
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 1989

Automated translation of digital logic equations into optimized Automated translation of digital logic equations into optimized

VHDL code VHDL code

John Evan Stark

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Stark, John Evan, "Automated translation of digital logic equations into optimized VHDL code" (1989).
Masters Theses. 729.
https://scholarsmine.mst.edu/masters_theses/729

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F729&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F729&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/729?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F729&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A U TO M A TED T R A N SL A T IO N O F D IG IT A L LO G IC EQ U A TIO N S

IN TO O P T IM IZ E D VHDL C O D E

B Y

JO H N EVAN ST A R K , 1965-

A T H E SIS

Presented to the Faculty o f the Graduate School o f the

U N IV E R S IT Y O F M ISSO U R I - RO LLA

In Partial Fulfillment o f the Requirements for the Degree

M A ST E R O F SC IEN C E IN C O M PU TE R SC IEN C E

May 1989

Approved by

ABSTRACT

It was desired to develop an algorithm for the automated translation of'finite slate

machines from state table form to optimized VHDL form. To do this, algorithms arc

needed for reducing the state machine to simplest form, making state assignments,

producing minimal logic equations to represent the state machine, and producing

VHDL code which describes the intended circuit. Various such algorithms were

examined and a prototype program written to perform this translation.

ACKNOWLEDGEMENT

I wish to thank everyone who has helped me with this project. In particular I

want to thank my advisor Dr. George W. Zobrist for suggesting the topic and guiding

me along the way. Special thanks go also to Dr. A. K. Rigler and Dr. Darrow F .

Dawson, my committee members. I would also like to express my appreciation for the

support and funding provided by the Intelligent Systems Center o f the University o f

M issouri - Rolla and the United States Air F orce (C ontract No:

F49620-85-C -0013/SB5851-0360).

IV

TABLE OF CONTENTS

Page

ABSTRACTi

ACKNOW LEDGEMENT .. iii

LIST OF ILLUSTRATIONS .. vi

I. INTRODUCTION .. 1

II. FROM STATE TABLE TO LOGIC EQUATIONS 3

A. STATE TABLE SIMPLIFICATION ... 3

1. Removal of Unreachable States ... 4

2. Removal of Equivalent States .. 4

a. Implication Tables .. 6

b. Equivalence Sets ... 7

B. STATE ASSIGNMENT ... S

C. KARNAUGH MAP PRODUCTION .. 9

D. LOGIC EQUATION PRODUCTION ...12

1. Quine/McCluskey Method ... 12

2. Prather Method... 14

3. Implicant Table Reduction ..15

III. VHDL DESCRIPTION OF FIN ITE STATE M A C H IN E S............. 19

IV. CONCLUSIONS ..21

BIBLIOGRAPH Y ... 2

VITA ...24

APPENDICES

A. VI 11)1...25

B. Functional Flow Diagram 27

C. VHDL Template File ...32

D. Sample Output ... 35

E. Meg Output Comparison ... 79

V

Fi|

l

2

3

4

5

6

7

8

9

10

11

12

13

LIST OF ILLUSTRATIONS

Sequential Network ...

Transition Diagram and State Table ...

Algorithm For Removal of Unreachable States

Equivalent State Removal ...

Algorithm for Removal of Equivalent States by Implication Fable.

Algorithm for Removal of Equivalent States by Equivalence Sets.

Karnaugh M a p s ...

Algorithm for each Karnaugh Map Production

Logic Equation Production ..

Algorithm for Quine/McCluskey Method ...

Algorithm for Prather Method ...

Algorithm for Implicant Table Reduction ...

Algorithm for Producing VHDL Description

Functional Flow Diagram ...

1

I. INTRODUCTION

A finite state machine is a model of a sequential logic network. The term

sequential indicates that its outputs are dependent not just on its current inputs but

also on past inputs. Therefore, a history o f inputs must be kept. This is accomplished

by use of a memory. Rather than attempt to keep track o f all past inputs, a finite

number of states are used, each of which represents a set of equivalent input histories.

Each input causes the machine to either enter a new state or stay in the same state, and

may affect the machine's output. An electrical circuit for a finite state machine

includes inputs, a combinational logic part, a memory, and outputs as shown in

figure 1.

Figure 1. Sequential Network

VHDL is a hardware description language intended for the design, description,

and simulation o f electrical hardware systems and components. The description of an

object is in two parts, an interface and an architecture. This allows for separation o f

function and implementation. For versatility, objects can be described by behavior,

2

structure, data flow, or any combination o f the three architectures [13, 14). See

appendix A for a more detailed description.

The intent of this research was to provide for high level design of of' electronic

circuits using the finite state machine model. High level design relieves concerns for

lower level details, allowing the designer to concentrate on the purpose of the design

and reducing error.

Only completely specified, synchronous, single input/single output machines were

considered for the translation from state table to VHDL form. A prototype program,

FSM , to perform this translation was written using Pascal on an IBM PC [10]. The

following sections outline algorithms available and identify those used for the

prototype program. Complete examples of the process of translating a state table to

logic equations is given in appendix D.

Input for the prototype program, read from a file, includes a short (80 character)

description of the finite state machine, the number of states in the machine, and the

state transitions pairs. Each transition is specified by its next state and associated

output. Since only completely specified single input/single output machines arc

considered, there are exactly two transitions for each state. States are assumed to be

numbered sequentially starting with zero which is assumed to be the initial state.

Additional input accepted directly from the user consists o f the name the finite state

machine is to be given in the VHDL code, the name of the file containing the state

transitions, the name of the file to which the VHDL code is to be written, the type of

flipflop to use and its delay time, and the implementation o f the combinational logic

and its delay.

3

II. FROM STATE TABLE TO LOGIC EQUATIONS

A. STATE TABLE SIM PLIFICATION

A state table is a tabular description of a transition diagram listing the transitions

from each state and the outputs produced either at the state (a Moore machine) or on

transition to the next states (a Mealy machine—used by FSM, the prototype

program) [3], Figure 2 shows a transition diagram and corresponding state table for

a finite state machine.

Reducing the number of states in a state machine can reduce the number of

memory elements needed to represent the states of the machine and help minimize the

combinational logic used to determine the machine's outputs and next states. The

number of memory elements required to represent n machine states is the ceiling of

log2/j . Having fewer states than the maximum a set of memory elements could

represent introduces don't-care terms into the logic, possibly simplifying it.

To reduce a state table to its simplest form, unnecessary states must be removed.

These include redundant, unreachable, and equivalent states. As redundant states arc

a subset of equivalent states, they need not be considered separately although

4

algorithms exist for their removal. Unreachable states however can only be equivalent

to other unreachable states and must therefore be handled separately.

1. Removal of Unreachable States. Unreachable states arc identified by forming

the set of reachable states [4). Initially, the only known reachable state, the initial

state, is the sole member of this set. Then, in an iterative process, the next states of

each member of the reachable set are added to the set if they are not already members.

When no states are added on a pass, the set is complete. Any states not in the set are

unreachable and are removed from the state table. References to these unreachable

states as next states of reachable states need not be considered in this removal as there

can be none.

Insert (Initial_State. Reachable_Set)
unti1 No_States_Added

Mo_States_Added := true
for each Next_State of each State in Reachable_Set

if Current_Next_State not in ReachabIe_Set
Insert (Current_Next_State» Reachable_Set)
No_States_Added := false

end i f
end for

end until

for each State in State_Table
if Current_State not in Reachable_Set

Remove (Current_State, State_Table)
end i f

end for

Figure 3. Algorithm for Removal o f Unreachable States

2. Removal of Equivalent States. Fquivalent states can be identified by use of

equivalence sets [1] or an implication table [3, 8]. In cither case all states arc at first

considered to be equivalent and equivalences arc then ruled out. When the equivalent

states of the state table have been found, all but one of the states in each group of

equivalent states arc removed from the state table; in effect they arc merged into one.

5

Q Q+ Z

a) state table after removal
of unreachable states

1 X 1 X c s 4

2 X 8-7
7-0 2 X &

1= 3 =J8

3 X 7-7
4-0

7-8
4-7 3 X 7-7

4-0 $
2 - 7

4
3-1
2-7 X X X 4

3-1
2-7 X X X

7 X 3-7
7-0

3-8
7-7

3-7
7-4 X 7 X % 3-8

7-7 X X

8 X 2-7
0-0

2-8
0-7

2-7
0-4 X 2-3

0-7 8 X 2-7
0-0 s s

2-7
0-4 X $

0 1 2 3 4 7 0 1 2 3 4 7

b) implication table

1 = { 0 4 } 11= { 1 2 3 7 8 }
2222 21 2221 22 21

1 = { 0 4 } 11= { 1 3 8} I I I - { 2 7}
2323 31 31 31 23 23

c) equivalence se ts

Q Q+ Z
X=0 1 X=0 1

0 1 2 0 0
1 2 0 0 1
2 1 2 0 1

d) with equivalent states removed

Figure 4. Equivalent State Removal

To preserve the integrity of the state table, all references to removed states as next

states are replaced by the id of the state kept.

6

a. Implication Tables. With an implication table (figure 4b), one entry exists for

each possible pairing o f states, without respect to order and excluding the pairing of a

state with itself. An entry is marked when its pair of states is known not to be

equivalent. The first o f these marks are placed on the basis of differing outputs of the

states' transitions, as states with differing outputs cannot be equivalent. The remaining

entries are then checked in repeated passes of the table on the basis of the next states

of each entry's pair of states. If the next states to be taken on a particular input for

an entry's states have been found to be not equivalent, that entry's pair of states are

not equivalent and it is marked. When a pass yields no additional marks, the remaining

unmarked entries indicate equivalent states.

for each State in State_Table except last (Current_)
for each State in State_Table beyond Current_State CCheck_)

if Check_State.Outputs * Current_State.Outputs
Table_EntryCCurrent_State, Check_State] := marked

end if
end for

end for

until No_Changes
No_Changes := true
for each State in State_Table except last (Current_)

for each State in State_Table beyond Current_State (Check_)
for each Input_Corrbi nation

if Table_Entry[Current_State+Next_StateClnput_Combi nation],
Current_StatetNext_StateCInput_Combination]] is marked

Table_EntrytCurrent_State. Check_State] := marked
No_Change :- false

end if
end for

end for
end until

figure “i. Algorithm for Removal o f liquivalcut States by Implication Table.

7

b. Equivalence Sets. When using equivalence sets (figure 4c), the states are first

divided into separate sets according to the outputs of their transitions to next states.

For the iterative part of this process, the states in each set arc assigned a subscript for

each transition indicating the set of which the transition's terminal state is a member.

