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ABSTRACT 

This report investigates a substitute for the impact damper which, 

although highly effective in reducing vibration amplitudes of near-

resonant mechanical systems, in operation causes often unacceptable 

intensive noise. 

The present damper consists of a piston free to move in a cylinder, 

at either end of which is a ball valve set to open at a preset pressure, 

and in the middle along its length an intake port. 

An approximate analytical study is made to determine the conditions 

for the existence of "noiseless periodic operatiorr' of the damper, 

periodic operation without the occurence of impacts. This approach is 

based on the describing function method which harmonically linearizes 

the nonlinear damping force involved in the equations of motion of the 

system. The excitation force to produce this periodic operation and 

the response results from this operation may be predicted by this 

analytical approach. 

Digital simulation of the system is used to verify the predictions 

by analytical approach. 

A study on a given system indicates that appropriate design para­

meters may be selected for a damper of this type to obtain a reduction 

in response amplitude of the primary system at resonance to 1/5 of its 

value without the damper. This is essentially the reduction that might 

be obtained with a properly designed impact damper. Unlike the impact 
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damper, the new damper is expected to operate relatively noiselessly. 



iv 
ACKNOWLEDGMENTS 

The author wishes to extend his sincere thanks and appreciation to 

Dr. Donald L. Cronin, his advisor, for the suggestion of the topic of 

this thesis, the guidance, encouragement, and valuable suggestions pro­

vided during the course of this research program. The encouragement, 

and helpful suggestions of Dr. R. D. Rocke are also gratefully ac­

knowledged and sincerely appreciated. 

The author is thankful to Mrs. Marlys Head for her wonderful 

cooperation in typing this thesis. 



v 

TABLE OF CONTENTS 

Page 

ABSTRACT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i i 

ACKNOWLEDGMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . i v 

LIST OF ILLUSTRATIONS .....................•........................ vii 

LIST OF TABLES. . . . • . . . . . . . . . . . . . • . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . ix 

NOMENCLATURE. . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . X 

I. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

II. MATHEMATICAL DESCRIPTION OF THE SYSTEM ...................... 8 

A. Equations of Motion ................................... 8 

B. Dimensions of the Damper ....•......................... 9 

c. Assumptions ......................••................... 11 

D. Damping Force ......•........•......................... 12 

E. Impact Conditions ...........................•......... 18 

III. DIGITAL COMPUTER MODEL SIMULATING THE MOTION OF THE SYSTEM •• 22 

A. Solution of the Differential Equations by 
Kutta-Merson Method ................................... 22 

B. Tests for Time Increment Halving and Doubling ......... 26 

C. Flow Charts ........................................... 27 

IV. APPROXIMATE ANALYTICAL APPROACH FOR THE DETERMINATION 
OF NOISELESS PERIODIC OPERATION ............................. 36 

A. Governing Nonlinear Differential Equation ............ 37 

B. Basic Assumption ................•..................... 41 

c. Describing Function or Harmonic Linearization Method •. 41 



vi 

Table of Contents (continued) Page 

D. Harmonic Linearization of the Damping Force ......... 44 

E. Conditions for the Existence of the Periodic 
Solution y == Y sin 0t ............................... 52 

F. Steady-state Response ............................... 57 

G. Stability Analysis.................................. 60 

V. COMPARISON OF SIMULATION AND THE APPROXIMATE 
ANALYTICAL APPROACH................ . . . . . . . . . . . . . . . . . . . . . . . . 62 

A. Determination of Damper Parameters .................. 62 

B. Determination of the Motion of the Given System 
with the Selected Damper Attached ................... 83 

c. Details on the Noiseless Periodic Operation ........ 95 

VI. SUMMARY AND CONCLUSION .•..•••••••••...••••••••.••.•..•••..• 102 

BIBLIOGRAPHY ..................................•........... ·. · •.. · 104 

VITA. . . . . . . . . . . . . ............................................... 106 

APPENDICES ...................... · ... · . · · · · · • · · · · · · · · · · · · · · · · · · · · · 107 

A. Computer Program Listing ............................ · 108 

B. Details of the Computer Program Verification ......... 119 



vii 

LIST OF ILLUSTRATIONS 

Figure Page 

1. Mode 1 of the Sys tern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

2. Schematic of the Damper ..................................... 10 

3. Damping Force in Periodic 2 Compressions/Cycle 13 

Operation (Case of Y > YB) ............ ·•···················· 

4. Damping Force in Periodic 2 Compressions/Cycle 
Operation- Case of no Air-Discharge (Y~ ) ................. 16 

B 

5. Damping Force- General Case: ............................... 17 

6. Damping Force, Concepturally Superposed by Impacts .......... 21 

7. Flow Chart - Main Program ................................... 29 

8. Flow Chart - Integration Routine ...............•.•.......... 32 

9. Flow Chart- Subroutine FORCE ............................... 33b 

10. Solution Curve of Predicted Noiseless Periodic Operation 
D = 1 inch , D IAM . = 1 inch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 7 

11. Solution Curve of Predicted Noiseless Periodic Operation 
D = 1 inch, Diam. = 1.5 inches ..........................•... 68 

12. Solution Curve of Predicted Noiseless Periodic Operation 
D = 1.5 inches, Diam. = 1 inch .............................. 69 

13. Solution Curve of Predicted Noiseless Periodic Operation 
D = 1.5 inches, Diam. = 1.5 inches .....•..•................. 70 

14. Solution Curve of Predicted Noiseless Periodic Operation 
D = 1.5 inches, Diam. = 5 inches ............................ 71 

15. Solution Curve of Predicted Noiseless Periodic Operation 
D = 5 inches, Diam. = 1 inch ................................ 72 

16. Solution Curve of Predicted Noiseless Periodic Operation 
D = 5, Diam. = 1. 5 inches ................................... 73 



viii 

List of Illustrations (continued) 

Figure Page 

17. Solution Curve of Predicted Noiseless Periodic Operation .... 74 
D = 5 inches, Diam. = 5 inches 

18. Solution Curve of Predicted Noiseless Periodic Operation 
P = 30 psi, D = 10 inches .................................. 75 

c 

19. Solution Curves of Noiseless Periodic Operation of 
the Selected Damper (P = 30,50,100,200 psi.) ............... 79 

c 

20. Solution Curves of Noiseless Periodic Operation of 
the Selected Damper (P = 24,27,30,33,36,50 psi)...... 85 c 

21. Solution Curve of the Impact Damper in Masri's Study [5] 
Compared with Those of the Damper Shown in Figure 20. .. .... 87 

22. Operation Near Resonance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

23. Predicted Stability of the System Shown in Figure 20....... 93 

24. Periodic Solution y(t)............ . . . . . . . . . . . . . . . . . . . . . . . . . 97 

25. Damping Force (Simulated and Harmonically linearized)..... 98 

26. Steady State Solutions..................................... 100 

27. Verification of Subroutine FORCE 
y = Y sin Dt, Y < D/2...................................... 124 

28. Verification of Subroutine FORCE 
y = Y sin Dt, Y = D/2 ........... . 125 

29. Verification of Subroutine FORCE 
y = B1t + B2t 2 + B3t3, Yc = D/2............................ 126 

30. Verification of Subroutine FORCE 
y = B1t + B2t2 + B3t 3 , Yc < D/2 ............................ 127 



ix 

LIST OF TABLES 

Table Page 

I. Limits of Integration and Integrands in the Describing 
Function N . . . . . . . . . . . . . . . . • . • . . . • . . • . • . . . . . . . . . . . • . . . . . . . . . . . . 4 7 

II. Description of the Primary System Under Discussion .•.......... 64 

III. Predicted Excitation Force to Produce Periodic Operation 
of the Trial Dampers ................•.•.•............•......... 80 

IV. Cases of Noiseless Periodic Operation at Ressonance Simulated 
by a Digi ta 1 computer. . . . . . . . . . . • . . . . . . • . . . . . . . . . . . • . . . . . . . . . . 86 

V. Cases of Noiseless Periodic Operation Near the Resonant 
Frequency w = 188.5 rad./sec. Simulated by a Digital Computer. 90 

VI. Predicted Stability of the System Shown in Figure 20 .......... 94 



NOMENCLATURE 

A= cross-sectional area of the damper piston (in. 2) 

B = length of the damper piston (in.) 

C = damping coefficient of primary system (lb. sec./in.) 

Cr = critical damping coefficient of primary system (lb.sec./in.) 

D = total piston stroke (in.) 

e = coefficient of restitution 

F0 = maximum force of excitation (lb.) 

F(y,y) = damping force, (P2 - P1)A (lb.) 

Fo f = excitation function, sin (Dt - ¢ ) 
M 

K = spring stiffness (lb./in.) 

M = mass of primary system (lb./in. per sec.2) 

m mass of damper-piston (lb./in. per sec.2) 

N = describing function for damping force, N1 + jN2 

Pa =atmospheric pressure (p.s.i.a.) 

Pc = preset absolute pressure of the ball valves (p.s.i.a.) 

X 

P1 = absolute pressure of the air in cylinder on the left hand side of 
the piston (p.s.i.a.) 

P2 absolute pressure of the air in cylinder on the right hand side of 
the piston (p.s.i.a.) 

r = ratio of forcing frequency to natural frequency, D 
w 

t time (sec.) 
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x =displacement of M (in.) 

X= maximum amplitude of x(t) (in.) 

X
0 

= maximum amplitude of x(t) for system at resonance without damper 

(in.) 

x = displacement of M immediately before impact (in.) 

x+ =displacement of M immediately after impact (in.) 

y = relative displacement of damper piston m with respect toM (in.) 

Y =maximum amplitude of y(t) (in.) 

= absolute value of amplitude of relative displacement of damper 
piston when air-discharge begins (in.) 

W = length of the intake port (in.) 

s = ratio of critical damping, C 
Cr 

, of primary system 

~ = ratio of damper mass to primary system mass, m 
M 

¢ = phase angle 

w = natural frequency of undamped oscillation, ~K/M 

n =forcing frequency (rad./sec.) 

(rad./sec. 
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I. INTRODUCTION 

In many vibratory systems, the system response to an excitation 

characterized by a frequency near a resonance may be excessive and may 

require reduction. A successful technique for reducing the near-re­

sonant response amplitude of a vibratory system is to use an impact 

damper. An impact damper consists of a small mass constrained to move 

in a container attached to the primary system. The periodic impacts 

between the impacting mass and the ends of the container may often 

cause subtantial reductions in the vibration amplitude of the primary 

system through momentum transfer. 

The impact damper was first investigated by Lieber and Jensen 

(1945) [1]. The theory of the impact damper was developed by the con­

tributions of Grubin [2], Arnold [3], Warburton [4] and Masri [5] ,, [ 15]. 

The application of impact dampers to reduce the vibrations of such 

systems as ship hulls, cantilever beams, turbine buckets, and antenna 

structures was investigated by McGoldrick [ 6], Lieber and Tripp [ 7], 

Duckwald [8], Rocke and Masri [9], respectively. Recent communication 

indicates that Masri is attempting to extend the application of impact 

dampers to the reduction of earthquake-induced vibrations in buildings. 

Although impact dampers appear to be effective in reducing the 

response amplitude of vibratory systems near resonance, the excessive 

noise caused by impacts of the mass and its container may be of such an 
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intensity that it is unacceptable to the human ear, according to private 

communications with Rocke and Masri. 

The objective of the present study is to investigate the feasibility 

of a similar bolt-on damper -- a free piston gas compression, throttling, 

expansion device -- as a possible replacement for the impact damper. 

Feasibility is assessed in terms of a reasonably-sized damper producing 

amplitude reductions in the response of the primary system for steady-

state near-resonant operation like those produced by the impact damper. 

The new damper, at least in its conceptural state, should have the im-

portant advantage that its operation snould be relatively noiseless. 

The present damper consists of a piston free to move in a cylinder 

as shown in Fig. l. At the mid-point along the length of the cylinder 

is an intake port, and at either end of the cylinder is a ball valve 

which is set to open at a preset pressure. In operation the piston 

compresses air at one end of the cylinder and forces it past the ball 

valve out of the cylinder; the piston then expands the remaining air, 

takes in more air at mid-stroke and the process repeats at the other end 

of the cylinder. If the ball valves are set to open at a preset pressure 

such that no impact can occur when the damper is in operation, the noise 

w:1ich would be caused by the impacts is eliminated and the new damper 

should be relatively noiseless. This "noiseless" periodic operation is 

of primary interest in the present study. However, a relatively quiet 

operation which allows occasional impacts, impacts at starting or 

impacts with reduced force may not be undesirable and 
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Figure 1. Hodel of the System. 
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should perhaps be an objective of future work. 

Since the new damper is a nonlinear device, its performance, as is 

the case for impact dampers, is dependent on the amplitude of the ex-

citing force. In the present study, a general analytical approach 

leading to a description of when noiseless periodic operation of the 

damper will occur has been developed. Using the analytical approach, 

the performance of particular systems, and their behavior as functions 

of the imput and design parameters have been studied. Numerical studies 

have been used to examine the effects of the various approximations 

made in the foregoing analytical study. 

The primary goals of the present study can be summarized as follows: 

1) To find a general method which will permit an approximate an-

alysis of noiseless periodic operation of the damper applied to a general 

system for near-resonant operation. 

By applying this method to a particular system described by 

~ = m =ratio of damper mass to primary system mass= 0.1 
M 

~ damping ratio of primary system= 0.02 

e = coefficient of restitution = 0.8 

o) = natura 1 frequency of primary sys tern = 188. s rad. Is ec. 
(or 30 c.p.s.) 

D forcing frequency · w (operation near-resonance) 

w1 weight of primary system= 10 lbs. 

F
0 

=maximum force of excitation= 20 to 50 lbs., 
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the following goals are also addressed: 

2) To select the remaining parameters to obtain noiseless periodic 

operation of the damper. 

3) To obtain a reduction in the system response amplitude com-

parable to those obtained by impact dampers, e.g. this amplitude ratio 

should be 

When the damper is operating noiselessly and periodically, is 

the ratio of maximum amplitude of the system with damper attached to 

maximum amplitude of the system at resonance without the damper. 

4) To work effectively when the excitation force varies within 

the range of 20 to 50 lbs. 

5) To work effectively when the system is at resonance, as well 

as in the vicinity of this resonance. 

6) To study the effects of the design parameters, especially 

the adjustable ones, Pc and D, on the performance of the damper. 

A brief description of the contents of the remaining chapters 

follows. 

The mathematical description of the system with the damper attached 

is given in Chapter II. First the system is described by the equations 

of motion. Then the assumptions are discussed, and the mathematical 

description of the damping force F(y,y) is given, where y is the 
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relative displacement of the damper piston m with respect to the primary 

system M. The impact conditions are also discussed in this chapter. 

In chapter III a digital computer model is described that simulates 

the motion of the system with the damper attached. In this model the 

motion of the piston is not constrained to be periodic and the pos-

sibility of impacts is included. 

