  Substituting (23) into (21) gives 

 

 𝜔𝑟√𝜇𝑑𝜖𝑑
′ = √(

𝑚𝜋

𝑎
)
2

+ (
𝑛𝜋

𝑏
)
2

+ (
ℓ𝜋

𝑑
)
2

 (24) 

 

Solving (24) for frequency produces the formula for the resonant frequency of an ideal 

cavity: 
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𝑓𝑖𝑑𝑒𝑎𝑙 =

1

2𝜋√𝜇𝑑𝜖𝑑
′
√(
𝑚𝜋

𝑎
)
2

+ (
𝑛𝜋

𝑏
)
2

+ (
ℓ𝜋

𝑑
)
2

 

 

(25) 

Additionally, the directional wave numbers can be written as 

 

 βx =
𝑚𝜋

𝑎
 (26) 

 βy =
𝑛𝜋

𝑏
 (27) 

 βz =
ℓ𝜋

𝑑
 (28) 

 

 The lowest resonant frequency will occur when 𝑚 = 1, n= 0, and ℓ = 1 in a 

planar cavity, while higher order modes will resonate at higher frequencies.  Depending 

on the cavity geometry, it is possible for multiple modes to have nearly the same resonant 

frequencies, as shown in Figure 2.3.  Modal overlap is said to occur if two frequencies 

are close enough together such that they are difficult to distinguish from each other.  In 

Figure 2.3, modes 6 and 7 are likely to exhibit modal overlap because of their proximity 

in frequency. 

 

 

 

 

Figure 2.3.  First 15 resonant frequencies of a 50x40x1 mm cavity 
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2.3. FIELD PATTERNS OF THE 𝐓𝐄𝒎𝟎𝓵 MODE   

When analyzing rectangular cavities, it becomes useful to have mathematical 

expressions for the standing waves present inside the resonating structure.  While a 

derivation directly from Maxwell’s equations is possible, this approach proves to be very 

time consuming.  An easier method is to begin with the field patterns of a rectangular 

wave operating in the TEmn mode.  The expressions for 𝑬 and 𝑯 are given in (29) and 

(30), respectively [2]. 

 

 

{
 
 

 
 𝐸𝑥

+ =
𝐴𝑚𝑛𝛽𝑦

𝜖𝑑
′ cos(𝛽𝑥𝑥) sin(𝛽𝑦𝑦) 𝑒

−𝑗𝛾𝑧 

𝐸𝑦
+ =

𝐴𝑚𝑛𝛽𝑥
𝜖𝑑
′ sin(𝛽𝑥𝑥) cos(𝛽𝑦𝑦) 𝑒

−𝑗𝛾𝑧 

0

 (29) 

 

 

{
  
 

  
 𝐻𝑥

+ =
𝐴𝑚𝑛𝛽𝑥𝛽𝑧
𝜔𝜖𝑑

′ 𝜇𝑑
sin(𝛽𝑥𝑥) cos(𝛽𝑦𝑦) 𝑒

−𝑗𝛾𝑧                 

𝐻𝑦
+ =

𝐴𝑚𝑛𝛽𝑦𝛽𝑧

𝜔𝜖𝑑
′ 𝜇𝑑

cos(𝛽𝑥𝑥) sin(𝛽𝑦𝑦) 𝑒
−𝑗𝛾𝑧                 

𝐻𝑧
+ = −𝑗

𝐴𝑚𝑛(𝛽𝑥
2 + 𝛽𝑦

2)

𝜔𝜖𝑑
′ 𝜇𝑑

cos(𝛽𝑥𝑥) cos(𝛽𝑦𝑦) 𝑒
−𝑗𝛾𝑧

 (30) 

 

where 𝐴𝑚𝑛 is an amplitude constant.  The 𝑒−𝑗𝛾𝑧 dependence of each field represents the 

travelling nature of the wave as it propagates through the waveguide.   

 In a rectangular cavity, waves do not propagate freely along the z-axis; rather, the 

boundary conditions present at the cavity end walls cause reflections that result in 

standing wave patterns.  These z-axis standing waves cause the expression for 𝐸𝑥 in (29) 

to be written as  

 

 𝐸𝑥(𝑥, 𝑦, 𝑧) =
𝐴𝑚𝑛𝛽𝑦

𝜖𝑑
′ cos(𝛽𝑥𝑥) sin(𝛽𝑦𝑦) [𝐶 cos(𝛽𝑧𝑧) + 𝐷 sin(𝛽𝑧𝑧)] (31) 
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where 𝐶 and 𝐷 are constants.  In a cavity with perfectly conductive end walls, the electric 

field component tangential to the conductor must be zero.  Mathematically, this is given 

by  

 𝐸𝑥(0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 𝑧 = 0) = 0 (32) 

 𝐸𝑥(0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 𝑧 = 𝑑) = 0 (33) 

 𝐸𝑦(0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 𝑧 = 0) = 0 (34) 

 𝐸𝑦(0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 𝑧 = 𝑑) = 0 (35) 

 

Applying the boundary condition of (32) to (31) results in 

 

 
𝐴𝑚𝑛𝛽𝑦

𝜖𝑑
′ cos(𝛽𝑥𝑥) sin(𝛽𝑦𝑦) [𝐶 (1) + 𝐷 (0)] = 0 (36) 

 

Thus, 𝐶 = 0.  Likewise, applying (33) to (31) results in 

 

 
𝐴𝑚𝑛𝛽𝑦

𝜖𝑑
′ cos(𝛽𝑥𝑥) sin(𝛽𝑦𝑦) [𝐷 sin(𝛽𝑧𝑧)] = 0 (37) 

 

Because 𝛽𝑧 =
ℓ𝜋

𝑑
 as given by (28), 𝐷 = 1.  The same values of 𝐶 and 𝐷 also apply to 𝐸𝑦.  

This results in  

 

 

{
 
 

 
 𝐸𝑥 =

𝛽𝑦

𝜖𝑑
′ 𝐴𝑚𝑛ℓ cos(𝛽𝑥𝑥) sin(𝛽𝑦𝑦) sin(𝛽𝑧𝑧)    

𝐸𝑦 = −
𝛽𝑥
𝜖𝑑
′ 𝐴𝑚𝑛ℓ sin(𝛽𝑥𝑥) cos(𝛽𝑦𝑦) sin(𝛽𝑧𝑧)

𝐸𝑧 = 0                                                                      

 (38) 

 

A similar approach is used to calculate 𝐻𝑧.  The PEC boundary condition requires that 

normal components of the magnetic field be zero.  Thus, 

 

 𝐻𝑧(0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 𝑧 = 0) = 0 (39) 
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 𝐻𝑧(0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏, 𝑧 = ℓ) = 0 (40) 

 

Calculating 𝐻𝑧 in this manner and enforcing Faraday’s Law to calculate 𝐻𝑥 and 𝐻𝑦 from 

𝐸𝑥 and 𝐸𝑦 results in 

 

 

{
  
 

  
 𝐻𝑥 =

𝑗𝛽𝑥𝛽𝑧𝐴𝑚𝑛ℓ
𝜔𝜇𝑑𝜖𝑑

′ sin(𝛽𝑥𝑥) cos(𝛽𝑦𝑦) cos(𝛽𝑧𝑧)                 

𝐻𝑦 =
𝑗𝛽𝑦𝛽𝑧𝐴𝑚𝑛ℓ

𝜔𝜇𝑑𝜖𝑑
′ cos(𝛽𝑥𝑥) sin(𝛽𝑦𝑦) cos(𝛽𝑧𝑧)                 

𝐻𝑧 = −j
𝐴𝑚𝑛ℓ
𝜔𝜇𝑑𝜖𝑑

′ (𝛽𝑥
2 + 𝛽𝑦

2) cos(𝛽𝑥𝑥) cos(𝛽𝑦𝑦) sin(𝛽𝑧𝑧)

    (41) 

 

2.4. ENERGY STORED IN AN IDEAL PLANAR CAVITY   

The energy stored in the internal electric field of a cavity is given by [5] 

 

 𝑊𝑒 =
1

4
{Re∫ 𝐄 ∙ 𝐃∗𝑑𝑉

𝑉

} (42) 

 

Applying (1) results in 

 

 𝑊𝑒 =
𝜖𝑑
′

4
∫ |𝐄|2𝑑𝑉
𝑉

 (43) 

 

In a planar cavity, 𝛽𝑦 = 0, and the TE𝑚0ℓ modes dominate.  Thus, 𝐸𝑦 remains as the only 

non-zero electric field component.  Substituting (38) into (43), 

 

 𝑊𝑒 =
𝜖𝑑
′

4
(
𝑚𝜋

𝑎𝜖𝑑
′ 𝐴𝑚0ℓ)

2

∫∫∫sin2 (
𝑚𝜋

𝑎
𝑥) sin2 (

ℓ𝜋

𝑑
𝑧) 𝑑𝑥

𝑎

0

𝑑𝑦

𝑏

0

𝑑𝑧

𝑑

0

 (44) 

 

which reduces to 
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 𝑊e =
𝐴𝑚0ℓ
2

𝜖𝑑
′ (

𝑚𝜋

𝑎
)
2 𝑎𝑏𝑑

16
 (45) 

 

 At resonance, the energy stored in the electric field is equal to the energy stored in 

the magnetic field.  Thus, 

 

 𝑊𝑡𝑜𝑡𝑎𝑙 = 2𝑊𝑒 =
𝐴𝑚0ℓ
2

𝜖𝑑
′ (

𝑚𝜋

𝑎
)
2 𝑎𝑏𝑑

8
 (46) 

 

2.5. USE OF CAVITY RESONANCE MEASUREMENTS TO CHARACTERIZE 

DIELECTRIC MATERIALS 

As discussed in Section 1.2, the resonance of an electromagnetic cavity can be 

used to determine both 𝜖𝑑
′  and tan(𝛿𝑑) of a dielectric substrate.  The mathematical 

techniques for determining both parameters from an ideal cavity are presented in this 

section, followed by a discussion of the problems caused by the assumption of ideality. 

2.5.1. Calculation of 𝝐′ and 𝝐′′ from Measured Resonance Characteristics. 

If the resonant frequency of a cavity is known through measurement, (25) can be used to 

solve for √𝜇𝑑
′ 𝜖𝑑

′ .  Most dielectric materials used in PCB fabrication can be assumed to 

have 𝜇 values of 𝜇0, and this assumption allows direct calculation of 𝜖𝑑 from the 

measured resonant frequency and cavity dimensions.   

