
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

1966 

Analog simulation of the Voigt solid Analog simulation of the Voigt solid 

Richard F. Pohl 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Electrical and Computer Engineering Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Pohl, Richard F., "Analog simulation of the Voigt solid" (1966). Masters Theses. 5759. 
https://scholarsmine.mst.edu/masters_theses/5759 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5759&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5759?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5759&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


ANALOG SIMULATION OF THE VOIGT SOLID 

BY 

RICHARD F. POffi.. 

A 

THESIS 

submitted to the faculty of the 

UNIVERSITY OF MISSOURI AT ROLLA 

in partial fulfillment of the requirements for the 

Degree of 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 

Rolla_, Missouri 

1966 

Approved by 

WI[), (.}2,~e-:~ Advisor) 4~-44.L 
;:{.;&;,_;{:~//.'' 



ii 

ABSTRACT 

A method of reducing a mixed partial differential 

equation with boundary conditions to a form suitable for 

programming on the analog computer is developed. Presented 

along with the computer program set up to be used on the EAI 

TR-48 analog computer is a systematic check procedure to 

indicate possible computer malfunctions and programming 

errors. The results of the computer simulation are presented 

and supported with observed data. 
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I. INTRODUCTION 

The Voigt equation of viscoelasticity1 , 2* (sometimes 

know as the Kelvin-Voigt equation) is a mathematical model 

of a system that has the properties of elasticity and viscous 

damping, for example,a spring and a dashpot in parallel is 

the one dimensional system. 

The particular problem treated here applies this model, 

in spherical coordinates, to the shock wave caused by an 

underground explosion in a homogeneous medium. Figure 1 is 

a sketch that illustrates the problem and the coordinate 

system used. The explosion is located at r = 0, in the 

center of a spherical pit of radius a. The pit is completely 

surrounded by a homogeneous medium characterized by the para-

2 a 3 a 4 a 5 a 

Figure 1. The Coordinate System Used 

An explosion of strength B takes place at t = 0 and is 

assumed to have spherical symmetry. 

The Voigt equation of viscoelasticity and the boundary 

conditions for this particular problem were developed by 

*Superscripts used in this way are references to the 
BiMiography 
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Drs. Clark and,Rupert of the Mining Department at the Uni-

versity of Missouri at Rolla and are, 

(1 + .L d 2 ~+ __ti 1 a 2fZS 
~1) dt) <r- 2) = 

c2 ~ t2 Cl) ar 
0 ~r 

with, 

.L .L_ 8 ~+ 2 l1' 
-ffir 

(1 + ) 2~) ~ + = B6(t) (2) 
(1) 'at 'a r 2 r 

0 = a for t')O 

¢ = 0 for r) a, t = 0, (3) 

~- 0 for r> a, t :::a 0, and (4) at-

Lim rf(J = o. ( 5) 
r-;..oo 

The dependent variable fZJ (r,t) is a wave potential func­

tion that has little physical significance itself, but the 

partial derivatives of ¢ can be related to the physical 

world. Of interest as results of the computation are the dis­

placement, ~~~ strain, 92~~ and velocity, ~r~¢ of parti-
u 3r a r 

cles located at different radial distances from the explosion 

site. 

Analog computers are well suited to the solution of 

ordinary differential equations, but partial differential 

equations require special treatment. The general consensus 

of>opinion 3, 4,5,6 ,7,S,9,lO on the subject of solving partial 

differential equations on the analog computer can best be 

summarized as a series of points, they are: 

1. Several avenues of attack are available for any 
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problem, and the equipment available is the single 

most important factor in selecting the one to 

follow. 

2. If the analog computer used has no associated 

logic and memory capabilities then the most fruit­

ful avenue of attack is to replace derivatives 

with respect to all but one of the independent vari­

ables with finite differences. Usually, time: .is-­

chosen to be the remaining independent variable. 

