MISSOURI

S&l

Library and

Learning Resources Scholars' Mine
Masters Theses Student Theses and Dissertations
1972

Analysis of a substitute for the impact damper to damp near-
resonant mechanical vibrations

Nguyen Khanh Van

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

b Part of the Mechanical Engineering Commons
Department:

Recommended Citation

Van, Nguyen Khanh, "Analysis of a substitute for the impact damper to damp near-resonant mechanical
vibrations" (1972). Masters Theses. 5068.

https://scholarsmine.mst.edu/masters_theses/5068

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.


https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5068&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5068&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5068?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5068&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

ANALYSIS OF A SUBSTITUTE FOR THE IMPACT DAMPER TO DAMP

NEAR~-RESONANT MECHANICAL VIBRATIONS

BY

NGUYEN KHANH VAN, 1938-

A THESIS

Presented to the Faculty of the Graduate School of the
UNIVERSITY OF MISSOURI-ROLIA
In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

1972

T2729
139 pages
c.1

Approved by

~ (Advisor) Jféo %ovék,




ii

ABSTRACT

This report investigates a substitute for the impact damper which,
although highly effective in reducing vibration amplitudes of near-
resonant mechanical systems, in operation causes often unacceptable
intensive noise.

The present damper consists of a piston free to move in a cylinder,
at either end of which is a ball valve set to open at a preset pressure,
and in the middle along its length an intake port.

An approximate analytical study is made to determine the conditions
for the existence of '""noiseless periodic operation'' of the damper,
periodic operation without the occurence of impacts. This approach is
based on the describing function method which harmonically linearizes
the nonlinear damping force involved in the equations of motion of the
system. The excitation force to produce this periodic operation and
the response results from this operation may be predicted by this
analytical approach.

Digital simulation of the system is used to verify the predictions
by analytical approach.

A study on a given system indicates that appropriate design para-
meters may be selected for a damper of this type to obtain a reduction
in response amplitude of the primary system at resonance to 1/5 of its
value without the damper. This is essentially the reduction that might

be obtained with a properly designed impact damper. Unlike the impact
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damper, the new damper is expected to operate relatively noiselessly.
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NOMENCLATURE

A = cross-sectional area of the damper piston (in.z)
— 1 2
Ag = Fo/M (in./sec.”)
B = length of the damper piston (in.)
C = damping coefficient of primary system (lb. sec./in.)

C, = critical damping coefficient of primary system (lb.sec./in.)

D = total piston stroke (in.)
e = coefficient of restitution
F, = maximum force of excitation (lb.)

F(y,y) = damping force, (P, - P;)A (lb.)

F
excitation function, -2 sin (Qt - ¢ )

f =

K = spring stiffness (lb./in.)

M = mass of primary system (lb./in. per sec.z)

m = mass of damper-piston (1b./in. per sec.z)

N = describing function for damping force, N, + N,

P, = atmospheric pressure (p.s.i.a.)

P. = preset absolute pressure of the ball valves (p.s.i.a.)

Py = absolute pressure of the air in cylinder on the left hand side of
the piston (p.s.i.a.)

P2 = absolute pressure of the air in c¢ylinder on the right hand side of
the piston (p.s.i.a.)

r = ratio of forcing frequency to natural frequency, %

t = time (sec.)



X1

= displacement of M (in.)

= maximum amplitude of x(t) (in.)

maximum amplitude of x(t) for system at resonance without damper

(in.)

displacement of M immediately before impact (in.)

]

displacement of M immediately after impact (in.)

relative displacement of damper piston m witlh respect to M (in.)

maximum amplitude of y(t) (in.)

= gbsolute value of amplitude of relative displacement of damper
piston when air-discharge begins (in.)

= length of the intake port (in.)

= ratio of critical damping, C_, of primary system
Cr

= ratio of damper mass to primary system mass, =

M
= phase angle
= natural frequency of undamped oscillation, ¥K/M (rad./sec.

= forcing frequency (rad./sec.)



I. INTRODUCTION

In many vibratory systems, the system response to an excitation
characterized by a frequency near a resonance may be excessive and may
require reduction. A successful technique for reducing the near-re-
sonant response amplitude of a vibratory system is to use an impact
damper. An impact damper consists of a small mass constrained to move
in a container attached to the primary system. The periodic impacts
between the impacting mass and the ends of the container may often
cause subtantial reductions in the vibration amplitude of the primary
system through momentum transfer.

The impact damper was first investigated by Lieber and Jensen
(1945) [1]. The theory of the impact damper was developed by the con-
tributions of Grubin [2], Arnold [3], Warburton [4] and Masri [5]. [ 15].

The application of impact dampers to reduce the vibrations of such
systems as ship hulls, cantilever beams, turbine buckets, and antenna
structures was investigated by McGoldrick [6], Lieber and Tripp [7],
Duckwald [8], Rocke and Masri [9], respectively. Recent communication
indicates that Masri is attempting to extend the application of impact
dampers to the reduction of earthquake-induced vibrations in buildings.

Although impact dampers appear to be effective in reducing the
response amplitude of vibratory systems near resonance, the excessive

noise caused by impacts of the mass and its container may be of such an



intensity that it is unacceptable to the human ear, according to private
communications with Rocke and Masri.

The objective of the present study is to investigate the feasibility
of a similar bolt-on damper -- a free piston gas compression, throttling,
expansion device -- as a possible replacement for the impact damper.
Feasibility is assessed in terms of a reasonably-sized damper producing
amplitude reductions in the response of the primary system for steady-
state near-resonant operation like those produced by the impact damper.
The new démper, at least in its conceptural state, should have the im-
portant advantage that its operation snould be relatively noiseless.

The present damper consists of a piston free to move in a cylinder
as shown in Fig. 1. At the mid-point along the length of the cylinder
is an intake port, and at either end of the cylinder is a ball valve
which is set to open at a preset pressure. In operation the piston
compresses air at one end of the cylinder and forces it past the ball
valve out of the cylinder; the piston then expands the remaining air,
takes in more air at mid-stroke and the process repeats at the other end
of the cylinder. 1If the ball valves are set to open at a preset pressure
such that no impact can occur when the damper is in operation, the noise
wiiich would be caused by the impacts is eliminated and the new damper
should be relatively noiseless. This '""noiseless'' periodic operation is
of primary interest in the present study. However, a relatively quiet
operation which allows occasional impacts, impacts at starting or

impacts with reduced force may not be undesirable and
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Figure 1. Model of the System.



should perhaps be an objective of future work.

Since the new damper is a nonlinear device, its performance, as is
the case for impact dampers, is dependent on the amplitude of the ex-
citing force. 1In the present study, a general analytical approach
leading to a description of when noiseless periodic operation of the
damper will occur has been developed. Using the analytical approach,
the performance of particular systems, and their behavior as functions
of the imput and design parameters have been studied. Numerical studies
have been used to examine the effects of the various approximations
made in the foregoing analytical study.

The primary goals of the present study can be summarized as follows:

1) To find a general method which will permit an approximate an-
alysis of noiseless periodic operation of the damper applied to a general
system for near-resonant operation.

By applying this method to a particular system described by

= ratio of damper mass to primary system mass = 0.1

'c
il

m
M

damping ratio of primary system = 0.02

e
fl

e = coefficient of restitution = 0.8

. = natural frequency of primary system = 188.5 rad./sec.
(or 30 c.p.s.)

0 = forcing frequency = w (operation near-resonance)

Wi = weight of primary system = 10 lbs.

maximum force of excitation = 20 to 50 1bs.,

i
(@]
]



the following goals are also addressed:

2) To select the remaining parameters to obtain noiseless periodic
operation of the damper.

3) To obtain a reduction in the system response amplitude com-

parable to those obtained by impact dampers, e.g. this amplitude ratio

should be
X
X 1
X5 3
When the damper is operating noiselessly and periodically, X s
X
o

the ratio of maximum amplitude of the system with damper attached to
maximum amplitude of the system at resonance without the damper.

4) To work effectively when the excitation force varies within
the range of 20 to 50 1bs.

5) To work effectively when the system is at resonance, as well
as in the vicinity of this resonance.

6) To study the effects of the design parameters, especially
the adjustable ones, P, and D, on the performance of the damper.

A brief description of the contents of the remaining chapters
follows.

The mathematical description of the system with the damper attached
is given in Chapter II. First the system is described by the equations
of motion. Then the assumptions are discussed, and the mathematical

description of the damping force F(y,y) is given, where y is the



relative displacement of the damper piston m with respect to the primary
system M. The impact conditions are also discussed in this chapter.

In chapter ITI a digital computer model is described that simulates
the motion of the system with the damper attached. 1In this model the
motion of the piston is not constrained to be periodic and the pos-
sibility of impacts is included.

An approximate analytical method to determine the noiseless periodic
operation of the new damper, is outlined in Chapter IV. The governing
nonlinear differential equation relating the damping force F(y,y) to the
input variable y(t) is first derived from the equations of motion. The
damping force F(y,&) is approximated by harmonic linearization using
the describing function method. This method was developed by many
authors, among them Siljak [10], Shridhar [11] and Minorsky [13]. The
conditions for the existence of periodic operation of the damper are
established. Then the steady-state response of the system is derived,
and the stability of the system is discussed using the Hurwitz criteria.

Chapter V presents a comparison of the results obtained by the dig-
ital computer simulation with those from the analytical approach described
in Chapter IV.

Summary and conclusions drawn from this study are stated in
Chapter VI.

Appendix A contains a description of the computer program used to

simulate the motion of the system.



Appendix B contains details of the computer program verifications.



IT. MATHEMATICAL DESCRIPTION OF THE SYSTEM

A. Equations of Motion

The equations of motion of the system with damper shown in Figure

1 are:
M§<'+C)'<+Kx=(P2-Pl)A+FOsin (Ot - ¢) (2.1)
m(x + y) = (Py - PyA (2.2)
Equations (2.1) and (2.2) may be rewritten as:

%+ 260k + wlx = EOLY) 4 gy
M (2.3)

¥+y=-EyP)
m (2.4)

where:

x = displacement of primary system

y = relative displacement of the damper mass m with respect
to the primary system M

t = £ - damping ratio
Cr

C = damping coefficient of primary system

Cp = critical damping coefficient, NKM
w =~K/M, undamped natural frequency of primary system

P, = Pressure of the air in cylinder on the left hand side
of the piston (ref. Figure 1)



Py, = Pressure of the air in cylinder on the right hand side of
the piston (ref. Figure 1)

b= ﬁ = ratio of damper mass to primary system mass
Fo
f(t) = ;r sin (0t - ¢ ) = excitation function

F(y,y) = (P, - P1)A = damping force

it

A cross-sectional area of the piston

<
l

phase factor on the input

B. Dimensions of the Damper

For the present investigation the damper, as shown in Fig. 2, is
designed such that:
1. The length B of the piston is equal to the length W of the

intake port.

As a consequence, when the piston moves past the mid-stroke position
(y = 0), compression begins on one side of the cylinder, and the ex-

pansion of the air in the other side terminates as air exhausts through

the port.

2. The length L of the cylinder is equal to the sum of the stroke

D and the length B of the piston:

When the piston contacts an end of the cylinder, its relative
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Figure 2. Schematic of the Damper
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coordinate y(t) with respect to the cylinder is + D/2.

C. Assumptions

The following assumptions are made for the purpose of analysis:

1. The piston moves frictionlessly in the cylinder

2. vhenever the ball valves are closed (no air-discharge) the

*
compression or expansion of the air in the cylinder is polytropic

P.V.n = constant
i'i

where:
Pi’ Vi = pressure and volume of the air under compression or ex-
pansion, and

n=1.3

3. The ball valve mass, and valve spring are selected so that ball
valve dynamics, e.g., chatter, etc., are negligible.

4, After the piston has reached the mid-stroke position (y = 0),
as soon as the compression of air begins on one side of the cylinder,
the expansion of the remaining air on the other side terminates im-
mediately, and its pressure regains the value of atmospheric pressure.

5. The impacts, if they occur, take place in an incrementally

The factor n = 1.3 describes an observed value for the operation of

real machines. It represents a process somewhere between isothermal

(n = 1) and adiabatic (n = 1.4).



12

small time. During this time the positions of the primary system mass
M and damper piston m remain the same while their velocities change

discontinuously.

D. Damping Force

The damping force F(y,y) is first described for the case when the
damper operates periodically with 2 compressions per cycle, then it is
determined for the general case when the piston is not constrained to
periodic'operation and can move back and forth as shown in Figure 5.

