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ABSTRACT 

Through-silicon-vias (TSVs) can potentially be used to implement inductors in 

three-dimensional (3D) integrated system for minimal footprint and large inductance. 

However, different from conventional 2D spiral inductor, TSV inductors are buried in 

lossy substrate, thus suffering from low quality factors. This thesis presents how various 

process and design parameters affect their performance. A few interesting phenomena 

that are unique to TSV inductors are observed. We then proposed a novel shield 

mechanism utilizing the micro-channel, a technique conventionally used for heat 

removal, to reduce the substrate loss. The technique increases the quality factor and 

inductance of the TSV inductor by up to 21x and 17x respectively. It enables us to 

implement TSV inductors of up to 38x smaller area and 33% higher quality factor, 

compared with spiral inductors of the same inductance. To the best of the authors’ 

knowledge, this is the very first in-depth study on TSV inductors. We hope our study 

shall point out a new and exciting research direction for 3D IC designers. 
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1. INTRODUCTION 

1.1. BACKGROUND 

Three-dimensional integrated circuits (3D ICs) are generally considered to be 

most promising alternative that offers a path beyond Moore’s Law. Instead of making 

transistors smaller, it makes use of the vertical dimension for higher integration density, 

shorter wire length, smaller footprint, higher speed and lower power consumption, and is 

fully compatible with current technology [1]. 

The through-silicon-vias (TSV) is a critical enabling technique for 3D ICs, which 

forms vertical signal, power and thermal paths. While many challenges still exist in 3D 

ICs, a big one is related to TSVs: they are large in size, typically 5-10x larger than the 

standard cells in 32nm process [8]. Yet their diameters do not scale with the devices due 

to imposed limitations of wafer handling and aspect ratios. International Technology 

Roadmap for Semiconductors (ITRS) suggests that the TSV diameter will remain almost 

constant in 2012-2015 [2]. On the other hand, a large number of TSVs are needed to 

deliver signal and power, to dissipate heat and to provide redundancy. Moreover, to 

guarantee high yield rate, foundries typically impose a minimum TSV density rule. For 

example, Tezzaron requires that at least one TSV must exist in every 250 um x 250 um 

area [3]. To satisfy this rule, lots of dummy TSVs need to be inserted, which further 

increase the area overhead.  

To alleviate the problem, there have been efforts in the literature to make use of 

those dummy TSVs for alternative purposes. In this thesis, we are particularly interested 

in the application of TSVs towards on-chip inductors, which are the critical component in 
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various microelectronic applications, e.g. on-chip voltage regulators, voltage control 

oscillators, power amplifiers and radio frequency (RF) circuits.  

Conventional implementation of on-chip inductors uses multi-turn planar spiral 

structure. This structure occupies a significant area and requires special RF process for 

higher quality factor. For example, [19] reported an inductor which occupies 78,400 um2 

routing area, equivalent to the area of 62K gates in 45 nm technology. In 3D ICs, 

however, it is possible to utilize through-silicon-vias (TSVs) to build vertical inductors 

[4-7]. One example of a toroidal TSV inductor in a two-tier 3D IC is shown in Figure 1.1 

An apparent advantage of such TSV inductors is the minimal footprint on routing layers 

and accordingly high inductance density. However, since it is completely buried in the 

lossy substrate, its quality factor is inferior compared with that of the 2D spiral inductor. 

Accordingly, as pointed out in [7], TSV inductor can be used when area is the only 

concern. This essentially declares that such a TSV inductor is only a “fantasy”, useless in 

practice.  

 

Figure 1.1 3D TSV inductor 



 

 

3 

1.2. MOTIVATION 

Due to the limited space on an integrated circuit chip and highly competitive chip 

market, on-chip inductors must fit within a limited space and be inexpensive to fabricate. 

In that regard, it is desirable for an on-chip inductor to have a high inductance L per unit 

area. The spiral structure in a square shape can typically achieve lower than 100 nH/mm2 

density1 [10, 11]. 

Another important inductor metric is the quality factor Q, which is the ratio of its 

inductive reactance to its resistance and is used to measure energy efficiency [10]. To 

achieve high quality factor, on-chip inductors are typically implemented using thick 

metal on top metal layers in RF process. To reduce the EM coupling between the inductor 

and any metal wires beneath it, Patterned Ground Shield (PGS) technique is typically 

used, further occupying valuable routing resources. The general structure of existing 3D 

TSV inductors [4-7] is shown in Fig. 1, which is composed of front/back metals and 

TSVs in a toroidal structure. The most attractive advantage of such a TSV inductor is its 

minimal footprint on the silicon surface. In addition, no PGS is necessary as the majority 

of the magnetic flux run in parallel with metal wires (in the horizontal plane). 