Each set is then broken down further into new sets for which the subscripts o f all

member states match. This is repeated, assigning new subscripts and dividing sets,

until no more sets can be created. At this time, each set contains only equivalent

states.

for each State in State_Table
for each Equivalence_Set

if Current_State.Outputs = Current_Set.Specs
Insert (Current_State» Current_Set)

end if
end for

end for

unti1 No_New_Sets
No_New_Sets := true
for each Ir\put_Combination of each State of each Equivalence_Set

for each Equivalence_Set (Current_)
if Current_StatetNext_StateCCurrent_Input_Combinationl in Current_Set
Current_State.Subscript[Input_Combinationl := Current_Set.ID

end i f
end for

end for

for each Equivalence_Set with Cardinality > 1
for each State in Current_Set beyond first

if Current_State.Subscripts * First_State.Subscripts
Remove (Current_State» Current_Set)
Inserted : = false
for each New_Set split from Current_Set

if Current_State.Subscripts = New_Set.Specs
Insert (Current_State> Current_New_Set)
Inserted := true

end i f
end for

i f not Inserted
Create (New_Set)
Insert (Current_State, Neu_Set)

end if
end i f

and for
and for

end until

Figure 6. Algorithm for Removal of Equivalent States by Equivalence Sets.

8

The use o f equivalent sets was chosen over an equivalence table for the prototype

program because the data structure grows less quickly. With n states in a machine,

there will be exactly n entries in at most n equivalence sets while an implication table

B. STATE ASSIGNMENT

In the circuit implementation of a finite state machine, each state is represented

by a binary n-tuple which is a concatenation o f the values of the memory elements

o f these n-tuples, or state assignments, can affect the minimization of the

combinational logic part of the circuit. For a given machine there are 2" possible state

assignments. Story [12] gives the number of possible combinations of assignments as

where R is the number of states in the machine. Thus as the number of states grows

large, the number of possible state assignments and their possible combinations grows

very large.

Currently, there is no method for determining an optimal state assignment

without comparing the results of assignments through trial and error. Story [11] does

offer a method of reducing the number of assignments which need to be checked. I Iis

approach produces optimum combinations of state assignment columns. The number

o f distinct columns which need to be considered is

when the machine is in that state, n being the number of memory elements. The choice

(2” - 1)!

(2n - /?)!«!

2'.*» I

9

which still grows quickly. The prototype program uses the natural assignment method

which consists of numbering the states sequentially starting with zero.

C. KARNAUGH MAP PRODUCTION

Karnaugh map representations of the machine outputs and next state signals are

created to help in the production of the logic equations [3, 8). Two maps are required

for each JK or RS flipflop, or one for each D nipflop, and one is required for each state

machine output. Figure 7 shows the production of J and K maps for one memory

element of a finite state machine.

Q Q

A B C

o1!X

1

0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 0 0
0 1 0 1 0 1 0 1 1
0 1 1 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 1

114] *
d[8+9+ 10+11+12+13+14+1

1 (8 + 9+ 1 1] +
d[0+1+2+3+4+5+6+7+12+

51

00 01 11 to
00
01

J AA 11
1
X X X X

10 X X X X

00 01 11 10
00 X X X X

ka 01
A 11

X X X X
X X X X

14+15] 10 1 1 1

Figure 7. Karnaugh Maps

Story (12) gave formulas for finding on-cells and don'i-carc-cells for the

Karnaugh maps for JK fiipflops:

10

R - \

J - Y p -yj)QjY
7=0

R - 1 2™

(=0

tf-1

J jjQ j + Y fij
7=0 /= «

y=o i=o
X y i - ^ + X e ,
7=0 7=«

(1)

(2)

In the equations, j is the state table row index, i is the input index, R is the number

of states, n is the number of flipflops, m is the number of inputs. Where Story used

r and W, y and represent the current and next state values of the flipflop; QX (rather

than SX used by Story) represents the cell number of the map (a concatenation of

machine state and input), Q represents a grouping of cell numbers (two cells for a

single input machine) for unused states when the input values do not matter, and d

(Story uses 0.5) indicates don't-care-cells. The formulas simply define the maps. The

summations can be thought of as listings of map cells; the multiplication of two

summations as their intersection. For example, the equation for the Karnaugh map

of the set signal of a JK flipflop specifies that the on-cells are those in which the current

value o f the flipflop y is 0 and the next value y+ is to be l. The don't-care-cells are

specified as those for which the values of both y andy+ are 1 and all those for unused

states. Formulas for RS and D flipflops can be written similarly:

5 =
R- 1 2m

y=o i=o

R - 1 2m

j =0 i=0

R- 1 2"

X " -•»><?,X 1
j = 0 /'=0

(3)

(4)

I)
R-1 2"

'Ji -Z
7=0 7=0

2"

i=K
(*)

11

The type o f memory element chosen for a circuit can also affect the minimization

o f the combinational logic part of the circuit. The only method of determining which

type will yield minimal results is trial and error. There are however only a limited

number of common types available.

for each FlipFlop
Mask := 2 #* #(Current_FlipFlop)
for each Input_Combination of each State in State_Table

Cell_ID := 2 «* t(Inputs) * Current_Input_Combination
Y_Current : = RShift (Current_State.ID and Maskt #(Current_FlipFlop>)
Y_Next := RShift CCurrent StatefNext_StateClnput_Combination] and Mask,

•CCurrent_FlipFXop))

select CY Current ■■ Y_Next)
case ■001: Insert C Current_KMap,
case •01*: Insert

Insert
(Current_JMap,
(Current_KMap,

case • 10‘: Insert
Insert

(Current_JMap,
(Current_KMap■

case *11':
end select

Insert (Current_JMap,

end for

Cell 10, don't_care)
Cell~ID, on)
Cell_ID, don't_care)
Cell_ID, don't_care)
Cell_ID, on)
Cell ID, don't_care)

for each Input_Combination of each unused State_Assignment
Cell.ID := 2 «* t(Inputs) * Current_State.ID + Current_Input_Contoination
Insert CCurrent_JMap, Cell_ID, don't_care)
Insert (Current_KMap, Cell_ID, don‘t_care)

end for
end for

for each Output
for each Input_Conteination of each State in State_Table
Cell_ID :* 2 »# f(Inputs) * Current_State.ID + Current_Input_Combi nation
Mask := 2 «« i(Current_Output)
if Current_State.OutputCInput_Combination] and Mask * 0

Insert (Current_Output_Map, Cell_ID, on)
end i f

end for

for each Input_Combination of each unused State_Assignment
Cell_ID := 2 «* *(Inputs) * Current_State. ID + Current_Input_Combi nation
Insert (Current_Output_Map, Cell_ID, don‘t_care)

end for
end for

Figure 8. Algorithm for each Karnaugh Map Production

The decision of which type of flipflop to use in the VHDL description is left to

the user of the program, as other factors than just minimization may be relevant. No

provision is made for mixing flipflop types in a single machine circuit. The prototype

program can produce V11DL descriptions using JK , RS, or 1) type flipflops. Maps are

12

represented internally by a list of on-cells and a list of don't-care-cells. All cells not

listed are off.

D. LOGIC EQUATION PRODUCTION

It is desirable that the logic equations describing a finite state machine have both

a minimal number of gates and a minimal number of gate levels. Decreasing the

number of gates decreases production costs while decreasing the number of gate levels

increases speed o f operation. Toward these goals the prototype program produces

minimal two-level sum of products equations (disjunctive normal form) using only

NOT, AND, and OR operations.

Two procedures were considered for the production o f equations, the

Quine/McCluskey and Prather Methods. Both start with the individual cells of the

Karnaugh map and seek to combine them into the largest possible groupings. Larger

cell groups can be represented in the equation by fewer terms with fewer literals,

decreasing the number o f gates and gate inputs necessary in the implementation of the

circuit.

1. Quine/McCluskey Method. The standard procedure for producing logic

equations from Karnaugh maps is the Quine/McCluskey method [5, 7] (figure 9b).

With this method a list of the on-cells and don't-care-cells of the map, called

implicants, is made. They are grouped according to the number of 1 bits in their binary

representations. Each implicant in each group is then combined with as many

implicants in the following group (those implicants with one more I bit) as possible,

forming new implicants which are grouped separately , again according to number of

1 bits. The process is repeated with each list of new implicants until no more

combinations arc possible.

13

S c= 1 (0* 4-5*8 + 91 * <1(2*7+ 10*111

a) Karnaugh Map Equation

0 0 0 0 * o o -o * - 0 - 0
0 -0 0 -o -o *

00 1 0 * - 0 0 0 * 1 0 - - „n. 10 --
0 1 0 0 * 0 -0 0 * *
1000* - 0 1 0 * 0 1 0 - * *

0 10- 01-1 *
0 1 0 1 * 10 0 - *
1001* 10-Ox 0 4 5
1 0 1 ox

01-1
— 0—0 ’

A.r ,v. > 0 ‘ 00 * ■*
0 1 1 1 * 10 -1 * “ * - * - 0 1 0 - * *■

1011* 101 - * ABC -04-4-

b) Quine/McCluskey method

0 / 2 4 8 / 0 0 / 4 6 / 0)

4 / 5 0 / Q 0 / 8 T,F - 0,7
-000

5 / 4 7 / 0 0 / 4 T.F - 0,1 1
o-oo

8 / 9 1 0 0 / 1 10 0 / 2 8 / 10 T,F - 0,5
-0-0

4 / 5 T.F - 4.10
9 / 8 1 1 / 1 0 T,F - 8,15-1 1

- ► 10— 5 / 7
010-

T.F - 5.8
AB' 01-1

c) Prather Method

S c= AB' ♦ A'C'X" * A'BC"

d) Final Logic Equation

0 4 5
U V

-►O-OO
A B C - ^

* •*
* ■*

Figure 9. Logic F.quation Production

14

An implicant may be combined with another if their binary representations match

in all but one position (e.g. 0010 and 0110). The bit position in which the two differ

is replaced by a don't-care-symbol (e.g. 0-10 or 0x10). In combinations involving

implicants with don't-care positions, the don't-care positions must match exactly in

both implicants (e.g. 0-10 and 0-11). The implicants which were combined to form new

implicants are marked as such. When no new implicants can be formed, an implicant

table is made from the implicants which have not been marked. Reduction of an

implicant table to form an equation is explained below.

for each Map
for each On_Call and each Don"t_Car*_Cell of Map

IBits := IBit_Count (#(Cur_Cell)) “
Insert (Cur_Cell> Imp_GrouptIBitsl)

end for

Cur_Imp_List := lst_Inp_List
until No_Combinations

for each Implicant of each Imp_Group except last of Cur_Imp_List
No_Combinations := true

for each Implicant of Next_Imp_Group
if Check_Implicant can combine with Current_Iirplicant

New_Implicant := Combine (Check_Implicant, Current_Implicant>
Insert (New_Implicanti New_Implicant_GroupCCurrent_Group_lBits])
Mark (Current_Implicant_Group)
No_Combinations := false

end if
end for

end for

Current_Implicant_List : = New_Implicant_List
end until

for each Implicant of each Implicant_List
if Current_Implicant not marked

Insert (Current_Implicant» Implicant_Table)
end i f

end for
end for

Figure 10. Algorithm for Quine/McCluskey Method

2. Prather Method.. A modification of the Quine/McCluskey method was given

by Prather [6] (figure 9c). This technique identifies essential cells (prime implicants)

by attempting to complete for each on-eell of the Karnaugh map the n-cell indicated

15

by adjacent on-cells and don't-care cells. I f this n-cell can be completed, it is essential

to the equation. If not, then the basic (nonessential) cells which cover the cell in

question can be found by attempting to complete the n-ccll without one or more of the

original adjacent cells. First all essential n-cells are found and the cells they cover

marked. Then all basic cells are found for those on-cells not yet covered and used to

form an implicant table which is reduced in the manner explained below.