An approximate analytical method to determine the noiseless periodic 

operation of the new damper, is outlined in Chapter IV. The governing 

nonlinear differential equation relating the damping force F(y,y) to the 

input variable y(t) is first derived from the equations of motion. The 

damping force F(y,y) is approximated by harmonic linearization using 

the describing function method. This method was developed by many 

authors, among them Siljak [10], Shridhar [11] and Minorsky [13]. The 

conditions for the existence of periodic operation of the damper are 

established. Then the steady-state response of the system is derived, 

and the stability of the system is discussed using the Hurwitz criteria. 

Chapter V presents a comparison of the results obtained by the dig­

ital computer simulation with those from the analytical approach described 

in Chapter IV. 

Summary and conclusions drawn from this study are stated in 

Chapter VI. 

Appendix A contains a description of the computer program used to 

simulate the motion of the system. 
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Appendix B contains details of the computer program verifications. 



II. MATHEMATICAL DESCRIPTION OF THE SYSTEM 

A. Equations of Motion 

The equations of motion of the system with damper shown in Figure 

1 are: 

MX +ex+ Kx = (Pz - Pl)A + Fo sin (Dt - ~) (2. 1) 

(2.2) 

Equations (2.1) and (2.2) may be rewritten as: 

where: 

. . .. 
X + y 

F(y,y) + f(t) 
M 

F (y, Y) 
m 

x = displacement of primary system 

(2. 3) 

(2.4) 

y relative displacement of the damper mass m with respect 

to the primary system M 

~ = c 
Cr 

damping ratio 

C = damping coefficient of primary system 

Cr = critical damping coefficient, ~ 

w =~K/M, undamped natural frequency of primary system 

P1 = Pressure of the air in cylinder on the left hand side 

of the piston (ref. Figure 1) 

8 
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Pressure of the air in cylinder on the right hand side of 
the piston (ref. Figure 1) 

~ = m 
= ratio of damper mass to primary system mass 

M 

Fa 
f(t) = sin (0t - ¢ ) 

M 
excitation function 

F(y,y) = (Pz - P1)A = damping force 

A = cross-sectional area of the piston 

¢ = phase factor on the input 

B. Dimensions of the Damper 

For the present investigation the damper, as shown in Fig. 2, is 

designed such that: 

1. The length B of the piston is equal to the length W of the 

intake port. 

W = B 

As a consequence, when the piston moves past the mid-stroke position 

(y = 0), compression begins on one side of the cylinder, and the ex-

pansion of the air in the other side terminates as air exhausts through 

the port. 

2. The length L of the cylinder is equal to the sum of the stroke 

D and the length B of the piston: 

L = D + B 

When the piston contacts an end of the cylinder, its relative 



L 

B = Length of the damper piston s 

W = Length of the intake port H 

D = Total Piston Stroke m 

L = Length of the cylinder I 

v 

Figure 2. Schematic of the Damper 

B/2 

Ball Valve Springs 

Cylinder or container 

Damper piston 

Intake port 

Ball valves 

E 

I-' 
0 
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coordinate y(t) with respect to the cylinder is + D/2. 

C. Assumptions 

The following assumptions are made for the purpose of analysis: 

1. The piston moves frictionlessly in the cylinder 

2. Whenever the ball valves are closed (no air-discharge) the 

* compression or expansion of the air in the cylinder is polytropic 

n P.V. =constant 
1 1 

where: 

P., V. =pressure and volume of the air under compression or ex-
1 1 

pansion, and 

n = 1.3 

3. The ball valve mass, and valve spring are selected so that ball 

valve dynamics, e.g., chatter, etc., are negligible. 

4. After the piston has reached the mid-stroke position (y = 0), 

as soon as the compression of air begins on one side of the cylinder, 

the expansion of the remaining air on the other side terminates im-

mediately, and its pressure regains the value of atmospheric pressure. 

5. The impacts, if they occur, take place in an incrementally 

* The factor n = 1.3 describes an observed value for the operation of 

real machines. It represents a process somewhere between isothermal 

(n = 1) and adiabatic (n = 1.4). 
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small time. During this time the positions of the primary system mass 

M and damper piston m remain the same while their velocities change 

discontinuously. 

D. Damping Force 

The damping force F(y,y) is first described for the case when the 

damper operates periodically with 2 compressions per cycle, then it is 

determined for the general case when the piston is not constrained to 

periodic operation and can move back and forth as shown in Figure 5. 

1. Periodic 2 compressions/cycle operation. 

The damping force is: 

(2.5) 

The pressure Pi of the air under compression or expansion in the 

cylinder is determined by the equation: 

P·V·n = constant 
l l 

For the portion AB in Figure 3: 

p.v.n 
l l 

P V n 
a a 

Pa [ D/2 Jn 
D/2 - y 

The portion BC of the curve in Figure 3 is defined by: 

(2.6) 

(2.6b) 

By applying equation (2.6) to portions AB, CD, AB', C'D', and 
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B C 
C Pc - P )AiM - - - - - - - -a . , 

y 

C' 8' 

y 

t 

Figure 3. Damping Force in Periodic 2 Compressions/Cycle Operation 
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equation (2.6b) to portions BC, B1 C1 , and noting that the pressure of 

the air under compression or expansion in the cylinder at points A, C 

and c' are known, the damping force F(y,y) may be obtained for these 

portions: 

Portion AB: F(y,y) = ( pa 
[ D/2 

- pa) A 

0 ::::;; y ::::;; YB 
]n 

D/2 - y 
~0 y 

( pc - pa ) A [~B <; y <; Y < D/2 
y ~ 0 

Portion BC: F(y,y) = 

Pa) 
A[ ~0 < D/2 

Portion CD: F(y,y) = ( P rDI2 - y]n 
c D/2 - y y.::::;; 0 

( pa 
D/2 /)A [ 

-YB .::( y.::::;;o 

Portion AB 1
: F(y,y) = - p [ a D/2 + y.::::;; 0 

Portion B1 C1 : F(y,y) = ( pa - p ) A -D/2 < -Y ::::;; y .::::;; -YB 
c 

y::::;; 0 

Portion C1 D' : F(y,y) ( pa -
p [D/2 - y]n) A -D/2 < y < 0 

c D/2 + y 

y ~ 0 
(2.7) 

where: 

y = maximum amplitude of the relative displacement of the damper 

piston < D/2 

yB = amplitude of relative displacement of damper piston when air 

discharge begins 
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If Y ~ YB the ball valves will never open, and the device will be­

have as a mass on a nonlinear spring (See Figure 4.) In this case the 

damping force is 

(2. 8) 

where: 

The upper sign corresponds to y > 0 

The lower sign corresponds to y < 0 

2. General case 

In the general case when the damper is not constrained to periodic 

operation, one possible movement back-and-forth of the piston is shown 

in Fig. 5. 

In the program for digital simulation, as described in Chapter III, 

a control flag named VALVE is used to indicate the state of the air in 

the cylinder. This flag is introduced here to aid the present dis-

cuss ion. 

VALVE = -1 

VALVE = 0 

VALVE = 1 

if the piston having passed the mid-stroke 

position (y = 0) compresses the air, but 

the compression has not yet opened the ball 

valve. 

When the ball valve is forced to open 

if during the same half-cycle period the ball 
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Figure 4. Damping Force in Periodic 2 Compressions/Cycle Operation 
Case of no Air-Discharge (Y ~ YB). 



t 

Figure 5. Damping Force - General Case. 

VALVE= 0 

c 

y 

17 

VALVE=1 

y ':J 



18 

valve which has been open at least one time 

during the period is closed again. 

The damping force can be derived from equations (2.5), (2.9), 

(2.10), and (2.11): 

F(y,y) = Sign (y) ( pa [ D/2 
D/2 - I Yl 

Jn - Pa) A if VALVE -1 

F (y ,y) Sign (y) l pc - pa l A if VALVE = 0 

F(y,y) = Sign (y) ( p [D/2 - Yn n - p ) A c D/2 I Y I J a if Valve = 1 

( 2. 12) 

where: 

Y = Y, Y1, Y2, ...... . 
n 

= displacement of the piston at the moment when the ball valve 

which has been open during the same half cycle closes, as 

shown in Fig. 5. 

E. Impact Conditions 

For the purpose of the present study, impact is considered as 

potentially superposing a force upon the system in addition to F(y,y). 

In general, motion, for example, in the positive y direction may be 

terminated by impact which occurs, depending on the choice of damper 

parameters, during the air compression phase (line AB on Fig. 3) or 

during the air expulsion phase (line BC on Fig. 3). Impacts are assumed 
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to occur instantly such that during the impacts, the displacements of 

the primary system mass M and the piston m remain the same, while their 

absolute velocties are discontinuously changed. 

The momentum equation of the system during impact is: 

(2.13) 

where: 

Vm = y + x = absolute velocity of the damper piston 

The - and + subscripts designate times immediately preceding and 

following the impact. 

By the definition of the coefficient of restitution e: 

x - v = -e(x - Vm_) + m+ 

The impact conditions can then be summarized as follows: 

where: 

x+ = x + ~(1 + e) y_ 
(1 + ~) 

y+ = -ey_ 

~ = m = ratio of damper mass to primary system mass 
M 

e = coefficient of restitution 

(2.14) 

(2.15) 
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Concepturally impacting forces may be superimposed upon the 

damping force as illustrated in Fig. 6. 
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Figure 6. Damping Force Concepturally Superposed by Impacts 
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III. DIGITAL COMPUTER MODEL SIMULATING THE MOTION OF THE SYSTEM 

A. Solution of the Differential Equations by Kutta-Merson Method 

The solution of the system of two second-order nonlinear differen-

tial equations: 

(2. l) 

(2.2) 

is obtained by treating these equations as four first-order differential 

equations and by using the Kutta-Merson [14] method. 

The system of equations (2.1) and (2.2) are the equations of 

motion of the system when there is no impact. If impacts occur, these 

are the equations of motion of the system between impacts. 

When new variables are defined: 

zl = X 

z2 = X 

(3. l) 

z3 y 

z4 y 

Then equations (2.1) and (2.2) may be rewritten as: 

(3. 2) 

(3. 3) 



(Qt - <P) - £ z 
M 2 

f (t, z1, Z , Z , z4) = G4 4 2 3 

- (P - p ) A 
2 1 M 

. 
z 

2 

!z 
M 1 

The initial conditions throughout are taken to be: 

z 1 (O) = x(O) 

• 
22(0) = x(O) 

z
3 

(O) = y(O) 

z (0) 
4 

= y(O) 

In terms of vector notations: 

zl X 

. 
z2 X 

{Z} ::;: = 

z3 y 

. 
24 y 

f 1 (t,Z) z2 

£
2

(t,Z) G2 
{F.} ::;: 

~ 

£
3

(t,Z) z 
4 

£
4

(t,Z) G 
4 
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(3.4) 

(3.5) 

(3. 6) 

(3. 7) 

(3.8) 
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2
1 

(O) x(O) 

22 (0) xco> 
{ 2 (0)} = = (3. 9) 

2
3 

(0) y(O) 

24(0) y(O) 

and the system of equations (2.1) and (2.2) may be rewritten as follows: 

. 
{ 2 } = F 

i 

with initial conditions: 

where 

2
1 

(O) 

z 2 (O) 
{ z (0)} = 

23(0) 

z (0) 
4 

The Kutta-Merson method functions infue following way. 

If {Z(t)} is known, {Z(t + h)} may be determined by: 

{2(t +h)} = {2(t)} 

{z(t +h)} == 

+ h [l 
6 

21 (t + h) 

z
2
(t +h) 

z (t + h) 
3 

z (t + h) 
4 

= 

+ ~ rK 3r +l 
6 

x(t + h) 

x(t + h) 

y(t + h) 

y(t + h) 

(3. 10) 

(3. 9) 

(3.11) 

(3 .12) 
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h = time increment 

{K }= 
3 

K(2, 1) 

K(2,2) 

K(2,3) 

K(2,4) 

K(3, 1) 

K(3,2) 

K(3, 3) 

K(3,4) 

= 

K(1, 1) f 1 ( t ' { z ( t )} ) 

f
2
(t, {Z(t)} ) K( 1, 2) 

K( 1, 3) f 3(t, {Z(t)}) 

f ( t ' { z ( t )} ) K(l ,4) 
4 

= 

f 1 ( t + hI 3 , {Z ( t) } + ~ h {K 
1
} ) 

£
2 

(t + hl3, {z(t)} + ~ h ~J ) 
£ 3 (t + hl3, {Z(t)} + ~ h {K1} ) 

£
4 

(t + hl3, {Z(t)} + ~ h {K
1
} ) 

fl (t+hl3, {Z(t)} +h[i {Kt +i {K2}J) 

f 2 ( t + hI 3 ' { z ( t )} + h [ i { K f + ~ {K2 }] ) 

1 1 
£3 (t + hl3, {Z(t)} + h[6 {Kl} + 6 {K2}J) 

1 1 
£4 (t + hl3, {Z(t)} + h[6 {K

1
} + 6 {K

2
}J) 

(3.13) 

(3. 14) 

(3. 15) 

The vector {K
3

} is determined by using equations (3.13), (3.14), 

(3.15) and will be used in equations (3.16) and (3. 17). 

K(4,1) f (t + h/2, {Z(t)} + h[l {K1} + l {K3}]) 
1 8 8 

K(4,2) £2(t + hl2, {Z(t)} + h[l {Kl} + l {K }J) 

{ K } = = 8 8 3 
4 

K(4,3) f (t + hl2, {Z(t)} + h[l {K1} + l {K }]) 
3 8 8 3 

K(4,4) f4(t + h/2, {Z(t)} + h[l {K} + l {K }J) 
8 1 8 3 

(3. 16) 
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K(S, 1) f 1 (t + h, {z(t)} + h[ _l { K } - l { K } + 2 { K } J) 
2 1 2 3 4 

K(5,2) f2(t + h, {Z ( t ) } + h [ t { K l } 
3 

2 { K4} J) {K3} + 
{ K5} == == 2 

h[ _l { K } 3 K(5, 3) f3(t + h, {Z(t)} + { K3} + 2 {K4}]) 2 1 2 

K(5,4) f (t + h, { z ( t)} 1 3 + h[z{Kl} - 2 {K3} + 2 { K4} J) 4 

(3. 17) 

K(i,j) define an approximation to the "average" derivatives of the 

dependent variables in the internal (t, t+h), in the Kutta-Merson 

formulae. 

The Kutta-Merson method has been used for this problem because it 

is self-starting and has a correction capability such that the time 

increment h may be halved or doubled to hold a specified level of ac-

curacy as will be discussed in section III-B. This capability was 

thought to be of value because the velocities of the primary mass M and 

the damper mass m change discontinuously at impacts, and using other 

multiple-step methods of numerical integration may lead to large errors 

in such situations. 

B. Tests for Time Increment Halving and Doubling 

By using the Kutta-Merson Method the time increment h may be halved 

or doubled to hold a specified level of accuracy and minimize computation 

time. 