3. The procedure indicated above tends to push the 

solution toward instability and so must be used 

carefully. 

4. Each problem in this area is individual, and the 

best approach to any given problem can only be 

determined by trial and error. 
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II. THE DIFFERENTIAL DIFFERENCE EQUATIONS 

Since the analog computer has only one independent 

variable it is necessary to eliminate either r or t from 

the equation and boundary conditions. This is accomplished 

by means of differential difference equations, that is 1 re­

placing derivatives with respect to one of the independent 

variables with the ratios of finite differences. 

Because the forcing function b(t) (from the first bound­

ary condition) is a function of time only it seems wisest to 

eliminate r and work with continuous equations in t. 

There are three principle kinds of difference equations: 

forward, central and backward. The central difference equa-

tions were used because they are easiest to handle and be-

cause according to several text books on numerical analysis3,ll,l 2 

they tend to introduce the least error. 

The central difference equations used are: 

(6) 

and 

(7) 

k is defined by the relation rk = a + k6r and takes on the 

values -1, 0, 1, 2, In order to make the above ex-

pression easier to work with let 6r = na where a is the 

radius of the spherical cavity in which the explosion takes 

place and n is an arbitrary constant. This results in 

rk =a+ kna = a(l + kn). ( 8) 
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Applying relations {6}, {7) and {8) to equations (1), (2), 

(3), (4) and (5) results in the elimination of r as an inde­

pendent variable. Equation (1), 

becomes, 

(1 + L £_) [ 1 (Oi Oi ) 
ro0 dt a2n(l+kn) ~+1 - -k-1 + 

Collecting terms and rearranging yields, 

n (1-fk-l)n)J 
lUk-1 2 l+nk) (9) 

Equation {2) 

(1 + ;, ~t) r( I\+ 2~) ~2 +£A~] = B6(t) for t>O 
UJo a ~ d r r Q'r r = a 

becomes, 

+ + (¢1 - ¢_1 )1 = B6(t). 
an :.1 

The Mining Department has expressed an interest in a solu­

tion for a media where 1\ = ~. Making this substitution and 

simplifying the results gives, 



Equation ( 3), 

Equation ( 4) , 

Equation (5), 

~ = 0 for r ~ a, t = 0, becomes, 

~ = 0 fork~ 0, t = 0. 

~~ = 0 for r >a, t = 0, becomes, 

d~ 
dt = 0 for k > 0, t = 0. 

Lim r~ = 0, becomes, 

Lim rk ~k = 0. 
k~O.O 

6 

(11) 

(12) 

(13) 

Equations (9), (10), (11), (12) and (13) have only one 

continuous independent variable, therefore, they are in a 

form suitable for simulation on the analog computer. 
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III. THE SIMULATION 

The boundary value problem to be simulated is 

rl (l+~k-1 )n)~ 
"'k-1 2 l+nk) ~ 

+ 

= 

7 

(9) 

(l + ~0 ~t) ~1 (~~~) - 0o (3~n), + 0_~ = B(3~~~i\ S ( tb (10) 

9\ = 0 for k? 0, t = 0: (11) 

d9\ 
dt = 0 for k > 0, t = 0: 

and Lim rk 0k = O. 
k~O.O 

(12) 

(13) 

Equation (13) states that at large distances the explosion 

has no effect and so 9\ is zero for large values of k. This 

allows the use of a finite number of points in space to be 

used in the simulation •. Equations (11) and (12) give the 

initial condition settings for the integrators whose outputs 
d~ 

are 0k and ~, for all k > 0, as zero. 

Equation ( 9) and ( 10) form the heart of the simulation 

and will be amplitude scaled and time scaled to make them 

more compatible with the computer used before proceeding 

further. 

Amplitude and time scaling will result in the answers 

being normalized in such a way as to be independent of the 



8 

parameters of the medium used and of the radius of the 

spherical cavity in which the explosion takes place. 