However, all existing works [4-7] simply conduct case studies on a few selected 

geometries, and no systematic conclusions have been drawn on how various parameters 

would affect the performance of the TSV inductor. It is not clear yet whether the new 

TSV inductor structure will result in different behaviors with respect to these parameters. 

In addition, there are a few parameters that are unique to TSV inductors such as the TSV 

                                                 
1 Inductance density up to 1700 nH/mm2 can be achieved by magnetic cores [18], but would require 

nonconventional processes. 
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liner thickness. We argue that these issues need to be fully explored to help circuit 

designers understand the behavior of the TSV inductor and make better use of it. 

Moreover, according to the literature, the quality factor of the TSV inductor is 

significantly less than its 2D spiral counterpart, mainly due to the loss from the substrate. 

Unlike the 2D spiral inductor, the entire TSV inductor is buried in the silicon substrate, 

which is lossy at high frequencies. As a result, Bontzios et al [7] suggested that for 50 um 

substrate thickness and below, TSV inductor should be used when area is the only 

concern, which means it is of little practical value. One question that rises here is: Is there 

any way that we can reduce substrate losses for TSV inductors, so that their quality 

factor can be at par or even better compared with spiral inductors for practical use? 

1.3. LITERATURE REVIEW 

1.3.1. On-chip planar inductors. Inductors are considered vital components in 

analog, RF, and microwave circuits. The on-chip 2D inductors have become widely used 

due to its relatively simple integration with existing CMOS capabilities and processing 

steps. There have been numerous publications on inductor design. The most widely used 

type is the spiral inductor; Figure 1.2 illustrates the layout for square, hexagonal, 

octagonal and circular spirals, which are common in modern IC devices [21]. The shape 

of inductor is often limited to the availability of fabrication processes, although a circular 

shaped inductor may be more efficient and yield better performance [22]. Design 

parameters such as number of turns, the separation between adjacent turns (or loop pitch), 

outer dimension and substrate conductivity are all important factors in determining the 

performance of on-chip inductors.  
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Figure 1.2 4 layout shapes of spiral inductors 

 
 
 

1.3.2. Patterned Ground Shield. In the literature, it is shown that energy loss can 

be reduced by shielding the electric field of the inductor from the silicon substrate. The 

ground shield is patterned with slots orthogonal to the spiral. Those slots act as an open 

circuit to cut off the path of the induced loop current.  As a typically used technique, PGS 

can improve the quality factor and isolation of an inductor. However, the skin effect will 



 

 

6 

result in reduction of the inductance [20], because of a decrease in magnetic intensity in 

the space of PGS layer. In addition, to achieve the integrity of the ground connection, 

which is the fundamental of this technique, it will further occupy valuable routing 

resources. 

1.4. THESIS ORGANIZATIONS 

To make TSV inductors “real”, two fundamental questions need to be understood: 

First, what are the parameters that can effectively improve the TSV inductor 

performance? Second, is there any shield mechanism that can be used to reduce substrate 

loss? This thesis provides answers to both questions. Specifically, the main contributions 

of our work are as follows.  

First, we use ANSYS full-wave simulation to systematically study how the 

inductance and the quality factor of the TSV inductor are affected by various process 

parameters and design parameters. A few interesting phenomena that are unique to TSV 

inductors can be observed. The conclusions drawn can provide guidance to inductor 

designers as well as information for dedicated process development towards better TSV 

inductors.  

Second, we put forward a novel shield technique using the micro-channel, which 

has been used in 3D IC industry including IBM and Nanonexus as a low-cost cooling 

technique [16], to reduce the substrate loss. Experimental results indicate that it can boost 

the quality factor and the inductance of the TSV inductor by up to 21x and 17x 

respectively. It changes the TSV inductor concept from just a fantasy to something 

practical - with the technique, TSV inductors can achieve up to 38x smaller area and 33% 

higher quality factor, compared with spiral inductors of the same inductance. This 
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suggests that TSV inductors with micro-channel shields are a much better option than 

spiral inductors in 3D ICs.   

To the best of the authors’ knowledge, this is the very first in-depth study on TSV 

inductors, along with a way to make them practical in 3D ICs.  

The remainder of the thesis is organized as follows. Section 1 reviews the existing 

efforts on the TSV inductor and the motivation of our work. Section 2 systematically 

studies how various process and design parameters affect their performance. Section 3 

proposes a novel micro-channel shield mechanism to increase the inductance and the 

quality factor of the TSV inductor. The concluding remarks are given in Section 4.  
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2. IMPACT OF PROCESS AND DESIGN PARAMETERS 

2.1. INTRODUCTION 

In this chapter, we will study how various process and design parameters affect 

the inductance, the quality factor, as well as the self-resonance frequency (SRF)2 of the 

TSV inductor. All the simulations in this thesis are done using ANSYS full-wave 

simulator HFSS [9] with mixed order basis function. Our machine is a 64-bit Dell T7500 

Windows server with 2.4 GHz duo-core Xeon CPU and 96 GB memory. For clarity 

purposes, we outline the parameters of study in Table 2.1. The practical range of interest 

for each parameter is also listed.  