An n-ccll is completed by checking to sec if all the necessary cells arc either on

or don't-care. The on-cells and don't-care-cells adjacent to the cell to be covered arc

identified first. The number of these adjacent cells indicates the size o f the n-cell and,

as a powder of two, the number of individual map cells covered (e.g. three adjacent cells

indicate a 3-cell covering eight map cells, zero indicates a 0-ccll covering one map cell).

The next group of cells arc identified by adding the delta (adjacent cell id minus original

cell id) of each cell in the current group of the n-cell to each of the following adjacent

cells. New groups of cells are found until one contains only a single map cell at which

time the n-ccll is complete, or until an indicated map cell is neither an on-ccll nor a

don't-care-cell. If the n-cell cannot be completed, an attempt to find basic cells can

be made by omitting each of the original adjacent cells, one at a time, whose delta was

involved in identifying the cell which failed to compete the n-ccll.

The Prather method was the method chosen for the prototype program because

it works at the integer level when dealing with cell id's rather than at the bit level.

With the Prather method there is no need to count the bits in binary representations

or check that all but one bit position of two numbers match.

3. impiicant Table Reduction. The rows of an implicant table are the implicants

arranged so that priority is given to the number of on-cells covered and the number

o f don't-carc positions (indicating fewer literals and thus fewer gate inputs). The

16

Find_lst_Group (Cell_To_Cover> NCell)
for each Cell adjacent to Cell_To_Cover

if Current_Cell is On or Don't_Care
Insert (Current_Cell, lst_Group)

end i f
end for

end Find_lst_Group

Complete_NCell (Cell_To_Cover, NCell)
Current_Group := lst_Group
until Current_Group has only one Cell or Failure

Failure := false
for each Cell in Current_Group except last (Current_)

for each Cell following Current_Cell in Current_Group (Check_)
Indicated_Cell := Map_Cell[Check_Cell_ID + Current_Cell.Delta)
if Indicated_Cell is On or Oon*t_Care

Insert (Indicated_Cell, Next_Group)
else

Failure := true
Delta_History := Indicated_Cell_ID - Cell_To_Cover_ID

end i f
end for

end for

Current_Group := Next_Group
end until

if Failure
return (Delta_History)

end Complete_NCell

Find_Basic_Ce11s (NCell)
Complete_NCell (Cell_To_Cover, lst_Group, Delta_History)

if Complete
Insert (Implicant, Implicant_Table)

else
for each Delta in Delta_History

Remove (CellCOeltal, lst_Group)
Complete_NCell (Cell_To_Cover, lst_Group, Delta_History)

end for
end if

end Find_Basic_Cells

for each Map
for each On_Cell in Map

Find_lst_Group (Current_On_Celli NCell)
Complete_NCell (Current_On_Cell. NCell)

if Complete
Insert (Term (Min_Cell (NCell), Max_Cell (NCell)), Associated_Equation)
Mark (Current_On_Cell)

end if
end for

for each On_Cell not marked in Map
Find_lst_Group (Current_On_Cell, NCell)
Find_Basic_Cells (Current_On_Cell, NCell)

end for
end for

Figure 11. Algorithm for Prather Method

17

columns of the implicant table are labeled by the on-cells of the map. Entries o f a row

which are in columns that represent on-cells covered by that row's implicant arc

marked

until Implicant_Table is empty
sort Implicant_Table by Cell_Size within Columns_Covered

for each Implicant in Implicant_Table CCurrent_)
for each Implicant in Implicant_Table beyond Current_Implicant (Check_)

if Current_Implicant dominates Check_Implicant
Remove (Check_Implicant> Implicant_Table)

end i f
end for

end for

Reduced := false
for each Implicant in Implicant_Table

if Current_Implicant alone covers a Column
for each Column covered by Current_Implicant (Delete_)

Remove CDelete_Column, Implicant_Table)
end for

Remove (Current_Implicant, Implicant_Table)
Reduced := true

end if
end for

i f not Reduced
Count := #(Implicants)
for each Column in Implicant_Table

if #(Implicants covering Current_Column) < Count
Count : = #(Implicants covering Current_Column)
Select_Column := Current_Column

end if
end for

for each Implicant in Implicant_Table until Reduced
if Current_Implicant covers Select_Column

for each Column covered by Current_Implicant
Remove (Current_Column» Implicant_Table)

end for

Remove (Current_Implicant> Implicant_Table)
Reduced := true

end i f
end for

end if
end until

Figure 12. Algorithm for Implicant Table Reduction

A prime implicant is one which alone covers an on-cell (is the only implicant with

an entry in that column marked before any reduction is done). Crime implicants aic

essential to the equation and arc removed from the table along with the columns they

18

cover and become the basis of the equation. All remaining columns are now covered

by two or more implicants. With the Prather method prime implicants (essential cells)

are recognized upon completion and not added to the implicant tabic but directly

become a term of the equation.

If an implicant is dominated, it may be removed from the table without effect.

One implicant dominates another if, for every column covered by the second, the first

also covers that column. If two implicants dominate each other and one has fewer

don't-care positions, it should be the one removed; otherwise the decision is arbitrary.

If removing dominance from the table leaves columns which are covered by only one

remaining implicant, those implicants should be sclcctcd--rcmovcd from the table along

with the columns they cover and added to the equation. If no columns arc covered

by only one remaining implicant, then an implicant must be chosen by another

method. Normally the implicant chosen is the one highest in the table covering a

column having the least number of implicants covering it. The process of removing

dominance and chosing implicants is repeated until the implicant table is empty. While

the now complete equation may not be unique, it is minimal.

19

III. VHDL DESCRIPTION OF FINITE STATE MACHINES

As mentioned before, the circuit implementation of a finite state machine consists

o f inputs, outputs, a memory, and a combinational logic part. In a VHDL description

o f this circuit the inputs and outputs make up the entity declaration part, its interface.

The memory and the combinational logic are defined by an the entity's architecture,

the body of the description. The memory will be represented by flipflops for which

standard, predefined descriptions exist that can be used. The combination logic part

can be constructed from either discrete gates or a programmable logic array. I f

VHDL's behavioral type of description is used, the only difference is the number of

inputs as a PLA does not require negated inputs. Thus the description of a finite state

machine can be standardized, requiring only information concerning the number of

inputs, outputs, and memory' elements, and the necessary logic equations.

The VHDL code description of the state machine is produced with the use of a

template file (appendix C) containing markers indicating where machine specific

information is needed. Markers in the template are set off from the code by brackets.

When, in copying the VHDL code file from the template to the output file, a marker

is found, it is identified and replaced by the appropriate substitution string.

Substitution strings, with the exception of the actual logic equations, are determined

from parameters prior to writing the VHDL code file. The logic equations are

formulated from their internal representation and written when the logic marker is

found.

The prototype translation program produces two files as output. One is a trace

o f its operation including the initial state table, simplified state tables, Karnaugh map

representations, essential cells and impiicant tabies for those equations with

noncssential cells, complete equations, and timing of operation. I lie other file is the

VHDL source code description of the finite state machine, a combination of structural

20

Set_Substitutions (Parameters)
Read (Text)
for each Marker in Text

Replace (Current_Marker, Substitution_String[Current_Marker])
end for
Write (Text)

Figure 13. Algorithm for Producing VHDL Description

and behavioral descriptions. VHDL version 7.2 was used for this file. Syntax was

checked for correctness with the VHDL Analy/cr. Sample output for these files can

be found in appendix D.

21

IV. CONCLUSIONS

The logic equations for the the finite state machines in the examples shown in

appendix D were checked for correctness and if from a text, compared to the solution

given where possible. The example solutions were also compared (see appendix T) with

the output of Meg [91, a state machine equation generator.

The VHDL output file can be used as a source file for simulation or simply as a

circuit description. The output of four of the examples in appendix D (examples 1, 5,

6, and 7) were run with the 1076/B VHDL Simulator. As the original VHDL code

was version 7.2, some minor changes were required to make the machines run. They

did, however, perform as expected.

Following are some possible extensions to the program. A graphical finite state

machine editor used as an input interface would make input easier for the designer.

The handling of asynchronous, multi-input,'multi-output, and incompletely specified

state machines would make the program more realistic in terms of use. Version 7.2 of

VHDL was used for the prototype program as that was the latest version of the

analyser available. The most recent version would be desired for actual use. Also,

standard library components for the flipflops would make the designs more compatible

with existing systems and allow greater device independence. The examination of

various state assignments would ensure that the final logic equations were indeed the

minimal possible. Interfacing the VIID L with HDIF [2| would allow for a standard

graphical representation of the electrical circuit.

22

BIBLIOGRAPHY

1. Dietmcyer, Donald L. "Synchronous Sequential Networks ', in Logic Design of

Digital Systems. Allyn and Bacon, Inc., 2nd ed., 1978.

2. ED IF Electronic Design Interchange Format. Electronic Industries Association,

Ver. 2 0 0, May 1987.

3. Hill, Fredrick J. and Gerald R. Peterson. Introduction to Switching Theory and

Logical Design. John Wiley and Sons, 3rd ed., 1981, pp. 96-337..

4. Hopcroft, John E. and Jeffrey D. Ullman. "Simplification of Context-Free

Grammars", in Introduction to Automata Theory, Languages, and Computation.

Addison-Wessley Publishing Company, 1979.

5. McCluskey, Jr., E. J. "Minimization of Boolean Functions", The Bell System

Technical Journal. Vol. 35, November 1956, pp. 1417-1444.

6. Prather, Ronald. "Computational Aids for Determining the M inimal Form of a

Truth Function", Journal of the Association for Computing Machinery. Vol. 7,

No. 4, October 1960, pp. 299-310.

7. Quine, W. V. "The Problem of Simplifying Truth Functions", The American

Mathematical Monthly. Vol. 59, No. 8, October 1952, pp. 521-531.

8. Roth, Charles II. Fundamentals of Logic Design. West Publishing Company,

2nd ed.. 1979, pp. 221-349.

9. Scott, Walter S., ct. al. editors. "Meg", in Berkeley CAD Tools. University of

California, 1986 ed., December 1985.