 𝜖𝑑
′′ and tan(𝛿𝑑) are representations of dielectric power loss and can be related to 

𝑄𝑑.  The power lost in the dielectric material is given by [5] 

 

 𝑃𝑑 =
𝜔𝜖′′

2
∫ |𝐄|2

𝑉

𝑑𝑉 (47) 

 

which, for a planar cavity, can be written as  

 

 𝑃𝑑 =
ωϵ′′

2
(
𝑚𝜋

𝑎𝜖𝑑
′ 𝐴𝑚0ℓ)

2

∫∫∫sin2 (
𝑚𝜋

𝑎
𝑥) sin2 (

ℓ𝜋

𝑑
𝑧) 𝑑𝑥

𝑎

0

𝑑𝑦

𝑏

0

𝑑𝑧

𝑑

0

 (48) 
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which reduces to  

 

 𝑃𝑑 = 𝜔𝜖′′𝐴𝑚0ℓ
2 (

𝑚𝜋

𝑎𝜖𝑑
′ )

2
𝑎𝑏𝑑

8
 (49) 

 

The Q-factor of the dielectric material is expressed by  

 

 𝑄𝑑 =
𝑃𝑠𝑡𝑜𝑟𝑒𝑑
𝑃𝑑

=
𝜔𝑊𝑡𝑜𝑡𝑎𝑙

𝑃𝑑
=
𝜖′

𝜖′′
=

1

tan(𝛿𝑑)
 (50) 

 

Thus, in a perfectly conducting cavity where the dielectric is the only contributor to loss, 

the dissipation factor can be found by 

 

 tan(𝛿𝑑) =
1

𝑄𝑑
 (51) 

 

2.5.2. Inaccuracies in the Ideal Cavity Assumption.  The resonant frequency 

described in (25) only applies to cavities with lossless dielectrics and smooth, lossless 

conductors.  In reality, the resonant frequency is altered by reactive external coupling 

networks and internal loss.  Likewise, the measured Q of a cavity is influenced by all 

sources of loss in the cavity and is given by 

 

 
1

Qmeas
=
1

𝑄𝑑
+

1

𝑄𝑠𝑚𝑜𝑜𝑡ℎ
+

1

𝑄𝑟𝑜𝑢𝑔ℎ
+

1

𝑄𝑒𝑥𝑡
+

1

𝑄𝑟𝑎𝑑
 (52) 

 

where 𝑄𝑚𝑒𝑎𝑠 is the measured value, 𝑄𝑑 is caused by dielectric loss, 𝑄𝑠𝑚𝑜𝑜𝑡ℎ is caused by 

smooth conductor loss, 𝑄𝑟𝑜𝑢𝑔ℎ is caused by internal scattering off the surface roughness 

of the conductive walls, 𝑄𝑒𝑥𝑡 is caused by loss in coupling an external signal to the 

cavity’s resonant modes, and 𝑄𝑟𝑎𝑑 is caused by power lost through radiation.  Because 

the dissipation factor of a dielectric material is given by the reciprocal of 𝑄𝑑, it is 

necessary to calculate all other Q factors to be able to solve for 𝑄𝑑 when given 𝑄𝑚𝑒𝑎𝑠.  
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𝑄𝑟𝑎𝑑 is assumed to be negligible because a conductive cavity is fully enclosed; all other 

Q factors are to be considered.  As such, this thesis addresses and provides mathematical 

compensation for the following non-idealities: 

 The effect of dielectric loss on resonant frequency 

 The effect of surface inductance on resonant frequency 

 The effect of surface conductivity on Q 

 The effect of conductor surface roughness on Q 

 The effect of cavity coupling on measured Q 

 The effect of cavity coupling on resonant frequency 
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3. DEVELOPMENT OF AN IMPROVED MODEL 

3.1. EFFECT OF DIELECTRIC LOSS ON RESONANT FREQUENCY 

In the development of (14) to (16), it was assumed that the dielectric conductivity 

𝜎𝑑 is 0.  This assumption causes a small error that appears in the final resonance 

frequency equation.  To remove this error, the lossless assumption must not be made.   

3.1.1. Mathematical Derivation.  Squaring both sides of (14) gives 

 

 𝛼2 + 2𝑗𝛼𝛽0 − 𝛽0
2 = −𝜔2𝜇𝑑𝜖𝑑

′ + 𝑗𝜔𝜇𝑑𝜎𝑑 (53) 

 

 Equating the real and imaginary parts of both sides results in  

 

 𝛼2 − 𝛽0
2 = −𝜔2𝜇𝑑𝜖𝑑

′  (54) 

 

and 

 

 2αβ0 = ωμd𝜎𝑑 (55) 

 

Solving (54) and (55) simultaneously for 𝛽0 results in [2] 

 

 β0 = 𝜔√𝜇𝑑𝜖𝑑
′√
1

2
(√1 + (

𝜎𝑑
𝜔𝜖′

)
2

+ 1) (56) 

 

The combination of (9), (17), and (56) yields an expression for resonant frequency that 

has been compensated for dielectric loss: 

 

 𝑓𝑟 =

√(
𝑚𝜋
𝑎 )

2

+ (
𝑛𝜋
𝑏
)
2

+ (
ℓ𝜋
𝑑
)
2

2𝜋√𝜇𝑑𝜖𝑑
′√1
2 (√1 + tan

2(𝛿𝑑) + 1)

 (57) 
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3.1.2. Analysis.  Inspection of (57) reveals that the effect of tan(𝛿𝑑) on 𝑓𝑟 is not 

influenced by cavity geometry or mode of operation.  The relative change in 𝑓𝑟 can 

therefore be plotted against tan(𝛿𝑑) with no loss of generality, as is done in Figure 3.1.  

The resulting error in 𝜖′ calculation is shown in Figure 3.2.   

 Dielectric materials used for PCB substrates are typically chosen to have low 

values of loss.  FR-4, which is arguably the most common low-cost PCB substrate 

material, has a dissipation factor of 0.016 (though this varies between manufacturers).  

Rogers 4350, which is a common high performance dielectric material, has a dissipation 

factor of 0.004 [6].  According to the curve in Figure 3.2, the dielectric loss of both FR-4 

and Rogers 4350 will cause an error in measured 𝜖′ of less than 0.01%.  This error is too 

small to even be measurable in a practical system.  As such, the resonant frequency shift 

due to dielectric loss can be considered negligible. 

 

 

 

 

Figure 3.1.  Resonant frequency change vs. dielectric loss tangent 
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Figure 3.2.  Error in measured 𝜖′ vs. dielectric loss tangent 

 

 

 

3.2. EFFECT OF SURFACE CONDUCTIVITY ON Q-FACTOR 

To accurately determine the dielectric loss of a material, it is necessary to 

first calculate the power lost in the conductive walls of the cavity.  To do this, it is 

assumed that the cavity walls are perfectly smooth conductors with an associated 

quality factor 𝑄𝑠𝑚𝑜𝑜𝑡ℎ.  The effect of surface roughness will be analyzed in Section 

3.4. 

3.2.1. Mathematical Derivation.  To calculate 𝑄𝑠𝑚𝑜𝑜𝑡ℎ, it is necessary to 

calculate the power stored within the cavity (𝑃𝑠𝑡𝑜𝑟𝑒𝑑) and the power dissipated in the 

conductive cavity walls through ohmic loss (𝑃𝑠𝑚𝑜𝑜𝑡ℎ).  This can be represented 

mathematically as  

 

 𝑄𝑠𝑚𝑜𝑜𝑡ℎ =
𝑃𝑠𝑡𝑜𝑟𝑒𝑑
𝑃𝑠𝑚𝑜𝑜𝑡ℎ

=
𝜔𝑊𝑡𝑜𝑡𝑎𝑙

𝑃𝑠𝑚𝑜𝑜𝑡ℎ
 (58) 

 

where 𝑊𝑡𝑜𝑡𝑎𝑙 is given by (46). 

The power dissipated in the conductive walls, 𝑃𝑠𝑚𝑜𝑜𝑡ℎ, can be found by [5] 

 

0 0.01 0.02 0.03 0.04 0.05
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

tan()

%
 E

rr
o

r 
in

 P
e

rm
it
ti
v
it
y

Error in Permittivity. vs. Dielectric Loss



21 

 

 

 𝑃𝑠𝑚𝑜𝑜𝑡ℎ =
𝑅𝑠
2
∫ |𝐉s|

2𝑑𝑆
𝑤𝑎𝑙𝑙𝑠

=
𝑅𝑠
2
∫ |𝐇𝑡𝑎𝑛|

2𝑑𝑆
𝑤𝑎𝑙𝑙𝑠

 (59) 

 

where 𝑅𝑠 is the frequency dependent surface resistivity given by (60), 𝐉𝐬 is the surface 

current vector, and 𝐇𝑡𝑎𝑛 is the tangential element of the magnetic field at the wall’s 

surface. 

 

 𝑅𝑠 = √
𝜔𝜇0
2𝜎𝑐

 (60) 

 

Integrating over the walls, (59) becomes 

 

 

𝑃𝑠𝑚𝑜𝑜𝑡ℎ =
𝑅𝑠
2
{2 ∫ ∫|𝐻𝑥|𝑧=0

2 𝑑𝑥𝑑𝑦

𝑎

𝑥=0

𝑏

𝑦=0

+ 2 ∫ ∫|𝐻𝑧|𝑥=0
2 𝑑𝑦𝑑𝑧

𝑏

𝑦=0

𝑑

𝑧=0

+ 2 ∫ ∫[|𝐻𝑥|𝑦=0
2 + |𝐻𝑧|𝑦=0

2 ]𝑑𝑥𝑑𝑧 

𝑎

𝑥=0

𝑑

𝑧=0

} 

(61) 

 

Because 𝛽𝑦 = 0 in a planar cavity and only the TE𝑚0ℓ modes are considered, the only 

non-zero magnetic field components of (41) are 𝐻𝑥 and 𝐻𝑧.  Combining (61) and (41) 

gives  
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𝑃𝑠𝑚𝑜𝑜𝑡ℎ = 𝑅𝑠 {(
𝑚ℓ𝜋2𝐴𝑚0ℓ
𝑎𝑑𝜔𝜇𝑑𝜖𝑑

′ )

2

∫ ∫ sin2 (
𝑚𝜋

𝑎
𝑥) 𝑑𝑥𝑑𝑦

𝑎

𝑥=0

𝑏

𝑦=0

+ [
𝐴𝑚𝑛ℓ
𝜔𝜇𝑑𝜖𝑑

′ (
𝑚𝜋

𝑎
)
2

]

2

∫ ∫ sin2 (
ℓ𝜋

𝑑
𝑧) 𝑑𝑦𝑑𝑧

𝑏

𝑦=0

𝑑

𝑧=0

+ (
𝑚ℓ𝜋2𝐴𝑚𝑛ℓ
𝑎𝑑𝜔𝜇𝑑𝜖𝑑

′ )

2

∫ ∫ sin2 (
𝑚𝜋

𝑎
𝑥) cos2 (

ℓ𝜋

𝑑
𝑧) 𝑑𝑥𝑑𝑧 

𝑎

𝑥=0

𝑑

𝑧=0

+ [
𝐴𝑚𝑛ℓ
𝜔𝜇𝑑𝜖𝑑

′ (
𝑚𝜋

𝑎
)
2

]

2

∫ ∫ cos (
𝑚𝜋

𝑎
𝑥) sin (

ℓ𝜋

𝑑
𝑧) 𝑑𝑥𝑑𝑧 

𝑎

𝑥=0

𝑑

𝑧=0

} 

(62) 

 

Solving the integrals in (62) results in an expression for smooth conductor loss in a 

TEm0ℓ rectangular cavity. 

 

 
𝑃𝑠𝑚𝑜𝑜𝑡ℎ =

𝑅𝑠
4
(
𝐴𝑚0𝑙
𝜔𝜇𝑑𝜖𝑑

)
2

(
𝑚𝜋2

𝑎2𝑑
)

2

(ℓ2𝑎3𝑑 +𝑚2𝑎𝑑3 + 2ℓ2𝑎3𝑏

+ 2𝑚2𝑏𝑑3) 

(63) 

 

Substituting (46) and (63) into (58) gives the smooth conductor Q-factor for a TEm0ℓ 

rectangular cavity. 