 
 
 

Table 2.1 List of parameters, the respective default unit and ranges of interest 

Type Notation Meaning Range 

Process H (um) Substrate height 30-120 

σ (S/m) Substrate conductivity 0-10,000 
D (um) TSV diameter 2-15 
d (um) Liner thickness 0.2-0.7 

Design N Number of turns 1-6 

T Number of tiers 2-4 
P(um) Loop pitch3 13-23 
W(um) Width of metal strip 3-12 
f(GHz) Operating frequency 0.15, 1, 5, 10 

 

                                                 
2 The Self-resonant frequency (SRF) of an inductor is defined as the critical frequency when it ceases to 

behave like an inductor. 
3 Loop pitch is defined as the separation between adjacent turns. 
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There are four things worthwhile to note here: 1) While existing works only use 

two tiers (T=2) to implement the inductor, in this thesis we extend the study to designs of 

up to four tiers (according to [17], 3D ICs of up to five tiers have already been 

fabricated). Since the bottom tier does not need any TSV, the actual inductor is formed in 

the top T-1 tiers. 2) To achieve maximum quality factor, the cross-sectional area should 

be square. In other words, once we fix the number of tiers T, the TSV pitch should be (T-

1)H, where H is the height of a single tier. 3) The substrate height and the TSV diameter 

are chosen such that the TSV aspect ratio (AR) is between 5:1 and 20:1, in accordance 

with ITRS [2]. 4) The 150 MHz operating frequency represents applications such as on-

chip voltage regulator applications, while 1/5/10 GHz represent resonant clocking or RF 

applications. 

To study the impact of various parameters, we use the control variable method to 

change one parameter at a time. The nominal settings are illustrated in Fig. 2:  

Process parameters: H = 60 um, σ = 10 S/m, D = 6 um, d = 0.2 um. 

Design parameters: N = 1, T = 2, P = 18 um (not shown), W = 6 um. 

In addition to these parameters of study, for each tier we assume a normal process 

with 8 metal layers. The metal layers have a total thickness (including field dioxide) of 4 

um. The metal strips connecting TSVs are implemented using M1 (0.3 um thick) and 

backside metal (0.8 um thick)4.   

The corresponding inductance and quality factor vs. frequency plot for the above 

nominal settings are shown in Figure 2.1 and Figure 2.2. 

                                                 
4 These values are extracted and modified slightly from the datasheet of a real process in order to protect 

the confidential information while making the studies practical.   
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Figure 2.1 Nominal settings (not to scale) 

 

Figure 2.2 Quality factor and inductance vs. frequency for the TSV inductor with 
nominal settings 
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2.2. PROCESS PARAMETERS 

In this section, we study the impact of process parameters on the inductance, 

quality factor and self-resonant frequency of the TSV inductor, hoping to suggest 

directions for dedicated 3D TSV inductor process development in the near future. 

2.2.1. Substrate Height (H). The quality factor and the inductance for different 

substrate heights and operating frequencies are shown in Figure 2.3. Based on the 

analogy to the spiral inductors, the inductance should be proportional to Hln(H). This can 

be clearly verified by curve fitting, where L = 0.0006Hln(H)-0.0115 according to the 

fitting result. In this equation and all the remaining equations throughout the thesis, L 

takes the unit nH. All the parameters take the unit listed in Table 2.1. 

 
 
 
 

 

Figure 2.3 Quality factor and inductance vs. substrate height 
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In terms of quality factor, it increases with H, but at different rates for different 

frequencies. At higher frequency, the quality factor is larger and the slope w.r.t. H is 

higher. According to fitting, Q should be proportional to ln(H). At 150 MHz, Q = 

0.14ln(H) – 0.07. At 1 GHz, Q = 0.93ln(H) – 0.76. At 5 GHz, Q = 2.27ln(H) – 1.66. At 

10 GHz, Q = 30.00ln(H) – 43.58. 

Finally, although not shown in the figure, we note that self-resonant frequency 

decreases from over 250 GHz to 100 GHz when H increases from 30 um to 120 um.  

Observation 1: For the range of interest, increasing substrate height increases both 

the inductance and the quality factor, but reduces the self-resonant frequency. 

2.2.2. Substrate Conductivity (σ). The quality factor and the inductance for 

different substrate conductivities and operating frequencies are shown in Figure 2.4. 

From the figure, we can see that the inductance is not directly impacted by σ (L = 0.13 

nH).  