23

10. Stark, John Evan. "FSM, Source Listing", Internal Report, University of

Missouri - Rolla, 1989.

11. Story, James R. "State Assignment Optimization for Synchronous Sequential

Machines", Ph.D. dissertation, University of Alabama, Tuscaloosa, May 1971.

12. Story, James R. ct. al. "Optimum State Assignment for Synchronous Sequential

Circuits", IEEE Transactions on Computers. Vol. C-21, No. 12, December 1972,

pp. 1365-1373.

13. VHDL Language Reference Manual. Intermctrics, Inc., Ver. 7.2, August 1985.

14. VHDL Language Reference Manual. CAD Language Systems, Inc., Ver. 1076/11,

May 1987.

24

VITA

John Evan Stark (born January 20, 1965) attended secondary school in

Chillicothe, Missouri, graduating in May 1983. He received a Bachelor of Science

degree in Computer Science from Northeast Missouri State University in May 1987.

He is currently a candidate for a Master of Science degree in Computer Science at the

University of Missouri - Rolla, working as a graduate research assistant. While in

school, he has been active in the local chapters of the Association for Computing

Machinery and Kappa Mu Epsilon, an honorary mathematics society.

25

APPENDIX A

VHDL

VHDL (VIISIC Hardware Description Language) [13, 14[is a language that can

be used for the design, description, and simulation of electrical systems and

components. An entity is the basic design unit. It can be any object from a simple

gate to an entire electrical system. Each entity description is composed of two parts,

its interface and its architecture. More than one architecture for an entity, which share

a single interface, can exist to allow for multiple descriptions of that entity.

The interface of an entity defines its inputs and outputs, both physical and logical,

by direction and data type. Directions include in, out, bi-directional, buffered, and

unknown. Data types can be standard predefined types (bit, boolean, integer, real,

character) or user-defined types. Logical inputs, called generics, allow a single entity

to model several identical and yet unique components of a design (e.g. the ROM chips

of a memory board). The interface of an entity can also declare items visible only

within the entity (e.g. data types, constants, subprograms).

An architecture is identified by its own name as well as by the name of the entity

which it describes. The body of each architecture has a declarative part and a

statement part. An entity can be described using one or more of three styles provided:

structural, data-flow, and behavioral. Structural descriptions give a hierarchical

arrangement of components, each of which is itself an entity with its own interface and

architecture. Data-flow descriptions list concurrent signal assignments which represent

the flow of data through the entity. Behavioral descriptions use sequential processes,

similar to high level computer programs, to describe the operation o f the entity.

26

The VHDL environment includes an analyzer, reverse analyzer, simplifier,

simulator, design library, and design library manager. The analyzer checks VHDL

source code for syntactic errors and translates it to an intermediate form which can be

stored in the design library for future reference. The reverse analyser can reconstruct

the VHDL code from the intermediate form of a unit in the design library. The

simplifier reorganizes the hardware description, binding components to entities in

preparation for simulation. The simulator computes successive signal values o f a

design, called waveforms, in a combination event-driven, continuous fashion. The

design library manager integrates the elements of the VHDL environment.

27

APPENDIX B

FUNCTIONAL FLOW DIAGRAM

This appendix contains a functional flow diagram of the prototype program I-'SM.

Figure 14. Functional Flow Diagram

Figure 14. Functional Flow Diagram, cont. toO

Figure 14. Functional Flow Diagram, cont.

Figure 14. Functional Flow Diagram, cont.

WriteLogic

APPENDIX C

VHDL TEMPLATE FILE

This appendix contains the template file used by the prototype program

producing the VHDL description of the finite state machine.

entity {Name}
C X: in Bit_Vector;

Z: out Bit_Vectori
Clk: in Bit) is

end {Name};

architecture {Arch} of {Name} is

B1: block
component {ff}_FlipFlop

port ({Ctrl} in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit);

component {Comb}
port C Inputs: in Bit_Vector;

Outputs: out Bit_Vector);

signal Ycur: Bit_Vector (0 to {Flopln});
signal Ynext: Bit_Vector (0 to {FlopOut});

begin
YcurCtFlopInRange}) <= X{{InRange}) ;
Z({OutRange}) <= Ynext({FlopOutRange});

for I in 0 to {Flop} generate
Mem: {ff}_FlipFlop

port (Ynext({NextI})» {Ctrl2} Ycur({Curl})» {Qnot}, Clk)
end generate;

Comb: {Comb}
port (Ycur, Ynext);

end block;
end {Arch};

entity {ff}_FlipFlop
({Ctrl} in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit) is

end {ff}_FlipFlop»

architecture Behavior of {ff}_FlipFlop is

Bl: block {Guard}
begin

PI: process {Sens}
variable Qhold: static Bit := ’O';

begi n
if Guard then

Qhold := {ff_Logic};
Q <= Qhold after {ff_Time} ns;
Qnot <= not Qhold after {ff_Time} ns;

end if;
end process;

and block;
end Behavior;

entity {Comb}

34

(Inputs:
Outputs:

end tCombJ;

in Bit_Vector>
out Bit Vector) is

architecture Behavior of CCombl is

Bl: block
begin CUogicl
end block;

end Behavior;

35

APPENDIX D

SAMPLE OUTPUT

This appendix contains output from sample runs of the prototype program.

36

detect "101'

initial state table

Q 0+ Z
I X= 0 1 I X= 0
+■

0
1
2
3
4
5
6

3 1 I 0
2 5 1 0
O i l 0
3 <♦ I 0
2 5 1 0
6 4 I 0
O l l O

1

0
0
1
0
0
0
1

wi th

Q

0
1
2
3
4
5
6

unreachable

Q+
I X= 0 1

3 1
2 5
0 1
3 4
2 5
6 4
0 1

states removed

Z
I X= 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 1
sets of equivalent states

1 = f 0 3 J
3 = £ 1 <♦ 5 J
2 = t 2 6 J

minimized state table

Q Q+ Z
I X= 0 1 I X= 0 1

---- ♦---------------- +--------------
0 | o i l 0 0
1 I 2 1 | 0 0
2 1 0 1 | 0 1

Karnaugh maps

Ja 1: 2
dc: 7 6 5 4

Ka 1: 5 4
dc: 7 6 3 2 1 0

Jb 1: 5 1
dc: 7 6 3 2

Kb 1: 2
dc: 7 6 5 4 1 0

ZO I: 5
dc: 7 6

complete equation

Ja = BX

37

complete equation

Ka = 1

complete equation

Jb = X

complete equation

Kb = X 1

complete equation

ZO = AX

logic equations

Ja = BX‘
Ka = 1
Jb = X
Kb = X ’
ZO = AX

elapsed time: 0.66 sec

writing VHDL code file

elapsed time: 3.52 sec

38

entity Detect_101
C X: in Bit_Vector;

Z: out Bit_Vector;
Clk: in Bit) is

end Detect_101;

architecture PLA Structure of Detect 101 is

Bl: block
component JK_Fli pFlop

port (Ji K: in Bit;
0: out Bit;
Qnot: out Bit;
Clk: in Bit);

component Programmable_Logic_Array
port (Inputs: in Bit_Vector;

Outputs: out Bit__Vector >;

signal Ycur: Bit_Vector (0 to 2);
signal Ynext: Bit_Vector (0 to <♦);

begi n
Ycur(2) <= X(0);
Z(0) <= Ynext(A);

for I in 0 to 1 generate
Mem: JK_FlipPlop

port 7 Ynext(2«I>, Ynext(2*I+l), YcurCI), open, Clk);
end generate;

Comb: Programmable_Logic_Array
port C Ycur, Ynext);

end block;
end PLA_Structure;

entity JK_FlipFlop
(J, K: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit) is

end JK_FlipFlop;

architecture Behavior of JK_FlipFlop is

Bl: block CClk = •1' and not Clk1Stable)
begi n

PI: process (Guard)
variable Qhold: static Bit := *0’;

begin
i f Guard then

Qhold := (J and not Qhold) or (not K and Qhold);
Q <= Qhold after 50 ns;
Qnot <= not Qhold after 50 ns;

end if;
end process t

end block;
end Behavior;

entity Programmable_Logic_Array

39

C Inputs: in Bit_Vector;
Outputs: out Bit_Vector) is

end Programmable_Logic_Array;

architecture Behavior of Programmable_Logic_Array is

Bl: block
begi n

Outputs(O)
Outputs(1)
0utputs(2)
OutputsC 3)
OutputsCA)

end block;
end Behavior;

Inputs(l) and not Inputs(2) after AO ns;
i;
Inputs(2) after AO ns;
not Inputs(2) after AO ns;
InputsCO) and Inputs(2) after AO ns;

40

Dietmeyer, p313 M3

initial state table

Q
1

Q+
X= 0 1 1

Z
X= 0 1

0 1 2 2 1 0 0
1 1 0 0 1 0 1
2 1 5 3 1 0 0
3 1 1 1 1 0 0
9 1 0 0 1 0 0
5 1 9 1 1 0 0
6 1 9 3 1 0 0
7 1 5 5 1 0 0

wi th

0

unreachable

0+
1 X= 0 1

states removed

Z
1 X= 0 1

0 1 2 2 1 0 0
1 1 0 0 1 0 1
2 1 5 3 1 0 0
3 1 1 1 1 0 0
9 1 0 0 1 0 0
5 1 9 1 1 0 0

sets of equivalent states

1 = C 0 }
6 = { 9)
5 = (2 1
3 = f 3 J
9 = t 5
2 = t 1 J

minimized state table

0 Q+
1 X= 0 1 1

z
X= 0

0 1 2 2 1 0
1 1 0 0 1 0
2 1 5 3 1 0
3 1 1 1 1 0
9 1 0 0 1 0
5 1 9 1 1 0

Karnaugh maps

Ja 1: 9
dc: 15 19 13 12 11 10

Ka l: 11 9 8
dc: 15 19 13 12 7 6

Jb l: 1 0
dc: 15 19 13 12 7 6

Kb l: 7 6 9
dc: 15 19 13 12 11 10

Jc 1: 5 9
dc: 15 19 13 12 11 10

1

0
1
0
0
0
0

9

5

5

9

8

9 3 2 1 0

9

8 3 2 1 0

7 6 3 2

41

Kc 1: 10 3 2
dc: 15 14 13 12 9 8 5 4 1 0

ZO 1 : 3
dc: 15 14 13 12

complete equation

Ja = BC’X '

complete equation

Ka = C ’ ♦ X

complete equation
Jb = A'C'

complete equation

Kb = X' + C

complete equation

Jc = B

essential cells

Kc = A'B'

implicant table
implicant I columns covered

------------------ +---------------------------
1— 0 1 10
-o-o | 10

complete equation

Kc = AX' ♦ A'B‘

complete equation

Z0 = A'B'CX

logic equations

Ja = BC'X'
Ka = C ‘ + X
Jb = A ’C ’
Kb = X ’ + C
Jc = B
Kc = AX’ * A*B‘
Z0 = A ’B ’CX

elapsed time: 1.43 sec

writing VHDL code file

elapsed time: 4.56 sec

entity Dietmeyer_M3
(X: in Bit_Vector;