1. Periodic 2 compressions/cycle operation.

The damping force is:

F(y,y) =@z - PPA (2.5)

The pressure P; of the air under compression or expansion in the

cylinder is determined by the equation:

n _
P;V;" = constant (2.6)

For the portion AB in Figure 3:

The portion BC of the curve in Figure 3 is defined by:

P, = P, = P = constant (2.6b)
i c

By applying equation (2.6) to portions AB, CD, AB', C¢'D', and
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Figure 3. Damping Force in Periodic 2 Compressions/Cycle Operation
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equation (2.6b) to portions BC, B'C', and noting that the pressure of
the air under compression or expansion in the cylinder at points A, C

and C' are known, the damping force F(y,y) may be obtained for these

portions:
/2 0y <y
Portion AB: F(y,y) = P [ m-p A
a 'p/2 -y a .
y>0
Portion BC: F(y,y) = (Pc - Py 1A _YB £y <Y<D/2
L§ >0

It

Portion CD: F(y,y)

Portion AB': F(y,y) =

Portion B'C': F(y,¥) P_-P A -D/2 < -YLy<-¥Y

p -p [RE2-Ym} A p/2<y<gO

Portion C'D': F(¥,y) a ¢ ‘o2 s
y

]
g ——— T he -
o]
[¢]
o

2.7)

where:

Y = maximum amplitude of the relative displacement of the damper
piston < D/2

Y_ = amplitude of relative displacement of damper piston when air

discharge begins
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If YL Yy the ball valves will never open, and the device will be-
have as a mass on a nonlinear spring (See Figure 4.) 1In this case the

damping force is

D/2 ]n

57§-$f; - P A (2.8)

F(y,y) =+ | P, [

where:
The upper sign corresponds to y > 0

The lower sign corresponds to y < 0

2. General case

In the general case when the damper is not constrained to periodic
operation, one possible movement back-and-forth of the piston is shown
in Fig. 5.

In the program for digital simulation, as described in Chapter III,
a control flag named VALVE is used to indicate the state of the air in
the cylinder. This flag is introduced here to aid the present dis-
cussion.

VALVE = -1 if the piston having passed the mid-stroke
position (y = 0) compresses the air, but
the compression has not yet opened the ball
valve.

When the ball valve is forced to open

]
o

VALVE

if during the same half-cycle period the ball

|
—

VALVE



16

Fiyy) 4

i

[

| y
i >
! Y
|
I

Y Y
| 1 —>
I I
| !
[ |
|
|
!
I
|
i
|
i

1
L 4
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Figure 5.
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Damping Force - General Case.
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valve which has been open at least one time

during the period is closed again.

The damping force can be derived from equations (2.5), (2.9),

(2.10), and (2.11):

F(y,y) = Sign (v) | P, [—DR/2 0. P, | A if VALVE = -1
D/2 -y

F(y,y) = Sign (y) ( P, - P, ) A if VALVE = 0

. ) D/2 - Y n
F(y,¥) = Sign p [=t=——D0 1" _ p A if Valve = 1

(Y y) gn (y) ( C[D/Z - |Y|J a ) 1 alve
(2.12)

where:

Yn =Y, Y1, Y9, eeeun..

]

displacement of the piston at the moment when the ball valve
which has been open during the same half cycle closes, as

shown in Fig. 5.

E. TImpact Conditions

For the purpose of the present study, impact is considered as
potentially superposing a force upon the system in addition to F(y,y).
In general, motion, for example, in the positive y direction may be
terminated by impact which occurs, depending on the choice of damper
parameters, during the air compression phase (line AB on Fig. 3) or

during the air expulsion phase (line BC on Fig. 3). Impacts are assumed
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to occur instantly such that during the impacts, the displacements of
the primary system mass M and the piston m remain the same, while their

absolute velocties are discontinuously changed.

The momentum equation of the system during impact is:

Mx_ + mVpyp_ = M&+ + mVm (2.13)
where:
Vm = ¥ + x = absolute velocity of the damper piston

The - and + subscripts designate times immediately preceding and

following the impact.

By the definition of the coefficient of restitution e:

X, -V, = ce(E - V) (2.14)

The impact conditions can then be summarized as follows:

}.(+ = }.{_ + H_Q_‘I‘_E)_ 3'7_ (2.15)
(1 + )
7, = ey
where:
u o= M _ ratio of damper mass to primary system mass
M
e = coefficient of restitution



Concepturally impacting forces may be superimposed upon the

damping force as illustrated in Fig. 6.

20
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III. DIGITAL COMPUTER MODEL SIMULATING THE MOTION OF THE SYSTEM

A. Solution of the Differential Equations by Kutta-Merson Method

The solution of the system of two second-order nonlinear differen-

tial equations:
Mx + Cx + Kx = (P, - P{)A + F, sin (0t - ¢ ) (2.1)
m(x +y) = - (P, - PPA (2.2)

is obtained by treating these equations as four first-order differential
equations and by using the Kutta-Merson [14] method.

The system of equations (2.1) and (2.2) are the equations of
motion of the system when there is no impact. If impacts occur, these
are the equations of motion of the system between impacts.

When new variables are defined:

Zl = X
Zoa = X
2

(3.1

23 =Yy

Z4 =y

Then equations (2.1) and (2.2) may be rewritten as:

5 = = .2
Zo = £, (t, Zy5 Z3, 23, Z4) = G, (3.3)
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: A F . C K
Z, = (P, - P,) = + =0 - - = - =
2 ( 2 l) v sin (Ot - ¢) M 22 v Z1
= - 1 - - - 2
(P2 Pl)A + AJf sin (Qt ®) 2§L022 w Z1
M
Z3 = f3(t, Zl’ Zg, Z3, 24) = Z4 (3.4)
Z =f (t, 21,2 , 2 ,72,) = )
A L
=- (P -P)=-72
@y - BP 55
The initial conditions throughout are taken to be:
z21(0) = x(0)
z,(0) = x(0)
(3-6)
2,(0) = y(0)
Z (0) = y(0
4( ) = y(0)
In terms of wvector notations:
(
Z1 \ x}
z, x
2y = \ = > (3.7)
Z3 y
\ Za / Y /
(£.(t,2)) 'z
1\~ 21
£f.(t,2) G
2 2
{F;} =< = < > (3.8)
£ (t,7 z
3( ) 4
£ (t,Z G
L 4 (£:2) ) \ %)
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21(0)\ ( x(0) )
22(0) % (0)

{z(0)y = = ) (3.9)
Z,(0) y (0)

and the system of equations (2.1) and (2.2) may be rewritten as follows:

izy = |r (3.10)
1
with initial conditions:
\
(2,0
Z,(0)
2
[Zy = ¢ b (3.9)
Z,(0)
\ 24 (0 /

The Kutta-Merson method functions in the following way.

If {Z(t)} 1is known, {Z(t + h)} may be determined by:

(

{Z(t + h)} = (Z(t)) +h[% K, +§1K4 +.é_ Ks$ ]
(3.11)
where
( z,(t +h) { x(t + h)
Z,(t + h) x(t + h)
{z(t + )} = < = < (3.12)
23(t + h) y(t + h)
Z (t + h) Lir(t+h)
\ 4




h = time increment
K(1,1) £.(6 {2t} )
K(1,2) fz(t, {Z(ey )
&} = ¢ -
K(1,3) £,(t, {2(t) )
]‘,4 b
K(1,4) \ f4(t {ze)} )
K(2,1) (£, (£ +10/3, @Z(©®) + % h &} )
K(2,2) £ (e +n/3, {zo)} +1n &}
K} = y=( 2 ;
K(2,3) £, (£ +10/3, @O +Th K} )
3 1
1
\ K(2,4) \ f4 (t +h/3, {2} + 3 h {kl} )
(k(3,1) fl(t~+h/3,{2(ﬂ}-+hE%{Kﬂ +-% K} 1)
o K(3,2) £ (k4 0/3, (2(t) + h[% (x} + % ®,}1)
K = =
> K(3,3) £, (¢ +0/3, {Z(E)} + h[% {K;} + % {Kz}])
1 1
| K(3,4) £, (£ +h/3, (Z2(t)} + h[g K1+ {KZ}J)
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(3.13)

(3. 14)

>(3.15)

The vector {K3 } is determined by using equations (3.13), (3.14),

(3.15) and will be used in equations (3.16) and (3.

(K, 1=

K(4,1)
K(4,2)

K(4,3)

K(4,4)

\

\

£ (t +h/2, {z(t)} + h[L
L 8
£,(t + h/2, (Z(t)} + h[%
£ (t + h/2, {z(t)} +n[L
3 8

1
fh(t + h/2, (Z(t)} + h[g

17).

3

K3+ (K51

(K} + 2 (K 3D)
3

{K;} + < K10

Ky + 2 KD

(3.16)
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1 3
K(5,2) £,(t +h, Z(t) )+ hls (K} - 2 Koy + 2 (K 1]
{1<5}={ S = 2 t } .‘; R1) 75 Xy {41
3 ,
K(5,3) £yt +h, {2(0)) + A (R} -5 (K} +2 (k3]
1 3 }
\ K(5,4) f4(t + h, {Z(t)} + h[E {Kl} oy {K3} + 2 {KA}J)
(3.17)

K(i,j) define an approximation to the "average'' derivatives of the
dependent variables in the internal (t, t+h), in the Kutta-Merson
formulae.

The Kutta-Merson method has been used for this problem because it
is self-starting and has a correction capability such that the time
increment h may be halved or doubled to hold a specified level of ac-
curacy as will be discussed in section III-B. This capability was
thought to be of value because the velocities of the primary mass M and
the damper mass m change discontinuously at impacts, and using other
multiple-step methods of numerical integration may lead to large errors
in such situations.

B. Tests for Time Increment Halving and Doubling

By using the Kutta-Merson Method the time increment h may be halved

or doubled to hold a specified level of accuracy and minimize computation

time.

If x ypr are defined as the values of x and y used as arguments
pr

in the vector K5, as given by equation (3.17), and Xags yCO are de-

fined as the values of x(t + h) and y(t + h) computed from x(t) and y(t),
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as given by equation (3.11), then:

xpr = x(t) + [% K(1,1) - %K(B,l) + 2K(4,1]h
Ypr = y(t) + [% K(1,3) - _3. K(3,3) + 2K(4,3)]h
x_, = x(t +h) = x(t) + [.61_ R(1,1) + % K(4,1) + _é. K(5,1) ]h
y., = y(t+h) =y + [% K(1,3) + % K(4,3) + % K(5,3)]h
If:
0.2 lxpr - Xcol > e \Xcol
and/or 0.2 lypr - yco‘ > ¢ lycol

Then the time increment h will be reduced to h/2, otherwise h will re-

main the same.
If:

12.8 lx - x l
pr co

and 12.8 lypr - ycol < € ly

then the time increment will be doubled, otherwise h will remain the

same, where ¢ is an error criterion chosen primarily by experiment.

C. Flow Charts

1. Main Program
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The main program, which is shown in Fig. 7, consists of the in-
tegration routine, the integration step halving, the impact and the
integration step doubling tests.

If U, V, UU and VV are defined as:

U=20.2 Xor ~ Xeo| T € | ¥eo
v=20.2 Ypr © Yeo| T € Yeo
Uu = 12.8 Xor ~ Xeo| T € | Xeo
Vv = 12.8 ypr - Yeo - ¢ Yeo

then the condition for step-halving is positive U and/or V, the condition
for step-doubling is negative or zero UU and VV. The time increment is
also halved whenever a ball valve begins to open or to clos:, and when
the piston approaches the mid-stroke position (y = 0). 1In such a case
FLAG is set equal to 1 in the subroutine FORCE as a signal to the main
program to halve step.

Impacts are detected when:

YYY = ’ y(t)! > D/2

at this time the time increment h is halved until:

D _D
> < ‘y(t)\ <=7 (1 +EEF)

EEF being an error criterion.

The occurence of impacts is determined by:

D D
a) -2-<\y(t)\ <5(1+EEF)



Step-
Halving
Test

Impact Test<

Initialization & Input Data

—
Integration Routine to Compute
x(t+h), y(t+h), k(t+h), y(t+h)
from x(t), y(t), X(t), y(£)
Subroutine FORCE
is included
-

IMPACT CONDITIONS
1
F =

NEW initial values f 5 v
for x(t), x(£), y(t), y(t)

Sten-
Doutling

i v
Leiu

Qutput at time t + h

—Tv:0 >
>
<
H—Z*H
|
. <
T:TF
>

Figure 7. Main Program
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b) SPEED = y.y > 0

Once the impact is determined, the impact conditions given by

equation (2.15) are applied:

X+ = X_
Y=
X = x a+e) -

. .
T a e T
Y+ -

Since impacts are determined for

% < l y(t)‘ < % (1 + EEF)

D/2 ]n and [D/2 - Yy n
D/2 - |y] D/2 - |y|

the arguments of the expressions [
may become negative or zero.

Since the computation of a fractional power of a negative number
is not permissible, the damper is assumed to have a small dead chamber

Vo, at each end of the cylinder.

Equations (2.9) and (2.11) becomes:

P, =P [ D/2 + Sg  3m if VALVE = -1
D/2 - ’y! + So
P, =P [D/2 - ¥n + So n if VALVE = 1

i ¢ D/2 - Iyl + S,
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where

However, the dead chambers are designed such that the volume Vo

of which is small:

& x a)
2

° 1000

and can be ignored in the approximate analytical approach outlined in

Chapter 1IV.

2. Integration Routine

The purpose of the integration routine, which is shown in Fig. 8,
is to compute {z(t + h)} from the values {z(t) }.

The vector {z(t + h)} is computed through the intermediate steps of
approximation using the '"average'' derivatives K(i,j) defined by eq.
(3.13), (3.14), (3.15), (3.16) and (3.17).

