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ABSTRACT

In this thesis the géries expansion method is used to
Obtain the moments and deflections of an isosceles right.
_triangulgf‘plate.bent by arbitrary~transverse loads. The
method is based on using an antisymmetric load on a square
-plate. Two boundafy conditions are solved and the numerical
results obtained for these cases are tabulated.
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" T. INTRODUCTION

Many of the present day problems of plates and shells
with which the engineer is confronted~lead to a two
dimensional linear‘partial differential equation which must
satisfy cettain boumdéry confiitions. Exact solutions are
available for only.a few 81mp1e mathematicdal shapes, e.g.,
circles, squares, elllpses, etc, For those shapes of
"particular importance such és triangles and rectangles for
which e%aot solutions cannot be obtained, approximate
solutions must be employed. One of the approximate methods
which is most useful in solving plate problems is Fourier
series expansion. Timoshenko used the Fourier series
expénsion method to get the numerical value of almost all
the plate problems throughout his book on the theory of
plates and shells?i(1)

A flat plate is a basic structural element of modern
engineering structures. It may be .thought of as a two-~
dimensional equivalent of the beam. The flat plate, in
general, resistse loads applied either transversely or
axially, and it resists these by means of direct stresses,
shear stresses, bending stresses, and torsional stresses.
The complete derivation of equations for flat plates can be
found in S. Timoshenko's book (l1). The equations are found
‘to be linear partial differential equations up to the fourth
order, Timoshenko used Fourier series in solving most of the

problems.

In the following pages Fourier series expansion will
be used to solve for deflections and bending moments of an
isosceles right triangular plate with two kinds of boundary
conditions under transverse load.

*Numbers in pafentheaes refer to the bibliegrapky



II. REVIEW OF LITERATURE

Triangular plates are used frequently in engineering
works, such as the building of tanks, as bottom slabs of
bunkers and silos, in large buildings, in delta and swenpt
wings of aircraft and in the bottoms of ships. There are
no general exact solutions for triangular plates of any
éhape which are subjected to lateral loads.

The general method of solving triangular plates consists
of ﬁsing approximate methods which depend on the particular
case and the boundary conditions. S. Timoshenko solved the
right triangular plate with simply supported edges by using
the Navier equation to calculate the deflection and bending
moment at any point on the plate (1). S. Woinowsky-Krieger
(2), A. Nadai, (3) and B.G. Galerkin (4) solved the
equilateral plate and right isosceles triangular plate which
are simply supported on all sides and subject to arbitrary
transverse loads. H.J. Fletcher used two methods for the
solutions of problems of an isosceles right triangular plate
bent by arbitrary transverse loads. One method made use of
a concentrated diagonal load on a square plate. The other
used an antisymmetric load on a square plate. A numerical
solution was given for the case in which the hypotenuse is
clamped and the legs are simply supported. A table was given
indicating how to solve fifteen of the possible eighteen
problems in which an edge is free, clamped or supported (5).
B. D. Aggarwala had a paper concerning bending of an isotropic
triangular plate subjected to concentrated loads. He considered

an equilateral triangular plate with one edge clamped and



with the other two edéés“simply supported. The nlate is
subjected to a concentrated load intensity P acting at the
Center'of the triangular plate (6). Other information.
éoncerning triangular plates can be found in H. D. Convey's
'ﬁoint matching method, in which he analyze@ uniformly loaded
triangular plates with either clamped or simply supported
gdges using a special adaptation of the poimt-matching
,technique. The functions satisfying the differential equations
must also satisfy exactly the boundary conditions on one
edge. Numerical results are tabulated for those three shapes
(7). Also, D. E. Ordway.and C. Riparbelli presented an
"application of the method of equivalence to the deflection
of a triangular plate. In the first part of this paper the
general equations and procedure are worked out for
determining the deflection of a thin delta plate under any
given normal loadiné. In the second part the theory is
deveioped and compared with experiments for a delta plate
specimen with 45° sweep under uniform load (8).

~ 1m the following pages of this thesis, two kinds of
boundary comditioms for isosceles right triangular plates
will be solved by trigonometric series. Numerical results
obtained from this method are tabulated.