If x , y are defined as the values of x and y used as arguments 
pr pr 

in the vector K5 , as given by equation (3.17), and xco' yeo are de-

fined as the values of x(t +h) and y(t +h) computed from x(t) and y(t), 
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as given by equation (3.11), then: 

Xpr == x(t) + [l.K(l,l) 2_ K(3,1) + 2K(4,l]h 
2 2 

Ypr = y(t) + [.!. K(l,3) 1 K(3, 3) + 2K(4,3)]h 
2 2 

X == x(t + h) == x(t) + [.!. K(l,l) + ~ K(4,1) +.!. K(S,l)]h co 6 3 6 

yeo = y(t + h) == y(t) + [.l K(l,3) + ~ K(4,3) +.!. K(5,3)]h 
6 3 6 

If: 

0 . 2 j x pr - x co I > E I x co I 

and/or o.2 I y - y I pr co > E I yeo I 

Then the time increment h will be reduced to h/2, otherwise h will re-

main the same. 

If: 

12.8 lxpr- xcol < E I xcol 

and 12.8 < 

then the time increment will be doubled, otherwise h will remain the 

same, where E is an error criterion chosen primarily by experiment. 

C. Flow Charts 

1. Main Program 



28 

The main program, which is shown in Fig. 7, consists of the in-

tegration routine, the integration step halving, the impact and the 

integration step doubling tests. 

If U, V, UU and VV are defined as: 

u = 0.2 xpr - xco I - E I xco I 
v = 0.2 Ypr - Yeo I - E I y co I 

uu = 12.81 xpr xco I - c I xco I 
vv = 12.81 y pr Yeo I - E j Yeo I 

then the condition for step-halving is positive U and/or V, the condition 

for step-doubling is negative or zero UU and VV. The time increment is 

also halved whenever a ball valve begins to open or to clos_, and when 

the piston approaches the mid-stroke position (y = 0). In such a case 

FLAG is set equal to 1 in the subroutine FORCE as a signal to the main 

program to halve step. 

Impacts are detected when: 

yyy = I y(t) I > D/2 

at this time the time increment h is halved until: 

~ < \ y ( t) I ~ c = ~ ( 1 + EEF) 

EEF being an error criterion. 

The occurence of impacts is determined by: 

a) ~ < \ y(t) I < Q. (1 + EEF) 
2 



Step­
Halving 
Test 

Impact Test 

Initialization & Input Data 

Integration Routine to Compute 
x(t+h), y(t+h), x(t+h), y(t+h) 

from x(t), y(t), x(t), y(t) 
Subroutine FORCE 

is included 

NEW initial values for x t 

t + h 
> 

Donl1! In;_; > 

Figure 7. Main Program 
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b) SPEED y.y > 0 

Once the impact is determined, the impact conditions given by 

equation (2.15) are applied: 

. 
y+ = - ey_ 

Since impacts are determined for 

¥ < I y(t) I ~ % (1 + EEF) 

h f h · [ D I 2 J n and [ D I 2 - Y n J n t e arguments o t e express~ons 
D/2- IYI D/2- IYI 

may become negative or zero. 

Since the computation of a fractional power of a negative number 

is not permissible, the damper is assumed to have a small dead chamber 

V
0 

at each end of the cylinder. 

Equations (2.9) and (2.11) becomes: 

p. p [ D/2 + So Jn 
~ a D/2 - I Y I+ So 

if VALVE -1 

P. = PC [D/2 - Yn + So ]n 
~ D/2 - I Y I+ So 

if VALVE = 1 



where 

s 
0 
=~ 

A 

However, the dead chambers are designed such that the volume V 
0 

of which is small: 

(Q x A) 
v 0 = _..::2 __ _ 

1000 
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and can be ignored in the approximate analytical approach outlined in 

Chapter IV. 

2. Integration Routine 

The purpose of the integration routine, which is shown in Fig. 8, 

is to compute { z ( t + h)} from the values { z ( t) } . 

The vector { z(t + h)} is computed through the intermediate steps of 

approximation using the "average" derivatives K(i,j) defined by eq. 

(3.13), (3.14), (3.15), (3.16) and (3.17). 

These equations may be summarized as follows: 

{(. } == { K( i, j) } == { f. (TT, ZZ) } 
~ J 

where the dummy arguments TT and ZZ may be written as follows: 

-k 

If { Ki } == { Kl } then: TT = t ' { zz } == { z ( t) } == (l) 

h/3,{ ZZ} == { Z(t) } + ~ h { K1 } == 
-·-

If { Ki } == { K
2 

} then: TT = t + (2)" 

1 l -·-
If {K. } = { K } then: TT == t + h/3 ,{ zz :F ~ (t)} + h[ 6 {Kl } + 6 {K2 }J == (3)" 

1 3 



=1 

Z(J)=(l)"' 
TT = T 

=1 

J1=Z(J) 

=2 

Z(J)=(2)"'' 
TT=T+H/3 

Z(J)=(3)* 
TT=T+H/3 

=4 

Z(J)=(4) 
TT=T+H/2 

=3 

J2=Z(J) J3,;,z (J) 

=5 

(J)=(S) ~'< 
TT=T+H 

=4 

J4=Z(J) 

J = J + lt----.o 

CALL FORCE (J3,J4, Y ,YY,Pl) 

COMPUTE G2, G4 

K(I,J), J = 1, 4 

COMPUTE ZC(J) 
AT TIME (T + H) 

Figure 8. Integration Routine 

PFORCE = 0 
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If {Kl} = {K
4

} then: TT t + h/2, {ZZ} = {Z(t) }+ h[i{K
1

} ~{K3 }] 

If {K1 }= {K
5

}then: TT=t+h,{ZZ}= {Z(t)} +h[1 {K
1
}- ~ {K

2
}+ 

2 {K }] 
4 

= (5) 
·k 

The motion of the system with the damper attached is computed by 

calling subroutine FORCE (setting JJJ > 1). The motion of the system 

without the damper is computed by setting PFORCE = (P
2 

- P1)A = 0 

(JJJ = 1). 

3. Subroutine FORCE 

The subroutine FORCE is shown in Fig. 9. 

A control flag named VALVE, used to indicate the state of the air 

in the cylinder, has been described previously in section II-D. 

In general the pressure P. of the air in the cylinder under com­
l 

pression, expansion, or discharge is given by: 

if VALVE -1 

P· p 
l c 

if VALVE 0 

[D/2 - Yn Jn ,·~-,'( 

P. p = p 
l c D/2 - I Y I 

if VALVE = 1 

where: 

= displacement of the piston at the moment 
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Pz = 

PFORCE = 

Figure 9. Subroutine FORCE 

p = p~b'( 
2 

PFORCE = 0 
VALVE =-1 

··k ·k I) (Pz-Pl) AREA 

33b 
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when the ball valve which has been open during 

the same half cycle closes, as shown in Fig. 5. 

The flag VALVE, as shown in Fig. 9, switches from -1 to 0, when the 

pressure Pi becomes greater than Pc. It switches from 0 to 1 when the 

piston, which has been approaching the ball valve during the same half 

cycle, changes the direction and moves away from it. VALVE switches 

from 1 to 0 again if the pressure Pi regains a value greater than Pc. 

VALVE switches from 1 to -1 when the piston pa,sses the mid-stroke 

position (y = 0). 

Another flag, named FLAG, is used as a signal to the main program 

to halve step whenever a ball valve begins to open or to close, or when 

the piston approaches the mid-stroke position (y = 0). 

Since the damper is symmetrical through its center, the damping 

force is computed from equation (2.12) for the right-hand half of the 

damper, and then generalized to the other half, using the equation: 

F(y,y) = sign (y) (P2 - P1)A 

The absolute value YY =I y(t) l is used in computation instead of 

y(t). 

If VALVE 0, the closing of the ball valve is determined by 

. 
YYDOT = yy .(: 0 

If VALVE = 1, the reopening of the ball valve is determined by 
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YYDOT = yy > 0 

and P. > P 
~ c 

All the other variables which appear in the flow charts are listed 

in Appendix A. 



36 

IV. APPROXIMATE ANALYTICAL APPROACH FOR THE DETERMINATION OF 

NOISELESS PERIODIC OPERATION 

This chapter outlines an approximate analytical approach for the 

determination of noiseless periodic operation of the damper. This ana-

lysis leads to an equation relating the maximum amplitude Y of the func-

tion y(t) to the amplitude of the excitation, F , which results in 
0 

periodic operation for a given damper. Periodic operation of the damper 

is defined by the existence of a periodic solution y(t). The operation 

is relatively noiseless if there is no impact. In order to force the 

ball valves to open at a preset pressure giving rise to dissipation and 

to prevent impacting, Y is constrained to lie within the range (YB, D/2). 

Hence, for a given damper the excitation force F0 corresponding to a 

certain maximum amplitude Y, which should produce periodic operation of 

the damper, can be predicted. The value of Y is selected such that the 

operation is noiseless. 

An approach to the determination of the noiseless periodic operation 

of the damper may b.e summarized as follows: 

First a governing nonlinear differential equation relating the dam-

ping force F(y,y) and its imput variable y(t) is derived from the equa-

tions of motion (2.3) and (2.4). The nonlinear damping force F(y,y) is 

approximated using the harmonic linearization method, or describing 

function method [10, 13j. The linearized damping force F(y,y) is then 

substituted into the governing nonlinear differential equation. After 
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this substitution, the conditions for the existence of a periodic quasi-

sinusoidal solution, y(t), are established. Once y(t) has been so con-

strained, the damping force F(y,y) is periodic. The steady-state response 

X of the system is derived from the equations of motion approximately, 

using the basic assumption that y(t) is quasi-sinusoidal. The stability 

of the system is discussed using the Hurwitz criteria. 

A. Governing Nonlinear Differential Equation 

In the system of equations: 

where: 

x + 2 Cwx 2 +wx 

.. .. 
X+ y = 

= F (y ' Y) + f ( t) 
M 

F(y,y) 
m 

Fo 
f(t) =- sin (Dt - <P) = Af sin (Dt - <P ) 

M 

the damping force F(y,y) is a nonlinear function of y and y. 

(2.3) 

(2.4) 

By uncoupling the equations (2.3) and (2.4), a single equation 

relating F(y,y) and y may be obtained. 

If the following change of variables is defined: 

Zl = X 



and: 

s = ~ = operator 
dt 

then the following equations result: 

or 

or: 

21 - 2 
2 

. 
z2 + 24 

. 
2 - 24 3 

in matrix form: 

(JJ 
2 2 s(JJ+s 0 0 

s -1 0 0 

0 s 0 s 

0 0 s -1 

[D] 

= 0 

= 0 

= f(t) + F(y,y) 
M 

F{;[,y2 
m 

2 f (t) 
1 

22 
== 

+ F{y~y2 
M 

0 

2 - F (y,y) 
3 m 

2 0 
4 

{ 2 } = { f } 

If Cramer's rule is applied to equation (4.4), then: 

38 

(4. 1) 

(4. 2) 

(4. 3) 

(4.4) 

(4. 5) 
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where 

6 =Determinant [D) 

63 = Determinant of the matrix obtained from [D] by replacing 

its third column with the column vector {f} 

2 2 ~J.J+s 0 0 w 

s -1 0 0 

6 = (4. 6) 

0 s 0 s 

0 0 s -1 

.. 
w2 2 1;w+s f(t) + F{y~y) 0 

M 

s -1 0 0 

63 = 
-F(y~y) 0 s s 

(4.7) 

m 

0 0 0 -1 

Equation (4.5) may be rewritten as: 

or 

where: 

D(s)y + [~ ~ ] F(y,y) 
m M 

C (s) f (t) 
(4. 8) 

D(s) = 6 = determinant of [D] 

B(s) = 6 33 = cofactor of the third row third column element 
of 6 
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C(s) = 6 13 = cofactor of the first row third column element 

of 6 

2 s:.u+s 0 

B(s) = s -1 0 (4. 9) 

0 0 -1 

s -1 0 

C (s) = 0 s s (4. 10) 

0 0 -1 

D(s) = s3 (2~w+s) + w2s 2 

B (s) = 2 + s (2 svJ+s) w 

C (s) = -s2 

Equation (4.8) may be rewritten as: 

(4. 11) 

An alternative method to obtain equation (4.11) is to write: 

X = -
lliill .. 

- y 
m ( 4. 12) 

By substituting (4.12) into equation (2.3), taking derivatives of 



both sides, and repeating the procedure until x and its derivatives 

disappear from the eqLation the same result may be obtained. 

B. Basic Assumption 

41 

The goal of this analysis is to obtain the conditions for periodic 

operation of the damper. Such operation can be obtained only if the 

damping force F(y,y) and its input variable y are periodic functions of 

time. The basic assumption is that the periodic solution y(t) may be 

modeled by a simple sinusoid: 

y - y sin nt (4.13) 

where 

Y = maximum amplitude of y(t) 

n = frequency of the excitation force f(t) = 

Af sin (nt - ¢ ) 

The existence of such a sinusoidal function y(t) will satisfy 

the fundamental requirement for application of the describing function 

method [10]. Using this method the damping force F(y,y) can be 

linearized by expanding it in a Fourier series and taking account ,Jf 

only its fundamental harmonic. 

c. Describing Function or Harmonic Linearization Method 

The nonlinear damping force is defined as: 
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g = F(y,y) (4. 14) 

Since y varies harmonically by the basic assumption, the nonlinear 

function g = F(y,y) may be expanded in a Fourier series: 

g(t) = A
0 

+ A1 cos Qt + B1 sin Dt + A2 cos 2 Qt + B2 sin 2 Dt 

+ . . . . + An cos n Dt + Bn sin n Qt (4. 15) 

where the coefficients of this Fourier series are given by 

J2n A = 
21J( 0 

F(y,y) do: 
0 

An l 12' F(y,y) cos nada (4. 16) 
iL 0 

12n 1 . sin nada Bn = - F(y,y) 
J( 0 

with a = Dt 

The first harmonic of F(y,y) is defined by: 

(4.17) 

Harmonic linearization in this method is defined by the approxi-

mat ion of the nonlinear function F (y ,y) by tl1e first harmonic of its 

Fourier series: 
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(4.18) 

The first constant A0 is equal to zero (i.e., the damping force 

is symmetric), and the higher harmonics (An cos n en, Bn sin n Qt for 

n ~ 2) are ignored. 

Equation (4.18) may be rewritten as: 

g = F(y,y) 
A1YD B1Y = ---- cos Qt + --- sin \It 

Y\1 y 

or g 

where: 

Nl = B1 = .l..J 2n F(y,y) sin a d a 
Y rrY 0 

Nz _l = l F(y,y) cos ad a A 12n 
Y 11Y O 

with: 

y = Y sin a 

a Qt 

Equation (4.20) may also be rewritten as: 

g = F(y,y) = A1 cos \It + B1 sin \It 

sin (\It + tan-l A1) 
B1 

(4. 19) 

(4.20) 

(4.21) 



sin (Dt + tan-l N2) 
Nl 
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(4.22) 

The describing function for the damping force F(y,y) is defined 

to be: 

Describing function N F (y,y) I -1 
N2 = = 

y 
tan 

Nl 

(4.23) 
N2 = ~N2 + N2 I -1 1 2 Nl 

tan 

or in complex form: 

Describing function = N = N
1 

+ jN
2 (4. 24) 

The magnitude of N is the ratio of damping force F(y,y) amplitude 

to imput variable y amplitude. 