Z: out Bit_Vector;
Clk: in Bit) is

end Dietmeyer_M3;

architecture Discrete_Structure of Dietmeyer_M3 is

Bl: block
component JK_FlipFlop

port (J» K: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit);

component Discrete_Gates
port (Inputs: in Bit_Vector;

Outputs: out Bit_Vector);

signal Ycur: Bit_Vector (0 to 6);
signal Ynext: Bit_Vector (0 to 6);

begi n
Ycur(6) <= X(0);
Z(0) <= Ynext(6);

for I in 0 to 2 generate
Mem: JK_FlipFlop

port T Ynext(2*I)» YnextC2*1+1) , Ycur(2*I), Ycur(2*I+l), Clk)
end generate;

Comb: Discrete_Gates
port (Ycuri Ynext);

end block;
end Discrete_Structure;

entity JK_FlipFlop
(J, K: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit 1 is

end JK_FlipFlop;

architecture Behavior of JK_FlipFlop is

Bl: block (Clk = W and not Clk'Stable)
begin

PI: process (Guard)
variable Qhold: static Bit := ‘O’;

begin
if Guard then

Qhold := (J and not Qhold) or (not K and Qhold);
Q <= Qhold after 50 ns!
Qnot <= not Qhold after 50 ns;

end if;
end process;

end block;
end Behavior;

entity Discrete_Gates

43

(Inputs: in Bit_Vector;
Outputs: out Bit_Vector) is

end Discrete Gates;

architecture Behavior of Discrete Gates is

Bl: block
begi n

Outputs(O) <=
Outputs!1) <=
Outputs(Z) <=
Outputs!3) <=
Outputs (4) <=
0utputs(5) <=
0utputs(6) <=

end block;
end Behavior;

Ir>puts(2) and lnputs(5) and not Inputs(6) after 20 ns;
(Inputs(5)) or (Inputs(6)> after 40 ns;
Inputs!1) and Inputs(5) after 20 ns;
(not Inputs(6)) or (Inputs(4)) after 40 ns»
Inputs(Z) after 20 ns;
(Inputs(O) and not Inputs(6>) or (Inputs(l) and Inputs(3)l after 40 ns;
Inputs(l) and Inputs(3) and Inputs(4) and Inputs(6> after 20 ns;

44

Dietmeyer» p316 M9

initial state table

Q
1

Q+
X= 0 1 1

z
X= 0 1

0 1 1 2 1 0 0
1 1 3 9 1 0 0
2 1 5 6 1 0 0
3 1 7 8 1 0 0
9 1 9 10 1 0 0
5 1 11 12 1 0 0
6 1 13 19 1 0 0
7 1 0 0 1 0 0
8 1 0 0 1 0 1
9 1 0 0 1 0 1
10 1 0 0 1 0 1
11 1 0 0 1 0 0
12 1 0 0 1 0 1
13 1 0 0 1 0 1
19 1 0 0 1 0 1

Mi th unreachable states removed

Q
1 X

Q+
= 0 1 1

z
X= 0 1

0 1 1 2 1 0 0
1 1 3 9 1 0 0
2 1 5 6 1 0 0
3 1 7 8 1 0 0
9 1 9 10 1 0 0
5 1 11 12 1 0 0
6 1 13 19 1 0 0
7 1 0 0 1 0 0
8 1 0 0 1 0 1
9 1 0 0 1 0 1
10 1 0 0 1 0 1
11 1 0 0 1 0 0
12 1 0 0 1 0 1
13 1 0 0 1 0 1
19 1 0 0 1 0 1

sets of equivalent states

1 = t 0 >
8 = t 7 11 J
6 = t 1 J
7 = t 2 J
3 = 1 3 5 }
9 = t 9 }
5 = C 6 }
2 - 1 8 9 10 12 15 14 }

minimized state table

Q Q+ Z
I X= 0 1 I X= 0 1

---- +----------------- +--------------
0
1
2
3
9
5

1
3
3
6
/
7

2
9
5
7
7
7

0
0
0
0
0
0

0
0
0
0
0
0

45

6 I 0 0 | 0 0
7 I 0 0 I 0 1

Karnaugh maps

Sa 1: 7 6 5 3
dc: 11 10 9 8

Ra 1: 15 1A 13 12
dc: A 2 1 0

Sb 1: 11 10 9 8 2
dc: 7 6 A

Rb 1: 15 1A 13 12 5
dc: 3 0

Sc 1: 9 8 5 A 0
dc: 11 10 7 2

Rc 1: 15 1A 6 3
dc: 13 12 1

ZO 1: 15
dc:

essential cells

Sa = A'BX ♦ A ‘BC

implicant table

implicant I columns covered

0-11 | 3
-Oil | 3

complete equation

Sa = A ‘CX + A'BX + A'BC

complete equation

Ra = AB

essential cells

Sb = B'C'X + AB'

implicant table

implicant I columns covered

0-10 I 2
-010 | 2

complete equation

Sb = A ’CX' ♦ B'C'X ♦ AB'

complete equation

Rb = BC'X ♦ AB

46

essential cells

Sc = AB1

implicant table

implicant I columns covered

-o-o 1 0
-000 1 0
o-oo 1 0 4
010- 1 4 5
01-1 I 5

complete equation

Sc = A'BC' + A ‘C ‘X‘ + AB'

complete equation

Rc = A'B'X + BCX' + AB

complete equation

ZO = ABCX

logic equations
Sa = A'CX ♦ A'BX + A ’BC
Ra = AB
Sb = A ’CX' + B'C'X + AB'
Rb = BC'X + AB
Sc = A'BC' + A'C'X' + AB'
Rc = A'B'X + BCX' + AB
ZO = ABCX

elapsed time: 2.47 sec

writing VHDL code file
elapsed time: 5.54 sec

47

entity 0ietmeyer-_MA
(X: in Bi t_Vector;
2: out Bit_Vector;
Clk: in Bit) is

end Dietmeyer_M<+;

architecture PLA Structure of Dietmeyer_MA is

Bl: block
component RS_FlipFlop

port (S» R: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit);

component Programmable_Logic_Array
port (Inputs: in Bit_Vector;

Outputs: out Bit_Vector);

signal Ycur: Bit_Vector CO to 3);
signal Ynext: Bit_Vector (0 to 6);

begin
Ycur(3) <= XCO);
ZCO) <= Ynext(6);

for I in 0 to 2 generate
Mem: RS_FlipFlop

port (Ynext(2»I)> Ynext(2»I+l)t Ycur(I)t openi Clk);
end generate;

Comb: Programmable_Logic_Array
port (Ycurt Ynext);

end block;
end PLA Structure;

entity RS_FlipFlop
(S> R: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit) is

end RS_FlipFlop;

architecture Behavior of RS_FlipFlop is

Bl: block
begi n

PI: process (R, S)
variable Qhold: static Bit :- ’O';

begi n
if Guard then

Qhold := S or (not R and Qhold);
Q <= Qhold after 50 ns;
Qnot <= not Qhold after 50 ns;

end if;
end process;

end block;
end Behavior;

entity Programmable_Logic_Array

4K

C Inputs: in Bit_Vector;
Outputs: out Bit_Vector) is

end Programmable_Logic_Array;

architecture Behavior of Programmable_Logic_Array is

Bl: block
begi n

Outputs!0)
(not Inputs(O)
(not Inputs!0)

Outputs!1)
Outputs!2)

(not Inputs!1)
Outputs!3)

(Inputs(O) and
Outputs!**)

(not Inputs!0)
Outputs!5)

(Inputs!1) and
Outputs(6)

end block;
end Behavior;

<= (not Inputs(O) and Inputs(2) and Inputs!31) or
and Inputs!1) and Inputs(3)) or
and Inputs!1) and Inputs(2)) after AO ns;
<= Inputs(O) and Inputs!1) after AO ns;
<= (not Inputs(O) and Inputs(2) and not Inputs(3)) or
and not Inputs(2) and Inputs(3)) or (Inputs(O) and not Inputs(l)) after AO ns;
<= (Inputs(l) and not Inputs(2) and Inputs(3)> or
Inputs(l)) after AO ns;
<= (not Inputs(O) and Inputs(l) and not Inputs(2)) or
and not Inputs(2) and not Inputs(3)) or (Inputs(O) and not Inputs! 1)) after AO ns
<= (not Inputs(O) and not InputsCl) and Inputs(3>) or
Inputs(2) and not Inputs(3)) or (Inputs(O) and Inputs(l)) after AO ns;
<= Inputs(O) and Inputs!1) and Inputs(2) and Inputs(3) after AO ns;

49

Dietmeyer. p315 (15

initial state table

Q
1

Q+
X= 0 1 1

Z
X= 0 1

0 1 0 4 1 0 0
1 1 0 1 0 0
2 1 1 5 1 0 1
3 1 1 5 1 0 1
<+ 1 2 6 1 0 1
5 1 2 6 1 0 1
6 1 3 7 1 0 1
7 1 3 7 1 0 1

with unreachable states removed

c

X II

+a
o 1 1 X=

Z
0 1

0 1 0 <► 1 0 0
1 1 0 4 1 0 0
2 1 l 5 1 0 1
3 1 l 5 1 0 1
<t 1 2 6 I 0 1
5 1 2 6 1 0 1
6 i 3 7 1 0 1
7 1 3 7 1 0 1

sets of equivalent states

1 = t 0 1 }
2 = t 2 3)
3 = l 5 6 7 }

minimized
Q

1 x=

state table

Q+
0 1 1 X=

z
0 1

0 1 0 2 1 0 0
1 i 0 2 1 0 1
2 1 1 2 1 0 1

Karnaugh maps
Sa 1: 3 1

dc: 7 t» 5
Ra 1:

dc: 7 (> 2 0
Sb 1:

dc: 7 6
Rb 1: 3 <>

dc: 7 6 5 1 0
ZO 1: 5 3

dc: 7 6

complete equation

50

Sa = X

complete equation

Ra = X’

complete equation

Sb = AX’

essential cells

Rb = 0

implicant table

implicant I columns covered

complete equation

Rb = A*

complete equation

ZO = BX + AX

logic equations
Sa = X
Ra = X 1
Sb = AX'
Rb = A ’
ZO = BX + AX

elapsed time: 1.16 sec

writing VHDL code file

elapsed time: A.18 sec

+•
0 - - I
- 1 - I

2 3
2 3
3— 1 I

entity Dietmeyer_M5
(X: in Bit_Vector;