III. SMALL DEFLECTIONS OF LATERALLY LOAD:D PLATES

In solving plate problems, it is found that the bending
properties of a plate depend greatly on its thickness as
compared to its other dimensions, In this thesis, it is
assumed that plates are thin and undergo small deflections.
The following additional assumptions are made in deriving
the differential equations for the laterally loaded thin
plate. |

1., The material is homogeneous, isotropic, and elastic.
Moreover loading is of such magnitude as to restrict the
plate to the elastic range.

2. The directiom of the load on a plate is normal to
the surface of the plate.

3, At the boundary it is assumed that the edges of the
plate are free to move in the plane of the plate.

The complete derivatiom of the differential equations
can be found in Timoshenko's book (1). Positive shears and
moméhts acting upon any differential element of the plate
are a8 shown in Figure 1. Moments are all indicated by right
hand screw notatioms. Positive deflectiom is in the same
direction as the loading q.
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Figure 1. Element of plate with the applied load, shear
and moment

Applying Hookdé's law and the equations of equilibrium
to the free body of the differential element leads to the
following set of equations:

aM alM

5% 5y = & (51
My _al L
§'§ By O Q (3-2)
3Qy N i
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where

y

2,
- = - BV
= -Myy = D(1l-u) 3555 (3-4)
: 2
3w W
-D(—g-if + u —;-a-i-z- (3-5)
P 2V
-D(€§§? + u ‘axé) (3-6)
S 5 _j%4w oW (3-7
>xF axayz""ay‘f""%" >-7)
.2 .
M_cosB+ M sini(-2 N, simrcosx (3-8)
M sin%c+‘M cos%c+2 M__sinxcosol (3-9)
X y Xy
g = lateral load which is a fumctior of x and
y .
w = vertical deflection of any poirt in the plate
u = Poisson's ratio 3
. Et
D = plate stiffness = FIQETE)
t = the thickmess of the plate
E = Young's Modulus
Qx» Qy=vertical shears



IV. SOLUTION OF ISOSCELES RIGHT TRIANGULAR PLATES

In this thesis, isotropic isosceles right triangular
thin plates of constant thickness subjected to lateral
load with small deflections will be analyzed. The main
purpose is to find bending momeénts and deflections under
different boundary conditions., For plates under lateral
loading the differential equation for deflection will bve (1)

4 # 4
av 2w 2w _ a(x,y) _
5%t 2-axzayz + ¥+ D (3-7)

The solution of this eq&ation for an isosceles right
triangular plate can be obtained from the solution for a
square plate by locading a square plate so that the boundary
conditions for the isosceles right triangular plate are
satisfied.

The solution of an isosceles right triangular plate
can be obtained by choosing boundary condtions of a square
" plate which are symmetrical with respect to the diagonal
and loadings symmetrical or antisymmetrical with resvect to
the diagonal of a square plate. This procedure is illustrated

below,

A square plate OABC, as shown in Pigure 2, has boundary
conditioﬁs which are symmetrical with respect to the diagonal
AC. A uniformly distributed load antisymmetrical with respect
to the diagonal AC is added:



-
Figure 2. A square plate

qQ(x,y)= -q(a-y,a-x)

- where O0<£x+y<a

These two loads produce a deflection of the square
plate such that the diagonal AC becomes a nodal line. Thus
the portion OAC of the square plate is in exactly the same
condition as a simply supported triangular plate 0OAC.

If, on the other hand, A square plate OABC, has
boundary conditions and loadings which are symmetrical with
respect to the diagonal AC, i.e.,

q(x,y)=q(a-y,a=x) where Osx+y=<a



then, the deflection of the square plate is symmetrical with
respect to the diagonal AC, also, the slope along the
perpendicular to the diagdnal AC is zero, i.e., (EE)AC=O.
If one superimposes a concentrated load along the diagonal
so that the deflection along the diagonal is also zero,
wAC= O, then the diagonal AC of the square plate
OABC satisfies the conditions of a clamped edge for both

triangles ABC and OAC.

i.e.,

In the following discussion, two sets of boundary
conditions are selected as illustrations. Numerical
solutions of the values of deflections and moments are

presented.
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CASE I ONE LEG CLAMPED, HYPOTENUSE AND ONE LEG SIMPLY SUPPORTED
The procedure for solving this case is as follows:

(a) This case may be considered to be one-half of a
square plate, as indicated in Figure 3 by dashed lines. If
a load p is applied at a point A with coordinates$g ,1, a
fictitious load -p is applied at A', which is the image of
the point A with respect to the line BC. These two loads
produce a deflection of the square plate such that the
diagonal . BC becomes a nodal line. Thus the portion 0BC of
the squafe plate is in exactly the same condition as a

simply supported triangular plate OBC.