 

 𝑄𝑠𝑚𝑜𝑜𝑡ℎ =
2𝜔

𝐴𝑚0ℓ
2

𝜖𝑑
(
𝑚𝜋
𝑎 )

2 𝑎𝑏𝑑
16

𝑅𝑠
4 (

𝐴𝑚0𝑙
𝜔𝜇𝑑𝜖𝑑

)
2

(
𝑚𝜋2

𝑎2𝑑
)
2

(ℓ2𝑎3𝑑 +𝑚2𝑎𝑑3 + 2ℓ2𝑎3𝑏 + 2𝑚2𝑏𝑑3)

 (64) 

 

Simplifying, (64) becomes 

 

 𝑄𝑠𝑚𝑜𝑜𝑡ℎ =
4𝜋𝑓3𝜖𝑑𝜇𝑑

2𝑎3𝑏𝑑3

𝑅𝑠(ℓ2𝑎3𝑑 +𝑚2𝑎𝑑3 + 2ℓ2𝑎3𝑏 + 2𝑚2𝑏𝑑3)
 (65) 
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For analysis purposes, it may be useful to compare the relative contributions of a 

cavity’s side walls and top/bottom walls to the total Q-factor given in (65).  Breaking (61) 

into two separate equations results in  

 

 𝑃𝑇𝐵 = 𝑅𝑠 ∫ ∫[|𝐻𝑥|𝑦=0
2 + |𝐻𝑧|𝑦=0

2 ]𝑑𝑥𝑑𝑧 

𝑎

𝑥=0

𝑑

𝑧=0

 (66) 

 

and 

 

 𝑃𝑠𝑖𝑑𝑒𝑠 = 𝑅𝑠 (2 ∫ ∫|𝐻𝑥|𝑧=0
2 𝑑𝑥𝑑𝑦

𝑎

𝑥=0

𝑏

𝑦=0

+ 2 ∫ ∫|𝐻𝑧|𝑥=0
2 𝑑𝑦𝑑𝑧

𝑏

𝑦=0

𝑑

𝑧=0

) (67) 

 

where 𝑃𝑇𝐵 is the power lost on the top and bottom walls, and 𝑃𝑠𝑖𝑑𝑒𝑠 is the power lost on 

the other four sides.  Calculating the Q-factors for 𝑃𝑇𝐵 and 𝑃𝑠𝑖𝑑𝑒𝑠 results in 

 

 𝑄𝑇𝐵 =
𝜔3𝑎2𝑏𝑑2𝜇𝑑

2𝜖𝑑
′

2𝜋2𝑅𝑠(ℓ2𝑎2 +𝑚2𝑑2)
 (68) 

 

 and 

 

 𝑄𝑠𝑖𝑑𝑒𝑠 =
𝜔3𝑎3𝑑3𝜇𝑑

2𝜖𝑑
′

4𝜋2𝑅𝑠(ℓ2𝑎3 +𝑚2𝑑3)
 (69) 

 

3.2.2. Analysis.  Because the conductor Q-factor of a cavity is heavily dependent 

upon the cavity dimensions and wall material, (65), (68), and (69) are best analyzed by 

modelling a representative example cavity.  𝑄𝑠𝑚𝑜𝑜𝑡ℎ at the first 15 resonant modes of a 

vacuum-filled, copper-walled 40x50x1 mm cavity is shown in Figure 3.3.  If this cavity 

were to be filled with a lossy dielectric material, then in the absence of other losses, the 

measured Q-factor of the cavity is represented by 
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1

Qm
=
1

Qd
+

1

𝑄𝑠𝑚𝑜𝑜𝑡ℎ
 (70) 

 

If 𝑄𝑠𝑚𝑜𝑜𝑡ℎ is neglected in (70), the resulting error in measuring 𝑄𝑑 is shown in Figure 3.4 

as a function of tan(𝛿𝑑).  This figure clearly indicates that error caused by neglecting 

𝑄𝑠𝑚𝑜𝑜𝑡ℎ in measuring low values of dielectric loss will be much greater than the error 

present in measurements of more lossy dielectrics.  The error in measuring the dissipation 

factor of Rogers 4350 is approximately 35%, while the error with FR-4 is only 5%.  It is 

important to note that the specific 𝑄𝑠𝑚𝑜𝑜𝑡ℎ values and error percentages shown in these 

plots are only valid for the specific cavity used in this example.  Nevertheless, the 

example cavity shows that neglecting 𝑄𝑠𝑚𝑜𝑜𝑡ℎ results in very significant error in 

measured tan(𝛿𝑑) for low loss materials. 

 

  

   

 

Figure 3.3.  Calculated 𝑄𝑠𝑚𝑜𝑜𝑡ℎ of the first 15 resonant modes of an example cavity 
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Figure 3.4.  Error in measured tan(𝛿𝑑) caused by neglecting 𝑄𝑠𝑚𝑜𝑜𝑡ℎ in an example 

cavity 

 

 

 

 The expressions given in (68) and (69) provide the relative contributions of the 

top/bottom and side cavity walls to the total 𝑄𝑠𝑚𝑜𝑜𝑡ℎ, respectively.  The influence of each 

group of walls on 𝑄𝑠𝑚𝑜𝑜𝑡ℎ as a function of 𝑏 is shown in Figure 3.5 for a vacuum-filled 

50x40x𝑏 mm cavity.  Once again, the exact percentages presented in Figure 3.5 are only 

valid for this particular cavity; however, the fact remains that for any practical planar 

cavity where 𝑎, 𝑑 ≫ 𝑏, the top and bottom walls have substantially greater influence on 

𝑄𝑠𝑚𝑜𝑜𝑡ℎ than do the side walls.   

The low influence of the side walls on 𝑄𝑠𝑚𝑜𝑜𝑡ℎ has important implications for 

measuring practical cavities.  Because of the way that PCBs are manufactured, the side 

wall conductors are likely to be constructed using a different process than the top and 

bottom layers.  This manufacturing difference can lead to different values of 𝜎𝑐 and 

surface roughness (discussed in Section 3.4) for the side walls.  Fortunately, small 

differences in the properties of the side walls will have very little impact on the total 

value of 𝑄𝑠𝑚𝑜𝑜𝑡ℎ because the cavity’s power loss is dominated by the top and bottom 

walls. 
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Figure 3.5.  Relative influence of the side walls and top/bottom walls of a 50x40xb mm 

cavity on the total Q factor at the fundamental mode 

 

 

 

3.3. EFFECT OF SURFACE CONDUCTIVITY ON FREQUENCY 

The inductive surface impedance of the cavity walls causes a phase shift in the 

internal standing waves, resulting in a change in resonant frequency.  This shift in 

resonance must be accounted for through mathematical corrections to (25). 

3.3.1. Mathematical Derivation.  The approach of [7] is first used to find the 

relationship between attenuation constant, 𝛼, and propagation constant, 𝛽𝑧, of a 

rectangular waveguide operating in the TE10 mode.  This relationship is then extended to 

cavity resonators to find a proportionality between 𝑄𝑠𝑚𝑜𝑜𝑡ℎ and resonant frequency.  It is 

assumed that all cavity walls are made of homogeneous, isotropic conductors with 

identical values of conductivity.    

The propagation constant of a waveguide is given by 

 

 𝛾0 = α0 + 𝑗𝛽𝑧 (71) 

 

Because 𝛼0 = 0 for an ideal waveguide,  
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 𝛽𝑧 = −𝑗𝛾0 (72) 

 

The cutoff wavenumber, 𝛽𝑐, is defined by 

 

 𝛽𝑐
2 = 𝛽𝑥

2 + 𝛽𝑦
2 (73) 

 

𝛽𝑐 and 𝛽𝑧 are related by 

 

 𝛽0
2 = (𝜔√𝜇𝑑𝜖𝑑

′ )
2

= 𝛽𝑐
2 + 𝛽𝑧

2 = 𝛽𝑐
2 − 𝛾0

2 (74) 

 

Thus, 

 

 𝛾2 = 𝛽𝑐
2 − 𝛽0

2 (75) 

 

In an ideal, lossless waveguide, 𝐸𝑦 = 0 at the 𝑥 = 𝑎 wall because of the PEC boundary 

condition.   In a non-ideal cavity, however, the finite skin depth causes some amount of 

field penetration into the walls.  This penetration is represented by adding small Δ terms 

to the directional wavenumbers and propagation constant. 

 

 

{
 
 

 
 
𝛽𝑥 = 𝛽𝑥0 + Δ𝛽𝑥
𝛽𝑦 = 𝛽𝑦0 + Δ𝛽𝑦
𝛽𝑧 = 𝛽𝑧0 + Δ𝛽𝑧
𝛽𝑐 = 𝛽𝑐0 + Δ𝛽𝑐
𝛾 = 𝛾0 + Δ𝛾     

 (76) 

 

where 

 

 Δγ = α + jΔβz (77) 

 

Applying (76) to (75) results in 
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 (𝛾 + Δ𝛾)2 = (𝛽𝑐 + Δ𝛽𝑐)
2 − 𝛽0

2 (78) 

 

Evaluating (78), neglecting all squared Δ terms, and solving for Δ𝛾 results in  

 

 Δ𝛾 =
(Δ𝛽𝑐)(𝛽𝑐)

𝑗𝛽𝑧
 (79) 

 

Because 𝛽𝑦 ≅ 0 in the TE10 mode, 

 

 𝛽𝑐 = 𝛽𝑥 (80) 

 

 Thus,  

 

 Δγ =
(Δβx)(𝛽𝑥)

𝑗𝛽𝑧
 (81) 

 

It is now necessary to relate the surface impedance of the wall, 𝑍𝑠, to Δ𝛽𝑥.  The surface 

impedance of the wall at 𝑥 = 𝑎 is given by 

 

 𝑍𝑠 =
𝐸𝑦

𝐻𝑧
|
𝑥=𝑎

=

𝛽𝑥
𝜖𝑑
′ 𝐴𝑚𝑛ℓ sin(𝛽𝑥𝑥) cos(𝛽𝑦𝑦) sin(𝛽𝑧𝑧)

𝑗𝐴𝑚𝑛ℓ
𝜔0𝜇𝑑𝜖𝑑

′ (𝛽𝑥2 + 𝛽𝑦2) cos(𝛽𝑥𝑥) cos(𝛽𝑦𝑦) sin(𝛽𝑧𝑧)
 (82) 

 

 

which reduces to  

 

 
𝐸𝑦

𝐻𝑧
|
𝑥=𝑎

=
𝜔0𝜇𝑑 sin(mπ + Δβx𝑎)

𝑗(𝛽𝑥 + Δ𝛽𝑥) cos(mπ + Δβx𝑎)
 (83) 

 

Because sin(𝑚𝜋 + 𝑢) = sin(𝑢), (83) further reduces to  

 



29 

 

 

 
𝐸𝑦

𝐻𝑧
|
𝑥=𝑎

=
𝜔0𝜇𝑑

𝑗(𝛽𝑥 + Δ𝛽𝑥)
tan(Δβx𝑎) (84) 

 

If it is assumed that (Δ𝛽𝑥𝑎) is small, then tan(𝛥𝛽𝑥𝑎) = Δ𝛽𝑥𝑎.  Thus, 

 

 
𝐸𝑦

𝐻𝑧
|
𝑥=𝑎

=
𝜔0𝜇𝑑Δβx𝑎

𝑗(𝛽𝑥 + Δ𝛽𝑥)
= 𝑍𝑠 (85) 

 

Assuming 𝛽𝑥 ≫ Δ𝛽𝑥 in the denominator, 

 

 
𝐸𝑦

𝐻𝑧
|
𝑥=𝑎

=
𝜔0𝜇𝑑Δβx𝑎

𝑗(𝛽𝑥)
= 𝑍𝑠 (86) 

 

Solving for Δ𝛽𝑥, 

 

 Δ𝛽𝑥 =
𝑗𝛽𝑥

𝑎𝜔0𝜇𝑑
𝑍𝑠 (87) 

 

Substituting (87) into (81) results in  

 

 𝛥𝛾 = 𝛼 + 𝑗Δ𝛽𝑧 = 𝐺𝑍𝑠 = 𝐺(𝑅𝑠 + 𝑗𝑋𝑠) (88) 

 

where 𝐺 is a lumped constant value.  Thus, 

 

 
Δ𝛽𝑧
𝛼

=
𝑋𝑠
𝑅𝑠

 (89) 

 

In a good conductor, 

 

 𝑍𝑠 = 𝑅𝑠 + 𝑗𝑋𝑠 = √
𝜔𝜇0
2𝜎𝑐

(1 + 𝑗) (90) 
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Thus, 𝑋𝑠 = 𝑅𝑠 and 

 

 𝛼 = Δ𝛽𝑧 (91) 

 

 In a waveguide, 𝛾 is a function of 𝑧 because the internal wave is travelling along 

the z-axis.  In a cavity, however, only standing waves exist.  It makes more sense, then, 

for 𝛾 in a cavity to be a function of time and frequency rather than of distance and phase.  