Z: out Bit_Vector}
Clk: in Bit) is

end Dietmeyer_M5;

architecture Discrete_Structure of Dietmeyer_M5 is

Bl: block
component RS_FlipFlop

port (S. R: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit);

component Discrete_Gates
port (Inputs: in Bit_Vector;

Outputs: out Bit_Vector);

signal Ycur: Bit_Vector (0 to A);
signal Ynext: Bit_Vector (0 to A);

begin
Ycur(A) <= X(0);
Z(0) <= Ynext(A);

for I in 0 to 1 generate
Mem: RS FlipFlop

port (Ynext(2*I)> Ynext(2*I+l), Ycur(2*I>, Ycur(2*I+l>, Clk)
end generate;

Comb: Discrete_Gates
port (Ycur> Ynext);

end block;
end Discrete_Structure;

entity RS_FlipFlop
(S, R: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit > is

end RS_FlipFlop;

architecture Behavior of RS_FlipFlop is

Bl: block
begi n

PI: process (Ri S)
variable Qhold: static Bit := 'O';

begi n
i f Guard then

Qhold := S or (not R and Qhold);
Q <= Qhold after 50 ns;
Qnot <- not Qhold after 50 ns;

end if;
end process;

end block;
end Behavior;

entity Discrete_Gates

52

(Inputs: in Bit_Vector;
Outputs: out Bit_Vector) is

end Discrete_Gates;

architecture Behavior of Discrete Gates is

Bl: block
begi n

Outputs(0)
Outputs(1)
0utputs(2)
Outputs!3)
Output s!**)

end block;
end Behavior;

<= Inputs!**) after 20 ns;
<= not Inputs!**) after 20 ns;
<= InputstO) and not Inputs!**) after 20 ns
<= Inputs!1) after 20 ns;
<= !Inputs!2) and Inputs!**)) or !lnputs!0) and Inputs!**)) after **0 nsi

53

Dietmeyer. p351 5.2~7a

initial state table

Q Q+ Z
1 oIIX 1 1 X= 0 1

0 1 1 7 1 0 0
1 1 7 0 1 0 1
2 1 8 7 1 0 1
3 1 7 1 0 1
<♦ 1 3 2 1 0 0
5 1 6 7 1 0 0
6 1 2 5 1 0 1
7 1 3 7 1 0 1
8 1 2 0 1 0 1

wi th unreachable states removed

0 Q+ Z
I X= 0 1 | X= 0 1

0
1
2
3
<♦
7
8

1
7
8
7
3
3
2

+■
7
0
7
<♦
2
7
0

0
0
0
0
0
0
0

0
1
1
1
0
1
1

sets of equivalent states

1 = 1 0 ^ }
2 = f l 3 8 }
3 = t 2 7 }

minimized state table

Q Q+ Z
I X= 0 1 | X= 0 1

------ +----------------- +--------------
0 | 1 2 I 0 0
1 I 2 0 | 0 1
2 | 1 2 | 0 1

Karnaugh maps

0a 1: 5 2
dc: 7 6

Db 1: 0
dc: 7 6

ZO 1: 5 3
dc: 7 6

complete equation

Oa = 8*X + BX’

complete equation

Db = B'X'

54

complete equation

20 = BX ♦ AX

logic equations

Da = B'X ♦ BX1
Db = B'X'
ZO = BX ♦ AX

elapsed time: 0.71 sec

writing VHDL code file

elapsed time: 3.68 sec

entity Dietmeyer_A
(X: in Bit_Vector;
Z: out Bit_Vector;
Clk: in Bit) is

end Dietmeyer_A;

architecture PLA_Structure of Dietmeyer_A is

Bl: block
component D_Fli pFlop

port (D: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit);

component Programmable_Logic_Array
port (Inputs: in Bit_Vector;

Outputs: out Bit_Vector)»

signal Ycur: Bit_Vector (0 to 2);
signal Ynext: Bit_Vector (0 to 2);

begin
Ycur(2) <= XCO);
Z<0) <= Ynext(2)>

for I in 0 to 1 generate
Mem: D_FlipFlop

port (Ynext(I), Ycur(I), open, Clk)
end generate;

Comb: Programmable_Logic_Array
port (Ycur, Ynext);

end block;
end PLA Structure;

entity D_FlipFlop
C D: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit) is

end D_FlipFlop;

architecture Behavior of D_FlipFlop is

Bl: block (Clk = ‘l1 and not Clk'Stable)
begin

PI: process (Guard)
variable Qhold: static Bit := ‘O';

begin
if Guard then

Qhold := D;
Q <= Qhold after 50 ns;
Qnot <= not Qhold after 50 ns;

end if;
end process;

end block;
end Behavior;

entity Programmable_Logic_Array

56

C Inputs: in Bit_Vector;
Outputs: out Bit_Vector) is

end Progran*nable_Logic_Array;

architecture Behavior of Programmable_Logic_Array is

Bl: block
begin

Outputs(O) <= (not Inputs(l) and Inputs(2)) or (Inputs(l) and not Inputs(2)) after AO ns
Outputs(l) <= not InputsCl) and not Inputs<2) after AO ns;
Outputs(2) <= (InputsCl) and Inputs(2)) or (Inputs(O) and Inputs(2)) after AO ns;

end block;
end Behavior;

57

Dietmeyer, p351 5.2-7b

initial state table

Q+
1

Z
1 X= 0 1

1 1 0 0
2 1 0 0
2 1 0 1
1 1 0 0

with unreachable

q 0+
I X= 0 1

---- ♦--------------
0 I 0 1
1 I 3 2
2 I 3 2
3 I 0 1

states removed

Z
I X= 0 1

I 0 0
I 0 0
I o 1
I 0 0

sets of equivalent states

1 = 1 0 3 }
3 = f 1 }
2 = { 2 }

minimized state table

Q Q+ Z
I X= 0 1 I X= 0 l

------ +---------------- +--------------
0 | 0 1 1 0 0
1 I 0 2 | 0 0
2 I 0 2 1 0 1

Karnaugh maps

Da 1: 5 3
dc: 7 6

Db 1: 1
dc: 7 6

ZO 1 : 5
dc: 7 6

complete equation

Da = BX + AX

complete equation

Db = A'B'X

complete equation

Z0 = AX

logic equations

5X

Da = BX -f AX
Db = A ’B'X
ZO = AX

elapsed time: 0.33 sec

writing VHDL code file

elapsed time: 3.29 sec

entity Dietmeyer_B
(X: in Bit_Vector;
Z: out Bit_Vector;
Clk: in Bit) is

end Dietmeyer_B;

architecture Discrete_Structure of Dietmeyer_B is

Bl: block
component D_FlipFlop

port (D: in Bit;
0: out Bit;
Qnot: out Bit;
Clk: in Bit);

component Discrete_6ates
port (Inputs: in Bit_Vector;

Outputs: out Bit_Vector);

signal Ycur: Bit_Vector (0 to <♦);
signal Ynext: Bit_Vector (0 to 2);

begin
Y c u r W <= XCO);
ZCO) <= Ynext(2)i

for I in 0 to 1 generate
Mem: D_FlipFlop

port (Ynext(I), Ycur(2*I), YcurC2*I+l), Clk)
end generate;

Comb: Discrete_Gates
port (Ycur» Ynext);

end block;
end Discrete_Structure;

entity D_FlipFlop
(D: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit) is

end D_FlipFlop;

architecture Behavior of D_FlipFlop is

Bl: block (Clk = '1* and not Clk'Stable)
begi n

PI: process (Guard)
variable Qhold: static Bit := '0‘;

begi n
if Guard then

Qhold := D;
Q <= Qhold after 50 ns;
Qnot <= not Qhold after 50 ns;

end if;
end process;

end block;
end Behavior;

entity Discrete_Gates

60

(Inputs: in Bit_Vector;
Outputs: out Bit_Vector) is

end Discrete Gates;

architecture Behavior of Discrete_Gates is

Bl: block
begin

Outputs(O) <= (Inputs(2) and InputsCl)) or (Inputs(O) and InputsCl)) after ns;
Outputs(l) <= Inputs(l) and Ir*puts(3) and Inputs(<+) after 20 ns;
0utputs(2) <= Inputs(O) and Inputst^) after 20 ns;

end block;
end Behavior;

61

Kohavi, p291 detect '0101'

initial state table

Q Q+ 2
I X= 0 1 I X= 0

------ +-----------------+---------
0 I 1 0 I 0
1 I 1 2 I 0
2 I 3 0 t 0
3 | 1 2 I 0

1

0
0
0
1

with unreachable states removed

Q 0+ Z
I X= 0 1 I X= 0 1

---- +-----------------+-------
0 I 1 0 I 0
1 1 1 2 I 0
2 I 3 0 I 0
3 I 1 2 I 0

0
0
0
1

sets of equivalent states

1 = £ 0 1
<t = £ 1 }
3 = £ 2 J
2 = £ 3 1

minimized state table

Q Q+ ZI X= 0 1 I X= 0 1
-----+------------ +■----------

0 | 1 0 | 0 0
1 I 1 2 1 0 0
2 | 3 0 1 0 0
3 | 1 2 | 0 1

Karnaugh maps

Ja l: 3
dc: 7 6 5 <♦

Ka l: 6 5
dc: 3 2 1 0

Jb l: 9 0
dc: 7 6 3 2

Kb l: 7 3
dc: 5 <♦ 1 0

20 l: 7
dc:

complete equation

Ja = BX

complete equation

Ka = B'X + BX'

62

complete equation

Jb = X‘

complete equation

Kb = X

complete equation

20 = ABX

logic equations

Ja = BX
Ka = B'X ♦ BX’
Jb = X1
Kb = X
ZO = ABX

elapsed time: 0.49 sec

writing VHDL code file

elapsed time: 3.46 sec

63

entity Detect_0101
C X: in Bit_Vector;
Z: out Bit_Vector;
Clk: in Bit) is

end Detect_0101;

architecture PLA Structure of Detect 0101 is

Bl: block
component JK_FlipFlop

port (J. K: in Bit;
Q: out Bit;
Qnot: out Bi t;
Clk: in Bit);

component Programmable_Logic_Array
port (Inputs: in Bit_Vector;

Outputs: out Bit_Vector);

signal Ycur: Bit_Vector (0 to 2);
signal Ynext: 8it_Vector (0 to <♦);

begin
Ycur(2) <= X(0);
ZCO) <= YnextU);

for I in 0 to 1 generate
Mem: JK_FlipFlop

port (Ynext(2*I)> Ynext(2*I+l), Ycur(I)> open. Clk);
end generate;