These equations may be summarized as follows:
ki b={K(i,)) }= {fj(TT, zz) }

where the dummy arguments TT and ZZ may be written as follows:

t L (zz}={z(t) }= (1)

1f {Ki } = {Kl } then: TT

If (K, }={K,}then: TT =t +h/3,{ZZ}={Z(t) }+ % h{K )= (2)*

1]

If K, 1= {K3 } then: TT =t + h/3,{ZZF £+ h[%{Kl} + %{Kz M= (3)*



@,
s

=1 =2 =/ =5
z2(H= 2= (2= |z@=WT B@D=(5)"
TT = T TT=THi/3 TT=T+4/3 TT=T+H/2 TT=T+H
L N |
_/”’;
= =2 =3 =/
J1=Z(J3) J2=Z(J) J3=Z(J) J4=7(J)
CALL FORCE (J3,J4, Y ,YY,P1) PFORCE =0
|
COMPUTE G2, G4
K(I,J), J=1, 4
<
I =1+ 1

Figure 8.

2

COMPUTE ZC(J)
AT TIME (T + H)

Integration Routine

32
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If K} = K ) then: TT =t +h/2, @z} = {Z(t)}—kh[é—{}(l}%{l{?’}] -

£ +h, {22} = @z} +h[% {Kl}-% (K, } +

If {K,}= {K.} then: TT
1 5

2 ® 1 = (5)°
4

The motion of the system with the damper attached is computed by
calling subroutine FORCE (setting JJJ > 1). The motion of the system

without the damper is computed by setting PFORCE = (P, - Pl)A =0

2

Jiyy = 1.

3. Subroutine FORCE

The subroutine FORCE is shown in Fig. 9.

A control flag named VALVE, used to indicate the state of the air
in the cylinder, has been described previously in section II-D.

In general the pressure Pi of the air in the cylinder under com-

pression, expansion, or discharge is given by:

D/2 n %

P, =P [——F—] =P if VALVE = -1
i a [D/Z - |yl

P; = Pc if VALVE = 0O

D/2 - ¥n " o p ; =

P, = 2l ~ fn ] =P if VALVE = 1

i e p/2 -y
where:

Yn = Y, Yl’ Yz)‘

displacement of the piston at the moment
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PP=P

Sonta
¥itis

1

PFORCE

VALVE =

=0
-1

33b

TEST= |PP-PC |
> <
FIAG=1 | |[VALVE=0

TEST=| PP-PC |

Figure 9.

<

VALVE=0

Ps

PFORCE

STIGN(T,/ 13,17 (Pp-P1) ™ AREA

RETURN

Subroutine FORCE
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when the ball valve which has been open during
the same half cycle closes, as shown in Fig. 5.

The flag VALVE, as shown in Fig. 9, switches from -1 to 0, when the
pressure P, becomes greater than P,. It switches from 0 to 1 when the
piston, which has been approaching the ball valve during the same half
cycle, changes the direction and moves away from it. VALVE switches
from 1 to O again if the pressure P; regains a value greater than P_.
VALVE switches from 1 to -1 when the piston passes the mid-stroke
position (y = 0).

Another flag, named FLAG, is used as a signal to the main program
to halve step whenever a ball valve begins to open or to close, or when
the piston approaches the mid-stroke position (y = 0).

Since the damper is symmetrical through its center, the damping
force is computed from equation (2.12) for the right-hand half of the

damper, and then generalized to the other half, using the equation:

F(y,y) = sign (v) (P, - PpA

The absolute value YY =| y(t)[ is used in computation instead of
y(t).-
1f VALVE = 0, the closing of the ball valve is determined by
YYDOT = yy < 0
If VALVE = 1, the reopening of the ball valve is determined by
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and P. > P

All the other variables which appear in the flow charts are listed

in Appendix A.
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IV. APPROXIMATE ANALYTICAL APPROACH FOR THE DETERMINATION OF

NOISELESS PERIODIC OPERATION

This chapter outlines an approximate analytical approach for the
determination of noiseless periodic operation of the damper. This ana-
lysis leads to an equation relating the maximum amplitude Y of the func-
tion y(t) to the amplitude of the excitation, Fo’ which results in
periodic operation for a given damper. Periodic operation of the damper
is defined by the existence of a periodic solution y(t). The operation
is relatively noiseless if there is no impact. 1In order to force the
ball valves to open at a preset pressure giving rise to dissipation and
to prevent impacting, Y is constrained to lie within the range (Yg, D/2).
Hence, for a given damper the excitation force F, corresponding to a
certain maximum amplitude Y, which should produce periodic operation of
the damper, can be predicted. The value of Y is selected such that the
operation is noiseless.

An approach to the determination of the noiseless periodic operation
of the damper may be summarized as follows:

First a governing nonlinear differential equation relating the dam-
ping force F(y,y) and its imput variable y(t) is derived from the equa-
tions of motion (2.3) and (2.4). The nonlinear damping force F(y,y) is
approximated using the harmonic linearization method, or describing
function method [10, 13]. The linearized damping force F(y,y) is then

substituted into the governing nonlinear differential equation. After
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this substitution, the conditions for the existence of a periodic quasi-
sinusoidal solution, y(t), are established. Once y(t) has been so con-
strained, the damping force F(y,y) is periodic. The steady-state response
X of the system is derived from the equations of motion approximately,
using the basic assumption that y(t) is quasi-sinusoidal. The stability

of the system is discussed using the Hurwitz criteria.

A. Governing Nonlinear Differential Equation

In the system of equations:

¥4 20wx + wix = 20T 4 oeepy
M (2.3)

%+ 5= - ELY)
m (2.4)

where:

F(y,y) = (Py-PA

F
£(t) = 2% sin (t - ¢) = Ag sin (@€ - ¢)

the damping force F(y,&) is a nonlinear function of y and &.

By uncoupling the equations (2.3) and (2.4), a single equation
relating F(y,&) and y may be obtained.

If the following change of variables is defined:

Z] =X

.

Z, =X



and :

Z =
37
Z =y
L =Y
s =94 = operator
dt

then the following equations result:

2 :
0] Zl + ZCMZZ -+

or in matrix form:

[ mz 2 tuts
S -1
0 s
0 0

L

or:

If Cramer's rule is applied to equation (4.4), then:

(D]

3 - F d
22 £(t) + MM

{z} =

=423
23

P

38

(4. 1)

(4.2)

(4.3)

(4.4)

(4.5)
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where
A = Determinant [D]

A3 = Determinant of the matrix obtained from [D] by replacing

its third column with the column vector ({f}

w2 2twts 0 0
8 -1 0 0
AT (4.6)
0 s 0 s
0 0 s -1

w2 2tbs £y + ELY) o
M

s -1 0 0
A -
3 . ’ 4.7)
0 s ﬂm s
m
0 0 0 -1

Equation (4.5) may be rewritten as:

D(s)y = Aq = Ap3E(E) + Aq4 F—%ﬂ " Dy F—(%Ly-l
or

p(o)y + [BL) - o) T ry.y) = () E(®) .8
where:

D(s) = A = determinant of [D]

B(s) = Agg = cofactor of the third row third column element

of A
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C(s) = ANyq = cofactor of the first row third column element

of A
w?  2tots 0
B(s) = | s -1 0 (4.9)
0 0 -1
s -1 0
C(s) = O s S (4.10)
0 0 -1
D(s) = s3 QLw+s) + wzsz
_ 2
B(s) = w™ + s (2 twts)
C(s) = -52
Equation (4.8) may be rewritten as:
[s% + 2tus3 + w2s2] y =
(4.11)

2
CrE ez ¢ B L uT R 5y - s2e(n)
m M m

m

An alternative method to obtain equation (4.11) is to write:

m (4.12)

By substituting (4.12) into equation (2.3), taking derivatives of
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both sides, and repeating the procedure until x and its derivatives

disappear from the equation the same result may be obtained.

B. Basic Assumption

The goal of this analysis is to obtain the conditions for periodic
operation of the damper. Such operation can be obtaimed only if the
damping force F(y,y) and its input variable y are periodic functions of
time. The basic assumption is that the periodic solution y(t) may be

modeled by a simple sinusoid:

y =Y sin Qt (4.13)

where

maximum amplitude of y(t)

<
i}

frequency of the excitation force £(t) =

O
1t

Ag sin (Qt - ¢ )

The existencr of such a sinusoidal function y(t) will satisfy
the fundamental requirement for application of the describing function
method [10]. Using this method the damping force F(y,y) can be
linearized by expanding it in a Fourier series and taking account of

only its fundamental harmonic.

C. Describing Function or Harmonic Linearization Method

The nonlinear damping force is defined as:
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g = F(y,y) = (Py - PPA (4.14)

Since y varies harmonically by the basic assumption, the nonlinear

function g = F(y,y) may be expanded in a Fourier series:
g(t) = Ay + Ay cos Ot + By sin Ot + A2 cos 2 Qt + By, sin 2 Ot
+ . . . .+A; cos nQt+ B, sinn 0t (4.15)

where the coefficients of this Fourier series are given by

27
A =L F(y,y) da
O 2T\f 0
2x
Ay =1 F(y,¥) cos nado (4.16)
tJ o
25
B, = 1 F(y,y) sin noda
n 0

with o = Qt

The first harmonic of F(y,y) is defined by:
gl(t) = Ay cos Qt + By sin Qt 4.17)

Harmonic linearization in this method is defined by the approxi-
mation of the nonlinear function F(y,&) by the first harmonic of its

Fourier series:
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g = F(y,y) = g, = Ay cos 0t + B, sin Ot (4.18)

The first constant A, is equal to zero (i.e., the damping force

is symmetric), and the higher harmonics (A, cos n Qt, B, sin n Ot for

n

n > 2) are ignored.

Equation (4.18) may be rewritten as:

. A1YQ BlY |
g = F(y,y) = cos Qt + —;— sin Ot (4.19)
Nz.
or g=N1y+-—y
Q (4.20)
where:
2
vl L [T hg 5 sina d o
Loy )
(4.21)
2
Ny = él - L ' F(y,y) cos o d ¢
A
with:
y = Y sin ¢
o = Qt

Equation (4.20) may also be rewritten as:

g = F(y,y) A; cos 0t + Bi sin Qt

!

1A
JAZ + B° sin (0t + tan”! 2L

1751 By
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= YVN] + N} sin (0t + tan"! N2

The

to be:

Describing function

or in complex form:

Describing function =

The magnitude of N is the

to imput variable y amplitude.

N, (4.22)

describing function for the damping force F(y,y) is defined

. -1 N
N F_LLXZ‘ /tanl_z
Y N,
(4.23)
N
VN2 + N2 tan ! 22
1 2 x
1
N =N, + N, (4.24)

ratio of damping force F(y,y) amplitude

D. Harmonic Linearization of the Damping Force

From section IV-C it is shown that if a quasi-sinusoidal solution

y = Y sin Ot exists, the damping force F(y,y) may be approximated by:

Ny

F(y,y) = Nyy + == y
where

2~

Ny = 1 F(Y sin ¢, YO cos @) sin ¢ d «
T(Y 0

(4.21)

25

N2 =1 F(Y sin ¢, Y2 cos ) cos @ d ¢
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a = Ot
Iif YB is defined as:
YB = relative coordinate of the piston, at which the air-
discharge begins,
then:

- no_ D n

It follows that:

1
v =Ysina, =2- T D
B B 2 p, 2
and: 1
Y p_n
.. -1 B . =1 a
Op = sin &~ = = gin D/2 - (— D/2 Y
B . [D/ <PC> m/2)1/ 4.25)
The value of ¢ when the piston reaches the maximum amplitude Y
isZ+ 2ng, n=0, 1, 2 . . .,

y(t) =Y sinqa = Y.

The expressions Ny and Ny will be determined by summing the inte-
grals corresponding to the potions AB, BC, CD, AB', B'C' and C'D' of
the curve F(y,y) shown in Fig. 3.

Since yj, Yes ai,af are defined as:

yi = lower limit of the integration interval
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Yg = upper limit of the integration interval
¢y = value of o corresponding to ¥i

. = value of ¢ corresponding to Yeo

the limits of the integration and appropriate integrands may be sum-

marized in Table I.

J=1
6
Ny = % N2
I
where:
1 Ot
N,., = — F(Y sin o, Y0 cos @) sina d a
1j Y
9y
1 af
N K =-— F(Y sin «, YQ cos @) cos ¢ d &

2j ¥ 021

The limits Qs @ for each integration interval have been given

£
previously.
Since:
[__QLZ__Jn = [____l;____]n = (1 -asina) " (4.26)
D/2 -y 1--L sin @
D/2
where: Y
a = ——



Corresponding

Portion # Portion vy Ve 0y O F(y,y) Integrals
1 AB 0 ¥y 0 o Pa[]—)ﬁ——-/f—;jn - P\ A Ni1.Nyg
2 BC Y, Y o 3 P, - Pa) A Nyg»Ny,
3 CD Y 0 = d ( Pc[gg - ijn TP A N135Np3
4 AB' 0 “Yy x v+ o ( P, —[5712)_%_}’]& A Nig Ny
5 B'C' Y, -Y ooy %Tf- ( P, - PC) A Ni5sNys
6 c'p' -Y 0 %ﬁ Zn Py - PJ%’}%—;—%JH A N16:N26

Table I. Limits of Integration and Appropriate Integrands in the Describing Function N.