The two forms of 𝛾 are related by the phase velocity, 𝑣𝑝. 

 

 𝑒−𝛾𝑧 = 𝑒−[𝛼+𝑗(𝛽𝑧+Δ𝛽𝑧)]𝑧 = 𝑒−[𝛼𝑡+𝑗(𝜔0+Δω)](𝑡/𝑣𝑝)  (92) 

 

where 𝛼𝑡 is the time-domain attenuation constant and Δ𝜔 is the shift in resonant 

frequency due to wall impedance.  Comparing the real and imaginary parts of the two 

forms of 𝛾 reveals that 

 

 Δ𝜔 = 𝛼𝑡 (93) 

 

It is known that 𝛼𝑡 and 𝑄𝑐 are related by [8] 

 

 𝑄𝑠𝑚𝑜𝑜𝑡ℎ =
𝜔0
2𝛼𝑡

 (94) 

 

 Thus, 

 

 Δ𝜔 =
𝜔0

2𝑄𝑠𝑚𝑜𝑜𝑡ℎ
 (95) 

 

which is same result derived by eigenmode analysis in [8]. 

Applying the compensation given in (95) to (57) results in an expression for 

resonate frequency that has been compensated for both dielectric loss and wall reactance. 
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 𝑓𝑟 =
(1 −

1
2𝑄𝑠𝑚𝑜𝑜𝑡ℎ

)√(
𝑚𝜋
𝑎 )

2

+ (
𝑛𝜋
𝑏
)
2

+ (
ℓ𝜋
𝑑
)
2

2𝜋√𝜇𝑑𝜖𝑑
′√1
2 (√1 + tan

2(𝛿𝑑) + 1)

 (96) 

   

3.3.2. Analysis.  The expression for resonant frequency shift given in (96) is 

mostly easily analyzed by using the results for 𝑄𝑠𝑚𝑜𝑜𝑡ℎ that were determined in Section 

3.2.2 for a 50x40x1 mm cavity filled with a lossless dielectric with 𝜖𝑟
′ = 3.66.  As 

𝑄𝑠𝑚𝑜𝑜𝑡ℎ → ∞, the frequency predicted by (96) approaches 𝑓𝑖𝑑𝑒𝑎𝑙, as shown in Figure 3.6.  

The resonant frequency begins to measurably decrease as 𝜎𝑐 is lowered to more practical 

values.  For copper (𝜎𝑐 = 5.8 × 107 𝑆/𝑚), this results in a 0.05% change in resonant 

frequency (see Figure 3.7).  The error in measured 𝜖′ caused by this resonant shift is 

plotted in Figure 3.8.  According to this figure, copper walls will cause an error of 0.14% 

in measured 𝜖′ at the fundamental mode.  Figure 3.3 indicates that 𝑄𝑐 increases at higher 

order modes.  It is then expected that the relative change in resonant frequency—and 

error in measured 𝜖′—will decrease at higher modes.  This is confirmed in Figure 3.9.   

 While an error in 𝜖′ of 0.14% is an order of magnitude greater than the error 

caused by dielectric loss, the error due to wall reactance is still negligible in most cases.  

While this error would be measurable in a system with perfect cavity coupling and 

instrument calibration, the reality is that larger sources of error will dominate.  

 

 

 

 

Figure 3.6.  Resonant frequency of a TE101 example cavity as a function of 𝜎𝑐 
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Figure 3.7.  Change in resonant frequency of a TE101 example cavity as a function of 𝜎𝑐 

 

 

 

 

Figure 3.8.  Error in permittivity measurement caused by neglecting finite wall 

conductivity in a TE101 example cavity as a function of 𝜎𝑐 
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Figure 3.9.  Error in permittivity measurement caused by neglecting finite wall 

conductivity in an example cavity as a function of resonant mode 

 

 

 

3.4. EFFECT OF CONDUCTOR SURFACE ROUGHNESS ON Q-FACTOR 

As printed circuit boards began to be used at increasing high frequencies, 

designers and researches alike noticed that transmission lines exhibited greater insertion 

loss than that predicted by the √𝑓 behavior of the skin effect.  This increase in loss was 

found to be caused by conductor surface roughness [9] [10].  The copper sheets used in 

PCB manufacturing are chemically roughened by the manufacturer to improve adhesion 

to the PCB substrate, as shown in Figure 3.10.  The roughness is usually specified in 

RMS μm height, and typical values range from 0.5-3 μmRMS [11].  The surface 

roughness loss becomes substantial when skin depth is comparable to the roughness 

height. 
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Figure 3.10.  Cross sectional image of conductor surface roughness 

 

 

  

 It has been traditionally believed that the increase in conductor loss is due to an 

increase in the length the current must travel along the edge of the rough surface.  Recent 

publications, however, have questioned this belief.  If the roughness loss were indeed due 

to increased current path length, then it is expected that a corresponding increase in 

propagation time and phase constant would be present.  Such an increase in phase is not 

observed experimentally [12].  A more accurate approach to understanding surface 

roughness loss is to model the conductor surface as a network of spheroids, each 

scattering and absorbing a portion of the incident wave [12] [13].  

 To accurately characterize the dissipation factor of a dielectric material using 

cavity resonance, it is necessary to account for the effect of surface roughness on the Q-

factor of the cavity.  Three techniques for approximating the effect of surface roughness 

are investigated in this thesis, each with differing levels of accuracy and complexity.  All 

three methods calculate a roughness coefficient 𝜉 such that 

 

 𝑃𝑐 = 𝜉𝑃𝑠𝑚𝑜𝑜𝑡ℎ (97) 

 

where 𝑃𝑐 is the total conductor loss, including roughness loss.  This expression can be 

written in terms of Q-factor as  

 

 Qc =
𝑄𝑠𝑚𝑜𝑜𝑡ℎ

𝜉
= (

1

𝑄𝑠𝑚𝑜𝑜𝑡ℎ
+

1

𝑄𝑟𝑜𝑢𝑔ℎ
)

−1

 (98) 

 

where 𝑄𝑐 is the total conductor Q-factor. 

Dielectric

Copper
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3.4.1. Hammerstad-Jensen Model.  The most common method to calculate 𝜉 is 

the Hammerstad-Jensen model, given by 

 

 𝜉𝐻𝐽 = 1 +
2

π
tan−1 [1.4 (

ℎ𝑅𝑀𝑆
𝛿
)
2

] (99) 

 

where 𝛿 is the skin depth and ℎ𝑅𝑀𝑆 is the RMS inclusion height [9].  This model was 

developed as an empirical fit to the results calculated in [14] that assumed a triangular 

roughness profile seen in Figure 3.11.   

 

 

 

 

Figure 3.11.  Surface profile assumed by the Hammerstad-Jensen model 

 

 

 

   The Hammerstad-Jensen model requires only one surface parameter, ℎ𝑅𝑀𝑆, which 

is often provided by manufacturers of PCB material.  The easy availability of the needed 

parameter makes the Hammerstad-Jensen model extremely easy to use in practice.  The 

accuracy of this model, however, has been found to be quite poor at higher frequencies.  

The formula given in (99) saturates at a value of 2, even though no physical saturation of 

loss has been observed to occur under 50 GHz.  This model’s usefulness is generally 

limited to 2-3 GHz, where it is found to be reasonably accurate for small-to-moderate 

values of ℎ𝑅𝑀𝑆 [12]. 

ℎ𝑅𝑀𝑆
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3.4.2. Hall Hemispherical Model.  The Hall Hemispherical model [13] treats the 

rough conductor surface as a series of hemispheroids of height ℎ𝑅𝑀𝑆, width 𝐵𝑅𝑀𝑆, and 

spacing 𝑠𝑅𝑀𝑆, as shown in Figure 3.12.  Each hemispheroid base area 𝐴𝑏𝑎𝑠𝑒 is assumed to 

be sitting alone on a flat square conductive tile of area 𝐴𝑡𝑖𝑙𝑒 as illustrated in Figure 3.13.   

 

 

 

 

Figure 3.12.  Surface profile assumed by the Hall Hemispherical model 

 

 

 

 

Figure 3.13.  Top view of the surface profile assumed by the Hall Hemispherical model 

 

 

 

The power scattered and absorbed by the hemispheroid is found by calculating the 

scattering coefficients for an equivalent sphere with the same surface area as the 

hemispheroid.  The resulting power loss is divided by 2 to account for the fact that only 

half the sphere physically exists.  The power lost in the smooth plane surrounding the 

hemispheroid is then added.  The overall expression for power loss in the hemispheroid 

ℎ𝑅𝑀𝑆

𝐵𝑅𝑀𝑆 𝑠𝑅𝑀𝑆

𝐴𝑡𝑖𝑙𝑒

𝐴𝑏𝑎𝑠𝑒
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and surrounding plane is normalized against the power loss over a smooth plane with no 

hemisphere.  The resulting expression for the roughness coefficient is  

 

 
𝜉ℎ𝑒𝑚𝑖 =

(|𝑅𝑒 [√
𝜇𝑑
𝜖𝑑
′
3𝜋
4𝛽0

2 (𝑢 + 𝑣)]| +
𝜇0𝜔𝛿
4

(𝐴𝑡𝑖𝑙𝑒 − 𝐴𝑏𝑎𝑠𝑒))

𝜇0𝜔𝛿
4 𝐴𝑡𝑖𝑙𝑒

 
(100) 

 

where 𝑢 and 𝑣 are the scattering coefficients for a sphere, given by  

 

 𝑢 = −
2𝑗

3
(𝛽0𝑟𝑒)

3 [
1 −

𝛿
𝑟𝑒
(1 + 𝑗)

1 +
𝛿
2𝑟𝑒

(1 + 𝑗)
] (101) 

 

 𝑣 = −
2𝑗

3
(𝛽0𝑟𝑒)

3 [

1 − (
4𝑗

𝛽0
2𝑟𝑒𝛿

) (
1

1 − 𝑗)

1 + (
2𝑗

𝛽0
2𝑟𝑒𝛿

) (
1

1 − 𝑗)
] (102) 

 

The values of 𝐴𝑡𝑖𝑙𝑒 and 𝐴𝑏𝑎𝑠𝑒are related to the RMS inclusion spacing and base width, 

respectively: 

 

 𝐴𝑡𝑖𝑙𝑒 = 𝑠𝑅𝑀𝑆
2  (103) 

 𝐴𝑏𝑎𝑠𝑒 = 𝜋 (
𝐵𝑅𝑀𝑆
2
)
2

 (104) 

 

Finally, the equivalent radius of a sphere having the same surface area as the 

hemispheroid is calculated by 

 

 𝑟𝑒 = √ℎ𝑅𝑀𝑆 (
𝐵𝑅𝑀𝑆
2
)
23

 (105) 
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 At low frequencies, 𝜉ℎ𝑒𝑚𝑖 is a fractional value, which implies lower loss than that 

of a perfectly smooth conductor, which is clearly invalid.  This error is corrected by 

setting the roughness coefficient to unity at frequencies where the power lost in the 

hemispheroid is less than the power lost in a plane of equivalent base area. 

 

 𝜉 = {
1,   ξℎ𝑒𝑚𝑖 ≤ 1

𝜉ℎ𝑒𝑚𝑖,   𝜉ℎ𝑒𝑚𝑖 > 1
 (106) 

 

 The Hall Hemispherical model requires three statistical measurements of the 

conductor surface.  This data is not typically supplied by manufacturers, but can be 

measured by analyzing a two-dimensional cross section by scanning electron microscope 

or optical microscope.  Experimental testing has shown that the Hall model is valid at 

frequencies of at least 20 GHz [13]. 

3.4.3. Huray Snowball Model.  The Huray “Snowball” model [12] is similar to 

the Hall Hemispherical model in that it treats the conductor surface roughness as a series 

of spherical protrusions.  Unlike the Hall method, however, which represents each 

inclusion as a single hemispheroid, the Huray model analyzes each inclusions as a 

pyramidal stack of conductive spheres, or “snowballs,” of different radii.  This is 

illustrated in Figure 3.14.   