Figure 3. Isosceles right triangular plate
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(b) Add an éncisymmetrical bending momert with resnect
to the diagonal BC on the edges DB and 30, i.e.,

My (¥)xeo= ‘My( a"Y)y___a

such as shown in Figure 4, This antisymmetrical bending
moment also produces deflections of the square plate such
that the diagonal BC becomes a nodal line.

S
[ _

B<_(: I _tril ——— .-‘,\.:‘j“:«\'.M'.',;*u. D

Figure 4. Antisymmetrical bending moments acting along
two edges of a square plate
(c) Combine conditions (a) and (b), by using the boundary
condition of the clamped leg BO, and using the formulas listed
in chapter I1I, deflections and bending moments at any noint
of the triangular plate can easily be found. The following

section is the numerical solution of this case.

If a load p is applied at a point A with coordinatess%,
n in a simply supported square plate, a load -p is applied
at A', where point A' is symmetrical to point A with respect

to tne diagonal BC as in Figure 3. From Timoshenko's book (1)

a°oe m+n ‘n.

o T3 22 (amimmylsinientt - (1) oinT]t
nwgq . MTX . nwy _

in— |sin ~-sin— (4-1)
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The loading is uniformly distributed over a square
plate and is antisymmetrical with respect to the diagonmal
BC, i.e.,

Q(_qu) = -q(a-1, a"g)
where O£§+'Léa (4-2)

Substituting this uniform load q dg dn for p and
integrating equatiom (4-1) over the area of the triangle

BCO,
A . MWX _
(ETiadyr sin “sin T (4-3)

Apn ‘}‘Iq(g q) sin ——531nan (-1)"*Pgintl 31n-zgh§dq
(4-4)

N

4at =
W1 = 3,2

3
M

where

by adding a bending moment along the edge BD

mirx
M (x) sZEmmn =

where E; is a comstamt which depemds om each particular case.
From Timoshenko's book (1) the deflection of the plate will

‘be:
al 2 E

" T77D a?{essmg:i tanhFcosh an(f - 3)
y . y _ 1l 1l mT mr .
'mﬂ(é.' 2)31nh mv(a Q)If sinhm"{-?COthTT

-

sinh mﬂ( - 2)— mn(- - 2)cosh mﬂ(- - 2{0 81n———

(4-5)
In the same mamner, by adding a bending moment along the
edge BO, i.e.,



MX(Y) = =M (a—-y) yaa
= -’%’h sin my(1l- -) (4-6)

the deflection will be:

3 = mm,-g{ —Zcothgg. sinh mv(g - %)

1l
cosh ?

- nm'(g - %)cosh mrr(zfa- - %)]-

[ tanh—?cosh mvr(- - 2)- m'rr(- - -2) sinh mw(— - 2)]}

.8in my(1l- %) (4-7)

The complete deflection of the triangular plate is
obtained by summing up equatioms (4-3), (4-5) and (4-7),
i.e.,

W Wl+W2 3 (4-8)
to satisfy the boundary condltims of the clamped edge B0,
the following condltlons nust be satisfied:

(8 0" Fxao™ Exao® (5D 0™ (4-9)

where O0<y4a

From equation (4-3), the slope of the deflection along
the edge x=0 produced by a uniformly distributed load is:

VW, 4a o o mA . ATy _
(é?(')kog w02 nz—‘ -(-—z-m%“ —A}ry 8in—= (4-10)

13



From equation (4-5), the moment M (X) ->h sin (mnx

distributed along the edge x=0 produces a slope

wz
(gx)x o~ I-ﬁji‘g

me M coshg?

[-ﬁtcnh—§ .cosh mv(% - %)

1

mr’
31nh—?

- on(d - 3) sinh ma(L - )]+

[Egcothggsinh mn(% - %)- mﬂ(% - %)-

cosh mm(¥ - %)]} (4-11)

by using the following series, equation (4-11) can be much

simplified as below.