Comb: Programmable_Logic_Array
port (Ycur, Ynext)>

end block;
end PLA_Structure;

entity JK_FlipFlop
(J. K: in Bit.
Q: out Bit;
Qnot: out Bit;
Clk: in Bit) is

end JK_FlipFlop;

architecture Behavior of JK_FlipFlop is

Bl: block CClk = ‘1’ and not Clk'Stable)
begi n

PI: process (Guard)
variable Qhold: static Bit := ’O';

begin
i f Guard then
Qhold := (J and not Qhold) or (not K and Qhold);
Q <= Qhold after 50 ns;
Qnot <= not Qhold after 50 ns;

end if;
end process;

end block;
end Behavior;

entity Programmable_Logic_Array

64

(Inputs: in Bit_Vector;
Outputs: out Bit_Vector) is

end Programmable_Logic_Array;

architecture Behavior of Programmable_Logic_Array is

Bl: block
begin

Outputs(O) <= InputsCl) and Inputs(2) after 40 ns;
OutputsCl) <= (not InputsCl) and Inputs(2>) or Clnputs(l) and not Inputs(2)) after 40 ns;
OutputsC2) <= not Inputs(2) after 40 ns;
Outputs(3) <= Inputs(2) after 40 ns;
0utputs(4) <= Inputs(O) and InputsCl) and InputsC2) after 40 ns;

end block;
end Behavior;

65

Kohavi > p295 modulo 8 counter

initial state table

Q Q+
X= 0 1 X It o

N

1

0 0 1 0 0
1 1 2 0 Q
2 2 3 0 0
3 3 9 0 0
9 9 5 0 0
5 5 6 0 0
6 6 7 0 0
7 7 0 0 1

with unreachable states removed

Q+
X= 0 X= 0

0
1
2
3
9
5
6
7

0
1
2
3
9
5
6
7

sets of equivalent states

1 = t 0 J
8 = { 1 J
7 = c 2 }
6 = t 3 }
5 t 9 }
9 = { 5 1
3 = £ 6 J
2 = £ 7)

minimized state table

(>♦
: X= 0

0 0 i : 0 0
1 1 2 * 0 0
2 2 3 : 0 0
3 3 9 ! 0 0
9 9 5 ! 0 0
5 5 6 ' 0 0
6 6 7 ! 0 0
7 7 0 ! 0 1

Karnaugh maps

Da 1: 19 13 12 11 10 9 8 7
dc:

Db 1: 19 13 12 11 6 5 9 3
dc:

Dc 1: 19 13 10 9 6 5 2 1
dc:

u>

ZO l: 15
dc:

complete equation

Da = A’BCX t- AB' ♦ AC- ♦ AX'

complete equation

Db = B'CX + BC' + BX’

complete equation

Dc = C'X + CX'

complete equation

ZO = ABCX

logic equations

Da = A ‘BCX ♦ AB' ♦ AC' ♦ AX'
Db = B'CX + BC' ♦ BX'
Dc = C'X ♦ CX'
ZO = ABCX

elapsed time: 1.21 sec
writing VHDL code file
elapsed time: <*.<*0 sec

entity Modulo_8
C X: in Bi t_Vector;
Z: out Bit_Vector;
Clk: in Bit) is

end Modulo_8;

architecture PLA Structure of Modulo 8 is

Bl: block
component D_FlipFlop

port (D: in Bit;
0: out Bit?
Qnot: out Bit;
Clk: in .Bit);

component Programmable_Logic_Array
port (Inputs: in Bit_Vector;

Outputs: out Bit_Vector);

signal Ycur: Bit_Vector (0 to 3);
signal Ynext: Bit_Vector (0 to 3);

begi n
Ycur(3) <= X(0);
Z(0) <= Ynext(3);

for I in 0 to 2 generate
Mem: D_FlipFlop

port (Ynext(I). Ycur(I). open, Clk
end generate;

Comb: Programmable_Logic_Array
port (Ycur. Ynext);

end block;
end PLA Structure;

entity D_FlipFlop
(D: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit) is

end D_FlipFlop;

architecture Behavior of D_FlipFlop is

Bl: block (Clk = *1‘ and not Clk’Stable)
begi n

PI: process (Guard)
variable Qhold: static Bit := 'O';

begi n
if Guard then

Qhold := D;
Q <= Qhold after 50 ns;
Qnot <= not Qhold after 50 ns;

end i f;
end process;

end block;
end Behavior;

entity Programmable_Logic_Array

68

(Inputs: in Bit_Vector;
Outputs: out Bit_Vector) is

end Programmable_Logic_Array;

architecture Behavior of Programmable_Logic_Array is

81: block
begi n

Outputs(O) <= (not Inputs(O) and Inputs(l) and Inputs(2) and Inputs(3)) or
(Inputs(O) and not Inputs(l)) or Clnputs(O) and not Inputs(2>) or
(Inputs(O) and not Inputs(3>) after '♦O ns;

Outputs(l) <= (not Inputs(l) and Inputs(2) and Inputs(31) or
(Inputs(l) and not Inputs(2)) or (Inputs(l) and not Inputs(3)) after <*0 ns;

Outputs(2) <= (not Inputs(2) and Inputs(3)) or (Inputs(2) and not Inputs(31) after 40 ns;
Outputs(3) <= Inputs(O) and Inputs(l) and Inputs(2) and Inputs(3) after 40 ns;

end block;
end Behavior;

69

Kohavi, p299 parity bit generator

initial state table

Q
1

Q+
X= 0 1

z
1 X~ 0 1

0 1 1 2 1 0 0
1 1 3 9 1 0 0
2 1 4 3 1 0 0
3 1 5 6 1 0 0
4 1 6 5 1 0 0
5 1 0 0 1 0 0
6 1 0 0 1 1 1

with unreachable states removed

Q Q+ Z
I X= 0 1 I X= 0 1

-------+----------------- +---------------
0
1
2
3
4
5
6

1
3
9
5
6
0
0

2
4
3
6
5
0
0

0
0
0
0
0
0
1

0
0
0
0
0
0
1

sets of equivalent states

1 = f 0 }
7 = { 5 }
5 = { 1 }
6 = t 2 }
3 = C 3 J
4 = { 9 1
2 = { 6 }

mi nimi zed state table

Q Q+ z
1 x= 0 1 1 X= 0 1

0 1 2 1 0 0
1 3 <+ 1 0 0
2 <f 3 1 0 0
3 5 6 1 0 0
4 6 5 1 0 0
5 0 0 1 0 0
6 0 0 1 1 1

Karnaugh maps

Sa l: 7 6 4 3
dc: 15 l<t 9 8

Ra l: 13 12 11 10
dc: 15 1̂ 5 2 1 0

Sb 1: 8 2 1
dc: 15 7 5

Rb 1: 13 12 6 4
dc: 15 14 11 10 9 3 0

70

Sc 1: 9 5 0
dc: 15 1* 6 2

Rc 1: 11 10 7 3
dc: 15 1* 13 12

ZO 1: 13 12
dc: 15 14

complete equation

Sa = A ’CX + A ’BX’

complete equation

Ra = AC + AB

complete equation

Sb = A ’C ’X + A ’B'CX' + AB’C ’X’

essential cells

Rb = BX*

implicant table

implicant I columns covered
------------------ +---------------------------

11— I 13
1 — 1 I 13

complete equation

Rb = AB + BX’

complete equation

Sc = A ’B ’X' + A ’BC’X + AB’C ’X

essential cells

Rc = CX

implicant table

implicant I columns covered
------------------ +---------------------------

1-1- I 10
l— o I 10

complete equation

Rc = AC + CX

complete equation

ZO = AB

logic equations

Sa = A ’CX + A ’BX

71

Ra = AC ♦ AB
Sb = A ’C ‘ X + A'B'CX' + AB'C1'X
Rb r AB ♦ BX'
Sc = A'B'X' + A'BC'X + AB'C''X
Rc = AC + CX
20 = AB

elapsed time: 1.76 sec

writing VHDL code file

elapsed time: 4.83 sec

72

entity parity
(X: in Bit_Vector;
Z: out Bit_Vector;
Clk: in Bit) is

end parity;

archi tecture PLA_Structure of pari ty i s

Bl: block
component RS_FlipFlop

port C S f R: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit);

component Programmable_Logic_Array
port C Inputs: in Bit_Vector;

Outputs: out Bit_Vector);

signal Ycur: Bit_Vector (O.to 3);
signal Ynext: Bit_Vector CO to 6);

begi n
Ycur(3) <= XCO);
Z(0) <= Ynext(6);

for I in 0 to 2 generate
Mem: RS_FlipFlop

port C Ynext(2*I), Ynext(2#I+l), YcurCI). open. Clk);
end generate;

Comb: Programmable_Logic_Array
port < Ycur. Ynext);

end block;
end PLA_Structure;

entity RS_FlipFlop
(Sj R: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit) is

end RS_FlipFlop;

architecture Behavior of RS_FlipFlop is

Bl: block
begi n

Pi: process (R. S)
variable Qhold: static Bit := “0 ‘;

begi n
i f Guard then

Qhold := S or (not R and Qhold);
Q <= Qhold after 50 ns;
Qnot <= not Qhold after 50 ns;

end if;
end process;

end block;
end Behavior;

entity Programmable_Logic_Array

73

(Inputs: in Bit_Vector;
Outputs: out Bit_Vector) is

end Programmable_logic_Array;

architecture Behavior of Progran*nable_Logic_Array is

Bl: block
begin

Outputs(O)
(not Inputs(O)

Outputs!1)
0utputs(2)

(not Inputs(O)
(Inputs!0) and

Outputs(3)
Outputs (A)

(not Inputs(O)
(Inputs(0) and

0utputs(5)
Outputs(6)

end block;
end Behavior;

<= (not Inputs(O)
and Inputs!1) and
<= (Inputs(O) and
<= (not Inputs(O)
and not Inputs!1)
not Inputs(l) and
<= (Inputs!0) and
<= (not Inputs(O)
and Inputs!1) and
not Inputs(l) and
<= (Inputs(O) and
<= Inputs!0) and

and Inputs(2) and Inputs(3)) or
not Inputs!3)1 after AO ns;
Inputs(2)) or (Inputs(O) and Inputs(l)) after AO ns;
and not Inputs(2) and Inputs(3)) or
and Inputs(2) and not Inputs(3)) or
not Inputs(2) and not Inputs(3)) after AO ns!
Inputs(ll) or (Inputs(l) and not Inputs(3)) after AO ns;
and not Inputs!1) and not Inputs(3)) or
not Inputs(2) and Inputs(3)) or
not Inputs(2) and Inputs(3)) after AO ns;
Inputs(2)) or (Inputs(2) and Inputs(3>) after AO ns;

Inputs!1) after AO ns;