 

 

 

 

Figure 3.14.  Surface profile assumed by the Huray Snowball model 
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The power scattered and absorbed by each snowball is calculated and summed 

together.  An additional loss term is included that accounts for the thickness variation of 

the foil without the stacks of spheres.  Thickness variation results in a somewhat “wavy” 

appearance and a corresponding increase in surface area and is present even before the 

conductor surface has been chemically roughened.  The final formula for the roughness 

coefficient is  

 

 𝜉𝑆𝐵 =
𝐴𝑀𝑎𝑡𝑡𝑒
𝐴𝐹𝑙𝑎𝑡

+ 6∑

[
 
 
 (

𝑁𝑖𝜋𝑟𝑖
2

𝐴𝐹𝑙𝑎𝑡
)

1 +
𝛿
𝑟𝑖
+
𝛿2

2𝑟𝑖
2]
 
 
 

𝑖

 (107) 

 

where 𝐴𝑚𝑎𝑡𝑡𝑒 is the surface area of the foil before being chemically roughened and 𝐴𝑓𝑙𝑎𝑡 

is the geometrical area of the foil when projected onto a flat plane.  𝑁𝑖 is the number of 

spheres over the foil’s surface area of radius 𝑟𝑖. 

 The expression for 𝜉𝑆𝐵 looks deceptively simple.  While easy to calculate 

mathematically, 𝜉𝑆𝐵 requires the parameters 𝐴𝑀𝑎𝑡𝑡𝑒, 𝑁𝑖, and 𝑟𝑖, which are not trivial to 

measure.  A surface profilometry scan is needed both before and after chemical 

roughening, which limits the use of the Huray method to manufacturers who have access 

to the foil at various stages during the production process before lamination.  This usage 

limitation is unfortunate, as the model has been shown to be accurate to at least 50 GHz 

[12]. 

3.4.4. Analysis.  The three surface roughness models analyzed above can be used 

interchangeably, since they are simply different methods of calculating the same 

coefficient.  For most uses in dielectric characterization, however, the Hall Hemispherical 

model provides the best tradeoff between complexity and accuracy.  If it is not possible to 

make the cross-sectional images required to calculate the parameters for the Hall model, 

the Hammerstad model may be used with manufacturer-provided parameters.  The 

Hammerstad model will result in decreased accuracy in calculated tan(𝛿𝑑) when 

compared to the Hall model, but will still provide an improvement over measurements in 

which the surface roughness is neglected altogether. 
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 To analyze the effect of surface roughness on a cavity’s Q-factor, the 

hemispherical roughness parameters from [13] of ℎ𝑅𝑀𝑆 = 5.8 𝜇𝑚, 𝑠𝑅𝑀𝑆 = 9.4 𝜇𝑚 were 

used to calculate the roughness factor.  The data in [13] did not list the value of 𝐵𝑅𝑀𝑆, 

which was assumed here to be 5.0 𝜇𝑚.  The calculated values of 𝜉 over frequency for a 

cavity filled with 𝜖𝑟
′ = 3.66 is shown in Figure 3.15.  The Q-factor of a 50x40x1 mm 

cavity is compared between a cavity with rough and smooth walls in Figure 3.16.  The 

surface roughness results in a decrease in 𝑄𝑐, as expected.  The rate of change of 

roughness loss with respect to frequency, 
𝑑𝜉

𝑑𝑓
, is less than 

𝑑𝑄𝑠𝑚𝑜𝑜𝑡ℎ

𝑑𝑓
, meaning that even 

when surface roughness is included in the model, 𝑄𝑐 still increases with frequency.  The 

implications of this Q-factor increase lead to a somewhat unexpected conclusion—the 

presence of surface roughness in a cavity becomes increasingly less relevant to dielectric 

measurement at high frequencies.  To illustrate this, the measured error in tan(𝛿𝑑) caused 

by neglecting surface roughness is plotted in Figure 3.29 as a function of dissipation 

factor and frequency.  A frequency dependence, albeit a somewhat small dependence, is 

seen in the error.  The absolute values of error shown in this plot are highly dependent 

upon the cavity geometry, surface roughness profile, and value of 𝜖𝑟
′ .  From the error 

seen in this example cavity, however, it can be expected that for low loss materials, the 

error caused by surface roughness is in the order of 25%. 

 

 

 

 

Figure 3.15.  Calculated roughness coefficient for ℎ𝑅𝑀𝑆 = 5.8 𝜇𝑚, 𝑠𝑅𝑀𝑆 = 9.4 𝜇𝑚, and 

of 𝐵𝑅𝑀𝑆 = 5.0 𝜇𝑚 
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Figure 3.16.  Comparison of Q-factor for smooth and rough conductors as a function of 

frequency 

 

 

 

 

Figure 3.17.  Error in measured dissipation factor due to surface roughness as a function 

of tan(𝛿𝑑) for 𝜖𝑟
′ = 3.66 in a TE101 50x40x1 mm cavity 
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3.5. EFFECT OF CAVITY COUPLING ON Q-FACTOR 

The previous sections have focused on the effects of the non-ideal parameters of 

the cavity structure as if it was a closed system.  In reality, however, a cavity must be 

excited by an outside circuit and coupling network.  This coupling network can be 

modelled with the resonator as an equivalent circuit, as shown in Figure 3.18.  Each 

resonant mode must be represented by a circuit with different component values.  The 

real part of the external coupling impedance, 𝑔𝑒, will cause additional power loss, while 

the imaginary part of the external impedance, 𝑏𝑒, will cause frequency detuning. 

 

 

 

 

Figure 3.18.  Equivalent circuit of a cavity resonator 

 

 

   

3.5.1. Mathematical Derivation.  To analyze the change in Q-factor as a result of 

the external loading, it is possible to neglect the reactive part of the coupling impedance 

and reflect the external resistance across the transformer.  This simplified circuit is shown 

in Figure 3.19.   In this circuit, the resonant frequency 𝜔0 is given by 

𝑍0

𝑔𝑒 + 𝑗𝑏𝑒

𝑛 1

𝑅0

𝐶0

𝐿0

ResonatorCoupling
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 𝜔0 =
1

√𝐶0𝐿0
 (108) 

 

The internal Q-factor, 𝑄𝑖𝑛𝑡, represents all losses internal to the cavity, including 𝑄𝑑 (and 

dielectric dissipation factor by association).  The external Q-factor, 𝑄𝑒𝑥𝑡, represents the 

power lost through the cavity coupling.  Any quality factor measurement will include 

both 𝑄𝑖𝑛𝑡 and 𝑄𝑒𝑥𝑡.  To accurately measure 𝑄𝑑, it is therefore necessary to 

mathematically calculate and remove the value of 𝑄𝑒𝑥𝑡.  Expressions for 𝑄𝑖𝑛𝑡 and 𝑄𝑒𝑥𝑡 

for the simplified equivalent circuit in Figure 3.19 are given by [5] 

 

 𝑄𝑖𝑛𝑡 =
1

𝑅0
√
𝐿0
𝐶0
=
𝜔0
𝑅0
𝐿0 (109) 

 

  𝑄𝑒𝑥𝑡 =
1

𝑅𝐶
√
𝐿0
𝐶0

 (110) 

 

It is now necessary to introduce the coupling coefficient, 𝓀.  This coefficient is ratio of 

the power lost in the coupling network to the power lost in the resonator. 

 

 𝓀 =
𝑅𝑐
𝑅0
=
𝑄𝑖𝑛𝑡
𝑄𝑒𝑥𝑡

 (111) 

 

If 𝓀 > 1, the resonator is considered overcoupled.  If 𝓀 < 1, the resonator is 

undercoupled.  If 𝓀 = 1, the resonator is said to be critically coupled.  Observing the 

complex value of a resonator’s S11 on a Smith chart quickly reveals whether the resonator 

is overcoupled, critically coupled, or undercoupled as shown in Figure 3.20.  The 

resonance circle of an overcoupled resonator will encompass the origin of the chart, while 

the origin remains outside the resonance circle of an undercoupled system.  At critical 

coupling, the resonance circle will pass through the origin.  The value of 𝓀 can be found 

by measuring |S11| at resonance. 
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 𝓀 = {
VSWR,   Overcoupled
1

VSWR
,    Undercoupled

 (112) 

 

where 

 

 VSWR =
1 + |S11|

1 − |𝑆11|
 (113) 

 

 

 

 

Figure 3.19.  Simplified equivalent circuit of a cavity resonator 

 

 

 

From Figure 3.19, the reflection coefficient looking from 𝑅𝑐 into the cavity is given by 

 

 Γ =
𝑍𝐿 − 𝑍𝑠
𝑍𝐿 + 𝑍𝑠

=
(𝑅0 − 𝑅𝑐) + 𝑗 (𝜔𝐿0 −

1
𝜔𝐶0

)

(𝑅0 + 𝑅𝑐) + 𝑗 (𝜔𝐿0 −
1
𝜔𝐶0

)
 (114) 

   

𝑅0

𝐶0

𝐿0

𝑅𝐶

Γ
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Figure 3.20.  Smith chart representation of an overcoupled and undercoupled resonance 

 

 

 

Substituting (109), (110), and (111) into (114) results in 

 

 Γ =
(1 − 𝓀) + 𝑗𝑄𝑖𝑛𝑡Ω

(1 + 𝓀) + 𝑗𝑄𝑖𝑛𝑡Ω
 (115) 

 

where  

 Ω =
ω

ω0
−
𝜔0
𝜔

 (116) 

Near resonance, the value of Ω can be approximated as 

 

 Ω ≅
Δω𝜌

𝜔0
=
1

𝑄𝜌
 (117) 

Overcoupled

Undercoupled
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where Δ𝜔𝜌 is the bandwidth at an arbitrary value of 𝜌 = |S11| as shown in Figure 3.21.  

𝑄𝜌 is the measured Q-factor at any value of 𝜌, but does not have any physical meaning by 

itself.  It is, however, possible to write a mapping function 𝐹(𝜌, 𝓀) = 𝑄𝑖𝑛𝑡/𝑄𝜌  that uses 

the measured 𝑄𝜌 to determine 𝑄𝑖𝑛𝑡 and 𝑄𝑒𝑥𝑡 [15].  To derive 𝐹(𝜌, 𝓀), it is first necessary 

to rewrite expression for Γ given in (114) as 

 

 Γ =
(1 − 𝓀) + 𝑗𝐹(𝜌, 𝓀)

(1 + 𝓀) + 𝑗𝐹(𝜌, 𝓀) 
 (118) 

 

Squaring the magnitude of (118), 

 

 𝜌2 = |𝛤|2 =
(1 − 𝓀)2 + 𝐹2(𝜌, 𝓀)

(1 + 𝓀)2 + 𝐹2(𝜌, 𝓀)
 (119) 

 

Solving for 𝐹(𝜌, 𝓀), 

 

 𝐹(𝜌,  𝓀) = √
(1 + 𝓀)2𝜌2 − (1 − 𝓀)2

(1 − 𝜌2)
 (120) 

 

The mapping function 𝐹(𝜌,  𝓀) can be easily calculated by analyzing the measured 

reflection coefficient.  The corrected value of 𝑄𝑖𝑛𝑡 is finally given by  

 

 Qint =
Δ𝜔𝜌

𝜔0
√
(1 + 𝓀)2𝜌2 − (1 − 𝓀)2

(1 − 𝜌2)
 (121) 

𝑄𝑒𝑥𝑡 can be found by  

 𝑄𝑒𝑥𝑡 =
𝑄𝑖𝑛𝑡
𝓀

 (122) 
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Figure 3.21.  Graphical representation of Δ𝜔𝜌 

 

 

 

3.5.2. Analysis.  The effect of external loading on the measured Q-factor of a 

cavity cannot be easily analyzed without coupling data from a real or simulated 

resonance.  Therefore, a CST model was built in which 50x40x1 mm cavity was fed by 

an SMA connector, as shown in Figure 3.22a.  The cavity was filled with lossy Rogers 

4350, the shell and center pin of the connector were modeled as PEC, and the connector 

dielectric material was lossy PTFE.  A waveguide port provided the excitation for the 

simulation.  The center pin of the SMA connector was extended into the cavity’s 

dielectric, thus acting as a probe from which S11 could be measured.  A cross-sectional 

image of the probe feed is shown in Figure 3.22b.  The depth of probe penetration was 

varied from 0 mm to 0.9 mm to provide data with varying values of 𝓀.   