 

Figure 2.4 Q and L vs. substrate conductivity σ (note that log-scale is used for the x-axis) 
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On the other hand, when σ is low (corresponding to the lightly doped substrate) or 

when the frequency is low (150 MHz or 1 GHz), the quality factor almost remains 

constant, because in this region the quality factor loss is mainly due to the ohmic loss in 

the inductor. When both σ and the frequency are high, the quality factor decreases with, 

at higher rate for higher frequencies. This is due to the fact that in this region, the loss 

mainly occurs in the substrate.  For 5 GHz and 10 GHz, we choose the last four points 

with highest σ to fit the trend. Fitting results suggest that at 5 GHz, Q = -0.008(lnσ)2 + 

0.005(lnσ) + 7.802. At 10 GHz, Q = -0.012(lnσ)2 - 0.163(lnσ) + 10.880. The log 

functions indicate the changes w.r.t. are gradual.  

Finally, although not shown in the figure, we note that self-resonant frequency 

decreases from over 200 GHz to 60 GHz when  increases from 0 S/m to 10,000 S/m.  

Observation 2: For low substrate doping density (σ < 10 S/m) or low frequency 

(<1GHz), the ohmic loss of the inductor dominates. When the doping density is high and 

the frequency is high, the substrate loss dominates.  

Observation 3: For the range of interest, increasing substrate conductivity does 

not change the inductance, and has little impact on the quality factor at low frequency or 

low substrate conductivity. It reduces the quality factor gradually at high frequency for 

high substrate conductivity. The self-resonance frequency drops with the increase of 

substrate conductivity. 

2.2.3. TSV Diameter (D). The quality factor and the inductance for different TSV 

diameters and operating frequencies are shown in Figure 2.5. Based on the analogy to the 

spiral inductors (metal width), the inductance should be proportional to ln(H/D). This can 



 

 

14 

be clearly verified by curve fitting, where L = 0.018ln(60/D)+ 0.093 according to the 

fitting result.  

In terms of quality factor, the quality factor should increase with D as the 

resistance of the inductor becomes smaller. Fitting results suggest that at 150 MHz, Q = -

1.399D0.28 ln(H/D) +5.906. At 1 GHz, Q = 1.583D0.66 ln(H/D) -8.593. At 5 GHz, Q = 

0.233D1.23 ln(H/D) + 2.760. At 10 GHz, Q = 0.133D1.54 ln(H/D) +6.230. Apparently, 

at higher frequency, the quality factor is larger and the slope w.r.t. D is higher. The larger 

slope is due to the effect of further AC resistance reduction from substrate coupling at 

higher frequencies. 

 
 
 

 

Figure 2.5 Q and L vs. diameter D 

 
 
 

Finally, although not shown in the figure, we note that self-resonant frequency is 

almost constant (~200 GHz) for our diameter range (3um-15um). 
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Observation 4: For the range of interest, increasing TSV diameter reduces the 

inductance, increases the quality factor, and does not change the self-resonant frequency 

significantly. 

2.2.4. Liner Thickness (d). The quality factor and the inductance for different 

liner thickness and operating frequencies are shown in Figure 2.6. This parameter is 

unique to the TSV inductor and based on the plot, it can be seen that d has little impact on 

the inductance and the quality factor. It also has subtle impact on the self-resonant 

frequency.  

 
 
 

 

Figure 2.6 Q and L vs. linear thickness d 

 
 
 

Observation 5: For the range of interest, TSV liner thickness has subtle impact on 

the TSV inductor behavior.   



 

 

16 

2.3. DESIGH PARAMETERS 

2.3.1. Number of Turns (N). The quality factor and the inductance for different 

number of turns and operating frequencies are shown in Figure 2.7.  Based on the 

analogy to the 2D spiral inductors, inductance should be proportional to N2. However, 

fitting results suggest that L = 0.14N1.3, which is due to other non-ideal factors such as 

capacitive coupling and the loop pitch P (separation between the TSV turns).  

 
 
 

 

Figure 2.7 Q and L vs. number of turns N 

 
 
 

In terms of quality factor, a few interesting phenomena can be observed. First, 

there exists a particular Nc that gives maximum quality factor. Second, such Nc decreases 

with the frequency. At 150 MHz and 1 GHz, it is over 6 (beyond the scope of the plot) 

and as a result, the quality factor increases monotonically with N within our range of 
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interest. At 5 GHz, the peak quality factor is reached at Nc = 3. At 10 GHz, it drops to 1, 

and thus the quality factor monotonically decreases with N.  Third, for higher frequency, 

the quality factor changes (either increases or decreases) faster with N. We find that the 

trend can be best fitted with quadratic functions, where at 150 MHz Q = -0.006N2 + 

0.093N + 0.409. At 1 GHz, Q = -0.036N2  + 0.489N + 2.560. At 5 GHz, Q = -0.136N2 + 

0.939N + 6.996. At 10GHz, Q = -0.051N2  - 0.496N + 11.140.  