D. Harmonic Linearization of the Damping Force 

From section IV-C it is shown that if a quasi-sinusoidal solution 

y- Y sin Dt exists, the damping force F(y,y) may be approximated by: 

where 

F (y' y) . N2 . 
N1Y +- Y 

D 

1
2-

Nl = _!_ , F(Y 
nY 0 

sin a, YD cos a) sin a d a 

N2 = _!_1 211 
F(Y sin a, YD cos a) cos ad a 

nY o 

(4. 21) 



then: 

and: 

0: = Qt 

If YB is defined as: 

YB = relative coordinate of the piston, at which the air-

discharge begins, 

It follows that: 

y . -1 B = s1.n - = . -1 s1.n 

= D 
2 
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y 

1 

p n 
[D/2 - (2.) 

PC 
(D/2)] I y 

(4.25) 

The value of a: when the piston reaches the maximum amplitude Y 

is~+ 2nn, n = 0, 1, 2 ... , 
2 

y(t) = Y sin a: = Y. 

The expressions N1 and Nz will be determined by summing the inte-

grals corresponding to the potions AB, BC, CD, AB', B'C' and C'D' of 

the curve F(y,y) shown in Fig. 3. 

yi = lower limit of the integration interval 



Yf = upper limit of the integration interval 

value of a corresponding to y. 
1. 

af = value of a corresponding to yf' 
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the limits of the integration and appropriate integrands may be sum-

marized in Table I. 

where: 

N . 
2J 

6 

Nl ~ L Nlj 

j = 1 

6 

Nz ~ L NzJ 

j = 1 

l Jaf =- F(Y 
nY a. 

1. 

sin a, YD cos a) sin a d a 

sin a, YD cos a) cos a d a 

The limits ai' af for each integration interval have been given 

previously. 

Since: 

where: 

[ D/2 Jn 
D/2 - y 

= [ l ]n = 
1-lsin ex 

D/2 

a = 
y 

D/2 

-n 
(1 - a sin a;) (4. 26) 



Corresponding 
Portion if Portion y. yf a:. a:f F(y' y) Integrals 

1 1 

1 AB 0 YB 0 a:B (p [ D/2 JD - p) A 
a D/2 - y a Nu,N21 

2 y n: ( pc - pal A Nl2 ,N22 BC YB a:B -
2 

3 CD y 0 1l. n: ( p [D/2 - Y]n _ p ) A N13,N23 2 c D/2 - y a 

4 AB 1 0 -YB n: n: + a:B ( p -[ D/2 lR~ A 
a D/2 + y a Nl4'N24 

5 B'C' -Y -Y ;c + a:B 
3n: ( Pa- Pel A Nls'N25 B 2 

6 c' D' -Y 0 3n: 2n: ( p _ p [D/2 - y]n) A N16,N26 
2 a c D/2 + y 

+'-
"'-l 

Table I. Limits of Integration and Appropriate Integrands in the Describing Function N. 



[ D/2 ]n may be expanded in a binomial series: 
D/2 - y 

[ D/2 ]n = (1 - a sin a)-n = l + na sin a+ n(n + l)a
2 

sin2 a 
D/2-y 2! 

+ n(n + l)(n + 2)a3 sin3 a + 
3r 

= r (n + r)ar sinr a 
r! r (n) 

48 

If [ D/2 ]n is approximated by the first four terms of its bi­
D/2 - y 

nomial series, then the approximation of G( a, ai,af) will follow: 

G(a, 

CD 

[ D/2 ] n 

D/2 - y 
sin a d af- cx2r }n+r)ar sinr+l ct d ex 

a. r- 0 r ! r (n) 
~ -

3 
~ r(n + r)ar sinr+l 
~ r! r(n) 
r=O 

Hence 

ada 

sin 2aB ) 
2 

_ n(n + l)a
2 

[ cos a (sin2 aB + 2) -2] 
6 B 

+ n(n+l) (n + 2)a3 (JaB - 2 sin 2aB + sin44aB) 
48 

G(a, 11, n) 
2 

· 1 +nan:+ n(n + l)a2 + n(n + l)(n + 2)a3n: 
4 3 32 

(4.27) 

(4. 28) 
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Using equations (4.27) and (4.28) one may obtain the expressions 

N = ~jaB F(Y sin a, YD cos a) sin ada = PaA 
11 nY 0 nY 

J
n/2 

N =_l_ (p -P) 12 nY c a 
aB 

A sin ada = (Pc - Pa)A cos aB 
nY 

N = ..!_ p [ D/2 - Y Jn _ p A J
n 

13 nY • /2 ( c D/2 - Y sin a: a) sin a d ex 

= PcA(l - a)n G(a, n/2, n) _ PaA 
JtY nY 

(4.29) 

(4. 30) 

By expanding [ D/2 ]n in binomial series, and by applying the 
D/2 + y 

same procedure, one may obtain the following equalities: 

Finally the expression N1 may be written as: 

6 

\ N . = 2 P8 A 
/_; 1J nY 
j = 1 

[G(a, o, ~) -

+ 2 PeA [cos ex 
nY B 

+ (1 - a) n G(a, 11, 
2 

(4.31) 
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Since the denominator of the expression [ D/ 2 - y Jn tends to 
D/2 - Y sin ex 

zero when ex approaches ~and Y becomes close to D/2, one may expect a 
2 

degeneration of approximation to N1. 

Unlike N1 , the expression N2 can be obtained very simply. 

If a new variable u is defined: 

u = 1 - a sin ex 

du = -a cos ex d ex 

then the following integrations result: 

) n cos ex d ex 
sin ex 

-n - a sin ex) cos ex d ex 

-n+l 
u 

a (1 - n) 

-n+l 
(1 - a sin ex) 

a (n - 1) 
(4.32) 

Substituting equation (4.32) into the expressions N21,N23' these 

expressions may be rewritten as follows: 

N21 ~,if~ ( p [ D/2 ]n -
Pa) A 

cos ex d ex 
a D/2 - y 

-n+l 

) P8 A ( (1- a sin CXB) -1 - sin exB = 
nY a (n - 1) 

= -.
1fn ( P LD/

2 
- Y ]n - Pa ) A cos d ex 

N23 nY n/2 c D/2 - y 

T( 

= PeA (1 - a)1 (1 - a sin ex) -n cos ex dcx 
nY n;2 

PaA 
+-­

nY 

(4.33) 



PcA(l _ a)n 
N23 = 

nY 

= 
PeA (1 _ a)n 

1tY 

= PeA ( (1 -
nY 

[ (1 -
. -n+l JT PaA a Hn ex) J + 

a(n - 1) nY 
JT /2 

( 1 - (1- a)-n+l ) PaA 
+-

a (n - 1) nY 

n a) - 1 + a 
a(n - 1) ) PaA 

+-
nY 

(Pc - Pa)A (1 - sin cxB) 
nY 
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(4.34) 

(4.35) 

By applying the same procedure to the expressions N24• N25 , N26 

the following equalities can be obtained: 

The expression N
2 

can be obtained by summing all the expressions 

NZj' j = 1,6. 

N = 2 PaA 
2 <~.Y 

+ 2PcA ( 1 _ 
nY 

(1 - a)
0 

- 1 + a] ) 
sin cxB + [ a ( n - 1) 

(4.36) 
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Finally the harmonically linearized function of the damping force 

F(y,y) and the describing function N for F(y,y) can be obtained: 

F (y ,y) (4.20) 

(4. 24) 

where 

N1 and N2 are given by the equations (4.31) and (4.36). 

E. Conditions for the Existence of the Periodic Solution y = Y sin 0l 

The governing nonlinear differential equation representing the 

system is: 

(4.11) 

The excitation force f(t) may be rewritten as: 

f (t) = 
Fo 

sin (Dt - cv) =A sin (Dt - <ll) 
M 

f 

= Af cos c!J sin Dt - Af sin ¢ cos Dt 

Af 
(cos ¢y sin ¢ • ) 

=- - --y 
y n 

Af (cos ¢ sin ¢ s)y = - (4.37) 
y D 
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By substituting equations (4.20) and (4.37) into equation (4.11), 

this equation may be rewritten as follows: 

2 ~'~·'N 2N 2 + ( l,W 1 + ~)s + ~ 
m m.Q m y 

or 

s4 + [2 {;w - Af sin <P + (1 + l)li2. J 3 s 
Yrt m M rt 

+ [ 2 + A£ cos <P 
(1 + 1)N + 2f:wNz ]s2 w + y m M 1 m0, 

(2 twN] w2N2 
2 

+ +- )s +~ y = 0 
m mrt m 

(4.38) 

This equation may be written in the form: 

g(s)y = 0 (4.39) 

where g(s) is a linearized differential operator. 

The solutions of equation (4.38) can be determined from the four 

roots, Ai• i = 1, 2, 3, 4, of the auxiliary equation 

g(A) = 0 (4.40) 

For each real root Ai there corresponds a solution y 

For each pair of complex roots: 
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},K=u+jV 

there corresponds a solution y = 

Therefore the condition for equation (4.38) to yield a steady-state 

solution close to y = Y sin Dt is that the equation 

g(s) 

+ [w2 + Af cos ¢ + cl + l>N + 2 ~wN2 J 52 
y m M 1 mD 

(2 twNl '.vzNz 
2 

+ w N1 0 (4.41) + )s +-- = 
m mD m 

yields a pair of pure imaginary roots ± jv = + jD and the real part of 

the other roots must be negative. 

There should be no repeated roots, since in this case the equation 

(4.38) will yield solutions of the forms: either Cteut or Ct(eut cos vt 

+ eut sin vt) which grow as t increases. 

If equation (4.41) has a pair of pure imaginary roots + jD, it 

can be rewritten as: 

or 

(4.42) 

Equating the coefficients of the same power of s in the equations 
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(4.41) and (4.42), we obtain: 

Af sin ¢ + (l + l) N2 
YQ m M Q (4.43) 

= c>J
2N2 + 2 twN1 

mn3 mn2 

w2 +At cos¢+ (l +l)N + 2twN1 _ n2 
Y m M 1 rnD (4 .44) 

From equation (4.43) and (4.44) one obtains: 

1 1 A sin ¢ 2 ~wQ + (- + -)N - -f---
rn M 2 Y 

(4. 45) 

and 

( 4. 46) 

The equations (4.45) and (4.46) represent the necessary condition 

for the existence of the periodic solution y = Y sin Qt. 

If the system is at resonance, these equations reduce to 

2 ~n2 + N2 _ Af sin¢ ~1 = 0 
M Y m 

(4.47) 

~2 + N1 + Af cos (~ = 0 (4.48) 
m M y 

or 

Af sin ¢ = [2 ~Q2 + Nz ~1] y 
M rn 
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= - [l.lli2 + Nl]Y 
m M 

or 

(L:. 49) 

For the system at resonance the equation (4.49) represents the 

necessary condition for the existence of the periodic solution y ~ y sin 

Dt. It is also the necessary condition for the existence of a periodic 

operation of the damper. Since Y is constrained to be within the range 

(YB, D/2) so that the operation of the damper is noiseless, the neces-

sary condition for the existence of a noiseless periodic operation of 

the damper can be stated as follows. 

For a given system and damper described by ~. ll• n, M, N1 and Nz, 

and for each amplitude Y within the range(YB, D/2), an excitation force 

F
0 

satisfying the equation (4.49) will produce a noiseless periodic 

operation of the damper, when the system is at resonance. 

Equations (4.45) and (4.46) representing the conditions for the 

existence of the periodic solution y(t) = Y sin nt can also be obtained 

by substituting s = jD in equation (4.41) and separating the real and 

the imaginary parts. 

Equation (4.41) may be rewritten as: 

R(D,Y) + ji(D,Y) = 0 
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By separating the real and the imaginary part tw · s, o equat~ons may 

be obtained: 

R(D,Y) 0 

I(D,Y) = 0 

which correspond to equations (4.46) and (4.45), respectively. 

Equations (4.45) and (4.46) may also be rewritten as: 

Af sin <P = [2 ~wD + 1 1 2twNl w2N2Jy (- + -)N2 
m M mD mn2 

=-[2~wN2 cl + l)N 
2 

Af cos <P + + Ccl2 - n2 - ~Jy 
mD m M 1 mn2 

One obtains an equation similar to equation (4.49) for the general 

case: 

y 
-= ( [ 2 (wilM + ( t + 1) Nz 

+ [2 twNz + (1. + l)Nl 
f.lSl f.l 

+ w2M- n2M- w2Nl]2) -1/2 
f.ln2 (4.49b) 

The phase angle <P is given by: 

2 
~] y 
f.lSl F 0 

F. Steady-state Response 

Once the periodic operation of the damper has been established, 

the function y(t) and F(y,y) are periodic and can be approximated by: 
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. 
y Y sin .Qt 

F (y' y) • Nz . 
N1 y + D y = 

By substituting these approximations into equation (2.4), one 

obtains: 

x = n2Y sin nt - l [N Y sin nt + N2Y cos nt] 
m 1 

(4.50) 

If the effect of starting conditions is ignored one may integrate 

equation (4.50) twice to obtain: 

. N1Y N2Y 
x = - .QY cos .Qt + mD cos .Qt - mnZ sin Dt 

N1Y NzY 
x = - y sin nt + --n sin Dt + ---2 cos nt 

m.QL. m.Q 
(4.51) 

x = X sin (Dt - 9) 

= X cos 9 sin .Qt - X sin 9 cos Dt (4.52) 

By equating the corresponding coefficients of sin .Qt and cos Dt 

in equations (4.51) and (4.52) one obtains: 

X cos 9 

X sin 9 = - Nz2 
mD 

(4.53) 
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By combining equations (4.53) and (4.49b) one obtains: 

[ 2twN2 1 2 2 w2N 2 1/2 + + (- + l)Nl + w M - D M - -1 J -
!J.D fJ. !J.D2 

Equation (4.54) leads to the prediction of the steady-state response 

X when periodic operation of the damper has been established. 

The response amplitude X of the primary system with damper attached 

will be compared with the response amplitude XA of the same primary 

system operating without a damper: 

where 

K = w2M = stiffness of the primary system 

D r = = ratio of forcing frequency to natural frequency 
w 

At resonance the response amplitude of the system without the 

damper becomes: 

The magnitude of the amplitude ratio X indicates the degree of 
Xo 

reduction in response amplitude of the primary system as a result of the 

noiseless damper. 
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Alternative methods may be used to obtain an approximation of the 

steady-state response amplitude X. 