 From each simulated |S11| curve, a corresponding value of 𝓀 was calculated.  The 

Smith chart representation of |S11| in Figure 3.23 was used to determine that four of the 

simulated resonances were undercoupled and two were overcoupled.  Figure 3.24 shows 

the simulated |S11| data for each value of 𝓀.   
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Figure 3.22.  a) Image of the frequency-domain CST SMA-excitation model  b) Cross-

sectional image of the simulated cavity’s SMA feed 

 

 

 

 

Figure 3.23.  Smith chart representation of simulated |S11| results of a TE101 mode 

50x40x1 mm cavity filled with Rogers 4350 

SMA Connector

Probe

a) b)
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Figure 3.24.  Simulated |S11| results of a TE101 mode 50x40x1 mm cavity filled with 

Rogers 4350 

 

 

 

Because the value of |S11| at the resonance corresponding to 𝓀 = 0.11 was 0.8, 

the value of 𝜌 to be used in calculating 𝑄𝜌 was chosen to be 0.85.  Any value of 𝜌 greater 

than 0.8 could have been used, and lower values of 𝜌 could have been used for the deeper 

resonances.  For consistency, however, 𝜌 = 0.85 was used for the calculation of 𝑄𝜌 for 

all simulated resonances.  The resulting values of 𝑄𝜌 were then used to calculate 𝑄𝑖𝑛𝑡 and 

𝑄𝑒𝑥𝑡.  A loaded Q-factor, 𝑄𝐿, was also calculated by  

 

 
1

QL
=

1

𝑄𝑒𝑥𝑡
+

1

𝑄𝑖𝑛𝑡
 (123) 

 

Figure 3.25 shows 𝑄𝑒𝑥𝑡, 𝑄𝑖𝑛𝑡, and 𝑄𝐿 for each simulated value of 𝓀.  In theory, 

𝑄𝑖𝑛𝑡 is not affected by coupling conditions and should remain constant for all values of 

𝓀.  This is clearly seen in the data in Figure 3.25, where 𝑄𝑖𝑛𝑡 does not change with 

varying values of 𝑄𝑒𝑥𝑡.  For large values of 𝑄𝑒𝑥𝑡, 𝑄𝐿 is very close to 𝑄𝑖𝑛𝑡.  As the 

external loading increases, however, 𝑄𝐿 begins to deviate greatly from 𝑄𝑖𝑛𝑡.  This 
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deviation will lead to errors in Q-factor measurement and thus in tan(𝛿𝑑).  The 

difference between 𝑄𝐿 and 𝑄𝑖𝑛𝑡 is shown in Figure 3.26.  For an overcoupled cavity with 

𝓀 = 2.4, a difference of over 70% is seen.  The difference is smaller for lower values of 

𝓀, but will still lead to large errors in calculating tan(𝛿𝑑).   Figure 3.27 illustrates this 

point well, where it is shown that a coupling factor of only 0.3 will produce an error in 

tan(𝛿𝑑) of nearly 50%.  Errors in excess of 100% are present at the higher coupling 

factors.  It is clear that the error in dissipation factor caused by neglecting 𝑄𝑒𝑥𝑡 is not at 

all negligible. 

  

 

 

 

Figure 3.25.  Calculated external, internal, and loaded Q-factors as a function of 𝓀 for 

simulated data 

 

 

 

10
0

0

500

1000

1500

2000

Coupling Coefficient

Q
-F

a
c
to

r

 

 

Calculated External

Calculated Internal

Loaded



51 

 

 

 

Figure 3.26.  Difference between 𝑄𝑖𝑛𝑡 and 𝑄𝐿 as a function of 𝓀 

 

 

 

 

Figure 3.27.  Error in calculated tan(𝛿𝑑) caused by neglecting 𝑄𝑒𝑥𝑡 as a function of 𝓀 
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3.6. EFFECT OF COUPLING COEFFICIENT ON FREQUENCY 

The reactive portion of the coupling impedance of the equivalent circuit in Figure 

3.18 can cause detuning of the resonant frequency of a cavity.  Most literature on the 

topic of cavity coupling focuses on the effect of coupling on Q-factor rather than resonant 

frequency, though there has been some successful research on the subject.   

3.6.1. Empirical Method Development.  It was found empirically in [16] that the 

relationship between loaded and unloaded resonant frequencies can be found by  

 

 𝑓𝐿 = (1 −
𝐴

𝑄𝑒𝑥𝑡
𝑔 )𝑓𝑢 (124) 

 

where 𝐴 and 𝑔 are empirically determined constants.  The constant 𝐴 can take either 

positive or negative values, depending upon the direction of detuning.  The authors of 

[16] propose a three-point measurement method to determine the constants and unloaded 

resonant frequency.  Three separate resonance measurements must be made, each having 

a different coupling factor and external Q-factor.  This means that either the coupling 

probe’s position or length must be changed.  The resulting system of equations 

 

 𝑓𝐿,𝑖 = (1 −
𝐴

𝑄𝑒𝑥𝑡,𝑖
𝑔 )𝑓𝑢,    𝑖 = 1,2,3 (125) 

 

can then be solved numerically for 𝑓𝑢 using each measured value of 𝑓𝐿 and 𝑄𝑒𝑥𝑡. 

 For dielectric measurement, physically moving a probe position or changing 

probe depth is highly impractical.  If three cavities of identical size were produced, 

however, then each cavity could be made with a different coupling location.  This three-

cavity method would only work if the physical size of the cavities was controlled to a 

tight tolerance and if it is assumed that the dielectric properties of the material did not 

vary between the three cavities. 
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3.6.2. Analysis.  To quantify the effect of coupling on frequency detuning, the 

resonant frequencies from the FEM simulation performed in Section 3.5.2 were 

compared to the unloaded resonant frequency calculated with (96) (which was also 

confirmed using an eigenmode simulation).  The frequency difference caused by the 

reactive coupling network is plotted against 𝓀 in Figure 3.28.  The corresponding error in 

𝜖′ measurement is shown in Figure 3.29.  This permittivity error is on the order of 1% for 

the example 50x40x1 mm cavity operating in the TE101 mode.  Comparison of the error 

caused by reactive coupling to the other sources of frequency error explored in this thesis 

reveals that the coupling error is likely to dominate (though this depends upon the 

coupling coefficient and cavity geometry).    

 

 

 

 

Figure 3.28.  Shift in resonant frequency of a TE101 50x40x1 mm cavity as a function of 

coupling coefficient 
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Figure 3.29.  Error in calculated 𝜖′ in a TE101 50x40x1 mm cavity as a function of 

coupling coefficient 

 

 

 

Analysis of (124) reveals that for a given value and sign of 𝐴, the predicted 

resonant frequency shift can be in either the positive or negative direction.  This suggests 

that as 𝑄𝑒𝑥𝑡 → ∞, the loaded resonant frequency should approach the unloaded resonant 

frequency.  Though this limit intuitively seems reasonable, the simulated data in Figure 

3.28 refutes this conclusion, as both positive and negative detuning is observed 

depending on the value of 𝓀.  Repeated simulations of different geometries and materials 

have similar results.  From these simulations, it appears that the empirical formula for 

determining the unloaded resonant frequency given in (124) is not applicable for planar 

cavities.  Further research is required to adequately de-embed the reactive coupling 

network from the resonant frequency of a planar cavity. 

 

3.7. DIELECTRIC CHARACTERIZATION PROCEDURE 

A simple procedure based around the equations developed in Sections 3.1-3.6 can 

be used to determine the values of 𝜖′ and tan(𝛿𝑑) of a dielectric material.  A step-by-step 
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1. Design a rectangular cavity made of PCB laminate with an ideal resonant 

frequency close to the frequency of interest using (25) and the nominal material 

permittivity.  It is possible to operate the cavity at higher order modes to reach 

this frequency, but the surrounding modes should be analyzed to ensure that no 

modal overlap will occur at the frequency of interest. 

2. Design the cavity with a coupling probe located near a position of maximum 

electric field at the desired mode of operation according to the field distributions 

in (38).  Using experimentation or simulation, set the probe depth to achieve the 

desired level of cavity coupling.  Values of 𝓀 less than 1 are preferred, as the 

effects of external loading will be minimized.  Avoid extremely small values of 

𝓀, though, because shallow resonances have lower signal-to-noise ratios and 

measurements may be inaccurate.   

3. Seal the edges of the PCB laminate in a conductive material.  PCB edge plating, 

conductive tape, or silver epoxy are all valid methods.  Ensure that the plating is 

as smooth as possible and that good electrical contact is made between the edge 

conductor and both top and bottom planes. 

4. Measure S11 of the cavity with a calibrated VNA over the frequency range of 

interest using a low IF bandwidth and a high number of points to maximize 

frequency resolution. 

5. Analyze the cross section of the cavity’s conductive surfaces using a microscope 

to determine the roughness parameters needed for the Hall Hemispherical model.  

If not suitable microscope is available, obtain the ℎ𝑅𝑀𝑆 roughness height 

parameter from the dielectric manufacturer.  Calculate 𝜉 using either (99) or 

(106), depending on the chosen roughness model.   

6. Determine if the resonance is overcoupled or undercoupled by analyzing the 

Smith chart response. 

7. Determine 𝓀 by (112) and measuring VSWR at the resonant frequencies.  

8. Calculate 𝑄𝑖𝑛𝑡 by measuring the resonance bandwidth at a suitable value of 𝜌 and 

applying (121). 

9. Identify the mode numbers of each resonance of interest.  This can be done by 

finding the nearest ideal resonant frequency and its corresponding mode.  The 
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ideal resonance frequencies should be calculated using the nominal permittivity of 

the material.  If the nominal permittivity is not known, then the value of 𝜖′ must 

be determined by measuring the lowest frequency resonance, which is the 

fundamental TE101 mode.  After the permittivity at the fundamental mode is 

calculated, this value may be used to then determine the mode numbers of the 

other resonances.  

10. Solve the following equations simultaneously to determine 𝜖′ and tan(𝛿𝑑).  Note 

that the (1 −
1

2𝑄𝑠𝑚𝑜𝑜𝑡ℎ
) and √

1

2
(√1 + tan2(𝛿𝑑) + 1) terms in (126) may be 

neglected for low loss dielectrics and highly conductive cavities.  Neglecting 

these terms eliminates the need for simultaneous solution, and the equations may 

instead be solved sequentially.  

 

 

 𝜖𝑑
′ =

[
 
 
 
 (1 −

1
2𝑄𝑠𝑚𝑜𝑜𝑡ℎ

)√(
𝑚𝜋
𝑎 )

2

+ (
𝑛𝜋
𝑏
)
2

+ (
ℓ𝜋
𝑑
)
2

2𝜋𝑓√
1
2 (√1 + tan

2(𝛿𝑑) + 1) ]
 
 
 
 
2

 (126) 

 

 𝑄𝑠𝑚𝑜𝑜𝑡ℎ =
4𝜋𝑓3𝜖𝑑

′ 𝜇𝑑
2𝑎3𝑏𝑑3

𝑅𝑠(ℓ2𝑎3𝑑 +𝑚2𝑎𝑑3 + 2ℓ2𝑎3𝑏 + 2𝑚2𝑏𝑑3)
 (127) 

 

 

 tan(𝛿𝑑) =
1

𝐹(𝜌,  𝓀)𝑄𝜌
−

𝜉

𝑄𝑠𝑚𝑜𝑜𝑡ℎ
 (128) 
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4. VERIFICATION OF THE IMPROVED MODEL THROUGH NUMERICAL 

SIMULATION 

4.1. EFFECT OF DIELECTRIC LOSS ON RESONANT FREQUENCY 

To verify the very small frequency shifts predicted by (57), high simulation 

accuracy is required.  The HFSS eigenmode solver was chosen for this task.  The 

eigenmode solver uses a source-free method that analyzes a structure for resonance 

modes and returns their frequencies and Q-factors.  The source-free nature of the solver 

eliminates any loss due to a coupling mechanism, and perfectly electrically conductive 

(PEC) cavity walls ensure that no power is lost in the cavity conductors.  The 

combination of these features leads to a highly accurate resonance simulation in which 

the only source of loss is the dielectric material filling the cavity. 