Let P represent normalized 0 and Y represent normalized 

time. The scale factors used are 

a2n2ro 2 

0k = -2-c-:=::2---=-o-

The resulting scaled equations are, from equation (9) 

+ 

(1+ 

and from equation (10) 

(14) 

(15) 

where 

is the normalized strength of the explosion. 

As the first step in the program, equation (15) is 
dP_1 . . 

solved ford/ y~eld~ng, 

ddP_;l = ( 1 + £._) rp ( __§_) - P ( 3+n )1 - P_l + B I S ( t) . ( 16) 
, d/ [o 3-n 1 3-n~ 

By implementing this equation in the normal manner on the 
dP_1 

analog computer dY and P_1 are generated. 

The implementation of the above equation is straight 

forward exe~pt :ror the implementation of B' $ ( t) • B 1 5 ( t) 

was simulated by making the initial condition on the integrator 



whose output is P_1 equal to B 1 since all of the area under 

the curve S(t) vs tis accounted for by integrating from t 

equal to zero to· t equal to an arbitrary small number. 

The rest of the analog computer program is a straight­
dPk 

forward simulation of equation (14) generating Pk and dy 

at k - 0, k = 1, k = 2, . . . up to the limits of the corn-

puter used. On the EAI TR-48 at the University of Missouri 

at Rolla the limiting factor is the number of integrators 

available, this number being 18. Since it takes one inte­

grator for the simulation of equation (16) and two inte­

grators for each simulation of equation (14), the maximum 

number of points (k) past r = 0 that can be simulated is 

9 

seven. This requires that as an approximation to equation 
d~k 

(13) 0k and dY are considered zero for all k greater than 

seven. The validity of this approximation is discussed in 

Chapter v. 

The complete analog computer program used is shown in 

Figure 2 and Table I shows the potentiometer settings for 

n = 0.25, 0.5 and 0.75. These values of n were chosen be-

cause they effectively sample the allowable range of n. n 

must be greater than zero to have physical significance and 

must be less than one, for the arrangement of equation used, 

to avoid changing the sign of the coefficient of P in equa­o 

tion (14) when k = 0. If this sign is changed positive feed-

back is required to simulate the equation and, as a result, 

the simulation is unstable. 



- rlP _ 1 

dY 

dP 
0 

- d'Y 

>.---d-P-1------~i pl 

dY Cl/1 

~---d-::-:::P:--5--~~1, 39 .,.-11 lOP 5 

-10 -dr'- lJ7 

Figure 2. The Analog Computer Circuit 
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Pot. n = 0.75 n = 0.5 n = 0. 25 Pot. n = 0.75 n = 0.5 n = 0.25 

00 .267 . 240 .218 22 .615 .600 ·571 
01 .267 .240 .218 23 .615 .600 ·571 
02 .167 .140 .118 30 .500 .500 .500 
03 .167 .140 .118 31 .125 . 250 .375 
05 .125 . 250 .375 35 .406 .417 .438 
o6 .125 . 250 .375 36 .4o6 .417 .438 
07 .875 ·750 .625 37 ·594 .583 .562 
08 .875 ·750 .625 38 ·594 .583 .562 
10 . 286 .333 .400 45 .421 .429 .444 
11 . 286 .333 .400 46 .421 .429 .444 

12 .714 .667 .600 47 ·579 ·571 ·556 
13 .714 .667 .600 48 ·579 ·571 .556 
15 .350 .375 .417 50 .432 .438 .450 

16 .350 .375 .417 51 .432 .438 .450 

17 .650 .625 .583 52 .568 .562 ·550 
18 .650 .625 .583 53 .568 .562 ·550 
20 .385 .400 .429 55 .440 .444 .455 
21 .385 .400 .429 56 .440 .444 .455 

TABLE I 

Table of Potentiometer Settings 

I-' 

1-' 



IV. CHECKING THE PROGRAM 

Due to the complexity of the program and the large 

number of computer elements used~ it became necessary to 

have a positive check on the wiring of the program and on 

the operation of the computer elements. The main check 

12 

used was a static check. The system of equations resulting 

from assuming a 5 volt input to the simulation at k = -1 

and allowing all the time derivatives to go to zero was 

written and solved on the digital computer. This condition 

was then set up on the computer by removing the initial con­

ditions~ adding a constant 5 volt input to amplifier 00~ and 

allowing the solution to reach steady state. Table II is a 

tabulation of the digital computer results for n = 0.25, 0.5, 

and 0.75. 