By substituting equation (4.50) into equation (2.3), the trial 

solution (4.52) into the new equation, and by equating the corresponding 

coefficients of sin Dt and cos Dt on two sides of the equation, one may 

obtain: 

(4.54b) 

where: 

G. Stability Analysis 

Once the damping force F(y,y) has been linearized, the stability 

of the system with damper attached can be treated using the Hurwitz's 

criteria applicable to linear differential equations. 

The stability of the system depends on the roots of the auxiliary 

equation (4.41) of the governing nonlinear differential equation. 

Equation (4.41) has a pair of pure imaginary roots ± jD. The two 

other roots are the roots of equation 

(4.55) 



61 

where: 

c2 = 1 

C1 and C
0 

are given by equations (4.43) and (4.44). 

The system will be stable if all the roots of equation (4.55) have 

negative real parts. 

If the Hurwitz's theorem is applied to eq. (4.55), then this equation 

has all roots with negative real part if, and only if, the determinants 

are positive, provided C > 0. 
0 

By applying the Hurwitz criteria to the present analysis, the 

stability condition of the system with damper attached may be sum-

marized as follows: 

a) N1 > 0 

b) N2 + 2 ~rN1 > 0 

{1 + w)NtE. + N mrD2 1 Af cos ¢' 

c) >-- [ 1 - :7 n2y J 
2~ 2 2~ r 

d) N2 > m [Af sin ¢ - 2 ~wDY] 
Y(1 + f-1) (4.56) 



V. COMPARISON OF SIMULATION AND THE 
APPROXIMATE ANALYTICAL APPROACH 

The objectives of the study are: 

62 

1. To investigate the feasibility of a possible substitute for the 

impact damper, i.e., the feasibility of a damper which has the effective-

ness in reducing mechanical vibrations comparable to that obtained by 

the impact damper, and can work noiselessly. 

2. To determine the damper parameters necessary for reducing the 

vibration amplitude near resonance for the given system described in 

Chapter I to value of less than 1/3 of its value when the system vibrates 

without the damper. 

3. To show that the general approximate method described in Chapter 

IV may be usefully applied to the analysis of noiseless periodic operation 

of the damper attached to a general system for near-resonant operation, 

and how in particular it applied to the system described in Chapter I. 

These studies are presented with comparisons of the results obtained 

by digital computer simulation to those obtained by application of the 

approximate analytical approach described in Chapter IV. 

Some details on noiseless periodic operation are also discussed at 

the end of this chapter. 

A. Determination of Damper Parameters 

In general problems, the damper parameters are to be selected to 



obtain a response amplitude ratio X below a specified limit, when a 
xo 

given primary system is excited by a specified excitation force F . 
0 
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Since the damper should operate periodically and noiselessly, the 

excitation force to produce such an operation is a function of the 

maximum amplitude Y, and may be predicted for a given primary system 

and damper, using eq. (4.49b), as described in Chapter IV. It is easier 

to predict the force F
0 

to produce periodic operation of a given damper 

attached to a given primary system (direct problem) than to select 

appropriate design parameters for a damper, which, attached to a given 

primary system, and excited by a specified excitation force F
0

, should 

operate noiseless~y and periodically (indirect problem). The indirect 

problems, which are discussed in this part of the study, may therefore 

be solved more conveniently by first considering the direct problems 

concerning various trial dampers. 

A description of the given primary system mentioned in Chapter I is 

shown in Table II. The ratio ~ of damper mass to primary system mass, 

and the coefficient of restitution e were selected to correspond to 

values used in a study of Masri [5] for comparative purposes. The re-

maining design parameters Pc, D and A are to be selected such that the 

vibration amplitude of the given system is reduced to less than 1/3 of 

its initial value without a damper, when the excitation force is speci-

fied to lie within the limits (20 to 50 lbs.). 



w
1 

=weight of primary system= 10. lbs. 

s = damping ratio of primary system= 0.02 

~ = undamped natural frequency of primary system 

= 188.5 rad./sec. (or 30. c.p.s.) 

~=~=ratio of damper mass to primary system mass= 0.1 
M 

e =coefficient of restitution= 0.8 

Table II. Description of the Primary System Under Discussion 

Q\ 
-1> 
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This indirect problem was solved by considering the direct problem 

concerning various trial dampers. Trial sets of damper parameters with 

values of preset pressure Pc ranging from 30 to 200 p.s.i.a., those of 

total piston stroke D from 1 to 10 inches and those of piston diameter 

from 1 to 5 inches were taken in the present study. The force F
0 

to 

produce periodic operation of these dampers and the ratio of response 

amplitude K_ were predicted, using eq. (4.49b) and (4.54b). Among these 
xo 

trial sets of damper parameters those satisfying the goals of the in-

direct problem were selected for a damper designed to work in the pre-

scribed conditions. 

1. Prediction of noiseless periodic operation for trial dampers. 

The periodic operation was first determined for systems at resonance. 

The following successive steps of prediction were taken: 

a) Predictions of the excitation force F
0 

which would produce 

noiseless periodic operation of the damper for the following trial sets 

of parameters: 

p = 30., SO., 100., 200. p.s.i.a 
c 

D = 1., 1.5, 5., 10. inches 

Diam. = 1., 1.5, 5. inches 

where: Diam. =diameter of the damper piston. 

This excitation force F
0 

was predicted by using eq. (4.49b). By 

using eq. (4.54b), one may predict the amplitude ratio ~0 which indicates 
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the degree of reduction in response amplitude of the primary system. 

The predictions were summarized and illustrated in Figures 10 

through 18. 

It can be shown from these predictions that for each set of para-

meters Pc, D, Diam, noiseless periodic operation was obtained for a 

certain operation range of excitation force F
0

• For example, the 

operation range of F0 which would result in noiseless periodic operation 

for the set of parameters: 

Pc = 30. p.s.i.a. 

D = 1. inch 

Diam. = 1. inch 

is: 

11.6 lbs. ~ F
0 
~ 31.8 lbs. 

as shown in Figure 10. 

This operation range of F
0 

is limited on one end by the value of 

F
0 

corresponding toY= YB' where YB is the absolute value of y(t) 

where air-discharge begins, and on the other by that corresponding to 

y = D/2. 

b) By analyzing the predictions i llus tra ted in Figures 10 through 

18, eliminate the sets of parameters PC' D and Diam. which do 
one may 

not meet the required condition: 

~ 1/3 
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The sets of parameters shown in Figures 14, 15, 16, for examples, 

do not meet this condition. 

c) By analyzing the remaining sets of parameters one may eliminate 

those which do not meet the required condition: 

F = 20. to 50. lbs. 
0 

The sets of parameters: 

D = 1. inch 

Diam. = 1.5 inches 

Pc = 200. p.s.i.a. 

D = 10. inches 

Diam. = 5. inches 

P = 30. p.s.i.a. c 

for examples, do not meet this condition. 

(Fig. 10) 

(Fig. 18) 

d. After successive steps of elimination, one may list the re-

maining sets of parameters which were predicted to meet all the re-

quired conditions as follows: 

Set 1: D = 1.5 inches 

Diam. = 1.5 inches 

P = 30., 50. p.s.i.a. c (Fig. 13) 
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Set 2: D = 1. inch 

Diam. = 1.5 inches 

P c = 30. , 50. p. s. i. a. (Fig. 11) 

Set 3: D = 1.5 inches 

Diam. = 1. inch 

Pc = 200. p.s.i.a. (Fig. 12) 

Set 4: D = 1. inch 

Diam. = 1. inch 

Pc = 100. p.s.i.a. (Fig. 10) 

Digital simulation was used to verify the results predicted by the 

approximate analytical approach and to make decision on the selection 

of the best among these four sets of parameters. 

2. Digital simulation of noiseless periodic operation of the 
trial dampers. 

For the system described by the data given in Table II, with a 

trial damper having the following set of parameters: 

P = 30., 50., 100. p.s.i.a. 
c 

D = 1. 5 inches 

Diam. = 1.5 inches, 

The excitation force F to produce noiseless periodic operation 
0 
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was predicted by using eq. (4.49b). The results, as shown in Fig. 13 

and 19, have been tabulated in Table III. Once predicted, this force 

was used as an input in the digital simulation of the system. 

The prediction and the simulation of noiseless periodic operation 

of the given system and damper are shown in Fig. 19. 

The following observations based on Figures 13 and 19 can be made: 

a) Although noiseless periodic operation has been predicted for 

YB < Y < D/2, 

results obtained through digital simulation show that impacts may occur 

for Y within these limits. 

For example, noiseless periodic operation for the system under 

discussion, when Pc = 30. p.s.i.a., has been predicted for: 

YB = 0.317 inch< Y < 0.75 inch= D/2 

and 23.4 lbs. ~ F
0 
~ 58.2 lbs. 

as shown in Table III. 

Results through digital simulation indicate that for the same system 

and damper, noiseless periodic operation has been obtained only for: 

0.317 inch < Y < 0.487 inch 

23.4 lbs. ~ F0 ~ 31.6 lbs., 
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y Fa y Fo y Fo 
in. 1bs. in. 1bs. in. 1bs. 

0.325 23.494 0.475 43.476 0.600 72.883 
0.350 24.830 0.500 45.207 0.650 80.091 
0.400 27.034 0.550 47.417 0.700 86.089 
0.450 29.346 0.600 49.875 0.750 93.564 
0.500 32.086 0.650 53.715 
0.550 35.451 0.700 59.764 
0.600 39.599 0.750 69.288 
0.650 44.657 
0.700 50.736 
0. 750 58.178 

p = 30. p.s.i.a. p = 50. p.s.i.a. P = 100 p.s.i.a. 
c c c 

D = l. 5 inches D = l. 5 inches D = 1. 5 inches 

Diam. = 1.5 inches Diam. = 1.5 inches Diam. = 1.5 inches 

YB = 0.317 inch YB = 0.457 inch YB = 0.578 inch 

Table III. Predicted Excitation Force to Produce Periodic Operation of the Trial Dampers. 

00 
0 
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as shown in Fig. 19. 

The same system and damper, when excited by a force F
0 

of 33 3 lb 
. s.' 

produced impacts, and steady-state operation was not achieved. 

b) There is, however, good agreement between the results obtained 

by digital computer simulation and those obtained by application of the 

approximate analytical approach described in Chapter IV, if the excita-

tion force F0 falls within the operation range: 

23.4 lbs. ~ F
0 
~ 31.6 lbs., 

as can be seen in Fig. 19 and as will be discussed with details in 

section V-B. 

It was predicted by using eq. (4.49b) that an excitation force 

F of 27.385 lbs., for example, would produce periodic operation for the 
0 

system and damper under discussion, the maximum amplitude Y would be 

0.408 inch, and the response amplitude ratio K- would be 0.172. When 
xo 

the same system and damper was simulated by a digital computer, v:ith an 

excitation force F
0 

= 27.385 lbs. as an input, the motions of the 

primary system and that of the damper were periodic, in agreement with 

the predictions, the maximum amplitude Y was 0.391 inch, and the re-

sponse amplitude ratio K- was 0.179. 
X a 

c) Impacts have occured and noiseless periodic operation has not 

been established, whenever YB is close to D/2. 
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Since: 1 
n 

= D/2 [ 1 - (.f.a) ], 
Pc 

the larger Pc is, the closer to D/2 the amplitude yB will be. 

Therefore noiseless periodic operation for the given system with 

damper has not been obtained for high values of preset pressure, p , 
c 

of the ball valves, as can be seen in Fig. 19. 

The system and damper under discussion, when Pc = 100. p.s.i.a., 

was predicted to operate periodically and noiselessly for: 

72.883 lbs. ~ F
0 

< 93.564 lbs., 

as shown in Table III. 

When the same system was simulated by a digital computer, using an 

excitation force of 77.126 lbs. as an input, the motion of the primary 

system was disturbed by impacts and was not periodic. 

For this case, 

YB = 0.578 inch 

and D/2 = 0.750 inch 

From this observation, one may come to the conclusion that among 

the four trial sets of parameters predicted for noiseless periodic 

operation and selected previously, set 3 and set 4 may result in 

undesired impacts. 
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Finally after all these considerations, the following set of 

damper parameters: 

~ = M 
m 

= 0.1 

e = 0.8 

Pc = 30. to 50. p.s.i.a. 

D = 1.5 inches 

Diam. = 1.5 inches 

has been selected for a damper designed to work with the given primary 

system, which may be described by the data given in Table II, such that 

a response amplitude ratio !_ of less than 1/3 was obtained for an 
Xo 

excitation force of 20 to 50 lbs. The performance of the damper has 

been illustrated in Fig. 19. 

B. Determination of the Motion of the Given System with the Selected 
Damper Attached 

The behavior of the selected damper, as illustrated in Fig. 19, was 

investigated with details in this part of the present study. 

1. Reduction in response amplitude at resonance. 

The solution curve of the selected damper attached to the given 

primary system has been shown in Fig. 19 for: 

Pc = 30 and 50 p.s.i.a. 
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Figure 20 shows the solution curve of the same damper attached to 

the given primary system when: 

Pc = 24, 27, 30, 33, 36 and 50 p.s.i.a. 

Eleven cases of noiseless periodic operation of the selected dam-

per attached to the given primary system have been simulated by a 

digital computer for different values of P ranging from 24 to 50 · c p.s.~.a. 

and illustrated in Fig. 20. Details of these cases are summarized in 

Table IV. 

The mean response amplitude ratio X of these eleven cases is: 
xo 

mean!_= 0.173 
X 

0 

A two impacts/cycle solution curve of an impact damper attached to 

a primary system is reproduced from a study of Masri [5] for comparative 

purpose, and shown in Fig. 21. The ratio ~ of damper mass, m, to 

primary system mass, M, and the coefficient of restitution e of this 

system have the same values with those of the system under discussion in 

the present study, e.g.: 

~ = m = 0.10 
M 

and e = 0.8 

The mean value of X for eleven cases obtained by a digital computer 
xo 
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X X 

Pc Fo Xo Xo fo y y % 

p. s. i. lb. Predicted Simulated Difference Predicted Simulated Difference 

30. 23.494 0.118 0.103 14. 0.325 0.331 -2. 
II 24.928 0.122 0.125 -2.4 0.352 0.350 0.5 
II 27.385 0.172 0.179 -4. 0.408 0.391 4. 
II 28.676 0.220 0.199 10. 0.436 0.408 7. 
II 31.609 0.307 0.266 15. 0.492 0.487 1. 

24. 25.318 0.423 0.370 14. 0.435 0.518 -16. 

27. 26.793 0.316 0.290 9. 0.436 0.415 5. 

33. 30.761 0.138 0.131 5. 0.435 0.412 5. 

36. 32.854 0.072 0.068 6. 0.431 0.411 5. 
36. 35.428 0.168 0.121 38. 0.491 0.457 7. 

50 47. 118 0.088 0.055 60. 0.543 0.506 7. 