74

benchmark, Modulol2

initial state table

Q
1

0+
X= 0 1 1

N
oMX 1

0 1 0 1 1 0 0
1 1 1 2 1 0 0
2 1 2 3 1 0 0
3 1 3 9 1 0 0
9 1 9 5 1 0 0
5 1 5 6 1 0 0
6 1 6 7 1 0 0
7 1 7 8 1 0 0
8 1 8 9 1 0 0
9 1 9 10 1 0 0
10 1 10 11 1 0 0
11 1 11 0 1 0 1

with unreachable states removed

Q
1

Q+
X= 0 1 1 X=

z
0 1

0 1 0 1 1 0 0
1 1 1 2 1 0 0
2 1 2 3 1 0 0
3 1 3 9 1 0 0
9 1 9 5 1 0 0
5 1 5 6 1 0 0
6 1 6 7 1 0 0
7 1 7 8 1 0 0
8 1 8 9 1 0 0
9 1 9 10 1 0 0
10 1 10 11 1 0 0
11 1 11 0 1 0 1

sets of equivalent states

1 = l 0 1
12 = { 1 3
11 = { 2 }
10 = C 3 }
9 = £ 9 }
8 = c 5 }
7 = c 6 }
6 s t 7 J
5 ss c 8 }
9 = { 9 3
3 = c 10 3
2 = c 11 3

minimized state table

Q
1

+a
oIIX 1 1

Z
X= 0 1

0 1 0 1 1 0 0
1 1 l 2 1 0 0
2 1 2 3 1 0 0
3 1 3 9 1 0 0
9 1 9 5 1 0 0
5 1 5 6 1 0 0
6 1 6 7 1 0 0
7 1 7 8 1 0 0

75

8 1 8 9 1 0 0
9 1 9 10 | 0 0

10 1 10 11 1 0 0
11 1 11 0 1 0 1

Karnaugh maps

Sa l: 15
dc: 31 30 29 28 27 26 25 29 22 21 20 19 18 17 16

Ra l: 23
dc: 31 30 29 28 27 26 25 29 19 13 12 11 10 9 8 7 6

Sb l: 7
dc: 31 30 29 28 27 26 25 29 19 13 12 11 10 9 8

Rb l: 15
dc: 31 30 29 28 27 26 25 29 23 22 21 20 19 18 17 16 6

Sc l: 19 11 3
dc: 31 30 29 28 27 26 25 29 22 21 20 19 13 12 6 5 9

Rc 1: 23 15 7
dc: 31 30 29 28 27 26 25 29 18 17 16 10 9 8 2 1 0

Sd 1: 21 17 13 9 5 1
dc: 31 30 29 28 27 26 25 >*■eg 22 18 19 10 6 2

Rd 1: 23 19 15 11 7 3
dc: 31 30 29 28 27 26 25 29 20 16 12 8 9 0

ZO 1: 23
dc: 31 30 29 28 27 26 25 29

complete equation

Sa = BCDX

essential cells

Ra = 0

implicant table

implicant I columns covered
------------------ +-------------------------

1-111 I 23
-0111 I 23

complete equation

Ra = ACDX

complete equation

Sb = A'B'CDX

complete equation

Rb = BCDX

complete equation

Sc = C'DX

76

complete equation
Rc = CDX

complete equation

Sd = D'X

complete equation

Rd = OX

complete equation
ZO = ACOX

logic equations

Sa = BCDX
Ra = ACDX
Sb = A'B'COX
Rb = BCDX
Sc = C'DX
Rc = COX
Sd = D'X
Rd = DX
ZO = ACDX

elapsed time: 2.19 sec
writing VHDL code file

elapsed time: 5.21 sec

entity Modulo_12
(X: in Bit_Vector»
Z: out Bit_Vector;
Clk: in Bit) is

end Modulo_12;

architecture Discrete Structure of Modulo 12 is

Bl: block
component RS_FlipFlop

port (S, R: in Bit;
Q: out Bit;
Qnot: out Bi t;
Clk: in Bit);

component Discrete_Gates
port (Inputs: in Bit_Vector;

Outputs: out Bit_Vector);
signal Ycur: Bit_Vector (0 to 8);
signal Ynext: Bit_Vector (0 to 8);

begin
Ycur(8) <= X(0);
Z(0) <= Ynext(8);

for I in 0 to 3 generate
Mem: RS FlipFlop

port (Ynext(2»I) > Ynext(2*I+l), Ycur(2*I>, YcurC2«I+l), Clk)
end generate;

Comb: Discrete_Gates
port (Ycurt Ynext);

end block;
end Discrete_Structure;

entity RS_FlipFlop
C S» R: in Bit;
Q: out Bit;
Qnot: out Bit;
Clk: in Bit) is

end RS_FlipFlop;

architecture Behavior of RS_FlipFlop is

Bl: block
begi n

PI: process (R, S >
variable Qhold: static Bit := 'O';

begin
if Guard then

Qhold := S or (not R and Qhold);
Q <= Qhold after 50 ns;
Qnot <= not Qhold after 50 ns;

end if;
end process;

end block;
end Behavior;

entity Discrete_Gates

78

(Inputs: in Bit_Vector;
Outputs: out Bit_Vector) is

end Discrete_Gates5

architecture Behavior of Discrete_Gates is

Bl: block
begin

Outputs(O) <= Inputs(Z) and InputsCl) and Inputs(6) and Inputs(8) after 20 ns;
Outputs(1) < = Inputs!0) and InputsCl) and Inputs!6) and Inputs!8) after 20 ns;
0utputs(2) < = InputsCl) and Inputs!3) and Inputs(4) and Inputs!6) and Inputs(8) after 20 ns
Outputs! 3) < = Inputs(2) and InputsCl) and Inputs(6) and Inputs!8) after 20 ns;
Outputs!*)-) <= Inputs(5) and Inputs(6) and Inputs(8) after 20 ns;
0utputs(5> <= InputsCl) and Inputs(6) and Inputs(8) after 20 ns;
Outputs(6) < = Inputs(7) and Inputs(8) after 20 ns;
0utputs(7) < = Inputs<6) and Inputs(8) after 20 ns;
Outputs(8) < = Inputs(O) and InputsCl) and Inputs!6) and InputsC8) after 20 ns;

end block;
end Behavior;

79

APPENDIX E

MEG OUTPUT COMPARISON

Meg [9] is a finite state machine equation generator. It translates a Mealy model

description o f a finite state machine into logic equations in several formats, including

truth tables and boolean equations. In comparing FSM output to Meg output, some

differences must be accounted for. Meg does not attempt to minimize the input state

machine so it must be input in simplified form if the results of Meg and FSM are to

be comparable. Meg does not consider unused state assignments as don't-care states

so only state machines without unused states assignments will produce the similar

results from both Meg and FSM. Also, Meg itself does not minimize the equations it

produces. This must be done by another program such as Espresso.

The following is an example run with Meg. It corresponds to the third example

in appendix D. Given first is the machine description used as input. Meg then

produces a state table and logic equations. In the equations produced, symbols

generated by Meg end with an asterisk, an exclamation mark preceding a symbol

indicates negation, the ampersand signifies conjunction, and the vertical bar signifies

disjunction. Following the equations of is a PLA map produced by Espresso. Logic

equations for this PLA map in the form used by FSM are also given.

so

INPUTS: X;
OUTPUTS: Z;

00: IF X THEN Ql ELSE QO;
Ql: IF X THEN 02 ELSE Qli
02: IF X THEN 03 ELSE Q2i
03: IF X THEN Q«t ELSE 03;
O'*: IF X THEN 05 ELSE QV.
05: IF X THEN 06 ELSE 05:
06: IF X THEN 07 ELSE 06;
07: IF X THEN QO(Z) ELSE 0 7 i

SUfTIARY INFORMATION GENERATED BY MEG FROM FILE fsm08.meg

INPUTS:
iOO: X
sOO: StBit0» (msb)
s O l : StBitl"
s02: StBi t2* (lsb)

TPUTS:
n02: StBi t2» (lsb)
n O l : StBi tl*
nOO: StBi tO* (msb)
oOO: Z

Stats TabIs
i * s % n n n o
0 0 1 2 2 1 0 0

0 0 0 0 0 0 0 0 00
1 0 0 0 1 0 0 0 QO

0 0 0 1 1 0 0 0 Ql
1 0 0 1 0 1 0 0 Ql

0 0 1 0 0 1 0 0 02
1 0 1 0 1 1 0 0 02

0 0 1 1 1 1 0 0 Q3
1 0 1 1 0 0 1 0 03

0 1 0 0 0 0 l 0 ©<♦
1 1 0 0 1 0 1 0 04

0 1 0 1 1 0 1 0 Q5
1 1 0 1 0 1 1 0 05

0 1 1 0 0 1 1 0 06
1 1 l 0 1 1 1 0 06

0 1 1 1 1 1 1 0 07
1 1 1 1 0 0 0 1 07

INORDER=
X
StBitO*
StBitl"
StBit2»S

OUTORD£R=
StBitZ*
StBItl*
StB1tO«
Z;

StBit2«=
<!Xt S t B i t O M St8itl»i StBit2»)|
(X* StBitO«t St8itl*t'StSit2*)l
(!X» StBitOM!St8i t l*t St8it2")I

(Xt StBitO*t!StBitl*t!StBitZ*) I
(!Xt!StBitO*l StBitl*t StBit2*)I
(Xt!StBitO*t StBi tl*t!StBit2*lI
(!Xt!StBitO*t!StBitl*t StBit2*)l
(Xi!StBitO*t!StBi tl*t*StBit2*)5

StBi tl*=
(«Xt StBi tO*t StBi tl*t StBi t2*)I
(X* StBitO*l StBitl*l!StBit2«)l
(!Xt StBi tO*t StBi11*1!StBit2«)I
(Xt StBitO*l!StBi tl*t StBit2*)l
(!Xl*StBitO*t StBitl*i StBit2«)l
(Xt!StBitO*t StBitl*t*StBit2*)l
<!Xt!StBitO*t StBitl*t!StBit2»)I
< Xt!StBitO*l!StBitl*t StBit2*)5

StBi tO*=
(!Xt StBitO*t StBi tl*l StBit2*)l
(Xt StBi tO*t StBitl«t!StBit2»)I
<!Xt StBi tO*t StBitl*t'StBit2*)l
C Xt StBitO*t!StBitl*l StBit2*)l
(!Xt StBi tO*t!StBi tl*l StBitZ*)l
(Xt StBi tO*t!StBi tl*i!StBi t2*)I
C'Xt StBi tO*t!StBi tl*l!StBi t2*) I
C Xl*StBitO*t StBi tl*l StBit2*)5

Z=
(Xt StBi tO*t StBitl«t StBi t2*)5

.ilb X StBitO* StBitl* StB1t2*

.ob StBi t2* StBitl* StBitO* 2

.i

.o ‘t
• p 10
1011 0010
1111 0001
01— 0010
1-01 0100
-1-0 0010
0-1- 0100
1— 0 1000 ZO = XABC
-10- 0010 Da = XA'BC + X'A + AC'
0— 1 1000 Db s XB'C + X'B + BC'
— 10 0100 Do = XC' + X'C

♦ AB'

	Automated translation of digital logic equations into optimized VHDL code
	Recommended Citation

	tmp.1633971946.pdf.MMmQm