Finally, although not shown in the figure, we note that self-resonant frequency is 

decreasing from over 200 GHz to 40 GHz when N increases from 1 to 6.  

Observation 6: For the range of interest, increasing the number of turns N 

increases the inductance. There might exist a critical number of turns Nc that gives 

maximum quality factor, and such Nc decreases with the frequency. The self-resonance 

frequency drops rapidly with the increase of N. 

2.3.2. Number of Tiers (T). The quality factor and the inductance for different 

number of tiers and operating frequencies are shown in Figure 2.8. The parameter T looks 

similar to the TSV substrate height H, but it is the non-conducting inter-layer adhesive 

that makes it different. We can expect that the adhesive layer should have little impact on 

the inductance, but big impact on the quality factor. Fitting results suggest that L = 

0.105TlnT -0.006.  

In terms of the quality factor, first, there exists a particular Tc that gives maximum 

quality factor. Second, such Tc decreases with the frequency. At 1 GHz, it is over 6 and 

as a result, the quality factor increases monotonically with T. At 5 GHz, the peak quality 

factor is reached at Tc = 4. At 10 GHz, it drops to 3.  Third, for higher frequency, the 

quality factor changes (either increase or decrease) faster with T. We find that the trend 
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can be best fitted with cubic functions, where at 150 MHz, Q= 0.002T3 -0.038T2 + 

0.259T + 0.116. At 1 GHz, Q = 0.015T3 -0.270T2 + 1.758T + 0.475 . At 5 GHz, Q = -

0.055T3 + 0.102T2 + 1.810T + 4.131. At 10 GHz, Q = 0.260T3 -3.417T2  + 13.200T -

4.358. 

 
 
 

 

Figure 2.8 Q and L vs. number of tiers T 

 
 
 

Finally, although not shown in the figure, we note that self-resonant frequency 

decreases from over 250 GHz to 38 GHz when T increases from 2 to 6.  

Observation 7: For the range of interest, increasing the number of tiers T increases 

the inductance. There might exist a critical number of tiers Tc that gives maximum 

quality factor, and such Tc decreases with the frequency. The self-resonance frequency 

drops rapidly with the increase of T. 
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Before we continue, one more thing we would like to study is how Tc changes 

with different N, and how Nc changes with different T, at the same frequency. We again 

vary N and T based on nominal setting to perform simulation, and the results at 5 GHz 

are reported in Table 2.2 and Table 2.3, respectively. We also include the corresponding 

Qmax at Tc (or Nc). From Table 2.2, it can be seen that with more turns, the number of 

tiers that gives maximum quality factor decreases. Similarly, from Table 2.3, with more 

tiers, the number of turns that gives maximum quality factor decreases. 

Table 2.2 tc and q v.s. n (measured at 5 GHz) 

N 1 2 3 4 5 
Tc 4 2 2 2 2 

Qmax 9.32 8.50 8.77 8.60 8.23 
 

 
 

Table 2.3 Nc and q v.s. t (measured at 5 GHz) 

T 2 3 4 5 

Nc 3 1 1 1 

Qmax 8.77 9.11 9.32 8.95 

 
 
 

2.3.3. Loop Pitch (P). The quality factor and the inductance for different loop 

pitches and operating frequencies are shown in Figure 2.9. This is a unique parameter for 

the TSV inductor. If the loop pitch increases, the inductance decreases slightly, mainly 

due to the reduced magnetic flux. Fitting results suggest that the inductance follows the 

quadratic trend L= 0.0003P2 -0.0122P + 0.5019. 

On the other hand, the quality factor decreases with the increase of P at lower 

frequencies and remains almost constant at higher frequencies. This is because at lower 
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frequencies the loss is mainly due to the metal resistance which increases with P. At 

higher frequencies, the substrate loss starts to dominate, which decreases with the 

magnetic flux (with the increase of P). It conforms to our observation 2. Fitting results 

suggest that at 150MHz, Q = -3.3x10-5P3+ 0.002P2- 0.053P + 1.000. At 1 GHz, Q = -

0.0001P3 + 0.0060P2 - 0.1740P + 4.9130. At 5 GHz and 10 GHz, it is almost constant. 

 
 
 

 

Figure 2.9 Q and L vs. loop pitch P 

 
 
 

Finally, we note that the self-resonant frequency remains almost constant (~250 

GHz). 

Observation 8: For the range of interest, increasing the loop pitch P slightly 

decreases the inductance. The quality factor also slightly decreases with P at low 
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frequency, and remains almost constant at high frequency. The self-resonance frequency 

does not change significantly with P. 

2.3.4. Metal Width (W). The quality factor and the inductance for different metal 

widths and operating frequencies are shown in Figure 2.10. The inductance should 

decrease as W increases due to the increased capacitive coupling. According to the fitting 

results, the value of inductance follows the quadratic trend where L = 0.0005W2 - 

0.0117W + 0.1907.  