42 n nwy
cosh mTT('- - ?) 'ﬁ’ E m?OSh-?Sln 2
= any
sinh mTr(- - ?)- - EEZ WSlnh—-ESln a
y 1 4 22 n
mﬂ'(- - 2)008}’1 m*rr( - 2): T7n§4_”m=1-n*
2m® my nmwy
(ma n251nh-2 —2 osh—?)81n

2
( 2m LT L, mw)singgg (4-12)

where O<y<a

oo n+l
(2% . 223s(cl) _unfpg  nmy (4-13)

14
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From equation (4-7) as obefore, the slope would be:
a =
(%Ti)x= ) 55 E {[coth - - -—]coth 4 +[ tanh % Z-
- & - i -3 -
]t nh E- 2}81n mr(1 a) (4-14)

Now, by substituting equations(4-10), (4-13), (4-14)
into (4-9), it becomes: |

T n+1 2 nmw ny 2
+ gg(-l) n[(COth --2 - ﬁ-;r)coth 2— + (tanh 2-' - Fﬁ-‘.
tanh 25 - 2]sin Egl =0 (4-15)

if equation (4-15) establishes, the constants of all the
terms sin ﬂ%& should be gero, then equation (4-15) becomes:

+1 n+l
4 2 mAmn (—l)n mnEm  (-~1) 2
e e [(cotn®3 - 72)

coth Eg'+ (tanh 22 - -—)tanh —Z]Ens (4-16)

From equations (4-3) and (4-4), if the loading is

uniformly distributed over the triangular plate
2

Amn i&é%ﬁ%? Whan m=1,3,5‘0000; n=2,4,6.....

4 qala

Apn= T n*)w- when m=2,4,6...0.; N=l1,3,5.....
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When the values of App are substituted into' equation
(4-3), it becomes:

nsinggzsinfgx -
m(nZ-n’) (m? 1'"17? +

W= 16‘1"[ z g

Mm=,35.+. n=zz244¢..-
g ozo m81nﬂz—x81n5-gz
2 m2 r AT
m=2,‘$.6~-»n=¢,35...“(m AZ)(m*en?)
Now, by substituting equation into (4-16), and assuming

(4-18)

64gaf
o the following equation is obtained:

% [(cotn2] - -) coth 2 +(tann2] - %)tanh!-g -2]E,

mng K *’ m? 0
ﬂmﬂ(mz m2)e t m=246 (m?=n%) (mZ+n2 %

Where Ne= 1,3,500000000- (4—19)

2[(coth—2 - -—)coth = +(tan h--2 - --)tanh o -2]E,

o2 E 1
Eﬁ(~1—21$- -nk = =0
ms n m=1.35-(n%=m?) (m*+n?)*

Where Rz 2,4,60..0.00 (4-20)

=0

Substituting the numerical value of the coefficients
in equations (4-19) and (4-20), and by considering only the
first ten coefficients, m=1 through m=10, the following
system of ten equatioas with tem umknowns E1 through ElO is

obtained.



4.1588El-0.64OOE -0.2400E,-0.1107E

2 3 4

-0.015158-0.0107E9-O.OO78E10=O

—0.0

-O.O244E7

3—0.16OOE4—0.

-O.O399E7-O.O277E8-O.Ol99E

~0.2400E —O.284OE2+1.8722E -0.1536E ,-0.

: § 3

9

4

-0.0499E -0.036OE8-O.O267E -0.0202E, ,=0

7 10

—0.1107E1—0.1600E -0.1536E.+1.4458E ,-0.

2
-O.O4OOE8—O.O306E

3
9

4

-0.0530E 10=

7 -0.0238E

—0.059251-0.095182—0.1038E —0.0952E4+1.

3

-0.0511E 9

-O.O404E8—0.O320E

7 —0.025631030

-0.035151-0.06OOE -0.0711E —0.0710E4-O.

2 3

-0.0465E7—0.O384E8—0.0316E9-0.O260E10=

—000244E1—000399E2-000499E3ﬁ0.0530E4-0o

+0.8568E -0.0351E8—O.O298E9-0.O252E

7 109

-0.OlblEl-O.O277E2—O.O360E -0.0400E,-0.

b 4

-0.0351E +0.754188-0.O274E9-0.0238810=

7

—O.OlOTEl-O.0199E2-O.0267EB-O.O3O6E4—0.