Table IV. Cases of Noiseless Periodic Operation at Resonance Simulated by a Digital Computer. 

D = 1.5 inches, Diam = 1.5 inches, D = ~ = 188.5 rad./sec. 
CXl 

"" 



1.2 

1.0 

0.8 

0.6 

X/X 
0 

0.4 

0.2 

Impact damper (Masri, (5)) Jl = 0.1, e = 0.8, ~= 0.1, ~ versus F ~K 
0 0 

---- Gas damper 
11 = 0.1, e = 0.8, X y 

(= 0.02, X versus F /K 

__________ ....,. 

-- -- ... --
---
... _ 

--

-----

-- -..... -..... 

0 0 ------ ---------- ..... --
Unstable 

.... .... .... 
....... 

0 Digital computer 
..... 

' ...... 
. ....... .. 

Y = D/ 2 <:.- .. ...., .. , . ... . ...... ' ·. . ............. : 
'· ·• \ \ _')t· \ \ . : .· J 

....... 36 \ ~ ·J· ··,_ ~~ i .. ;·· J 

- . \ /,:·· ''j I / . 
p c - 50 p. s • 1.. ..,, .. ,. I 'I l'4 24 p. s • 1.. 

Limit of simulated . . . · · 1/ F.. / 
impacts /!~- ··/ 

,._/ //_. y = y 
·· .. I{~B 

·.I . 

5. 10. 15. 
D y 

F /K or F /K 
0 0 

..... ....... 
....... 

........ 

' ' ' 

20. 

' \ 
\ 

\ 
\ 
\ 
I 
I 
1 
) 

I-
I 

I 
I 

I 

25. 

Figure 21. Solution Curve of Impact Damper in Masri's Study (5) Compared with those of the Damper 
in Figure 20. 

00 ....., 



88 

in the present study is comparable to minimum values obtained by Masri 

[5] equal to 0.2 for impact dampers, as shown in Fig. 21. The operation 

of the new damper is expected to be relatively noiseless, since in 

steady-state operation the maximum amplitude Y is clearly less than 

D/2, as can be seen in Table IV. 

~- Reduction in response amplitude of systems near resonance. 

The selected damper which has been designed with: 

D = 1.5 inch 

Diam. = 1.5 inch 

and P set at 30 p.s.i.a. is considered again. 
c 

Figure 22 and Table V show that the operation of the damper re-

mained noiselessly periodic and the reduction in response amplitude of 

the system comparable to those obtained by impact dampers, when the 

system operated in the vicinity of the resonance. The excitation force 

F0 which produced noiseless periodic operation was predicted by using 

eq. (4.49b), and the response amplitude ratio~ was predicted by eq. 
xo 

(4.54b). 

3. Widening the operation range of the excitation force F
0 

by 
adjustment of the preset pressure P 

c 

It was found that for the selected damper, if 

P = 24 p.s.i.a., 
c 
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PC 
p. s. i. 

30 

30 

30 

30 

30 

\2 
r =-

w 

0.8 

0.9 

0.95 

1.05 

1.1 

Fo 
lb. 

28.676 

II 

II 

II 

II 

X 

Xo 
Predicted 

0.114 

0.050 

0.013 

0.367 

0.273 

X 

xo 
Simulated 

0.104 

0.054 

0.056 

0.322 

0.263 

% 
Difference 

9. 

-7. 

-76. 

13. 

3. 

Table V. Cases of Noiseless Periodic Operation Near the Resonant Frequency w = 188.5 rad./sec. 
Simulated by a Digital computer. 

D = 1.5 inches, Diam. = 1.5 inches, P = 30 p.s.i. c 
\0 
0 
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then noiseless periodic operation will be obtained for an excitation 

force F
0 

within the range: 

lS. 9 lbs. ~ F < 2S. S lbs 
0 

This operation range will be shifted to: 

when: 

43.S lbs ~ F ~ 47 lbs. 
0 

P =SO p.s.i.a., c 

as can be seen in Table IV and Fig. 20. 

Therefore if the preset pressure Pc is adjustable within the range 

of 24 to SO p.s.i.a., then the operation range ofF will be widened to· 0 . 

1S.9 lbs. ~ F ~ 47 lbs. 
0 

as shown in Fig. 20 and Table IV. 

4. Stability 

The predicted envelope shown in Figures 19 and 20 encloses those 

configurations characterized by roots of the auxillary polynomial equal 

to + jil The complete picture of stability must, however, rely also 

on art examination of the other roots of the characteristic polynomial. 

By applying the Hurwitz criteria, as given in equations (4.56), to the 

system shown in Fig. 20, one may determine the nature of these remaining 

roots. The results of such a determination are shown in Figure 23 and 

Table VI. Fig. 23 illustrates that the predicted stability envelope is 

smaller than the predicted envelope where roots ± j!lexist as shown 

in Figures 19 and 20. Computed results do predict an even smaller 
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stability envelope as a comparison of Figures 20 to Figure 23 illustrates. 

The discrepency here is believed to be due in part to the approximation 

of the integral used in the determination of N1 and in part due to the 

linearization process. 

Based on the results shown in Figures 19, 20, 21, 22, 23, one may 

conclude that a damper of the type under discussion in the present study 

may produce a reduction in response amplitude of the primary system at 

resonance comparable to that obtained by the impact damper. The 

operation of the new damper is expected to be relatively noiseless. A 

substitute for the impact damper to reduce mechanical vibrations, as 

conceived in the present study, is therefore feasible. 
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PC Fo cp y Hurwitz's 
p.s.i.a. lbs. radian in. Nl N2 Criteria 

24 15.941 0.245 0.250 60.7 2.9 Stable 
II 23.209 0.817 0.400 32.3 18.4 Stable 
II 33.583 1. 208 0.550 11.7 24.9 Stable 
ll 43.648 1.404 0.655 -0.4 28.7 Unstable 

" 48.822 1. 465 0.700 -4.9 30.6 Unstable 

" 55.371 1. 503 0.750 -8.4 33.5 Unstable 

27 20.341 0.222 0.300 64.6 3.9 Stable 
II 27.550 0.770 0.450 35.9 20.2 Stable 
II 34.334 1.064 0.550 20.0 25.8 Stable 
If 43.783 1. 296 0.650 6.1 30.4 Stable 

" 50.357 1. 390 0.705 -0.5 33.3 Unstable 

" 56.731 1. 433 0.750 -4.2 36.4 Unstable 

30 23.475 0.142 0.325 70.8 1.7 Stable 

" 29.346 0.603 0.450 46.2 18.7 Stable 
II 35.451 0.932 0.550 28.0 26.1 Stable 

" 44.657 1.203 0.650 11.9 32.0 Stable 

" 50.736 1.306 0.700 4.9 35.1 Stable 
II 58.178 1. 369 0.750 -0.1 39.1 Unstable 

33 26.441 0.098 0.350 75.0 00.5 Stable 

" 31.429 0.461 0.450 55.9 16.6 Stable 

" 36.866 0.813 0.550 35.6 26.1 Stable 
II 45.704 1. 117 0.650 17.5 33.4 Stable 
II 51.874 1. 235 0.700 9.6 37.0 Stable 
II 59.703 1.310 0.750 3.9 /.~1. 6 Stable 

36 29.Lj.l2 0.075 0.375 78.1 0.3 Stable 

" 33.631 0.341 0.450 64.8 14.1 Stable 
II 38.507 0.706 0.550 43.0 25.8 Stable 

" 46.898 1.038 0.650 22.9 34.5 Stable 
II 53.111 1.170 0.700 14.1 38.7 Stable 
II 61.294 1. 255 0.750 7.8 44.0 Stable 

50 43. /.~.76 0.063 0.Lj.75 89.5 4.7 Stable 
II 47.417 0.342 0.550 72.7 21.2 Stable 
II 53.715 0.742 0.650 45.9 37.4 Stable 
!I 59.764 0.923 0.700 33.6 44.7 Stable 
II 69.288 1.053 0.750 24.4 53.2 Stable 

Table VI. Predicted Stability of the System Shown in Figure 20. 
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c. Details on the Noiseless Periodic Operation 

1. Basic assumption. 

The basic assumption that: 

y(t) = Y sin Dt, 

once periodic operation of the system has been established, e.g. if 

the excitation force F0 is related to the maximum amplitude Y by eq. 

(4.49b), appears justified for the range of variables examined by the 

results obtained through digital simulation. 

Noiseless periodic operation of a damper with the following design-

parameters: 

P = 30. p.s.i.a. c 

D = 1.5 inches 

Diam. = 1.5 inches 

~ = 0.1 

e = 0.8, 

attached to the following primary system: 

w1 = 10. 1bs 

~ = 0.02 

w = 314.16 rad./sec. 

was sought. 
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It was predicted by eq. (4.49b) that if the system at resonance 

was excited by a force of 49 lbs., the function y(t) would be periodic 

and close to 0.425 sin 0t. A curve of the predicted function 0.425 

sin 0t was drawn with continuous line in Fig. 24. 

When the motion of the same system was simulated by a digital com-

puter, with the same excitation force as an input, it was found that 

the function y(t) was a quasi-sinusoidal function of time, with maximum 

amplitude of Y = 0.427 inch. This simulated function y(t) was shown in 

Fig. 24, with circled points. The curve of this simulated function was 

redrawn from a computer plot. 

2. Damping force. 

The damping force has been defined as: 

The damping force of the system which has just been discussed was 

redrawn from a computer splot and shown in Fig. 25 in continuous line. 

curve 1 represents this force in function of y and y, curve 2 

represents the same force in function of time. 

The damping force was harmonically linearized by 

For the system which has just been discussed, the expressions N1 

and N were derived from equations (4.31) and (4.36) 
2 
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N1 = 51. 16 

N2 = 17.7 

The maximum amplitude Y was predicted equal to 0.425 inch if the sy-

stem was excited by a force of 49 lbs. 

By superposing the functions N1Y sin Dt and N2Y cos Dt, one may 

obtain the harmonically linearized damping force, as shown by curve 3 

in Fig. 25. 

3. Steady-state Solutions 

Using the approximate analysis one may predict quasi-sinusoidal 

solutions of all the variables x(t), y(t) and their derivatives x(t), 

y(t) for noiseless periodic operation. 

These predictions appear justified for the range of variables 

examined by the results obtained through digital simulation, as il-

lustrated by Fig. 26, redrawn from computer plot of the case which has 

just been discussed. 

-/( 
For this case, "steady-state" solutions have been obtained at 

21rst cycle of numerical integration: 

X == 0.332 inch 

. 
X == 104 inches/sec. 

* These peak values were essentially duplicated for each successive 
cycle until termination of the integartion during the 47th cycle. 
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Y = 0.427 inch 

Y = 131 inches/sec. 

compared with predicted values: 

X = 0.341 inch 

X = 108 inches/sec. 

y = 0.425 inch 

y = 134 inches/sec 

For this case the predicted and the simulated solutions are so close 
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that if they were plotted on the same plot, they would be almost mixed 

together. The plot of the predicted solutions was therefore not under­

taken. 
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VI. SUMMARY AND CONCLUSIONS 

Noiseless periodic operation of an impact type damper was investi­

gated. Results of the analysis were verified by digital simulation of 

the system. In general there was agreement between the analysis and the 

simulation. 

The following observations can be made on the basis of the present 

study: 

1. Noiseless periodic operation of the damper may be established 

by selecting appropriate design parameters. 

2. Reduction of system response amplitude to less than 1/5 of its 

value when the system at resonance vibrates without the damper may be 

obtained. 

3. Noiseless periodic operation of the damper may be predicted by 

the describing function method given in Chapter IV with qualifications 

and the primary system steady-state amplitude within the range of noise­

less periodic operation may be predicted by the describing function 

method given in Chapter IV. 

4. During the course of this investigation, the describing function 

method predicted noiseless periodic operation wherein noiseless periodic 

operation was not observed during simulation, rather nonperiodic impacting 

operation was observed. There is sufficient evidence to believe that the 

fault is less with the describing function approach and more with the 

use of the binomial expansion to approximate several integrand functions 
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in the determination of the expression N1, the first term of the 

describing function N = N1 + j N2 , used to describe the nonlinear 

damping force F(y,y). 

5. In spite of this problem, the approximate analytical approach 

described in Chapter IV is valuable in that it gives a comprehensive 

picture of the global behavior of the nonlinear system. The approach 

may be used as a good guide for efficient use of computers in the 

simulation of the motion of the system with damper. Guided by this 

approach, the digital simulation of the system may lead to the analysis 

of noiseless periodic operation for a certain predicted operation range 

of excitation force F . 
0 

6. Using the approximate analytical approach as a guide and the 

digital simulation as a tool for verification, one may select appro-

priate design parameters for a damper to obtain a reduced response 

amplitude ratio below certain limit, for a certain range of excitation. 