LYy
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[57§12__]n may be expanded in a binomial series:
-y

n{n + 1)a2 sin2 o]

li

[_212__]n =(l-asinq) *=1+na sina +

D/2-y 21
+ n(n + D(n + 2la3 sin> o
T + .
3.
00
- % I (n+ r)at sinf o
r! T'(n)
P:O
if [—7312——]n is approximated by the first four terms of its bi-
D/2 -y
nomial series, then the approximation of G( «, a4,0p) will follow:
‘ 0
(04 (0
f f§ﬁ r . 1+l
G, o, af) = [ D/2 ]n sin g d g = I'(n+r)a~ sin ada
1 al D/2 -y al P=O r! I"(n)
3
e % r'(n + r)af sin™H ady
r! r(n)
% r=0
Hence
- na - sin zaB
G(y, O, OCB) =1 - cos Ap + —5‘(053 —-————2 )
(n + 12a2 in2
- n(n [ cos o (sin® ay + 2) -2]
6 B B
3 .
so(tl) @+ 2a- (35 - 2 sin 205 + _S_m__gf*.aﬁ) (4.27)
48

Glo, %, n) + 1 +D0ax 4 0+ Da’ 4 a@ + D(n + 2)ads
2 4 3 32 (4.28)
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Using equations (4.27) and (4.28) one may obtain the expressions

Nll) le, N13:

2z
i
|

Q.
1 B . ) _ PaA
F(Y sin @, YO cos @) sin ada = = | G(a, 0, ay)-1 + cos
11 0 <Y > VB B

/2
le = ;%;/ﬁ (PC - P, A sin ado = Lo - Pa)A cos ap

Y (4.29)
g
He
Ny = A p[—_D/2 =Y ™ _p |Aasinada
Y /2 ¢ D/2 - Y sin «

PA(L - ay)" Pad

_ (- @)% g, o/2, x) - Rab
7Y 7Y (4.30)

By expanding [—7212——}n in binomial series, and by applying the
) + v

same procedure, one may obtain the following equalities:

Ni4 = Npg
Nis = N2
Nig = N3

Finally the expression N; may be written as:

6
2 PLA
= = £2ad 0 -2
Ny Ny ; ~ G, 0, ap)
)=
+ 2 BB icos op 4 (1 - " e, %, ) (4.31)
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D/2 - Y ]n

Since the denominator of the expression [
D/2 - Y sin

tends to

zero when @ approaches X and Y becomes close to D/2, one may expect a
2

degeneration of approximation to Nq.
Unlike Nl’ the expression N, can be obtained very simply.

If a new variable u is defined:

1 - a sin ¢

[l
i

du -a cos O d

then the following integrations result:

T = ( D/2 Yt cos @ d o = (1 - asina) ®cos ada
D/2 - Y sin ¢

-n+1 . -n+l
_ 1 o du = -U = (1 - a sin ) (4.32)
a a(l - n) a(n - 1)

Substituting equation (4.32) into the expressions Ny Nogs these

expressions may be rewritten as follows:

N =L °B p. [—2/2 1" - p_ ) A cosada
21 'iIY O a D/2 -y
(4.33)
-nt+l
- P.A [ (1- a sin op) -l . sin o
7Y a(n - 1)
1 7 D/2 - ¥
N, = — P[] P, | Acosda
23 Y ¢ 'D/2 -y
w/2
: P.A
- PcA (1 - a)n (1 - asinag) = cos ady + -3

7Y Hyp) 194
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3T

N, = PA(L - &) ((1-asing) ™'
> . am - 1) Y

_PAG - [ 1- (- ay ol , Pab

Y a(n - 1) 7Y
= PcA (1 - a)n - 1+a 4 PaA
7Y a(n - 1) 104 (4.34)
. /2
=1 P - P | A cosdy= B Pald (1 - sin ap)
22 1y ¢ ‘a ~ B
OB

(4.35)

By applying the same procedure to the expressions Nj,, N25, Nog

the following equalities can be obtained:

Noy = Ny
Ny = Nos
Nyg = Nyg

The expression Ny can be obtained by summing all the expressions

6
=

-n+].
_2Paa | (1- asin Qp) -1

2 <Y a(n - 1)

N,., j = 1,6.

23’

N

n
- -
2PcA 1 - sin [(1 a) 1 + a]
184 B a(n - 1)

(4.36)
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Finally the harmonically linearized function of the damping force

F(y,y) and the describing function N for F(y,y) can be obtained:

. N2 .
F(y,y) = Ny + oY (4.20)
N=DN;+]JNy (4.24)
where
Ni and N2 are given by the equations (4.31) and (4.36).

E. Conditions for the Existence of the Periodic Solution y = Y sin Qt

The governing nonlinear differential equation representing the

system is:

[sl‘L + 2§ws3 + wzsz]y =

w
m

2
Srd e hye? ¢ 208 LY piy ) - s2e(n) (4.11)
m M m

The excitation force f(t) may be rewritten as:

F .
£(t) = =2 sin (0t - ¢} = Ap sin et - @)
M

= Af cos ¢ sin Ot - Af sin ¢ cos Qt

sin ¢
0

= l>
rh

(cos ¢y - y)

(cos o - 3in % )y (4.37)
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By substituting equations (4.20) and (4.37) into equation (4.11)

this equation may be rewritten as follows:
[Sll- + (zgw - Af sin d))SB + (J)Z + Aﬁ cos ¢ )SZJy =
YO Y

N
-l E+ L 223 Ly y o4 2t g 62
m M Q m M 1 mS) 2

2. 2
+ (2&uN1 4+ Nz)s 4 2 Nj
m m m

or

s4+[2gw-é£_§.i_l:‘l+(l+l)ﬂz.] g3
YO M Q

m

+ [ w2 4 Af cos © + (l . l)Nl + 2 twNo ]Sz
Y m M mf)

: W2 W2
2 twN1q T.wﬂ?)s 4 e Ny

+ =
( m mf2 m y 0
(4.38)
This equation may be written in the form:
g(s)y =0 (4.39)

where g(s) is a linearized differential operator.
The solutions of equation (4.38) can be determined from the four
roots, Ay, i = 1, 2, 3, 4, of the auxiliary equation
g\ =0 (4.40)
For each real root N there corresponds a solution y = Cie>\it

For each pair of complex roots:
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7\K=u+jV

7\Ka= u - jV

ut ut
Ke cos vt + CK,e sin vt .

there corresponds a solution y = C
Therefore the condition for equation (4.38) to yield a steady-state

solution close to y = Y sin Ot is that the equation

_ 4 Ag sin o 1 1, N2 3
g(s) = s" + [2fw - == 4 (= 4+ =) £
¢ YQ (m M) Q ]

w0

+ [w2 + Af cos ¢ (l + l)Nl + 2§wN2] g2
Y m M mo

W2 2
wN Lo N'))S + W N1
m ms} m

+ & =0 (4.41)

yields a pair of pure imaginary roots + jv = + jO and the real part of
the other roots must be negative.

There should be no repeatedvroots, since in this case the equation
(4.38) will yield solutions of the forms: either cte"t or Ct(eut cos vt
+ eUl sin vt) which grow as t increases.

If equation (4.41) has a pair of pure imaginary roots + jQ, it

can be rewritten as:

g(s) = (s2 + 0% (Co + C1s + Cps%) = 0

or

Cost + Cps® + (Co + Co02)s2 + 02eys + 0%, = 0 (4.42)

Equating the coefficients of the same power of s in the equatioms



55

(4.41) and (4.42), we obtain:

C, =1

1, 12
M) o (4.43)

a
-
]

ZQu _ Ag sin ¢ + Cl 4
Y0 m

|

2
W 1;12 + 2§wN1
m} m02

2 t
Y m M m)

o
me (4.44)
From equation (4.43) and (4.44) one obtains:
1.1 Ac sin ¢ 2F Ny w2N
2600 + (= + SN, - =f - 1. =52 = .
¢ G W Y S (%43
and
2
2Ly ¢ Ly Ly sARC0s 0 L 2 20 (4.46)
mf) m M Y m{2

The equations (4.45) and (4.46) represent the necessary condition

for the existence of the periodic solution y = Y sin Qt.

If the system is at resonance, these equations reduce to

N .
2002 + -2 - Ap sin ¢ _ 2MN) = g (4.47)
M Y m
20, M1 Afcos ¢ =g (4.48)
m M Y

or

Ac sin ¢ = [2t02 + 22 . 281 y
£ valili
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N
Ag cos ¢ = - [gﬁﬂz + -l]Y
m M
2 1/2
or
-1/2
;;— = [2§QZM +N, - Z£ﬁ1]2 +-[g£§2 + N1]2 (£.49)
o H M

For the system at resonance the equation (4.49) represents the
necessary condition for the existence of the periodic solution y = Y sin
Qit. It is also the necessary condition for the existence of a periodic
operation of the damper. Since Y is constrained to be within the range

(Y,, D/2) so that the operation of the damper is noiseless, the neces-

B?
sary condition for the existence of a noiseless periodic operation of
the damper can be stated as follows.

For a given system and damper described by ¢, nu, O, M, Ny and Np,
and for each amplitude Y within the range (Yg, D/2), an excitation force
F, satisfying the equation (4.49) will produce a noiseless periodic
operation of the damper, when the system is at resonance.

Equations (4.45) and (4.46) representing the conditions for the

existence of the periodic solution y(t) = Y sin Ot can also be obtained

by substituting s = jQ in equation (4.41) and separating the real and

the imaginary parts.

Equation (4.41) may be rewritten as:

R(Q,Y) + JI(,Y) = O
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By separating the real and the imaginary parts, two equations may

be obtained:

Il
o

R(Q,Y)

1]
o

1(0,Y)

which correspond to equations (4.46) and (4.45), respectively,

Equations (4.45) and (4.46) may also be rewritten as:

Ag sin ¢ = [200Q + (l + l)NZ - 2L0N7 szZ}Y
m M m m(2

ZguNz 1 1 2 mzN
A. cos ¢ =- + (= + = + wé . 02 _ W N
£ [ mi} (m M)Nl m02 I¥

One obtains an equation similar to equation (4.49) for the general

case:
L= | [2twaM + G+ 1) w, - 2N _wZN% 12
Fo M Y ny

2\-1/2

2
+ [ZQEEZ + (l + 1N, + WM - QZM - 2o
1 HQZ (4.49b)

Ty 0

The phase angle ¢ is given by:

2
o = sin” ! [2twoM + (-1- + DN, - EACI “’~§2] L
u 2 e uQs " Fo

F. Steady-state Response

Once the periodic operation of the damper has been established,

the function y(t) and F(y,&) are periodic and can be approximated by:
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y = Y sin Ot
S Ny,
F(y,y) = Ny y + ==y = N¥ sin Ot + Np¥ cos at
By substituting these approximations into equation (2.4), one
obtains:
2

X = Q°Y sin Ot - 1 [NlY sin Ot + N,Y cos ot] (4.50)
m

If the effect of starting conditions is ignored one may integrate

equation (4.50) twice to obtain:

Mo
it
1

N1Y NoY |
QY cos Qt + —— cos Ot - — sin Qt
mi? me}

N1Y NoY
= - Y sin Ot + sin Qt + ——5 cos (Ot (4.51)
X = ¥sin g ooy no?
x = X sin (Qt - 8)
= X cos 8 sin Qt - X sin 8 cos (Ot (4.52)

By equating the corresponding coefficients of sin Qt and cos Qt

in equations (4.51) and (4.52) one obtains:

N1 N1 21 Y
X e=__,z~1]Y=_—-Q]
cos [nm m 62
- NoY
‘n e =
X sin ;ﬁz
N 22 it | VP (4.53)
X — - 21" + =5 w3 .
m m Q
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By combining equations (4.53) and (4.49b) one obtains:

2
x _2 [F_l C o212 ¢ N2\ 12
F m

2 twN w2N7 2
oz = L~ =—2]

[2t00M + (& + N, -
H il usd

(o]

+ 2 oLy gy 4 0 - 02 - -“12—1\1-1]2 "1/2
o . uh?
Equation (4.54) leads to the prediction of the steady-state response
X when periodic operation of the damper has been established.
The response amplitude X of the primary system with damper attached
will be compared with the response amplitude Xy of the same primary

system operating without a damper:

X = Fo/K
A Ja - )T+ @2t)?

where
K = sz = gtiffness of the primary system

= ratio of forcing frequency to natural frequency

£ Io

At resonance the response amplitude of the system without the

damper becomes:

The magnitude of the amplitude ratio ﬁi indicates the degree of
)

reduction in response amplitude of the primary system as a result of the

noiseless damper.
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Alternative methods may be used to obtain an approximation of the
steady-state response amplitude X.

By substituting equation (4.50) into equation (2.3), the trial
solution (4.52) into the new equation, and by equating the corresponding

coefficients of sin Ot and cos Qt on two sides of the equation, one may

obtain:
X;\/ S12 + 892
4 t2u0% + o (4.54b)
where:
Sy = Ag cos ¢ - 9%y + (n-1—1+§) N Y
s, = (1_1;+.115) N.Y - A sin ¢

G. Stability Analysis

Once the damping force F(y,y) has been linearized, the stability
of the system with damper attached can be treated using the Hurwitz's
criteria applicable to linear differential equations.

The stability of the system depends on the roots of the auxiliary
equation (4.41) of the governing nonlinear differential equation.

Equation (4.41) has a pair of puwre imaginary roots + jQ. The two

other roots are the roots of equation

Co + C1s + Cys? = 0 (4.55)
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where:

CZ=1

C1 and Co are given by equations (4.43) and (4.44).

The system will be stable if all the roots of equation (4.55) have
negative real parts.