 
 
 

 

Figure 2.10  Q and L vs. metal width (W) 

 
 
 

In terms of quality factor, it should increase with W as the ohmic loss becomes 

smaller. The impact of W on Q also becomes more profound at higher frequency. Fitting 

results suggest that the quality factor almost remains constant at 150 MHz. At high 
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frequency, the quality factor increases with cubic trend, which is due to the effect of 

further AC resistance reduction from substrate coupling. At 1 GHz, Q = 0.002W3 -

0.056W2 + 0.499W + 1.619. At 5 GHz, Q = 0.003W3 - 0.104W2 + 1.200W + 3.471. At 

10 GHz Q = 0.006W3 -0.146W2 + 1.435W + 5.977.  

Observation 8: For the range of interest, increasing the metal width W decreases 

the inductance, and has little impact on the quality factor at low frequency. It increases 

the quality factor at high frequency. The self-resonant frequency does not change with W 

significantly.       
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3. LOSS REDUCTION VIA MICRO-CHANNEL SHIELD 

3.1. INTRODUCTION 

From Observation 2 in Section 3, the substrate loss dominates when the frequency 

is over 1 GHz and when the substrate conductivity is over 10 S/m (which is normal for 

digital applications). In other words, the TSV inductor is subject to severe efficiency loss 

over 1 GHz. To tackle the issue, we are interested in devising effective shield mechanism 

to reduce substrate loss. 

3.2. PRINCIPLES AND METHODOLOGY 

To help understand the distribution of eddy current in the TSV inductor, we 

simulate it with the nominal setting shown in Section 3. The resulting E and H fields are 

plotted in Figure 3.1(a) and (b), respectively. From the figure, we can see clearly that the 

E field decreases as we get farther from the TSVs, while the H field completely 

penetrates through the area between the TSVs. As such, we can expect that most of the 

eddy current loss comes from the silicon substrate near the TSVs, which inspires us to 

think: Why not remove the silicon substrate in that area? 

This reminds us about a seemingly irrelevant technique, micro-channel, which has 

been widely used as a low-cost heat-removal technique in 3D ICs (e.g.[12, 13]). Simply 

speaking, the technique etches a channel from the bottom surface of the substrate for 

liquid cooling and only requires extra two lithography steps, which are relatively cheap to 

implement. The fabrication process of micro-channel is already mature–an example of 

such process from IBM and Nanonexus is shown in Figure 3.2[16]. 
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(a) 

 

(b) 

Figure 3.1  E field (a) and H field (b) distributions 

 
 
 

In our situation, we can place such channels adjacent to the TSVs to remove part 

of the substrate. Specifically, we etch four identical channels, one on each side of the two 

TSVs. An illustration of such a structure is shown in Figure 3.3 for a two-tier design. For 
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multiple tiers, we need to place four channels at each tier, adjacent to the TSVs. The 

micro-channels can either be filled with coolant like conventional micro-channels, or just 

open with air. Note that these channels are etched on the backside of the silicon substrate, 

and will not affect any devices.  

 
 

 

Figure 3.2 Micro-channel fabrication steps (only two extra lithography steps (c) and (e) 
are required) [16] 
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Figure 3.3 Micro-channel shields for substrate loss reduction 

 

An extra benefit of such technique is the reduced temperature at the inductor. 

When inductors are used to form antennas, they typically bear high temperature [14]. 

Accordingly, with the micro-channels the heat will be able to dissipate faster. 

3.3. SIMULATION RESULTS AND DISCUSSION 

To verify the effectiveness of this approach, we simulate the eddy current in TSV 

inductors with micro-channels with the nominal settings in Section 3. The resulting E and 

H fields are plotted in Figure 3.4 and Figure 3.5, respectively. From the figures we can 

see that the E filed decreases much as we introduce the micro-channel while the H field 

still completely penetrates through the area between the TSVs. The comparison shows 

the improvement over the one without micro-channel.  
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Figure 3.4  E field distributions of TSV inductors with micro-channel 

 

 

Figure 3.5  H field distributions of TSV inductors with micro-channel 

 
 

 

Furthermore, we vary the height (Hc) and the width (Wc) of the four micro-

channels and compare the improvement of Q and L at 10 GHz based on a structure with 

two tiers (T=2) and six turns (N = 6). All the other parameters conform to the nominal 

settings discussed in Section 3. The micro-channels are placed 5um from TSV center to 

the nearer edge of the channel. The resulting Q and L are reported in Table 3.1. The 
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improvements over the case without micro-channel shields are also reported in 

parentheses. From the table, we can easily see that both channel height and width have 

profound impact on Q. For the maximum height of 60 um and width of 25 um, a 71.0% 

improvement of Q over the TSV inductor without micro-channel can be observed. 