The above procedure, with a check to assure that all of 

the voltages representing time derivatives were zero, checks 

on the connection and operation of the amplifiers and those 

potentiometers that have nonzero voltages as their inputs in 

the steady-state condition. To obtain a check on the rest 

of the potentiometers, use was made of the fact that each of 

the potentiometers that was not checked is next to a potentio­

meter, with the same setting, that has been checked. Switch­

ing the role of the potentiometers within each pair and re­

peating the static check assures that the rest of the poten­

tiometers are set and connected properly. 



13 

Output 
Amplifier Variable n = 0.75 n == 0.5 n == 0.25 

02 p -1 3.55 2 ·94 2.63 

07 p ·79 1.30 1.75 0 

ll pl .39 ·76 1.23 

15 p2 .23 .46 .88 

23 lOP3 1.53 3. 26 6.30 

31 lOP4 ·99 2.17 4. 38 

39 lOPS .62 1.39 2.44 

45 lOP6 .36 .81 1.75 

35 lOP7 .16 .36 .80 

TABLE II 

Table of Values for Static Check 

Input 5 Volts 
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V. SENSITIVITY 

The validity of the results of the program depend to a 

great extent upon the results not being sensitive to the 

choice of n and maximum k. Included here are examples of P 

recorded for the same value of r with different values of 

maximum k~ and P for the same value of r with different 

values of n. 

Figures 3 and 4 contain six recordings of normalized 

displacement potential at r = 1.5 a (k = l) with 6r = 0.5 a 

(n = 0.5). Each recording was made with successively less 

computer being used, that is~ the first recording was made 

with the entire simulation (k = 7)~ the second was made max 

with the simulation shortened to k = 6, the next with max 

kmax = 5 and so forth to kmax = 2. Figure 5 shows three 

recordings of normalized displacement potential at r = 3 a 

with k = 7, 6 and 5. Study of these figures shows that max 

the effect of reducing k is to reduce the magnitude of P max 

and to have a slight smoothing effect on the curves. Figure 

5 illustrates the reduction in magnitude of P4 . The shape 

of all three is, however, the same. This effect is the re­
dPk 

sult of the assumption that all Pk and dY are equal to zero 

for all k greater than kmax 

The smoothing effect is best illustrated by Figures 3 

and 4~ and practically no magnitude difference is apparent. 

The smoothing effect is the result of P1 being affected by 

a decreasing number of functions, therefore, becoming a 

simpler function. The lack of magnitude difference can be 
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explained by the fact that the magnitude at the r = 1.5 a 

position in the program~ being very close to the beginning 

of the simulation~ is more strongly influenced by the 

strength of the impulse than by the length of the simulation. 

Figures 6 and 7 are recordings of P for different values 

of 6r. Because the normalizing factors for both the strength 

of the explosion and displacement involve n~ the normalized 

magnitude of P should be larger at the same value of r for 

;:::maller values of 6r. Recordings of normalized displacement 

at r = a for 6r = 0.25 a~ 0.5 a and 0.75 a in Figure 6 show 

that the shape is not affected by changing 6r and that the 

magnitudes are related as expected. 