If the Hurwitz's theorem is applied to eq. (4.55), then this equation

has all roots with negative real part if, and only if, the determinants

are positive, provided CO > 0.

By applying the Hurwitz criteria to the present analysis, the
stability condition of the system with damper attached may be sum-

marized as follows:

a) N1>0

b) N2 + 2 Qer >0

2
1 + uNjr mr() _ 1 _ Ag cos ¢,
c) _(__Z%L]__..*_Nz >2g [1 ;2_ —.ﬂg-z?_Y__—J

[Ae sin ¢ - 2twQY]
) N, >m = Y+ ) (4.56)
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V. COMPARISON OF SIMULATION AND THE
APPROXIMATE ANALYTICAL APPROACH

The objectives of the study are:

1. To investigate the feasibility of a possible substitute for the
impact damper, i.e., the feasibility of a damper which has the effective-
ness in reducing mechanical vibrations comparable to that obtained by
the impact damper, and can work noiselessly.

2. To determine the damper parameters necessary for reducing the
vibration amplitude near resonance for the given system described in
Chapter I to value of less than 1/3 of its value when the system vibrates
without the damper.

3. To show that the general approximate method described in Chapter
IV may be usefully applied to the analysis of noiseless periodic operation
of the damper attached to a general system for near-resonant operation,
and how in particular it applied to the system described in Chapter I.

These studies are presented with comparisons of the results obtained
by digital computer simulation to those obtained by application of the
approximate analytical approach described in Chapter IV.

Some details on noiseless periodic operation are also discussed at

the end of this chapter.

A. Determination of Damper Parameters

In general problems, the damper parameters are to be selected to
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obtain a response amplitude ratio X below a specified limit, when a
X
0

given primary system is excited by a specified excitation force Fo-

Since the damper should operate periodically and noiselessly, the
excitation force to produce such an operation is a function of the
maximum amplitude Y, and may be predicted for a given primary system
and damper, using eq. (4.49b), as described in Chapter IV. It is easier
to predict the force F, to produce periodic operation of a given damper
attached to a given primary system (direct problem) than to select
appropriate design parameters for a damper, which, attached to a given
primary system, and excited by a specified excitation force FO, should
operate noiselessly and periodically (indirect problem). The indirect
problems, which are discussed in this part of the study, may therefore
be solved more conveniently by first considering the direct problems
concerning various trial dampers.

A description of the given primary system mentioned in Chapter I is
shown in Table II. The ratio . of damper mass to primary system mass,
and the coefficient of restitution e were selected to correspond to
values used in a study of Masri [5] for comparative purposes. The re-

maining design parameters P., D and A are to be selected such that the

vibration amplitude of the given system is reduced to less than 1/3 of

its initial value without a damper, when the excitation force is speci-

fied to lie within the limits (20 to 50 1bs.).



Table II.

Wl = weight of primary system = 10. lbs.

¢ = damping ratio of primary system = 0.02
w = undamped natural frequency of primary system
= 188.5 rad./sec. (or 30. c.p.s.)
u =2 = ratio of damper mass to primary system mass = 0.1
M
e = coefficient of restitution = 0.8

Description of the Primary System Under Discussion

%79
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This indirect problem was solved by considering the direct problem
concerning various trial dampers. Trial sets of damper parameters with
values of preset pressure P, ranging from 30 to 200 p.s.i.a., those of
total piston stroke D from 1 to 10 inches and those of piston diameter
from 1 to 5 inches were taken in the present study. The force F, to
produce periodic operation of these dampers and the ratio of response

amplitude X_ were predicted, using eq. (4.49b) and (4.54b). Among these
0

trial sets of damper parameters those satisfying the goals of the in-

direct problem were selected for a damper designed to work in the pre-

scribed conditions.

1. Prediction of noiseless periodic operation for trial dampers.

The periodic operation was first determined for systems at resonance.
The following successive steps of prediction were taken:
a) Predictions of the excitation force ¥  which would produce

noiseless periodic operation of the damper for the following trial sets

of parameters:

P = 30., 50., 100., 200. p.s.i.a

D=1., 1.5, 5., 10. inches

Diam. = 1., 1.5, 5. inches
where: Diam. = diameter of the damper piston.

This excitation force F, was predicted by using eq. (4.49b). By

using eq. (4.54b), one may predict the amplitude ratio X_ which indicates

Xo
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the degree of reduction in response amplitude of the primary system.

The predictions were summarized and illustrated in Figures 10
through 18.

It can be shown from these predictions that for each set of para-
meters P,, D, Diam, noiseless periodic operation was obtained for a
certain operation range of excitation force F,. For example, the
operation range of F, which would result in noiseless periodic operation
for the set of parameters:

PC = 30. p.s.i.a.

D = 1. inch

Diam. = 1. inch
is:

11.6 1bs. < F, < 31.8 1bs.

as shown in Figure 10.

This operation range of Fj is limited on one end by the value of
FO corresponding to Y = YB’ where Yq is the absolute value of y(t)
where air-discharge begins, and on the other by that corresponding to
Y = D/2.

b) By analyzing the predictions illustrated in Figures 10 through

18, one may eliminate the sets of parameters P,, D and Diam. which do

not meet the required condition:

-’é— < 1/3

(o]



X/ Xo

D=1”

0.8 } DiAm = 17

| =W =1885rad /sec,

04 |

02 t

Fo , Ibs.

L9

Figure 10. golution Curve of Predicted Noiseless Periodic Operation.
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The sets of parameters shown in Figures 14, 15, 16, for examples
b
do not meet this condition.
¢) By analyzing the remaining sets of parameters one may eliminate

those which do not meet the required condition:

F0 = 20. to 50. 1bs.

The sets of parameters:
D = 1. inch
Diam. = 1.5 inches
P, = 200. p.s.i.a. (Fig. 10)
and:
D = 10. inches
Diam. = 5. inches

Pc = 30, p.s.i.a. (Fig. 18)

for examples, do not meet this condition.
d. After successive steps of elimination, one may list the re-
maining sets of parameters which were predicted to meet all the re-

quired conditions as follows:

Set 1: D = 1.5 inches
Diam. = 1.5 inches

P, = 30., 50, p.s.i.a. (Fig. 13)
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Set 2: D = 1. inch
Diam. = 1.5 inches

PC = 30., 50. p.s.i.a. (Fig. 11)

Set 3: D = 1.5 inches
Diam. = 1. inch

P, = 200. p.s.i.a. (Fig. 12)

Set 4: D = 1. inch
Diam. = 1. inch
PC = 100. p.s.i.a. (Fig. 10)
Digital simulation was used to verify the results predicted by the
approximate analytical approach and to make decision on the selection
of the best among these four sets of parameters.

2. Digital simulation of noiseless periodic operation of the
trial dampers.

For the system described by the data given in Table II, with a

trial damper having the following set of parameters:

P = 30., 50., 100. p.s.i.a.
D = 1.5 inches
Diam. = 1.5 inches,

The excitation force Fo to produce noiseless periodic operation



78

was predicted by using eq. (4.49b). The results, as shown in Fig. 13
and 19, have been tabulated in Table III. Once predicted, this force
was used as an input in the digital simulation of the system.

The prediction and the simulation of noiseless periodic operation
of the given system and damper are shown in Fig. 19.

The following observations based on Figures 13 and 19 can be made:

a) Although noiseless periodic operation has been predicted for

¥, < Y <D/2,

results obtained through digital simulation show that impacts may occur
for Y within these limits.
For example, noiseless periodic operation for the system under

discussion, when P, = 30. p.s.i.a., has been predicted for:
YB = 0.317 inch < Y < 0.75 inch = D/2

and 23.4 lbs. < F_ < 58.2 1bs.

(o]

as shown in Table IIT.

Results through digital simulation indicate that for the same system

and damper, noiseless periodic operation has been obtained only for:
0.317 inch < Y < 0.487 inch

23.4 1bs. < Fy < 31.6 lbs.,
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Noiseless periodic operation obtained by digital simulation
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was not achieved.
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Solution Curves of Noiseless Periodic Operation
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in. 1bs. in. 1bs. in. 1bs.
0.325 23.494 0.475 43,476 0.600 72.883
0.350 24.830 0.500 45,207 0.650 80.091
0.400 27.034 0.550 47.417 0.700 86.089
0.450 29.346 0.600 49.875 0.750 93.564

0.500 32.086 0.650 53.715

0.550 35.451 0.700 59.764

0.600 39.599 0.750 69.288

0.650 44,657

0.700 50.736

0.750 58.178

PC = 30. p.s.i.a. PC = 50. p.s.i.a. PC = 100 p.s.i.a.
D = 1.5 inches D = 1.5 inches D = 1.5 inches
Diam. = 1.5 inches Diam. = 1.5 inches Diam. = 1.5 inches
YB = 0.317 inch YB = 0.457 inch YB = 0.578 inch

Table TII. Predicted Excitation Force to Produce Periodic Operation of the Trial Dampers.

08
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as shown in Fig. 19.

The same system and damper, when excited by a force F, of 33.3 1bs.

produced impacts, and steady-state operation was not achieved.

b) There is, however, good agreement between the results obtained
by digital computer simulation and those obtained by application of the
approximate analytical approach described in Chapter IV, if the excita-

tion force F, falls within the operation range:

23.4 1bs. < F, < 31.6 1bs.,

as can be seen in Fig. 19 and as will be discussed with details in

section V-B.

It was predicted by wusing eq. (4.49b) that an excitation force

Fo of 27.385 lbs., for example, would produce periodic operation for the

system and damper under discussion, the maximum amplitude Y would be

0.408 inch, and the response amplitude ratio X would be 0.172. When

X,

the same system and damper was simulated by a digital computer, with an
excitation force F, = 27.385 1lbs. as an input, the motions of the
primary system and that of the damper were periodic, in agreement with

the predictions, the maximum amplitude Y was 0.391 inch, and the re-

sponse amplitude ratio X was 0.179.
X
o

¢) Impacts have occured and noiseless periodic operation has not

been established, whenever YB is close to D/2.

b
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Since: 1

n
- P

the larger P, is, the closer to D/2 the amplitude Yp will be.

Therefore noiseless periodic operation for the given system with
damper has not been obtained for high values of preset pressure, Pc’
of the ball valves, as can be seen in Fig. 19.

The system and damper under discussion, when Pc = 100. p.s.i.a.,

was predicted to operate periodically and noiselessly for:

72.883 1bs. g F, < 93.564 1bs.,

as shown in Tahle III.

When the same system was simulated by a digital computer, using an
excitation force of 77.126 1lbs. as an input, the motion of the primary
system was disturbed by impacts and was not periodic.

For this case,

0.578 inch

=
It

0.750 inch

1l

and D/2

From this observation, one may come to the conclusion that among
the four trial sets of parameters predicted for noiseless periodic

operation and selected previously, set 3 and set 4 may result in

undesired impacts.
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Finally after all these considerations, the following set of

damper parameters:

P, = 30. to 50. p.s.i.a.
D = 1.5 inches

Diam. = 1.5 inches

has been selected for a damper designed to work with the given primary

system, which may be described by the data given in Table II, such that

a response amplitude ratio X_ of less than 1/3 was obtained for an

Xo

excitation force of 20 to 50 1lbs. The performance of the damper has

been illustrated in Fig. 19.

B. Determination of the Motion of the Given System with the Selected
Damper Attached

The behavior of the selected damper, as illustrated in Fig. 19, was
investigated with details in this part of the present study.

1. Reduction in response amplitude at resonance.

The solution curve of the selected damper attached to the given

primary system has been shown in Fig. 19 for:

Pc = 30 and 50 p.s.i.a.
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Figure 20 shows the solution curve of the same damper attached to

the given primary system when:
PC = 24, 27, 30, 33, 36 and 50 p.s.i.a.

Eleven cases of noiseless periodic operation of the selected dam-
per attached to the given primary system have been simulated by a
digital computer for different values of Pc ranging from 24 to 50 p.s.i.a.
and illustrated in Fig. 20. Details of these cases are summarized in
Table IvV.

The mean response amplitude ratio X_ of these eleven cases is:

A two impacts/cycle solution curve of an impact damper attached to
a primary system is reproduced from a study of Masri [5] for comparative
purpose, and shown in Fig. 21. The ratio y of damper mass, m, to

primary system mass, M, and the coefficient of restitution e of this

system have the same values with those of the system under discussion in

the present study, e.g.:

and e = 0.8

The mean value of X for eleven cases obtained by a digital computer

%5



— Predicted noiseless periodic operation, verified by digital simulation
———— Predicted noiseless periodic operation, impacts shown by digital simulation
0.8 F
© Noiseless periodic operation obtained by digital simulation
This case produced impacts in digital simulation, and steady-state operation
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Figure 20. Solution Curves of Noiseless Periodic Operation
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PC FO Xo XO % Y Y %
p.s.i. 1b. Predicted Simulated Difference Predicted Simulated Difference
30. 23.494 0.118 0.103 14. 0.325 0.331 -2.

" 24.928 0.122 0.125 2.4 0.352 0.350 0.5

" 27.385 0.172 0.179 =4, 0.408 0.391 4.

" 28.676 0.220 0.199 10. 0.436 0.408 7.