Considering reliability and manufacturability, the aspect ratio of the channel is limited 

[15]. Accordingly, designers should carefully consider the tradeoff between the micro-

channel dimension and Q. On the other hand, L remains almost constant with various Wc 

and Hc.  

 

Table 3.1 Q and L vs. micro-channel dimension (10 GHz, N = 6, T = 2).The relative 
improvement over the case without micro-channel shields is reported in parentheses. 

 Wc (um) 
Quality Factor Inductance (nH) 

10 20 25 10 20 25 
 
 

Hc 
(um) 

10 6.71 
(4.5%) 

6.92 
(8.1%) 

7.03 
(9.6%) 

1.396 
0.0% 

1.395 
0.0% 

1.394 
0.0% 

20 7.02 
(9.6%) 

7.29 
(13.8%) 

7.46 
(16.3%) 

1.393 
0.0% 

1.390 
0.0% 

1.390 
0.0% 

30 7.34 
(14.6%) 

7.76 
(21.1%) 

7.94 
(23.9%) 

1.391 
0.0% 

1.386 
0.0% 

1.384 
0.0% 

40 7.73 
(20.5%) 

8.28 
(29.2%) 

8.59 
(34%) 

1.388 
0.0% 

1.386 
0.0% 

1.382 
0.0% 

50 8.25 
(28.8%) 

8.98 
(40.1%) 

9.41 
(46.1%) 

1.388 
0.0% 

1.380 
0.0% 

1.376 
0.0% 

60 9.12 
(42.2%) 

10.34 
(61.4%) 

10.96 
(71.0%) 

1.386 
0.0% 

1.374 
0.0% 

1.377 
0.0% 

 
 
 
We further study how Q and L change when using maximum micro-channel 

dimensions for different number of turns N, number of tiers T and frequency f. The 

results on Q and L at 10 GHz are reported in Tables 3.2 and Table 3.3, respectively. To 

show the effect at different frequencies, the results on Q at 1 GHz are reported in Table 
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VII. Note that we omit the table for L at 1 GHz as it remains constant with or without the 

micro-channel. In all the tables, improvement over the case of the same N and T but 

without the micro-channel is also reported in parentheses.  

From the tables we can draw the conclusion that micro-channel technique is more 

important at larger N and T, and at higher frequencies – both Q and L improves 

significantly. This is in accordance with the intuition that substrate losses become larger 

with larger N, T, or higher f. At 10 GHz, up to 21x increase in Q and 17x increase in L 

are observed (Tables 3.2 and Table 3.3, N=3, T=5), while at 1 GHz only Q is improved 

by up to 3x (Table 3.4, N=6, T=5). 

One more thing worth mentioning here is that the increased self-resonant 

frequency brought by the micro-channel. For example, in Table 3.3, when N = 5 and T = 

4, the TSV inductor without micro-channels ceases to work as an inductor (Q<0), while 

the TSV inductor with micro-channels still provides positive quality factor. For that 

reason, no improvement is reported. 

 
Table 3.2 Q vs. Number of turns(N) and number of tiers(t) for maximum micro-channel 

dimensions (measured at 10 GHz). The relative improvement over the case without 
micro-channel shields is reported in parentheses. 

Q T 
2 3 4 5 

 
 
 

 
N 

1 10.96 
(5.88%) 

13.12 
(14.5%) 

14.53 
(38.9%) 

14.90 
(70.3%) 

2 11.36 
(11.7%) 

11.31 
(78.52%) 

7.59 
(168%) 

6.14 
(359%) 

3 11.89 
(26.3%) 

9.15 
(167%) 

4.65 
(406%) 

2.00 
(2034%) 

4 11.89 
(42.4%) 

7.46 
(269%) 

2.93 
(1007%) 

1.03 
N/A 

5 11.37 
(55.3%) 

5.97 
(371%) 

1.87 
N/A 

0.19 
N/A 

6 10.98 
(71%) 

4.74 
(483%) 

1.01 
N/A 

-2.08 
N/A 
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Table 3.3 L vs. Number of turns (N) and number of tiers (t) for maximum micro- channel 
dimensions (measured at 10 GHz). The relative improvement over the case without 

micro-channel shields is reported in parentheses. 