The dissipation factor of the dielectric material used in the eigenmode simulation 

was swept over a range of 0 to 0.05.  The plot in Figure 4.1 shows the resonant 

frequency shift calculated by HFSS overlaid with the analytical results from Figure 

3.1.  The difference between analytical and HFSS calculations is shown in Figure 4.2.  

The match between eigenmode and analytical curves confirms that the expression 

for frequency in (57) is accurate and that the frequency shift due to dielectric loss is 

negligible for the characterization of practical materials. 

 

 

 

 

Figure 4.1.  Comparison between the analytical solution and HFSS eigenmode solution of 

the change in resonant frequency due to dielectric loss 
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Figure 4.2.  Difference between the analytical solution and HFSS eigenmode solution of 

the change in resonant frequency due to dielectric loss 

 

 

 

4.2. EFFECT OF SURFACE CONDUCTIVITY ON Q-FACTOR 

To determine the accuracy of the expression for 𝑄𝑠𝑚𝑜𝑜𝑡ℎ given in (65), the HFSS 

eigenmode solver was used once again to simulate a 50x40x1 mm vacuum-filled cavity.  

The eigenmode solver calculates 𝑄𝑠𝑚𝑜𝑜𝑡ℎ by numerically integrating the surface currents 
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analytical method, however, HFSS integrates the fields calculated by the eigenmode 

solver rather than the ideal fields that the perturbation method assumes.  The use of real 

field distributions increases the accuracy of the calculated power loss. 
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7 𝑆

𝑚
.  A wider 

range of conductivity values is presented to verify that the analytical expression for 

𝑄𝑠𝑚𝑜𝑜𝑡ℎ is accurate for all practical cavity materials.  Figure 4.3 indicates that 𝑄𝑐 
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and eigenmode curves is plotted in Figure 4.4.  At 𝜎𝑐 = 5.8 × 10
7 𝑆

𝑚
, the analytical 

solutions agrees with HFSS within 0.05%, which is an acceptable level of accuracy.  

Figure 4.4 shows that the error between analytical and numerical solutions of 𝑄𝑐 

decreases with increasing surface conductivity.  This decreasing error is an effect of the 

assumption of ideal cavity field distributions.  A cavity filled with a lossless dielectric 

will have the field distributions of an ideal cavity if its walls are perfectly conducting.  As 

wall conductivity is decreased, the internal fields will begin to penetrate the walls (due to 

finite skin depth) and the field patterns will start to deviate from the ideal.  This deviation 

from the ideal will increase with decreased conductivity, leading to the larger error in 

𝑄𝑠𝑚𝑜𝑜𝑡ℎ seen at lower 𝜎𝑐 values in Figure 4.4.   

In addition to numerically simulating 𝑄𝑠𝑚𝑜𝑜𝑡ℎ as a function of 𝜎𝑐, eigenmode 

simulations were also performed at the first 15 resonant modes of the example copper-

walled 50x40x1 mm cavity.  The difference between these simulation results and 

corresponding analytical values of 𝑄𝑠𝑚𝑜𝑜𝑡ℎ is shown in Figure 4.5.  The highest error 

seen in this plot is 0.051% and occurs at the lowest resonant frequency.  This error is 

considered acceptable.  

 

 

 

 

Figure 4.3.  Comparison between the analytical solution and HFSS eigenmode solution of 

𝑄𝑠𝑚𝑜𝑜𝑡ℎ as a function of cavity wall conductivity 
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Figure 4.4.  Difference between the analytical and HFSS eigenmode solutions of 𝑄𝑠𝑚𝑜𝑜𝑡ℎ 

as a function of surface conductivity 

 

 

 

 

Figure 4.5.  Difference between the analytical and HFSS eigenmode solutions of 𝑄𝑠𝑚𝑜𝑜𝑡ℎ 

as a function of resonant mode for an example cavity 
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4.3. EFFECT OF SURFACE CONDUCTIVITY ON FREQUENCY 

The HFSS eigenmode solver was used to calculate the resonant frequency of a 

vacuum-filled 50x40x1 mm cavity operating in the TE101 mode with varying values of 

wall conductivity.  The eigenmode results are overlaid with the analytical results 

calculated by (65) and (96) in Figure 4.6.  The difference between the simulated and 

analytical values of 𝑓𝑟 as a function of 𝜎𝑐 is shown in Figure 4.7.  For copper, the 

difference was found to be less than 0.01 PPM.   

To ensure that the calculated shift in 𝑓𝑟 is valid over multiple modes, the 

difference between simulated and analytical resonant frequencies for the first 15 modes 

of a copper-clad cavity was calculated and plotted in Figure 4.8.  The difference does not 

exceed 1 PPM.  The strong agreement between the eigenmode and analytical solutions 

confirms the validity of (96). 

 

 

 

 

Figure 4.6.  Comparison between the analytical and HFSS eigenmode solutions of 𝑓𝑟 as a 

function of 𝜎𝑐 for an example cavity 
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Figure 4.7.  Difference between the analytical and HFSS eigenmode solutions of 𝑓𝑟 as a 

function of 𝜎𝑐 for an example cavity 

 

 

 

 

Figure 4.8.  Difference between the analytical and HFSS eigenmode solutions of 𝑓𝑟 as a 

function of resonant mode for an example cavity 

 

10
6

10
7

10
8

10
9

10
10

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Conductivity (S/m)

P
P

M
 D

if
fe

re
n

c
e

Difference in Res. Freq. Between Analytical and HFSS

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Difference in Res. Freq. Between Analytical and HFSS

P
P

M
 D

if
fe

re
n

c
e

Mode



63 

 

 

4.4. EFFECT OF CONDUCTOR SURFACE ROUGHNESS ON Q-FACTOR 

Due to the small feature size of a rough conductor surface, any full wave 

simulations involving surface roughness require an extremely fine mesh.  The number of 

mesh cells needed to simulate a large surface area lead to prohibitively high memory and 

CPU requirements.  It therefore becomes necessary to simplify the simulation model so 

that it may be run with modest computing resources. 

To begin simulated analysis of the effects of surface roughness, a 1 mm long 

stripline model was constructed in CST.  An image of the stripline structure is shown in 

Figure 4.9.  |S21| was simulated over the 1-15 GHz frequency range for both smooth and 

rough stripline surface textures.  The rough surface was created on one side of the 

stripline by using MATLAB to build a series of hemispheres in CST through the VBA 

interface.  2500 hemispheres were created over the stripline with a uniformly random 

distribution, as shown in Figure 4.10.  The radii of the spheres followed a Gaussian 

distribution.  The resulting positions and radii of the hemispheres were used to calculate 

the three surface parameters needed by the Hall Hemispherical model.  These parameters 

are listed in Table 4.1.  The value of 𝜉 over frequency for these surface parameters is 

shown in Figure 4.11. 

 

 

 

 

Figure 4.9.  Simulated stripline structure used to model the effects of conductor surface 

roughness 
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Figure 4.10.  Close-up image of the rough stripline model used in simulation 

 

 

 

It is important to note that the surface profile simulated in CST is not entirely 

realistic.  It is extremely difficult to accurately model the complexities of a real rough 

conductor surface without being able to import data from a profilometry scan, which was 

not feasible for this study.  Because the simulated surface profile matched closely with 

that assumed by the Hall model, this simulation was not intended to rigorously analyze 

the validity of the aforementioned model.  Rather, these simulations sought to determine 

the level of agreement between full wave simulation and a model that has been proven 

accurate through experimental tests.  In this way, the stripline simulation served as a 

loose validation technique for the accuracy of the CST roughness model and associated 

mesh settings. 

The time-domain finite integration technique (FIT) solver in CST was chosen 

over a frequency domain FEM solver because of the lower memory consumption of the 

time domain algorithm and the availability of a high performance computing cluster that 

was only capable of running the FIT algorithm.  A hexahedral mesh was used, and the 

surface roughness was meshed with a resolution of 0.5 𝜇𝑚.  Increasing the mesh 

resolution was found to make very little difference in the simulated results, thus 
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confirming the validity of the 0.5 𝜇𝑚 mesh.  The resulting simulation consisted of 

roughly 100 million mesh cells and took nearly 24 hours to complete.   

 

 

 

 

Figure 4.11.  Calculated roughness factor for simulated stripline surface 
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the FIT cavity simulations, the results were never considered accurate enough for any 

kind of analysis.  Resonant frequencies and Q-factors of cavities with smooth walls were 

never in agreement with the results from FEM simulations of the same model.  As such, it 

was decided that cavity roughness would have to be analyzed through measurement 

rather than numerical simulation, and no further surface roughness simulations were 

performed. 

 

 

 

 

Figure 4.12.  Comparison of simulated |S21| results of a rough stripline and the Hall 

Hemispherical model 

 

 

 

Table 4.1.  Simulated surface roughness parameters 

ℎ𝑅𝑀𝑆 3 𝜇𝑚 

𝐵𝑅𝑀𝑆 6 𝜇𝑚 

𝑠𝑅𝑀𝑆 10 𝜇𝑚 
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4.5. EFFECT OF CAVITY COUPLING ON Q-FACTOR 

To verify the accuracy of the 𝑄𝑖𝑛𝑡 values calculated in Section 3.5.2, the HFSS 

eigenmode solver was used to determine the Q-factor of the cavity without the effect of 

external loading.  The analytically calculated values of 𝑄𝑖𝑛𝑡 were compared to the HFSS 

solution at each value of 𝓀, and the resulting difference is shown in Figure 4.13.  For 

small values of 𝓀, the difference is under 0.5%.  The difference is greater for overcoupled 

cavities (i.e., 𝓀 > 1).  This greater difference is likely due to the assumption made in 

(117), which begins to lose validity at low values of Q.  

 

 

 

 

Figure 4.13.  Difference between analytical and HFSS eigenmode solutions of 𝑄𝑖𝑛𝑡 as a 

function of 𝓀 

 

 

 

4.6. SIMULATED DIELECTRIC CHARACTERIZATION 

The dielectric characterization procedure outlined in Section 3.7 was performed 

on a simulated cavity to provide validation of the procedure.  Because of the difficulties 

in simulating surface roughness, smooth cavity walls were used in the simulation and it 
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was assumed that 𝜁 = 1.   All other non-ideal effects addressed in this thesis were 

considered. 

 The cavity model used in Section 3.5.2 was repurposed for use in the simulated 

dielectric characterization.  The walls were composed of copper and the interior of the 

cavity was filled with Rogers 4350.  Dielectric dispersion was disabled in the simulation 

to ensure that 𝜖′ and tan(𝛿) did not change with frequency.  A probe depth of 0.6 mm 

was used. 

 The |S11| results of a frequency sweep from 1 GHz to 10 GHz are shown in 

Figure 4.14.  This figure indicates that there are five usable modes in the frequency span.  

Modal overlap occurs near 10 GHz, making that resonance unusable. 