" 31.609 0.307 0.266 15. 0.492 0.487 1.
24. 25.318 0.423 0.370 14. 0.435 0.518 -16.
27. 26.793 0.316 0.290 9. 0.436 0.415 5.
33. 30.761 0.138 0.131 5. 0.435 0.412 5.
36. 32.854 0.072 0.068 6. 0.431 0.411 5.
36. 35.428 0.168 0.121 38. 0.491 0.457 7.
50 47.118 0.088 0.055 60. 0.543 0.506 7.
Table IV. Cases of Noiseless Periodic Operation at Resonance Simulated by a Digital Computer.

D

= 1.5 inches, Diam

1.5 inches, O =

w = 188.5 rad./sec.
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in the present study is comparable to minimum values obtained by Masri
[5] equal to 0.2 for impact dampers, as shown in Fig. 21. The operation
of the new damper is expected to be relatively noiseless, since in
steady-state operation the maximum amplitude Y is clearly less than

D/2, as can be seen in Table IV.

2. Reduction in response amplitude of systems pear resonance.

The selected damper which has been designed with:

D = 1.5 inch
Diam. = 1.5 inch

and Pc set at 30 p.s.i.a. is considered again.

Figure 22 and Table V show that the operation of the damper re-
mained noiselessly periodic and the reduction in response amplitude of
the system comparable to those obtained by impact dampers, when the
system operated in the wvicinity of the resonance. The excitation force
Fo which produced noiseless periodic operation was predicted by using

eq. (4.49b), and the response amplitude ratio X was predicted by eq.

Xo

(4.54b) .

3. Widening the operation range of the excitation force F, by
ad justment of the preset pressure Pc

It was found that for the selected damper, if

= 24 p.s.i.a. -
PC p.s.i.a.,



——~0® —.— With Damper (Simulated)
—A—— Without Damper
~~-R--_ With Damper (Predicted)
1.0F
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o2 c
-~
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0.6 L
0.4 |
0.2
i 1 [ [ 1 ]

.6 .7 .8 .9 1. 1.1 1.2 1.3 1.4 1.5

Frequency ratio r = 193
w

Figure 22. Operation Near Resonance.
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X X

Pc a Fo X5 X, A
p.s.1i. r = ; 1b. Predicted Simulated Difference
30 0.8 28.676 0.114 0.104 9.

30 0.9 " 0.050 0.054 -7.
30 0.95 " 0.013 0.056 -76.
30 1.05 " 0.367 0.322 13.
30 1.1 " 0.273 0.263 3.

Table V. Cases of Noiseless Periodic Operation Near the Resonant Frequency w = 188.5 rad./sec.

Simulated by a Digital computer.

D = 1.5 inches, Diam. = 1.5 inches, Pc = 30 p.s.i.

06
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then noiseless periodic operation will be obtained for an excitation

force Fo within the range:
15.9 1bs. Fosg 25.5 1bs
This operation range will be shifted to:
43.5 1bs Fosg 47 1bs.

when:

PC = 50 p.s.i.a.,

as can be seen in Table IV and Fig. 20.
Therefore if the preset pressure PC is adjustable within the range

of 24 to 50 p.s.i.a., then the operation range of FO will be widened to:
15.9 1bs. K Fosg 47 1bs.

as shown in Fig. 20 and Table IV.

4. Stability

The predicted envelope shown in Figures 19 and 20 encloses those
configurations characterized by roots of the auxillary polynomial equal
to i_j&l The complete picture of stability must, however, rely also
on an examination of the other roots of the characteristic polynomial.
By applying the Hurwitz criteria, as given in equations (4.56), to the
system shown in Fig. 20, one may determine the nature of these remaining
roots. The results of such a determination are shown in Figure 23 and
Table VI. Fig. 23 illustrates that the predicted stability envelope is
smaller than the predicted envelope where roots i.jSZexist as shown

in Figures 19 and 20. Computed results do predict an even smaller
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stability envelope as a comparison of Figures 20 to Figure 23 illustrates.
The discrepency here is believed to be due in part to the approximation

of the integral used in the determination of N, and in part due to the

1
linearization process.

Based on the results shown in Figures 19, 20, 21, 22, 23, one may
conclude that a damper of the type under discussion in the present study
may produce a reduction in re3ponsé amplitude of the primary system at
resonance comparable to that obtained by the impact damper. The
operation of the new damper is expected to be relatively noiseless. A

substitute for the impact damper to reduce mechanical vibrations, as

conceived in the present study, is therefore feasible.
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P, F, ¢ Y Hurwitz's
p.s.i.a. 1bs. radian in. Ny Ny Criteria

24 15.941 0.245 0.250 60.7 2.9 Stable

" 23.209 0.817 0.400 32.3 18.4 Stable

n 33.583 1.208 0.550 11.7 24.9 Stable

" 43.648 1.404 0.655 -0.4 28.7 Unstable

" 48.822 1.465 0.700 -4.9 30.6 Unstable

" 55.371 1.503 0.750 -8.4 33.5 Unstable

27 20.341 0.222 0.300 64.6 3.9 Stable

n 27.550 0.770 0.450 35.9 20.2 Stable

n 34,334 1.064 0.550 20.0 25.8 Stable

" 43.783 - 1.296 0.650 6.1 30.4 Stable

" 50.357 1.390 0.705 -0.5 33.3 Unstable

" 56.731 1.433 0.750 -4.2 36.4 Unstable

30 23.475 0.142 0.325 70.8 1.7 Stable

" 29.346 0.603 0.450 46.2 18.7 Stable

" 35.451 0.932 0.550 28.0 26.1 Stable

" 44.657 1.203 0.650 11.9 32.0 Stable

" 50.736 1.306 0.700 4.9 35.1 Stable

" 58.178 1.369 0.750 -0.1 39.1 Unstable

33 26.441 0.098 0.350 75.0 00.5 Stable

n 31.429 0.461 0.450 55.9 16.6 Stable

" 36.866 0.813 0.550 35.6 26.1 Stable

n 45.704 1.117 0.650 17.5 33.4 Stable

" 51.874 1.235 0.700 9.6 37.0 Stable

" 59.703 1.310 0.750 3.9 41.6 Stable

36 29.412 0.075 0.375 78.1 0.3 Stable

" 33.631 0.341 0.450 64.8 14.1 Stable

" 38.507 0.706 0.550 43.0 25.8 Stable

n 46.898 1.038 0.650 22.9 34.5 Stable

n 53.111 1.170 0.700 14.1 38.7 Stable

n 61.294 1.255 0.750 7.8 44,0 Stable

50 43.476 0.063 0.475 89.5 4.7 Stable

" 47.417 0.342 0.550 72.7 21.2 Stable

" 53.715 0.742 0.650 45.9 37.4 Stable

1 59.764 0.923 0.700 33.6 44.7 Stable

i 69.288 1.053 0.750 24.4 53.2 Stable

Table VI.

Predicted Stability of the System Shown in Figure 20.
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C. Details on the Noiseless Periodic Operation

1. Basic assumption.

The basic assumption that:

y(t) = Y sin Qt,

once periodic operation of the system has been established, e.g. if

the excitation force F, is related to the maximum amplitude Y by eq.

(4.49b), appears justified for the range of variables examined by the
results obtained through digital simulation.

Noiseless periodic operation of a damper with the following design-

parameters:

P = 30. p.s.i.a.

D = 1.5 inches

Diam. = 1.5 inches
H=O'l
e = 0.8,

attached to the following primary system:

Wl = 10. 1bs
¢ =0.02
w = 314.16 rad./sec.

was sought.



96

It was predicted by eq. (4.49b) that if the system at resonance
was excited by a force of 49 1lbs., the function y(t) would be periodic
and close to 0.425 sin Qt. A curve of the predicted function 0.425
sin Ot was drawn with continuous line in Fig. 24.

When the motion of the same system was simulated by a digital com-
puter, with the same excitation force as an input, it was found that
the function y(t) was a quasi-sinusoidal function of time, with maximum
amplitude of Y = 0.427 inch. This simulated function y(t) was shown in
Fig. 24, with circled points. The curve of this simulated function was
redrawn from a computer plot.

2. Damping force.

The damping force has been defined as:

F(Yai’) = (Pz - Pl)A

The damping force of the system which has just been discussed was
redrawn from a computer splot and shown in Fig. 25 in continuous line.
Curve 1 represents this force in function of y and y, curve 2

represents the same force in function of time.

The damping force was harmonically linearized by
F(y,¥) = N3¥ sin Ot + N2Y cos Qt

For the system which has just been discussed, the expressions Nj

and N2 were derived from equations (4.31) and (4.36)
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Figure 25.
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51.16

1]

Ny

17.7

Z
1]

The maximum amplitude Y was predicted equal to 0.425 inch if the sy~
stem was excited by a force of 49 1lbs.

By superposing the functions NiY sin Qt and NoY cos Qt, one may
obtain the harmonically linearized damping force, as shown by curve 3
in Fig. 25.

3. Steady-state Solutions

Using the approximate analysis one may predict quasi-sinusoidal
solutions of all the variables x(t), y(t) and their derivatives x(t),
y(t) for noiseless periodic operation.

These predictions appear justified for the range of variables
examined by the results obtained through digital simulation, as il-
lustrated by Fig. 26, redrawn from computer plot of the case which has

just been discussed.

For this case, "steady-state''” solutions have been obtained at

21YSt cycle of numerical integration:

X

0.332 inch

X 104 inches/sec.

S

* These peak values were essentially duplicated for each successive
cycle until termination of the integartion during the 47th cycle.
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Y

i

0.427 inch

Y 131 inches/sec.

compared with predicted values:

X = 0.341 inch
X = 108 inches/sec.
Y = 0.425 inch
Y = 134 inches/sec

For this case the predicted and the simulated solutions are so close
that if they were plotted on the same plot, they would be almost mixed
together. The plot of the predicted solutions was therefore not under-

taken.



102

VI. SUMMARY AND CONCLUSIONS

Noiseless periodic operation of an impact type damper was investi-
gated. Results of the analysis were verified by digital simulation of
the system. 1In general there was agreement between the analysis and the
simulation.

The following observations can be made on the basis of the present
study:

1. Noiseless periodic operation of the damper may be established
by selecting appropriate design parameters.

2. Reduction of system response amplitude to less than 1/5 of its
value when the system at resonance vibrates without the damper may be
obtained.

3. Noiseless periodic operation of the damper may be predicted by
the describing function method given in Chapter IV with qualifications
and the primary system steady-state amplitude within the range of noise-
less periodic operation may be predicted by the describing function
method given in Chapter IV.

4. During the course of this investigation, the describing function
method predicted noiseless periodic operation wherein noiseless periodic
operation was not observed during simulation, rather nonperiodic impacting
operation was observed. There is sufficient evidence to believe that the
fault is less with the describing function approach and more with the

use of the binomial expansion to approximate several integrand functions
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in the determination of the expression Ny, the first term of the
describing function N = Ny + ] N,, used to describe the nonlinear
damping force F(y,y).

5. 1In spite of this problem, the approximate analytical approach
described in Chapter IV is valuable in that it gives a comprehensive
picture of the global behavior of the nonlinear system. The approach
may be used as a good guide for efficient use of computers in the
simulation of the motion of the system with damper. Guided by this
approach, the digital simulation of the system may lead to the analysis
of noiseless periodic operation for a certain predicted operation range
of excitation force F,-

6. Using the approximate analytical approach as a guide and the
digital simulation as a tool for verification, one may select appro-
priate design parameters for a damper to obtain a reduced response
amplitude ratio below certain limit, for a certain range of excitation.

7. Once a damper has been designed and attached to a given system,
one may widen the operation range of the excitation force F, by adjusting
the preset pressure P, of the ball valves.