 

 

 

Table 3.4 Q vs. Number of turns (N) and number of tiers (t) for maximum micro- channel 
dimensions (measured at 1 GHz). The relative improvement over the case without micro-

channel shields is reported in parentheses. 
Q T 

2 3 4 5 
 
 
 
 

N 

1 4.29 
(30.6%) 

3.74 
(0.5%) 

4.15 
(1.0%) 

4.44 
(2.0%) 

2 3.36 
(0.0%) 

4.72 
(3.2%) 

5.37 
(4.8%) 

5.90 
(9.9%) 

3 3.76 
(0.2%) 

5.28 
(1.7%) 

6.39 
(15.8%) 

6.83 
(36.4%) 

4 4.02 
(0.8%) 

6.04 
(11.1%) 

7.11 
(37.4%) 

7.57 
(88.3%) 

5 4.13 
(0.1%) 

6.49 
(17.8%) 

7.65 
(67.0%) 

7.78 
(153.0%) 

6 4.29 
(2.7%) 

6.81 
(26.5%) 

7.92 
(98.5%) 

8.01 
(235.1%) 

 

 

 

L (nH) T 
2 3 4 5 

 
 
 

 
N 

1 0.135 
(0.0%) 

0.344 
(0.0%) 

0.577 
(0.0%) 

0.828 
(1.2%) 

2 0.344 
(0.0%) 

0.958 
(0.0%) 

1.729 
(0.0%) 

2.708 
(11.9%) 

3 0.594 
(0.0%) 

1.700 
(0.0%) 

3.523 
(39.9%) 

5.882 
(1615%) 

4 0.843 
(0.0%) 

2.741 
(1.0%) 

5.959 
(424%) 

8.855 
N/A 

5 1.093 
(0.0%) 

3.390 
(2.2%) 

8.577 
N/A 

3.055 
N/A 

6 1.376 
(0.0%) 

5.206 
(58.5%) 

10.634 
N/A 

-3.518 
N/A 
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Table 3.5 quality factor (q) and area (a) comparison between 2d spiral inductors (w/ pgs) 
and 3d TSV inductors (both w/o and w/ micro-channel shields) under same design specs 

(L and F). 
Design Specs 

 
Spiral Inductor TSV Inductor 

# f 
(GH
z) 

L 
(n
H) 

Geometry  
Q 

A 
(um2) 

Geometry Q A 
(um2) 

T 
(u
m) 

D 
(u
m) 

d 
(u
m) 

W 
(u
m) 

N T W 
(u
m) 

P 
(u
m) 

w/o 
shie
ld 

w/ 
Shie
ld 

1 1 6.5 2 56
0 

53
5 

10 5.7 313,60
0(1) 

6 2 7 20 4.6 7.6 8,255(1/3
7.9x) 

2 5 2.5
0 

2 40
0 

35
5 

20 6.9 160,00
0(1) 

4 3 6 18 4.3 10.3 9,358(1/1
7.1x) 

3 10 0.9
5 

1 33
0 

32
0 

10 10.
0 

108,90
0 (1) 

2 3 6 18 5.8 10.1 4,679(1/2
3.3x) 

 

 

 

Finally, we set up three different sets of target inductance and operating 

frequency, and compare the resulting 2D spiral inductor, conventional TSV inductor 

without micro-channel shields, and our TSV inductor with micro-channel shields in terms 

of quality factor and area. The results are reported in Table 3.5. The 2D spiral inductors 

are implemented through a special RF process, which includes a total of 9 metal layers of 

8 um thick in total. The spiral inductor is implemented on M9 of 4 um thick (to improve 

Q). The PGS as shown in [10] is also embedded. T, D, d and W denote the number of 

turns, outer diameter, loop pitch, and metal width for the spiral inductor respectively. For 

the TSV inductors with and without micro-channel shields under the same design spec, 

we use the same geometries for comparison. Their notations are shown in Table 2.1 and 

other process details are listed in Section 3. The area for all inductors is measured by the 

total routing resource occupied. For TSV inductors, the area also includes the substrate 

occupied by the TSVs.   
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From the table, we can easily see that the TSV inductors without micro-channel 

shields has much inferior quality factor compared with the spiral inductor of the same 

inductance, while the TSV inductors with the micro-channel shields can achieve higher 

quality factor compared with the spiral inductor. For example, at 1 GHz, while 6.5 nH is 

achieved by all the three inductors, our TSV inductor with micro-channel shields can 

achieve a 38x area reduction with 33% quality factor improvement compared with the 

spiral inductor. In other words, circuits implemented using our TSV inductor with micro-

channel shields can improve energy efficiency by up to 33% and reduce the area by 38x 

compared with its counterpart implemented using conventional spiral inductor. The 

results suggest that the micro-channel shields make TSV inductors a much better option 

over spiral inductors in 3D ICs. 
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4. CONCLUSIONS AND FUTURE WORK 

In this thesis, we have systematically examined how various parameters affect 

their performance. In addition, we have proposed a novel shield mechanism utilizing the 

micro-channel technique to drastically improve the quality factor and the inductance. To 

the best of the authors’ knowledge, this is the very first in-depth study on TSV inductors 

along with a technique to make them practical.  

In the future, we will try to implement benchmark applications such as on-chip 

transceivers and transceivers using the proposed TSV inductors. 
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