Figure 7, showing normalized displacement at r = 2.5 a 

for the same values of 6r used above requires more explana­

tion. The sh~pes of the three recordings are the same but 

the magnitudes are not related as would be predicted by the 

scale factors; that is~ considering only the scale factor 

differences~ the recording for 6r 0.25 a should be larger 

than the one for 6r = 0.5 a. The reason that this did not 

happen is that the point r = 2.5 a for 6r = 0.25 a is very 

near the end of the simulation and so P 1s reduced because of 

the effect demonstrated in Figure 5. 

From the above it can be seen that the simulation is 

almost independent of the choice of 6r and is affected by 

k only for points near k 
max max 
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0 10 20 40 60 
Normalized Time 

-1.0 

0 10 20 40 60 
Normalized Time 

0 10 20 40 60 
Normalized Time 

Figure 4. Normalized Displacement Potential at r = 1.5 a 
with 6r = 0.5 a 
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Normalized Time 

0 10 20 
Normalized Time 

Figure 5. Normalized Displacement Potential at r = 3 a 
with b..r = 0.5 a 
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Vigure 6. Normalized Displacement· Potential at r = a 
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Figure 7• Normalized Displacement at r • 2.5 a 
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VI . THE· RESULTS 

Of interest as results of the computation are displace-

d2f2J . ~ t 'dfZJ t . men , ;fr? s r a1.n, ~: and veloc1.ty, ~tJr" These quantities 
dr o 

were obtained in normalized form by the reverse procedure 

used to eliminate derivatives with respect to r. Recalling 

the central difference equationsfrom Chapter III, but this 

time writing them in terms of normalized variables we have 

a2n2ro 2 
Recalling that 6r = na, ¢k = 2c 2o Pk and t = ~J, it can 

be seen that by recording Pk+l 
2 eJ. 

- Pk-l normalized displace-

4c J k . bt . d ment, 2 ~' 1.s o a1.ne • 
CU1ill or 2 

o 4c2 ~ 
normalized strain, 

By recording Pk+l - 2Pk + Pk-l 

dPk+l dPk-1 
is obtained and d y d -y 

ro 2 d r2' 
0 

4c2 
yields normalized wave velocity, anm0 

On the following pages the results for n = 0.5 and 

maximum k = 7 for k = 1, 2, 3, 4, 5, and 6 corresponding to 

r = 1.5 a, 2 a, 2.5 a, 3 a, 3.5 a, and 4 a are presented. 

The major characteristics of the computed data, Figures 

8 through 13, that can also be observed in experimental datal3,l4 

are: the damped oscillations about zero, the increasing time 

delay as the points get farther from the origin, and the 

decrease in frequency with time, that is, the second half 
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cycle takes more time than the first. The output data has 

been analyzed by Drs. Clark and Rupert and both agree it is 

consistent with observed data. 
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Figure 9. Data for r = 2.0 a ~r = 0.5 a, kmax = 7 
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Figure 10. Data for r = 2.5 a b..r = 0.5 a, kmax = 7 
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Figure 1,1. Data for r = 3.0 a ~r = 0.5 a, kmax = 7 
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Figure 12. Data for r = 3.5 a 6r = 0.5 a, kmax = 7 
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Figure 13. Data for r = 4.0 a l:lr = 0.5 a, kmax = 7 



VII. CONCLUSIONS 

It has been shown that an effective method of solving 

partial differential equationson the analog computer is 

29 

to replace derivatives with respect to all but one of the 

independent variables with differential difference equations. 

A specific example, the Voigt equation in spherical coordi­

nates was solved and the solution was shown to be relatively 

insensitive to the mechanics of this type of solution. 

The results of the computation have been presented and 

have been supported by experimental evidence. 

The methods used on this problem are sufficiently 

general to be applied to a large number of other partial 

differential equations. It should be pointed out however, 

that there are several types of differential difference 

equations that can be used. The methods presented here 

represent the results of a large amount of trial and error 

investigation of the problem and the solution presented 

represents the most stable, least sensitive solution to 

this particular problem. Another similar problem might 

be better handled with a slightly different approach. 
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