7. Once a damper has been designed and attached to a given system, 

one may widen the operation range of the excitation force F
0 

by adjusting 

the preset pressure P of the ball valves. c 

An improved method for the integration involved in the expression 

N is left as a possible objective for future work, which may include 1 

the analysis of periodic operation during which wea~ened impacts may 

occur periodically .. 
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APPENDIX A 

COMPUTER PROGRAM LISTING 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

* * * * * * * * * * * * * * * * * * * * 

ANALYSIS OF A SUBSTIWTE FOR THE IMPACT DAMPER 
TO DAMP 
NEAR-RESONANT MECHANICAL VIBRATIONS 

* * * * * * * * * * * * * * * * * * * * 

c *~'(~'(-l(i(***i(~'(,'(~'(~'(~'(*~'(~'(~'(~·(i( 

c 
C MAIN PROGRAM 
c 
c **'ki(*******~'(-~(~'(·k''(**** 

c 
c 
C PARAMETERS 
c 
C Wl = WEIGHT OF THE PRIMARY SYSTEM 
C W2 = WEIGHT OF THE IDVING PISTON IN THE 
C DAMPER 
C XMASS = MASS OF THE PRIMARY SYSTEM 
C YMASS = MASS OF THE MOVING PISTON IN THE DAMPER 
C MU = YMASS/XMASS = MASS RATIO 
C CREST = COEFFICIENT OF RESTITUTION 
C KK = MU*(l+CREST)/(l+MU) 
C D = LENGTH OF THE DAMPER 
C DHALF = HALF THE LENGTH OF THE DAMPER 
C DIAM = INTERNAL DIAMETER OF THE DAMPER 
C YB = VALUE OF Y WHEN P2 FIRST REACHES CRITICAL 
C VALUE PC 
C YC = VALUE OF Y WHEN EXPANSION BEGINS 
C SO = VO/AREA = EQUIVALENT TRAVEL OF PISTON 
C DUE TO DEAD CHAMBER 
C S2 = D/2 - YC 
C C = CLEARANCE BETWEEN PISTON AND END OF 
C CONTAINER 
C AREA = CROSS SECTION OF THE DAMPER 
C VO = VOLUME OF DEAN CHAMBER 
C PA = ATMOSPHERIC PRESSURE 
C Pl = PRESSURE ON THE LEFT HAND SIDE OF THE 
C PISTON 
C P2 = PRESSURE ON THE RIGHT HAND SIDE OF THE 
C PISTON 
C PC = CRITICAL PRESSURE 
C GAMMAl= N = GAS CONSTANT FOR POLYTROPIC 
C COMPRESSION 
C GAMMA2= N' = GAS CONSTANT FOR POLYTROPIC 
C EXPANSION 
C FO = AMPLITUDE OF EXCITATION FORCE 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

AO = FO/XMASS 
ZETA = Dt~PING COEFFICIENT 
OMEGA = NATURAL F~EQUtNCY OF lHE PRIMARY SYSTE~ 
OMtGAF= FuRCING fREQUENCY 
FREQ = OMEGA/(2*3.14159) 
FREQF = OM[GAF/(2*3.14159) 
ALFA = UMEGAF*T 
DFORCF= FO*SIN(OMEGAF*T) = ORlVING FORCE 
AFORC~= AO*SIN(OMEGAF*T) 

= (Fu/XMASSl*SINCOMEGAF*T) 
PFOkCf= DAMPlNG FORCE OUE TO THF DAMPER 

= lP2-P1)*AREA 
JJJ = PRORLEM NUMBER 

INCREMENTS & ERROK TERMS 

H = INITIAL TIME INCREMENT 
T F = UPPER BOUNDARY OF THE I NOE Pf NO E. NT 

Vtl 1UAALE 1' 
EPS = ERROR CRITERICN FOR X,V 
EtF = Rf:LATIVt ERROR CRITERION FOR THE 

CLEARANCE AT IMPACT 
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EiE = RfLATIVt ERROR CRITEkiUN FOR PRESSURE AT 
0P[NING OF THE VALVE 

EEG = ERRCR CRITERION FOR YC 
Ecu = ERROR CRITERION FOR OETERMINATION OF THE 

ORIGINE 0N Y-AXIS 
U,V = ERROR TERMS USED IN HALF STEP TESf 
UU,VV = EP~OP TERMS USLD IN OOUBLE STEP fEST 

VAPIARLtS & FUNCTIONS 

f = TIME 
G2 = X OOUbL E DOT 
G4 = Y OuUALE DOT 

nu~MY VA~IABLES & FUNCTIONS 

OUM~Y 

OUMMY 
OUfviMY 
DUMMY 

zoe 1, = 
/Ul2) = 
lO l3) = 
lU( 4) = 
l ( )_ , = OUW-1Y 

= DUMMY 1 ( 2) 
l ( 3) 

l ( 4) 

TT 

= DU~MY 
= OUMMY 
= DUMMY 

INillAL VALUE OF X 
lN!liAL VALUE UF XDUT 
INITIAL VALU~ OF Y 
INITiAL VALU~ UF YOOT 
VALUE OF X DURING INTtGRATlO~ 
VALUt OF XDul OUKING INTEGRATION 
VALUE OF Y DURING INTEGRATION 
VALU~ OF YDOT DUklNG INTEGRATI~N 
VALUE CF T DURING INTEGRLTION 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
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ZCCl) =DUMMY VALUE OF 
FRCM l ( 1) AT 

ZC(2) = DUMMY VALUE OF 
FROM l(2) Al 

ZC(3) = DUMMY VALUE UF 
FROM l(3) AT 

lCf41 = DUMMY VALUE CF 

X 
TIMt: 

AT TIME l+H,CC'-11-ilJfl:.[) 
T 

FROM Z(4) AT 

XDOT 
TIME 
y 

AT TIME l+H,CO~PUTEn 

T 
AT liME: T+H,CO~PUTED 
T 
Al TIME T+H,COMPUTED 
T 

Jl = DUMMY VALUE OF 

TIME 
YDOT 
TIME 
X IN SUBROUTINE FORCE 

J2 
J3 

J4 

yy 

yyy 
yp 

YYDOT 
SPEED 
ZCl 

ZPl 

ZC3 

ZP3 

= DUMMY VALUE OF XDUT IN SURROUTlNE FGRCE 
= DUMMY VALUt OF Y USED AS ARGUMENT IN 

SUAROUTlNF FORCE 
= DUMMY VALUE OF YD~T U~ED AS ARGUMENT IN 

SUBROUTINE FORCE 
= ABSOLUTE VALUE OF Y USED lN 

SUBROUTINE: FORCE 
= ABS0LUTE VALUE OF Y USED lN lMPACl TEST 
= DUM~Y VALU~ OF Y AT TlME T USED IN 

SUBRUUTINE FORCE: = Z0(3) 
= Y*YUOT,USED IN SUHROUTlNE FORCE 
= Y*YDOT ,U$[0 TO D~TCRMINE }~PACT 
= ZCCl) =DUMMY VALUE: GF X US~D I~ 

HALF s·rEP TEST 
= Z (l) =DUMMY VALUt Of X USED TN 

HALF STEP TEST 
= ZC(3) = DUMMY VALUE OF Y US[D IN 

HALF STEP TEST 
= Z (3) = DUMMY VALUl OF Y USED IN 

HALF 5T(P TFST 
pp = 
K(J,J)= 

DUMMY VALUE Of P2 
CORRECTOR TERMS IN ~UNGE KUTTA-MERSON 

FORMULA 
1=1,2,3,4,~ = COR~~SPUNOING TO 5 

CORRECTOR TERMS 
J= 1,2,3,4 = CORKE~PONOI~G 1·0 X,XDOT, 

v, Yno·r 

UNITS 

X,Y,YA,YC,Or••• 
Pl,P?.,PC,PA, ••• 
Wl,W2,F0r••• 

= INCH 
= P.S.J 
= LB 

T 
FREQUENCY 
PFORCE,DFORCE 
AREA 

= SECLND 
.:: C.P.S 
= LBS 
= SQUARE.- INCH 



c 

c 

DOUBLE PRECISION Ttll,TF 
UDUBLE PRECISION DSIN,DABS 
DOUBLE PRECISION Jl,J2,J3,J4 
DOUBLE PRECISION ZP1,ZCl,ZP3,ZC3,ZC4 
DCUBLE PRECISION ZC41,ZC(4) 1 ZO ,K(5 1 4J 
DCUBLE PR[CISIO~ Pl,P2rPC,PA,GAMMAl,GAMMA2 
DCUBLE PRECISIUN PFCRCE,AFORCE,AO,FO,DFORCE 
DOURLE PREC1SIO~ XMASS,YMASS,MU,KK,CREST,W1,W2 
DOUBLE PRECISir,N OMEGA,CMEGAF,FREQ,FREQF,ALFA,ZETA 
DGUBLE PRECJSION YY,YYY,YYOOT,SPEED,G2tG4,YX,YYCDC1 
DOUBLE PR~CISIO~ D,OHALF,SO,S2tVO,ARtA,C,OlAM 
DGUBLE PRECISION H,~PS,EEErEEFtUtVtUU,VV,EEG,EEO 
OUUBLE PRECISION PHI 
INTEGER FLAG,VALVE 
C0~MON PFORCF,GAMMAltGAM~A2,H,EEEtEEGtEEO 
CO~MON P2,PC,P~,OHALF,ARfA,SO,Z0(4) 

CUM~UN FLAG,VALVE 

c * * * * * * * * * * * * * * * * * * * * 
c 
C INITIALIZATION 
C INPUT & OUTPUT DAT~ & PARAMETERS 
c 
c * * * * * • * * * * * * * * * * * * * * c 
c 
C INPUl & OUTPUT PROBLt~ NUMBER 
c 

c 
c 
c 

L 

111 qEAD (1 1 11 JJJ 
~RITEC3,2) JJJ 
IF(JJJ.E0.0) GU 10 10r0 

INITIAL V~LUES UF X,XDOT,Y,YOUT 

lU ( 1) = O.OD('[! 
l0(2) : c.)[)' ' 

lC ( 3) : C.UOL;\: 
l0(4) = L •. ;o. ' ,I 

rLAG : .) 

V .&. LV E: = -1 
IMPACT = 

C RL1UNO/'.kY VALUES :JF Tl""'E - TIME INCi~[t1ENT 

(. 

T = J.0Dl0 
TF = 0.10+"3 
~ = ~.10-(2 
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c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 

eRROR CRITE'<JA 

EPS = O.lf1-04 
EFF = ·:, • 1 D - '.'" 4 
EE E = o.lO-<J4 
E1: G = 0.10-04 
tEU = .:.to-C4 

INPUT PAKAMETERS 

REAOCl,lo._'l) PC,D,DIAM 
READCl,10~1) G~~MAl,G~MMA2,Wl,W2 
R~AD(l,l~~l) FH[Q,FR~OF,ZETA,FU 
READ (1,7777) PHI 
PA = 0.146~0+02 
P 1 = PA 
XMAS$ = Wl/1.3860+03 
YMASS = W2/(.3860+~3 
MU = Y~AS~/XMASS 
CREST = o.aooo 
KK = MU*(: .10+« l+CPf-ST)/(.).10+(-l+MU) 
DHALF = O/n.2D+ul 
AREA = 0.3141590+Ul*DIAM*OIAM/U.4D+Ol 
VO = (0HALf*AREA)/t.lD+04 
SO = VO/AREA 
C = DHALF*(O.lD+Ol+EEF) 
AO = FO/XMASS 

OMEGA 
OMEGAF 

= J.2D+ul•~.3l4159D+Ul*FR~Q 
= U.20+01*0.3l41590+0l*FHEQF 

OUTPUT PA~AMETERS 

WRITE ( 3,2,:;J:.J) 
~KITE(3,2uJl) Wl,GAMMAl,TF 
wkiTEC3,2002) W2,GAMMA2,H 
WRITE(3,2~~3) XMA~~tPC,EPS 

~RITEC3,2004) YMASS,ZETA,lEE 
WRITE(3,2~J5) MU,FC,EFF 
WRITE(3,2~J6) CREST,AO 
wRITE(3,2007) KK,GMEGA 
WRITE(3,20~8) AREA,OMlGAF 
WRITE(3,2009) u,FREO 
WRIT~(3,2010) Dl~M,FREQF 

WRITE(3,2012) SU,VO 
WR I T E ( 3 , t3 t:J 8 8 ) f' H l 
WR I T E ( 3, 2 1'"< ) 
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c 
c 
c 

c 
c 

FORMAT STATEMENTS 

1 FORMAT ( 151 
2 FORMAT (1H1,1CX, 1 PROBLEM 1 ,15//) 

1001 FORMAT (4F20.10) 
2000 FORMAT ( 30X 1 

1 OAT A £: PARI METEf<.S 'II) 
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20Jl FORMAT (l~X,•W1 =',F15.1~, 1 LBS',l3X,'GA~~Al=', 
1 F15.1U,l8X,•TF =',F15.10,• SECOND'/) 

2002 FORMAT (1CX, 1 W2 =1 ,Fl5.1G 1 ' LBS'rl3X,'GAMMft2='• 
l Fl5.10,18X, 1 H =1 ,Fl5.1Jt 1 SECUND'/) 

2003 FORMAT OOX,'XMASS =• ,Fl5.10, 1 •, 12X, 'PC =•, 
1 F 1 5 • 1 ~· , ' P • S • I • ' , 11_ X , ' E P S = ' t F 1 5 • 1 ·~ I ) 

2004 FORMAT tlOX,'YM~SS =1 rFl5.1(, 1 ',12X,'ZETA =•, 
1 Fl5.10rl8X, 1 EfE =1 ,Fl5.10/) 

2005 FORMAT (10X, 1 MU =',Fl5.10,18X,'F0 =• ,Fl5.1(), 
1' LBS 1 tl3X, 1 EI::F =' 1 Fl5.10!) 

2006 FORMAT (l0X,•CREST ='tF15.l~tlBX,'AG =•,Fl5.1~, 

1 1 IN/SEC/SEC'/) 
2007 FORMAT Cl0Xr 1 KK = 1 ,Fl5.10 1 18X,'U~FGA =•,Fl5.10t 

1 I RAD/SEC'/) 
2006 FORMAT (10X 1

1 AREA =1 ,Fl5.10, 1 SQ.INCH'tl0X, 
1 1 0MEGAF=',Fl5.10t' kAD/SEC'/) 

2009 FORMAT (l(X,•n =',Fl5.)•Jt' INC.H',l2X,'Ff<-EQ =•, 
1 Fl5.10,• C.P.S.•/) 

2010 FORMAT (1JX,'OlAM =',Fl5.1C,• lNCH',l2X,'FKl~~ =•, 
1 Fl5.10,• C.P.S.•/J 

2012 FORMAT (10X, 1 SO =',F15.1(,• J~CH',l~X,'VU ='• 
1 F15.10,• CUBIC INCH'//) 

1111 FORMATCF2J.l0) 
8688 FORMAT( 15X, 'PH! = 1 ,F2'""•1'.'/ I) 

21 0 0 F 0 R MAT ( 1 H 1 , 14 X t 1 T ' , 14 X , 1 X 1 , 14 X , 1 X D Or ' t 11 X , ' Y ' t 14 X , 
1 • v oo T 1 , 11 x , • P F c kC E: • , J 9 x, 1 n F u kC E • , ) 9 x , 1 P 2 • 1 1 , 

c • * • • • * * * * • * * * * * * * * * * 
c 
C COMPUTATION OF XCT+~),XOOT(T+H),Y(T+H),YDUTCT+H) 
C WHEN X(TI,XDOT(l),Y(T),YnOTCTl A~E K~GW~ 

c 



c 
c 
c 

c 

c 

100 DO 20C I : 1,5 
DO 160 J=l 9 4 
GU TOC21,22,23,24,25),1 

21 l(JJ = ZO(J) 
TT = T 
GO TO 15U 

22 l(J)=lQ(J)+K(l,J)/0.30+~1 
TT=T+H/0.3D+Ol 
GO TO 15:1 

23 Z(J)=ZO(J)+K(l,J)/Q.60+cl+KC2,J)/~.~O•~l 
T T = T +HI C • 3D + ~·1 
GO TO 150 

24 l(J)=ZO(J)+K(1,J)/O.dD+~l+(u.3U+01/~.30+)1J*K(3,J) 
TT=T+H/0.2D+Ol 
GO TO 150 
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25 l( JI=ZO(J)+KCl,J)/J.20+_'l-(,'.3D+-l/·).2U•..:l*K( 3,J) )+ 

10.20+01*K(4,J) 
TT= T+H 

150 GO TO (31,32,33,34) 9 J 
31 Jl =Z(J t 

GO TO 160 
32 J2=Z(J) 

GO TO 160 
33 J3=ZfJ) 

GO TO 160 
34 J4=Z(Jl 

l6J CONTINUE 
YX = DABS(J3l 
IFCYX.LE.Cl GO TO 5~ 

YX = C 
50 YY = YX 

YYDOT=J3*J4 
ALFA = OMEGAF*TT 
AFORCE = AO*DSTNCALFA-PHll 

I F J J J E Q UJI. L T 0 1 , :) E T P F u 1-. C E E Q U .U T f J { • ..:. 