 

 

 

 

Figure 4.14.  Simulated |S11| used to test dielectric characterization procedure 

 

 

 

The results from the dielectric characterization procedure for each of the five 

usable modes are shown in Table 4.2.  The extracted values of tan(𝛿𝑑) do not vary more 

than 5% (+2 counts) from the ideal value of 0.004.  The extracted values of 𝜖𝑟
′  do not 

vary more than 0.8% (+2 counts, −3 counts) from the simulated permittivity of 3.66.  
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The error in 𝜖𝑟
′  is caused by the loading effect of the cavity feed on the resonant 

frequency, which is not considered in this model.  The error in tan(𝛿𝑑) appears to 

increase with frequency, which may be attributed to the fact that 𝓀 was observed to also 

increase with frequency.  Figure 4.13 illustrates that error in measured 𝑄𝐿 and tan(𝛿𝑑) 

increases with 𝓀, so a small frequency dependence of error is not unexpected.  Table 4.2 

also lists the uncorrected values of tan(𝛿𝑑) for which none of the non-ideal effects were 

considered.  The uncorrected dissipation factors exhibit error ranging from 200%-380%.  

This large error clearly shows the importance of including non-ideal effects in the 

improved planar cavity model. 

Though small errors are present in the characterization of the simulated dielectric 

material, the results overall are promising.  The dielectric characterization procedure is 

validated for cavities with smooth walls.  Physical measurements are required to validate 

the model in the presence of surface roughness. 

 

 

 

Table 4.2.  Simulated dielectric characterization results 

Frequency 

(GHz) 

𝝐𝒓
′  

(Spec: 3.66) 

𝐭𝐚𝐧(𝜹𝒅)  

(Spec: 0.0040) 

Uncorrected 

𝐭𝐚𝐧(𝜹𝒅)  

2.5 3.65 0.0040 0.0123 

5.1 3.65 0.0041 0.0168 

6.1 3.68 0.0040 0.0179 

7.5 3.63 0.0041 0.0180 

8.1 3.64 0.0042 0.0191 
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5. VERIFICATION OF THE IMPROVED MODEL THROUGH PHYSICAL 

MEASUREMENT 

5.1. CAVITY CONSTRUCTION 

Two cavities were constructed out of 62 mil thick Rogers 5880 sheets.  One 

cavity measured 55.3x50.0x1.57 mm while the other cavity measured 58.3x49.8x1.57 

mm.  The former is shown in Figure 5.1.  The edges of both cavities were cut as straight 

and parallel as possible using a mill.  The size of the cavities was determined by the 

geometry of the mill’s clamp table.  A through-hole SMA connector was used as the 

coupling probe on each cavity.  The connectors had four GND pins at the corners that had 

to milled off, as shown in Figure 5.2.  The center pin was cut to an approximate length of 

0.7 mm by hand, as it was too fragile to be milled.  A flat-bottomed 3/16” hole was 

drilled in the top copper plane to provide access to the inner dielectric.  A 3/32” hole was 

then drilled 50% through the dielectric to provide room for the SMA center pin.  The 

SMA pin was aligned with the dielectric hole and the brass shell of the SMA connector 

was soldered onto the copper plane with 360° coverage. 

 

 

 

 

Figure 5.1.  55x50x1.6 mm cavity made with Rogers 5880 laminate 

 



71 

 

 

 

Figure 5.2.  Milling process for removing SMA GND pins 

 

 

 

Copper tape was used to seal the edges of the cavity.  Care was taken to ensure 

that the tape was as flat and smooth as possible, and that adequate pressure was used to 

ensure a good electrical connection between the tape and the copper planes.   

 

5.2. SURFACE ROUGHNESS MEASUREMENTS 

A section of laminate material was cut off the panel for SEM cross sectional 

imaging.  The edge was polished and imaged in several locations.  Images of the surface 

roughness are shown in Figure 5.3 and Figure 5.4.  The roughness profile was manually 

characterized by analyzing a series of images similar to Figure 5.4.  The measured 

parameters are listed in Table 5.1 and the resulting roughness coefficient 𝜉 is plotted 

against frequency in Figure 5.5.  The measured inclusion height parameter ℎ𝑅𝑀𝑆 was 

found to be larger than that specified by the manufacturer.  It is possible that this 

discrepancy is attributable to manual measurement error, but the value was confirmed by 

repeated measurement.  The measured and specified values are near enough to each other 

that the difference could be within the non-published tolerance of the material.   
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Figure 5.3.  SEM image of PCB laminate cross section 

 

 

 

 

Figure 5.4.  SEM image of conductor surface roughness 
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Figure 5.5.  Calculated roughness coefficient vs. frequency for physical cavity 

 

 

 

Table 5.1.  Measured roughness parameters 

ℎ𝑅𝑀𝑆 3.0 𝜇𝑚 (Spec: 2.1 𝜇𝑚) 

𝐵𝑅𝑀𝑆 7.6 𝜇𝑚 

𝑠𝑅𝑀𝑆 7.0 𝜇𝑚 

 

 

 

5.3. ELECTRICAL MEASUREMENTS 

A 20 GHz VNA was used to perform reflection measurements on the two 

laminate cavities.  To ensure high resolution in both amplitude and frequency, 12001 

points were measured with an IF bandwidth of 500 Hz.  SOL calibration was performed 

at the end of the VNA’s cable, and a port extension of 42 psec was used to extend the 

reference plane to the cavity wall.  Figure 5.6 shows the measured reflection of the 

55.3x50 mm cavity on a linear scale.  There are clearly five strong resonances with which 

dielectric properties can be measured.  From the Smith chart representation in Figure 5.7, 

it was determined that all resonances were undercoupled.  Results from the 
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58.3x49.8x1.57 mm were visually similar, though resonances occurred at slightly 

different frequencies due to the size differences.   

 

 

 

 

Figure 5.6.  Measured reflection response of 55.3x50.0x1.57 mm cavity 

 

 

 

 

Figure 5.7.  Smith chart representation of measured reflection response 
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 The procedure in Section 3.7 was used to determine the dielectric properties at 

each resonant frequency.  The results for both cavities are listed in Table 5.2 and Table 

5.3. 

 

 

 

Table 5.2.  Measured dielectric properties for 58.3x49.8 mm cavity 

Freq. 

(GHz) 

𝝐𝒓
′  (Spec: 2.2 ±𝟎.𝟎𝟐) 𝐭𝐚𝐧(𝜹𝒅) (Spec: 0.0004 @ 1 MHz 

                             0.0009 @ 10 GHz) 

Uncorrected 

𝐭𝐚𝐧(𝜹𝒅) 

2.70 2.150 0.00008 0.0009 

5.58 2.203 0.0005 0.0017 

6.32 2.208 0.0008 0.0018 

7.99 2.203 0.0014 0.0023 

8.90 2.202 0.0010 0.0019 

 

 

 

Table 5.3.  Measured dielectric properties for 55.3x50.0 mm cavity 

Freq. 

(GHz) 

𝝐𝒓
′  (Spec: 2.2 ±𝟎.𝟎𝟐) 𝐭𝐚𝐧(𝜹𝒅) (Spec: 0.0004 @ 1 MHz 

                             0.0009 @ 10 GHz) 

Uncorrected 

𝐭𝐚𝐧(𝜹𝒅) 

2.72 2.210 0.00048 0.0013 

5.82 2.215 0.0015 0.0027 

6.32 2.207 0.0017 0.0028 

8.16 2.205 0.0024 0.0034 

9.31 2.220 0.0029 0.0040 

 

 

 

5.4. ANALYSIS 

It is difficult to calculate an absolute value of accuracy for the measured data in 

Table 5.2 and Table 5.3 because the exact values of 𝜖𝑟
′  and tan(𝛿𝑑) of the material are 
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unknown.  Nevertheless, the manufacturer specifies a tolerance of ±0.02 (1%), and all 

but one of the measured permittivity values falls within this range.  The negligence of the 

detuning caused by reactive coupling may explain the deviation in 𝜖𝑟
′  between the two 

cavities.  An error of similar magnitude was seen in the simulated characterization 

procedure in Section 3.7, where the coupling detuning was also thought to be responsible 

for the variations in calculated 𝜖𝑟
′ . 

The dissipation factor is specified by the manufacturer as 0.0009 at 10 GHz.  It is 

expected, then, that the measured tan(𝛿𝑑) would increase throughout the measured 

frequency range and approach 0.0009 at the highest measured frequency.  While the 

measured loss is indeed seen to increase with frequency (excluding a single exception 

between 7.99 GHz and 8.90 GHz in the 58.3x49.8 mm cavity), both sets of measurements 

indicate a higher final value of loss than the manufacturer’s specification.  It is important 

to note that the   It seems likely that the surface roughness characterization is at least a 

partial culprit, since the surface profile measurements were made on only a small cross 

section of the total material.  An inadequate roughness characterization could partially 

explain the error seen at lower frequencies, but, as explained in Section 3.4.4, the error 

due to inaccurate surface profiling will tend to decrease at higher frequencies.   

An additional source of loss is the surface conductivity of the copper tape used to 

form the cavity walls.  The tape was assumed to have the conductivity of pure copper, 

though in reality the conductive adhesive that forms the innermost surface of the cavity 

walls is less conductive than the pure metal.  The relatively low contribution of power 

lost in the side walls to overall Q-factor suggests that the error due to the adhesive’s 

conductivity is not sufficiently large to explain the discrepancies seen, especially in the 

55.3x50 mm cavity. 

Of greater interest than the measured increase in loss at high frequencies is the 

fact that two cavities have dissipations factors that differ by over 100% near 9 GHz.  A 

difference in conductor roughness profile between the two cavities may have existed.  

The laminate sample that was imaged with the SEM was taken from a region on the panel 

that was physically closer to the 58.3x49.8 mm cavity than the 55.3x50.0 mm cavity.  It 

is unlikely, though, that surface roughness would vary sufficiently over the surface of a 

panel to create the differences seen in the measured results. 
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The difference in measured tan(𝛿𝑑) seen between the two cavities suggests the 

possibility that another loss term may exist that has not yet been identified.  Both cavities 

were of similar physical size and were constructed of the same materials using the same 

techniques.  The cavity feed was the least controlled element of the system and seems to 

be a probable location for additional loss.  Attempts to reproduce the additional loss were 

made in simulation by introducing probe tilt and liftoff between the SMA shell and the 

cavity body.  Tilting the probe by 10 degrees was found to provide no additional loss that 

was not compensated by the feed de-embedding equation in (121).  A 0.5 mm air gap 

was found to introduce some additional loss, but not enough to account for the 100% 

error found in the measurements. 

Radiation loss was assumed to be negligible due to the totally enclosed nature of 

the cavity.  It is possible, however, that poor adhesive conductivity of the copper tape 

allowed power to be radiated from the seams along the cavity edges.  Further study is 

necessary to identify the presence of unwanted radiation.   
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6. CONCLUSION 

The research presented in this thesis attempted to develop an improved planar 

cavity model that de-embeds the cavity’s non-ideal effects from resonance measurements 

to enable accurate calculations of dielectric permittivity and dissipation factor.  The 

effects on resonant frequency that were analyzed included dielectric loss and cavity wall 

reactance.  The effects on quality-factor included cavity wall resistance and surface 

roughness, as well as external loading caused by the coupling network.  Each of these 

non-ideal effects was mathematically modelled and verified through numerical 

simulation. 

One known source of error in resonant frequency was not able to be modelled—

the effect of external coupling reactance.  A published empirical technique for calculating 

this effect was tested, but the results fundamentally did not agree with numerous 

simulations.  Additional research should be performed to better account for this non-ideal 

behavior. 

Measurement of two physical cavities was performed, and the dielectric 

characterization method developed in this thesis was used to extract the cavity’s substrate 

properties.  The results were promising, though not consistent enough to be fully trusted.  

A discrepancy existed between the calculated dissipation factors of the two cavities that 

suggests the possible existence of a fourth quality factor error term.  Additional cavities 

should be constructed to investigate this possibility. 

Despite the failure to model the coupling network’s effect on resonant frequency 

or to achieve highly consistent measurement results, the research performed in this thesis 

provides a strong foundation for future work into improving the accuracy of the planar 

cavity model. 
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