An improved method for the integration involved in the expression
N, is left as a possible objective for future work, which may include

the analysis of periodic operation during which weakened impacts may

occur periodically..
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APPENDIX A

COMPUTER PROGRAM LISTING
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I S S RSP R

ANALYSTIS OF A SUBSTITUTE FOR THE IMPACT DAMPER

TO DAMP

NEAR-RESONANT MECHANICAL VIBRATIONS

* % %

% % %

O S 3

E I T S T

MAIN PROGRAM

* % %

Wl
W2 =

XMASS =
YMASS =

CREST =

DHALF
DIAM

YC
50

N

AREA =
VO
PA
Pl

PC =
GAMMA 1=

GAMMA 2=

FO =

O B B

PARAMETERS

= WEIGHT OF THE PRIMARY SYSTEM

WEIGHT OF THE MOVING PISTON IN THE
DAMPER

MASS OF THE PRIMARY SYSTEM

MASS OF THE MOVING PISTON IN THE DAMPER

= YMASS/XMASS = MASS RATIO

COEFFICIENT OF RESTITUTION

= MU*( 1+CREST) /( 14+MU)
= LENGTH OF THE DAMPER

HALF THE LENGTH OF THE DAMPER
INTERNAL DIAMETER OF THE DAMPER

= VALUE OF Y WHEN P2 FIRST REACHES CRITICAL

VALUE PC
VALUE OF Y WHEN EXPANSION BEGINS
VO/AREA = EQUIVALENT TRAVEL OF PISTON
DUE TO DEAD CHAMBER

= D/2 - YC
= CLEARANCE BETWEEN PISTON AND END OF

CONTAINER
CROSS SECTION OF THE DAMPER
VOLUME OF DEAN CHAMBER
ATMOSPHERIC PRESSURE

= PRESSURE ON THE LEFT HAND SIDE OF THE

PISTON

PRESSURE ON THE RIGHT HAND SIDE OF THE
PTSTON

CRITICAL PRESSURE

N = GAS CONSTANT FOR POLYTROPIC
COMPRESSION

N' = GAS CONSTANT FOR POLYTROPIC
EXPANSTON

AMPLITUDE OF EXCITATION FORCE
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FO/XMASS

DEMPING COEFFICIENT

NATURAL FKEQUENCY OF T1HE PRIMARY SYSTEM
FURC ING FREQUENCY
CMEGA/{2%3,14159)
OMEGAF/(2%3,14159)

UMEGAF%®T

FO*SIN(OMEGAF*T) = DRIVING FOR(CE
AD®SIN(CMEGAF*T)
(FU/XMASS)I*SIN(OMEGAF%T)

DAMPING FORCE DUE TO THE DAMPER
{P2-P1)*AREA

PROBLEM NUMBER

INCKEMENTS & ERROR TERMS

INITIAL TIME INCREMENT

UPPER BOUNDARY QF THE INDEPENDENT
VARIABLE 7

ERROR CRITERICN FOR X,Y

RELATIVE ERROUR CRITERION FOR THE
CLEARANCE AT IMPACT

RELATIVE EKROR CRITEKIUN FOR PRESSURE AY
UPLINING 0OF THE VALVE

ERRCR CRITERION FOR YC

ERRGR CRITERYION FOR DETERMINATION OF THE
ORIGINE UN Y-AXIS

ERROR TERMS USED IN HALF STEP TEST

ERRQOR TERMS USLED IN DOUBLE STEP TEST

VARTABLES & FUNCTIONS

TIME
X DOUBLE DOT
Y DuUBLE DOT

NUMMY VARTABLES & FUNCTIUNS

DUMMY INITYAL VALUE OF X

DUMMY INITIAL VALUE ufF XDOT

DUMMY TINITIAL VALUE OF Y

DUMMY INITIAL VALUE UF YDOT

DUMMY VALUE OF X DURING INTEGRATION
DUMMY VALUE OF XDuT DUKING INTEGRATIUN
DUMMY VALUE OF Y DURING INTEGRATION
DUMMY VALUE OF YDOT DUKING INTEGRATIUN
DUMMY VALUE CF T DURING INTEGRATION
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IC(1) DUMMY VALUE OF X AT TIME T+H,CCMFPUTCD

FRCM Z(1) AT TIMe T

ZC(2) = DUMMY VALUE CF XDOT AT TIME T+H,COMPUTED
FROM Z(2) AY TIME T

IC(3) = DUMMY VALUt CF Y AT TIME T+H,COMPUTED
FROM Z(3) AT TIME T

ZC(4) = DUMMY VALUE CF YDOT AY TIME T+H,COMPUTED
FROM Z{(4) AT TIME T

J1 = DUMMY VALUE CF X IN SUBROUTINE FCRCE

J2 = DUMMY VALUE OF X0OT IN SURROUTINE FGRCE

J3 = DUMMY VALUE COF Y USED AS ARGUMENT IN
SUBROUTINE FORCE

J4 = DUMMY VALUE OF YDUT USED AS ARGUMENT IN
SUBRQUTINE FORCE

YY = ABSOLUTE VALUE OF Y USED 1IN
SUBRUOUTINE FORCE

YYY = ABSULUTE VALUE OF Y USED IN IMPACT TEST

YP = DUMMY VALUE OF Y AT TIME T USED 1IN
SUBRUUTINE FUGRCE = 120(3)

YYDOT = Y®YDOT,USED IN SUBROUTINE FORCE

SPEED = Y*YDOT LUSED TO DETCRMINE IMPACT

C1 = IC(1) = DUMMY VALUE GF X USED IN
HALF STEP TEST

ZP1 = 2 (1) = DUMMY VALUE UF X USED IN

HALF STEP TEST
ZC3 = IZC(3) = DUMMY VALUE OF Y USED IN
HALF STEP TEST

P3 = 2 (3) = DUMMY VALUE OF Y USED IN
HALF STCP TEST
PP = DUMMY VALUE OF P2
K{IyJ)= CORRECTOR TERMS IN RUNGE KUTTA-MERSON

FORMULA
I=14293y495 = CORRESPUNDING YO 5
CORRECTOR TERMS

J= 14243,4 = CORRESPUONDING 7O X,XDOT,
Yy YDOTY
UNITS
X'Y'YA,YC'D'OOO = INCH
Pl’pZ'PC'PA'OO. = poSol
NI'NZQFO'ooo = LB
T = SECULND
FREQUENCY = CePaS
PFORCE,OFQORCE = LBS
AREA = SQUARE INCH
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DOUBLE
vOUBLE
DOUBLE
DOUBLE
OCUBLE
DCuBLE
DCUBLE
DOUBRLE
dCuBLE
NCUBLE
DOuUBLE
DCUBLE
DUUBLE

PRECISION
PRECISIOUN
PRECISION
PRECISION
PRECISION
PRECISION
PRECISIUN
PRECTSION
PRECISICN
PRECISION
PRKECISION
PRECISION
PRECISIUN

Ts1T1,TF

DSIN,DABS

J19J29J43,J4

IP142C1,2P3,2C3,2C4

L4)ICL4),20 1K(544)
PlyP2yPCyPAyGAMMAL,GAMMAZ
PFCRCEZAFORCEZAD,FO,DFORCE

XMASS g YMASSy MU KKyCRESTyW1lyW2
OMEGA s CMEGAF s FREQ. FREQF,ALFA, ZETA

112

YYsYYY, YYOOT4ySPEED»G29G42 YX,YYCDCT

DyDHALF,S0yS29VOyAREA,Cy D1AM
HeEPS s EEE+EEFsUsVoeUUVVLEEG,EED
P HI

INTEGER FLAGyVALVE
COMMON PFORCF,GaMMALy GAMMAZ ,HyEEEWEEGYEED
COMMON P2,PCyPA, DHALFy AREA,SU,20(4)

CUMMUN FLAG,VALVE

* ok ok ok ok Kk ¥k &k ¥k ¥ k& Xk ¥ % %k *k 3k Xk xk ¥k

INITIALIZATION
INPUT & OUTPUT CATA & PARAMETERS

* % ¥ % % %k ¥ *k * ¥ k *k ¥ % %k *x % *k *¥x X%

INPUY & QUTPUT PROBLEM NUMBER

READ (141) JJJ
ARITE(3,2) JJd
IF(JJJ.EQat)} GO TC 1000
INITIAL VALUES UF X9 XDOT,Y,YDUOT
L0(1) = 0.0D00CC
0t 2) = (N0
1. (3) = Z..DCC
I10(4) = LoD
FLAG = )
VAL VE = -1
IiMPACT = -
BOUNDAKY VALUES OF TIME - TIME INCRCMENT
T = J."‘DLU
TF = 0.10+"3

H

JelD=(2
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CRROR CRITE&TA

EPS = Ge1N-04
EFF = La1D-"4
EEE = 041D-04
EEG = J.1D-C4
EEU = JelD-V 4

INPUT PARAMETERS

READILy1ti2L) PCHD,DIAM
READ(1,4141) GAVMMAYL, GAMMAZ , Wl ¢W2
READ(1,y10u1) FREQyFREQF4ZFTA,FU
READ (14,7777) PHI

PA = 0a1469D+02

Pl = PA

XMASS = W1/Ye386D+(:3

YMASS = W2/, «386D+¢3

MU = YMASS/XMASS

CREST = (0.80G0

KK = MUR (L IDHL14CRESTI/Z () 1D+C 1 +MY)
DHALF = D/0.2D+01

AREA = 0,314159D+01*DIAMRDIAM/0,4D+01
vO = (DHALF*AREA)/C.1D+04

SC = VO/AREA

C = DHALF*((Q.1D¢014FEF)

AQ = F(O/XMASS

OMEGA = jel2D+UL1X o314159D+UL*FREQ
OMEGAF = (o2D+U1%0.314159D+D1%FREQF

OUTPUT PARAMETERS

WRITE (3,20 uL)
WRITE(3,2ud1) W1,GAMMAL,TF
WKITE(3,2002) W2yGAMMA2,H
WRITE(3y2u23) XMASS,PCHEPS
WARITE(3,2004) YMASS,ZETA,LEEE
WRITE(3,2005) MU,FCHEFF
WRITE(3,2036) CREST,AO
WRITE(3,2007) KKyCMEGA
WRITE(3,2008) AREA,OMLGAF
WRITE(3,2009) Uy FREQ
WRITE(3,2010) D1AM,FREQF
WRITE(3,2012) SC,yVO

WRITE (3,8888) FHI

WRITE (3,211
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FORMAT STATEMENTS

1 FORMAT (I15)
2 FORMAT (1H1,1CXy*PROBLEM',15//)
1001 FORMAT (4F20,13)
2000 FORMAT ( 30X, 'DATA & PARAMETEKS *//)

23J)1 FORMAT (1IXyt Wl =V F1561 9" LBS',13X,'GaMMAL=",
1 F15.10,18X, TF =" yF15.1Gy* SECOND'/)

2002 FORMAT (1CXge'W2 =V, F15.1Gs" LBS'y13Xy'GAMMAZ=?,
1 F15.1C,18Xy*H =tyF15.109' SECUND'/)

2003 FORMAT (10X ¢*XMASS =',F15.10y" *y 12X, *PC =0,
1 F151C9° PoeSela'yliX,y*EPS =t ,F15.1.7)

2004 FURMAT (1CXy'YMASS ='3F15.1(," Yy12X, Y IETA =Y,
1 F15.10518X,'EEE =',F15.13/)

2005 FORMAT (10X,*MU =V, F15%.1U0918Xy'FO =V 3y F1510),
1 * LBS'y13Xy"EEF =',F15.10/)

2006 FORMAT (1oXs'CREST =13F15.1¢e18Xy'AC =1 ,F15.1%
1'* IN/SEC/SEC'/)

2007 FORMAT {lOXe'KK =~ ='4F15,10,18Xy"UMFEGA ='yF15.10,

1 * RAD/SEC'/)

2008 FORMAT {(10Xy*AREA =?',F15,1U0y'SQ.INCH"'410X,
1 *OMEGAF=',F15.,1Gy"' RAD/SEC'/)

2009 FORMAT (1(Xe'D =", F15.10," INCH* 312X, 'FKEQ =4,
1 F15.109"' CePeSet/)

2010 FORMAT (1oX'DIAM  ='3F151 09" INMCH', 12Xy 'FREQF =7,
1 FIS.].O" C.P.S.'/,

2012 FORMAT (1.X,'S0 =P, F15.1{ 9" INCH"ylceX,y*'VU =t,
1 F15.1Gy* CUBJIC INCH'//)

7777 FORMAT(F20.10)

8888 FORMAT(15X,'PHI=t,F2™.1%://)

2100 FORMAT (1HL1914Xs'T* 14Xy " X" 914X, ' XDOV ' 911Xy 'Y*y14X,
1 'YDOT? g 11Xy PFCKCEY y 09X *NFURCE® 429X P2/ /)

X x % %x % ¥ * % ¥ X % % %k % *x ¥ %x *x Xx X%

COMPUTATION OF X(T+F)yXDOT(T+H) oY {T+H) yYDUT(T+H)
WHEN X{T ) o XDOTUT)yY(T ) ¥YDOT(T) ARE KANUWN
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21

22

23

24

25

150

31

32

50

35
36

200

201

DO 23¢ I = 1,45

DO 160 J=1,4

GU TO(21922+423924+25),41

Z(J) = 20(4)

7T =7

GC TO 15U

Z(DI=20(J) +K(1,J)/0.30+3)

TT=T+H/0G.3D+01

GG TO 159

Z(J)=20(J)+K (13 J)/D6D+C 14K 2,00/ .6D+01
TYT=T+H/(C30+1

GO TO 159
ZUJ)=200J)+K(19J} /0304014 (Ue3D+01/e8D4211%K(3,4)
TT=T¢H/G.2D+01

GO TO 15L
ZUJI=Z0CJ)+K{13d)/ )20 1=( a3D4 1/ .20¢ 1%K{343))+

10.2D+01%K (44 4)

TT= T+H

GO TO (319329339341),J
J1 =2(J)

GG TO 1é6u

J2=2(J)

GO TO 160

J3=21(4)

GO TO 160

Ja=721014)

CONTINUE

YX = DABS(J43)
IF(YX.LE.C) GO TO 57
Yx = C

YY = YX

YYDOT=Jd3%J4

ALFA = OMEGAFX*TT
AFORCE = AU*DSIN{(ALFA-PHI)

IF U409 EQUAL TO 1,5€ET PFURCE EQUAL TO (.9

IF (JJJ.EQ.1) GC TC 35

CALL FORCE(J3,J4,YY,YYDCT,P1)

GO TO 36

PFOKCE = G.0DO

G2=PFORCE/XMASS +AFORCE-Qa2D#+01 %7 cTAXUOMEGAX] 2~

1 OMEGA*QOMEGAX*J1

G4=-PFORCE/YMASS-G2

K{Y41) =H%*g2
K{Iy2) =H*G2
K(I,3) =H*J4
K{Iya) =H*G4
CONTINUE

DO 201 J=1l.4
IC{II=ZICLY) K (19U )/0.6D401#(Ca2D#0L/D3N+0C1)*
1K( 4o J)#K(5,4)/).6D¢0 1]
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TEST FOR HALF STEP