IF (JJJ.I::Q.l) GC lC 35 
CALL FO~CE(J3,J4,YY,YYDCT,Pl) 

GO TO 36 
35 PFOkCE = 0.000~ 
36 G2=PFORCE/XMASS+AFOkCE-J.20+01*ZtT~*U~~GA*J2-

l OMEGA*O~EGA*Jl 
G4=-PFORCE/YMA~S-G2 

K(l,l) =H*J2 
K ( I , 2 ) = H *G 2 
K(l,3) =H*J4 
K' I ,4) =H*G4 

200 CONTINUE 

DO 201 J= 1, 4 
201 ZC(J)=ZC{J) +K(l,J)/0.6D+Olt-(0.20+Jl/').3f1+CU* 

1K(4,J)t-K(~,J)/}.60+~1 



c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

c 
c 

T~ST FOR HALF STEP 

TEST FUI{ IMPI\C f 

lC 1 = ZC ( 1 ) 
lC3 =ZCC3) 
ZC4 =ZC(4) 
ZPl =ZClt 
ZP3 = Z(3) 
YYY =DAHS ( ZC 3) 
YYCOOT = ZC3*ZC4 
U=0.2D00*DABS(lPl-ZCl)-EPS*DABS(7Clt 
V=0.2DOO*OABSlZP3-lC3)-EPS*DAH~(/C3) 

IF ( ( U. L E • ·~-. 1 D'F ) • "· 1-.1 D. ( V. L f • .; • ·. lJ · • ) • .b t\1 D • ( FLAG. E 0. • ' ) 
l.ANO.((VYY.LE.OHALF).UR.((YYY.Gl.DHALF).ANO. 
2{YVY.LE.C)))) GU TU 120 

55 H=H/v.2D+:..ll 
FLAG =C 
GO TO lUC 

120 T=T+H 
FLAG=O 
IFIVYY.LE.DHALF) GO TO 211.' 
SPEED=ZCl3t*ZC(4) 
IF(SPEED.LE.C.OOO~) G0 TC 210 
WRITE(3,66) 

66 FORMAl (/10Xr'l~PAC1'/) 
IMPACT = I~PACT + 1 
ZC(2) =lC(2) +KK*ZC(4) 
l C ( 4 ) = -(. R EST* l C ( 4 ) 

NFW VALUES OF X,XDnT,Y,Y00T 

210 DO 220 J =lr4 
220 ZO(J) =ZC(J) 

C OUTPUT 
c 
c 
c 

c 
c 

OFORCF = AFCRCE*XMASS 
CALL FURCE (ZC3rZC4rYYY,YYCDUT,Pl) 

78 WRifE(3,4J) Tr (lL(J),J=l,4},PFukCl,DfURCE,~2 
40 FURMAT(lJX,8(012.5,3X)) 

lFliMPACT.GT.lj) Gu 10 lCJO 
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c 
c 
c 
c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c 
c 

c 
c 

c 
c 
c 
c 
c 

c 

c 

141 

600 
999 

1000 

TFST FOR UOUBLE SIEP 

UUzJ.l280+02*DAGS(lPl-ZCl)-EPS*DAHSIZCl) 
VV =0 .12 8D+·J 2*0A HS ( l P 3-l C 3 ~- t:P S * DA HS ( l C 3 ) 
IF((UU.GT.0.00QQ).UR .(VV.GT.~.JU0J)) GC TL 6;0 
H=0.20+0llf:H 

TtST FCR UPPER BUUNDA~Y OF T 

IFlT-TFJ 10Jt1C0,999 
GCJ TO lll 
STOP 
END 

* * * * * * * * * * * * * * • * * * * * 
SUBROUTINE FORCE(J3,J4,YY,YYDuT,Pl) 

* * * * * * * * * * * * * * * * * * * * 
DOUBLE PRECISION YP,ZO 
DOUBLE PRtCISlON Pl,P2,PC,PA,PP 
DOUBLE PRtCISIO~ PFORCEtGAMMAl,GAMMA2 
DOUBLE PRECISION H,EEE,TfST,SIGN,OABS,EEG,~fO 
DOUBLE PRECISION YC,YY,YYDJT,UHALF,SG,S2,J3,J4, 

1AREA,AYDOT 
INTEGtR FLAG,VALVE 
COMMON PFORCE,GAMMAl,GAMMA2,H,FffrtEG,EEU 
COMMON P2,PC,PA,DHALF,~RfA,SU,l0(4) 
COMMON FLAG,VALVE 

AYOOT = OABS(J4) 
YP =lO ( 3) 
IFCYY.GT.O.OOOOt GO TO 1 

2 PFORC~ = ~.oo~~ 
VALVE = -1 
P2 = PA 
GO TO 9C19 

VALVE = -1 
VALVE = G 
VALVE = 1 

THE VALVE IS CLUS[D 
THE VALVE iS CP~N 
THE: VALVf IS CLOSED AGAlN 

1 IFCVALVEJ10tll,l2 

10 PP = PA*((DHALF+$0)/((DHALF-YY) +SO))**GAMMAl 
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c 

c 
c 

c 

c 

c 

IFCPP-PC) 21,21,22 
21 P2=PP 

GO TO 500 

22 TEST :OABS(PP-PC) 
lfCTEST-EEE*PC) 31,31,32 

32 FLAG = 1 
GO TO 33 

31 VALVE = 0 
33 P2 =PC 

GO TO 500 

11 IF(YYDOT) 81,81,82 
82 P2 =PC 

GO TO 500 

81 lf(YY.GE.DHALF) GO TO 85 
lF(AYOOT.LE.EEGt GO TO 85 
FLAG = 1 
GO TO 9C 

85 VALVE : 1 
90 52 = OHALF - YY 

P2 =PC*((S2+SOt/((0HALF-YY)+$0))**GAMMA2 
GO TO 500 

12 PP •PC*l($2+50)/((0HALF-YY)+SO))**GAMMA2 

IFlYYOOT.LE.C.D~O) GO TC 92 
IFIPP.GT.PC) GO TO 91 
IFCYY.Lt.EEO) GO TO 94 
IF(J3*YP) 93,93,92 

94 V#\LVE = -l 
GO TO 1 

9 3 FLAG = 1 
92 P2=PP 

GO TO 500 
91 TEST =OABS(PP-PC) 

IF(TEST -EEE*PC) 101,101,102 
102 FLAG = 1 

GO TO 103 
1') 1 VALVE =0 
103 P2 :PC 

c C GENERALIZE lHE COMPUTATIONS TU BOTH HALVES 
C JF THf. DAMPER 

c 
5JJ SIGN =J3/DABS(J3) 
600 PFORCE=SIGN*(P2-Pl)*AREA 
999 RETURN 

END 
/DATA 
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APPENDIX B 

DETAILS OF THE COMPUTER PROGRAM VERIFICATION 
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1. Impact Test 

Since the present damper will be reduced to an impact damper if the 

damping force F(y,y) is equal to zero, the program written for the pre-

sent study and listed in Appendix A must yield the same results as if it 

were written for impact damper, provided the damping force F(y,y) is 

equal to zero. 

A typical digital computer output for a given impact damper was 

shown in "Analytical and Experimental Studies of Impact Damper' by 

Masri [5]. The results obtained by the program written for the pre-

sent study were compared with those shown in Masri's studies. The 

parametric values used in this comparison are: 

w = 1. 0 rad. I sec 

D = 1.25 rad./sec 

= 10. lbs. 

= 4. lbs. 

F = 0.0259067 lb. 
0 

Input Data: 

K = w2M = 0.0259067 lb./in. 

e 0.2 

D = 3. inches 

EPS = EEF = 10-ll 

r = £2.= 1.25 
w 

~ = 0.1 

fl = m = 0.4 
M 

!a = 1. 
K 

D = 3. 
F /k 

0 

F(y' y) = 0.0 

EEE = 10-5 
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IMPACT TEST 

Results obtained from the program written for the verification when 
F(y,y) = 0.0 

X 
Impact iff XA 

(i) ti X. y. X· y. ti-l < t < t. 
~ ~ ~+ ~+ ~ 

1 4.89 -1.5000 1.5000 -0.8485 -0.2582 -0.9236 
2 6.52 -0.3112 -1.5000 1. 0201 0.6473 -1.0514 
3 8.93 0.7065 1.5000 -0.3578 -0.6163 0.7852 
4 12.28 0.4483 -1.5000 0.5934 0.4771 -0.5420 
5 14. 3!+ -0.3485 1.5000 -0.5455 -0.4918 -0.4437 
6 16.69 0.2041 -1.5000 0.5959 0.4971 -0.5037 
7 19.18 -0.0749 1. 5000 -0.6010 -0.5156 0.5522 
8 21.74 0.0669 -1.5000 0.5834 0.5174 -0.5431 
9 24.29 -0.1240 1.5000 -0.5682 -0.5079 0.5115 

10 26.81 0.1675 -1.5000 0.5699 0.5010 -0.4962 
11 29.30 -0.1623 1.5000 -0.5791 -0.5022 0.5044 
12 31.80 0.1352 -1.5000 0.5827 0.5064 -0.5169 

13 34.32 -0.1235 1.5000 -0.5806 -0.5082 0.5197 

14 36.84 0.1304 -1.5000 0. 5773 0.5071 -0.5150 

15 39.36 -0.1405 1.5000 -0.5764 -0.5054 0.5105 

16 41.87 0.1429 -1.5000 0.5777 0.5051 -0.5105 

17 44.38 -0.1389 1.5000 -0.5789 -0.5057 0.5128 

18 46.89 0.1354 -1.5000 0.5789 0.5063 -0.5141 

19 49.41 -0.1353 1.5000 -0.5783 -0.5063 0. 5137 

20 51.92 0. 1372 -1.5000 0.5780 0.5060 -0.5128 

21 54.43 -0.1383 1.5000 -0.5781 -0.5058 0.5125 

22 56.95 0.1379 -1.5000 0.5783 0.5059 -0.5128 

23 59.46 -0. 1372 1.5000 -0.5784 -0.5060 0.5131 

24 61.97 0.1369 -1.5000 0.5783 0.5060 -0.5131 

25 64.49 -0.1372 1.5000 -0.5782 -0.5060 0.5030 

26 67.00 0.1374 -1.5000 0.5782 0.5060 -0.5029 

27 69.51 -0.1375 1.5000 -0.5783 -0.5060 0.5029 

28 72.03 0. 1374 -1.5000 0.5783 0.5060 -0.5129 

29 74.54 -0. 1372 1.5000 -0.5783 -0.5060 0. 5130 

30 77.05 0.1372 -1.5000 0.5783 0.5060 -0.5130 

31 79.57 -0.1373 1.5000 -0.5783 -0.5060 0. 5130 
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F /K 
XA = -;=:===~==========::- = 1. 624 

~ ( 1 - r) 2 + ( 2 (:r) 2 

Differences between the results obtained by the present digital 

simulation and those from Masri's studies [5] are as follows: 

t.-.t. = 0.01% (at the 31rst impact) 
l 

t.-.xi = 0.29% (at steady-state operation) 

t.-.x· l = 0.03% (at steady-state operation) 

t.-.y = 0.% (at steady-state operation) 

t.-.y = 0.03% (at steady-state operation) 

t.-.(~) = 0.03% (at steady-state operation) 
XA 

At the 31rst impact of the digital computer output in Masri's 

study [5], the following values of t, x, y, x, y, have been observed: 

t. = 79.56 
l 

X· = -0.1369 
l 

Yi = 1.5 

X· = -0.5785 
l+ 

Yi+ = -0.5062 

X = -0.5132 
XA 

2. Damping force test 

Since the damping force F(y,y) is a function of y and y, if the 
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inputs y and y are known, the subroutine written for the damping force 

F(y,y) and listed in Appendix A must yield the same results as the 

results calculated directly by using eq. (2.12). 

Comparison of the results obtained using the subroutine FORCE with 

different inputs, and by using a Wang calculator, is given in Figures 

27, 28, 29, and 30. 
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F (y' y) Digital Computer 

Wang Calculator 

-1 1. 2. y 

y = y sin nt 

1.650 

D/2 = 1. 675 
T 

PC = 100 psi A= 3.14159 sq. in .0 126 rad/sec S0 0.08375 

Digital Computer 

Wang Calculator 

Digital Computer 

Wang Calculator 

y 

1.273822 

1.273822 

1.4437907 

1.4437907 

p. 
1. 

78.416 

78.41636 

25.098 

25.09773 

Figure 27. Verification of Subroutine FORCE 

(P2-Pl)A 

200.20 

200.20 

32.697 

32.697 



F (y ,y) 

-2 -1 

P == 100 psi 
c 

Digital Computer 

Wang Calculator 

Digital Computer 

Wang Calculator 

200 

100 

-100 

-200 

1. 

T 

A= 3.14159 sq. in. 

y 

-1.3556528 

II 

-0.89370176 

11 

125 

Digital Computer 

Wang Calculator 

2. y 

y = Y sin Dt 

y = 1.675 

D/2 = 1. 675 

S = 0.08375 inch 
0 

D/2 1. 6750 inches 

pi (Pi-Pj)A 

99.714 -267.11 

99.7136 -267.11 

4.8054 31.053 

4.80538 31.053 

Figure 28. Verification of Subroutine FORCE 



300 

200 

100 

0.01 

0.02 

t 

P = 100 psi 
c 

Digital Computer 
Wang Calculator 

Digital Computer 
Wang Calculator 

Digital Computer 
wang Calculator 

126 

Digital Computer 

A Wang Calculator 

y = 1.675 
c 

B1 = 402 

B
2 

-30150 

B3 = 670000 

A= 3.14159 sq. in. 

y 

1.340 
II 

1. 5075 
II 

1.44854 
II 

D/2 = 1.675 inches 
S = 0.08375 inch 

0 

pi (Pi-Pj)A 

94.896 251.97 
94.89555 251.97 

23.974 29.167 
23.974103 29.167 

18.228 78.390 
18.227526 78.390 

Figure 29. Verification of Subroutine FORCE 



F(y,y) 

300 

0.01 

0.02 

T 

100. psi 

Digital computor 
Wang Calculator 
Digital Computer 
Wang Calculator 
Digital Computer 
Wang Calculator 

y = 1. 650 
c 

Digital Computer 

Wang Calculator 

B
2 

=-29700. 

B
3 

= 660000. 

127 

A= 3.14159 sq. in. D/2 = 1.675 inches 
S

0 
= 0.08375 inch 

y 

1.320 
II 

1.53384 
II 

1.42692 
II 

P· ~ 

89.311 
89.31098 
38.882 
38.881825 
23.451 
23.45134 

(Pi -Pj)A 

234.43 
234.43 

76.001 
76.001 
27.525 
27.525 

Figure 30. Verification of Subroutine FORCE 
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