TEST FURrR IMPACT

ICl1 =ZC(1)
€3 =2C(3)
IC4 =1C(4)
Pl =7(1)

IP3 = Z2(3)

YYY=DABS(ZC3)
YYCDOT = ZC3%IC4
U=0e2DC0*DABSIZF1-2CY1)—-EPS*DABS(7C1)
V=0.2ND00*DABS{ ZP3~-IC3)—-EPS*DABS(7C3)
IF((U.LE.'U. YO Yo ANDa{ Vel Fauve U " )QANDQ(FLAGQEOQ")
LeANDe ({YYYolLEDHALF ) aORo{{YYY2aGTJOHALF) AND
2{YYY.LELC)I)) GG TO 120
55 H=H/ue.20D+ul
FLAG =0
GO TO 10C
120 T=T+H
FLAG=Q
IFIYYY.LEL.DHALF) GO TO 21
SPEED=ZC(31%2C({4)
IF{SPEEDLE.C.ODOT) GO TC 214
WRITE(3,66)
66 FURMATI({ /10X, *IMPACTY /)
IMPACT = IMPACT + 1
IC12) =2C(2) +KK*Z({4)
IC(4) =-CREST*ZC(4)

NEW VALUES OF X 4XDOT,4Y,eYDUY

210 DO 220 J

=194
220 20(4) =ZC(J)

QuTPUTY

DFORCF = AFCRCE*XMASS

CALL FOURCE {(Z2C34ZC4sYYY,YYCDUT,P1)
78 WRITE(3440) Te(Z0L{J)yd=1,34)yPRFURCL,DFURCE P2
40 FURMAT(1D3X,8(0124.5+3X))

IFCIMPACT.GT W12} GU 10 1Cu0



C
C
C
C
c
C
141
C
C
C
600
399
1000
C
C
C
C
C
C
C
c
C
2
C
C
C
C
C
1
C
19
c
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TEST FGR OQUBLLC SIEP

UU=J.128D+02*%DABS{ZP1-ZC1)-EPS*DABS(2CL)
VV=0.128D+J2%DABS(2ZP3-7C3)-EPS*DABS(ZC3)
IF((UULGT e 0UNGCYUR o (VVeGT a0 2)) GC TL 620
H=0.,2D0+01*H

TEST FCR UPPER BUUNDAFRY OF T

IF{T-TF) 10341004999
GG TO 111

STOP

END

*k % &k &k k %k X %k ¥ %k ¥ X %k *x % ¥ ¥ %k X ¥

SUBRUUT INE FORCE(J349J4,YY,YYDUT,P1)

* % % k % ok %k ¥ % k ¥ Xk *x %k % %k ¥ ¥ *x X

DOUBLE PRECISIGN YP,IG

DOUBLE PRECISIUON P1,P24PCyPA,PP

DOUBLE PRECISION PFORCEyGRMMAL , CAMMAZ

DOUBLE PRECISION HyEEE4VEST,SIGNy DABSyEEG,EEQ
DOUBLE PRECISION YCsYY o YYUUTyUHALFS0UyS29J39J%y

1AREA, AYDOT

INTEGER FLAG,VALVE

COMMON PFORCEy) GAMMAL , GAMMA2 yHeFEE »EEGYEEU
COMMUN P2,PCyPAyDHALF,AREA,SU,Z0(4)
COMMUON FLAG,VALVE

AYDOT = DABS(J4)

YP =20(3)
IFLYY.GT.0.0000) GO TC 1

PFORCE = coUD37
VALVE = -1
P2 = PA
GO TO 999
VALVE = -1  THE VALVE IS CLUSED
VALVE = € THE VALVE 1S CPEN
VALVE = 1 THE VALVE 15 CLOSED AGAIN

IF(VALVE)1Dy11,12

PP = PAX((DHALF+SO)/((DHALF-YY) +50))**xGAMMAL



21

22
32

31
33

11
82

81

85
90

12

94

93
92

91
102

11
103

OO0

5O
609
969G

/DATA

IF(PP-PC) 21,21,22
p2=Pp
GO TO 500

TEST =DABS(PP-PC)
IF(TEST-EEE*PC) 31,31,32
FLAG = 1

GO 70O 33

VALVE = O

P2 =pPC

GO TC 500

IF({YYDCT) 81,81,82
P2 =PC
GO TO 500

IF(YY.GE.DHALF) GO TO 85
IF(AYOOT.LEL.EEG) GO TC 85

FLAG = 1
GG TO SC
VALVE = 1

S2 = DHALF - YY
P2 =PC*((S2+S0) /7 ((DHALF-YY)+S0) ) **GAMMA?Z2

GO TO 500

PP =PC*({S2+5S0)7 ((DHALF-YY)+S0) ) **GAMMA2

IF(YYDOT.LELC.DCD) GO TC 92
IF{PP.GY.PC) GO TO 91
IF(YY.LE.EEC) GC TO 94
IF{J3%YP) 93,93,92

VALVE = -1

GO TOo 1

FLAG = 1

P2=pPP

GO TC 500

TEST =DABS(PP-PC)

IF(TEST -EEE*PC) 101,101,102

FLAG = 1
GO TO 103
VALVE =0
P2 =pPC

GENERALIZE 1HE COMPUTATIONS Tu BOTH HALVES

JF THE CAMPER

SIGN =J3/DABS(J3) »
PFORCE=SIGN*(P2-P1 ) *AREA
RETURN

END

118
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APPENDIX B

DETAILS OF THE COMPUTER PROGRAM VERIFICATION
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1. Tmpact Test

Since the present damper will be reduced to an impact damper if the
damping force F(y,y) is equal to zero, the program written for the pre-
sent study and listed in Appendix A must yield the same results as if it
were written for impact damper, provided the damping force F(y,y) is
equal to zero.

A typical digital computer output for a given impact damper was
shown in ""Analytical and Experimental Studies of Impact Damper'' by
Masri [5]. The results obtained by the program written for the pre-
sent study were compared with those shown in Masri's studies. The

parametric values used in this comparison are:

Input Data:'
= 0
w = 1.0 rad./sec r =x%=1.25
W
( = 1.25 rad./sec : = 0.1
Wl = 10. 1bs.
=M =04
- p, -
WZ = 4. 1bs. M
FO = 0.0259067 1b. F 1
R = oM = 0.0259067 1b./in.
D -
e=0.2 Pk
(o]
D = 3. inches F(y,y) = 0.0

FEF = 1071

=
g
w

[
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Results obtained from the program written for the verification when

F(y,y) = 0.0
X
Impact # Xa
(i) t; X, v; ii+ 9i+ tjop <t <t
1 4,89 -1.5000 1.5000 -0.8485 -0.2582 ~-0.9236
2 6.52 -0.3112 -1.5000 1.0201 0.6473 -1.0514
3 8§.93 0.7065 1.5000 -0.3578 -0.6163 0.7852
4 12.28 0.4483 -1.5000 0.5934 0.4771 ~0.5420
5 14, 3% -0.3485 1.5000 -0.5455 -0.4918 -0.4437
6 16.69 0.2041 -1.5000 0.5959 0.4971 -0.5037
7 19.18 -0.0749 1.5000 -0.6010 -0.5156 0.5522
8 21.74 0.0669 -1.5000 0.5834 0.5174 -0.5431
9 24.29 -0.1240 1.5000 -0.5682 -0.5079 0.5115
10 26.81 0.1675 -1.5000 0.5699 0.5010 -0.4962
11 29.30 -0.1623 1.5000 -0.5791 -0.5022 0.5044
12 31.80 0.1352 -1.5000 0.5827 0.5064 -0.5169
13 34,32 -0.1235 1.5000 ~-0.5806 -0.5082 0.5197
14 36.84 0.1304 -1.5000 0.5773 0.5071 -0.51590
15 39.36 -0.1405 1.5000 -0.5764 -0.5054 0.5105
16 41.87 0.1429 ~-1.5000 0.5777 0.5051 -0.5105
17 44,38 -0.1389 1.5000 -0.5789 -0.5057 0.5128
18 46.89 0.1354 -1.5000 0.5789 0.5063 -0.5141
19 49.41 -0.1353 1.5000 -0.5783 -0.5063 0.5137
20 51.92 0.1372 -1.5000 0.5780 0.5060 -0.5128
21 54 .43 -0.1383 1.5000 ~0.5781 ~0.5058 0.5125
22 56.95 0.1379 -1.5000 0.5783 0.5059 -0.5128
23 59.46 -0.1372 1.5000 -0.5784 -0.5060 0.5131
24 61.97 0.1369 -1.5000 0.5783 0.5060 -0.5131
25 64.49 -0.1372 1.5000 -0.5782 -0.5060 0.5030
26 67.00 0.1374 -1.5000 0.5782 0.5060 -0.5029
27 69.51 -0.1375 1.5000 -0.5783 -0.5060 0.5029
28 72.03 0.1374 -1.5000 0.5783 0.5060 -0.5129
29 74.54 -0.1372 1.5000 -0.5783 -0.5060 0.5130
30 77.05 0.1372 -1.5000 0.5783 0.5060 -0.5130
31 79.57 -0.1373 1.5000 -0.5783 -0.5060 0.5130



simulation and those from Masri's studies [5] are as follows:

F,/K

Xy, =

= 1.624

N(1 - 1)2 + (2¢r)2
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Differences between the results obtained by the present digital

Aty = 0.01%
ARy = 0.29%
A%; = 0.037%
Ay = 0.%

Ay = 0.03%

Ay = 0.03%
XA

At the 31FSt impact of the digital computer output in Masri's

(at
(at
(at
(at

(at

(at

the 31TSt impact)

steady-state operation)
steady-state operation)
steady-state operation)

steady-state operation)

steady-state operation)

study [5], the following values of t, X, ¥y, %X, y, have been observed:

2.

(a3
]

o
]

<
o)
f

Damping force test

79.56

-0.1369

1.5

-0.5785

-0.5062

-0.5132

Since the damping force F(y,y) is a function of y and y, if the
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inputs y and y are known, the subroutine written for the damping force
F(y,y) and listed in Appendix A must yield the same results as the
results calculated directly by using eq. (2.12).

Comparison of the results obtained using the subroutine FORCE with
different inputs, and by using a Wang calculator, is given in Figures

27, 28, 29, and 30.
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F(y,y) 4 .
Digital Computer
200 A
Wang Calculator
100 F
— 1 2 vy
-1 __—__/ .
L -100
E -200
-1 1 .
X . 2.
y = Y sin Qt
Y = 1.650
D/2 = 1.675
Vo
P, = 100 psi A = 3.14159 sq. in O = 126 rad/sec So = 0.08375
y P, (Py-P1)A
Digital Computer 1.273822 78.416 200.20
Wang Calculator 1.273822 78.41636 200.20
Digital Computer 1.4437907 25.098 32.697
Wang Calculator 1.4437907 25.09773 32.697

Figure 27. Verification of Subroutine FORCE
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Digital Computer

Wang Calculator

D/2 = 1.6750 inches

Fy,y) 4
- 200 Em—
A
- 100
-2 A 1. 2,y
-1 ____/
L-100
L-200
-2 -1 1. 2.
-l 1 A A ’y
y =Y sin Qt
Y = 1.675
D/2 = 1.675
g = 0.08375 inch
o
vT
PC = 100 psi A = 3.14159 sq. in.

Digital Computer
Wang Calculator
Digital Computer

Wang Calculator

y
-1.3556528

1"

-0.89370176

1"

Pi

99.714

99.7136

4.8054

4.80538

Figure 28. Verification of Subroutine FORCE

-267.11

-267.11
31.053

31.053
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Fiy,9)
4
300 -
—— Digital Computer
200 4
| A Wang Calculator
100 A \
i
T : i 2.
. YC
. Y, 2. Y
e : 1 4,
: Y = 1.675
| c
| 2 3
» y = Byt + Byt  + Byt
0.01-
By = 402
B2 = -30150
0.024
By = 670000
.1.
v
P, = 100 psi A = 3.14159 sq. in. D/2 = 1.675 inches
Sy = 0.08375 inch
y Py (P,-P{)A
Digital Computer 1.340 94.896 251.97
Wang Calculator " 94.89555 251.97
Digital Computer 1.5075 23.974 29.167
Wang Calculator n 23.974103 29.167
Digital Computer 1.44854 18.228 78.390
Wang Calculator " 18.227526 78.390

Figure 29. Verification of Subroutine FORCE



F(y,y) 4
300 1
200 1
i
100 T :
{
—— i ! 2 :Y
1 Y 2
(]
1 Y 2. y
AL :C 1 ’
I Y
i C
I
0.01 1
By
B
0.02 A 2
B
3
'

—— Digital Computer

A

1.

Wang Calculator

650

y = Byt + Byt + Byt3

y
Digital computor 1.320
Wang Calculator "
Digital Computer 1.53384
Wang Calculator "
Digital Computer 1.42692

Wang Calculator

Figure 30.

t

A = 3.14159 sq.
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396

-29700.

660000,

in. D/2 = 1.675 inches

S, = 0.08375 inch

89.311 234.43
89.31098 234.43
38.882 76.001
38.881825 76.001
23.451 27.525
23.45134 27.525

Verification of Subroutine FORCE
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