—O.0298E7—O.0274ES+0.673439—0.0220E10=0

17

592E5—O.O35IE6
.182960K

0951E -O.O6OOE6

5
-0.075911K

1038E —O.O711E6

5
.000012K

5
-0.004819K

1766E -0.0645E6

5
0645E5+O.9916E6
-0.000952K

0511E —0.0465E6

5

0404E_.-0.0384E

5 6
-0.000303K
0320&5—0.0316E6
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-O.OO78E1-0.0148E2—O.O2022 -0.0238E4—O.0256E -0.026OE6

3
9

5

-0.0252E -0.0238E8—0.022OE -0.6083E10- -0.000123K

T

(4=-21)
Solving the above ten simultaneous equations, the values of
E  can be ovtained and are indicated in Table I.

Table 1

Values of the coefficients of moments at clamped edge

El Eg E3 E4 §5

0.041213K|-0.018617K 0.002315K|-0.001980K 0.000583K

Eg Eq 8 By o

-0.000565K| 0.000219K~0.000242K|{ 0.000104K-0.000124K

E

Substituting the calculated values of the coefficients

El through ElO
along the clamped edge of the triangular plate will be

into equation (4-6), the bending moments

obtained and are indicated in Table 11I.



Tavle II

Bending moments of triangular plate

along clamped edge

2
x| M(ae® | x| M(aa®) | x| M (aa®)
ioa a a
0 0 0.35 {-0.03%2514 | 0.70 |{-0.011292
0.05 {-0.010470 |0.40 }-0.03%1090 {0.75 |=-0.007956
0.10 |-0.018992 {0.45 {=0.028851 | 0.80 {-0.005157
0.15 |{-0.025055 {0.50 |-0.025864 {0.85 }-0.002910
0.20 1-0.029214 |0.55 |-0.022360 | 0.90 |-0.001245
0.25 | =0.031840 {0.60 |=-0.018666 | 0.95 |-0.000315
/
0.30 |-0.032895 {0.65 ' -0.014944 1.00 0

19
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The deflections and bending moments on the perpendicular
bisector of the hypotenuse of the isoceles right triangular
plate simply supported on all edges under constant loesd q can
be calculated by equation (4-18). These values were also
obtained by H.J. Flectcher (5) and are tabulated in Table III.

Now, by substituting all the known values from Table I
into equations (4-5) and (4-7), and combining the results
with equation (4-18), the deflection on the perpendicular
bisector of the hypotenuse of the isosceles right triangular
plate with one leg clamped, the hypotenuse and the other leg
simply supported will-be obtained., Values of moments are
also tabulated in Table 1V,



Table 1131

Deflections and moments of right triangular plate simply
supported on all edges under constant load q oqao.s)

4 2 2, 4 2 2
x o 1y (aa®/0) W Caa? /o) o (aa?/m) o, (aa?) [, (asd)
0.00 o 0 10.01914  {=0.01340{0.0134
0.05 {©.000046 {-0.00189 0.01728 1-0.00965|0.01459
0.10 |0.000167 {~0.00514 | 0.01311 =0.00249{0.01586
0.15 |0.000327 |-0.00864 | 0.00848 | 0.00530}0.01717
§0.20 |0,000486 |-C.01175 | 0.00383 | 0.01260]0.01796
0.25 |0.000607 [-0.01385 |-0.00019 | 0.01813}0.01788
0.30 {0.000658 1-0.01478 | =0.00%39 | 0.02160:0.01684
0.35 |0.000619 1-0.01404 | =0.00522 | 0.02190}0.01460)
0.40 10.000486 [-0.01152 | =0.00550 | 0.01882}0.01112
0.45 10.000269 |-0.00692 | -0.00387 | 0.01170}0.00629)
0.50 0 0 0 0 0

21



Table 1LV

Deflections and moments of right triangular plate with one

leg clamped, hypotenuse and the other leg simply supported.

22

W.Oo3)

- | 2 -
2 2 L waa®/) W, (aa®/D)| W (aa®/D) wxy(qaz/n){ ¥, (qa®)| H, (qa®)
0.00 0 0 0 0 0 0
0.05 0.000010 0.00452 -0.00077 0.00724 | -0.00747| 0.00249
0.10 0.000061 0.00286 —0.00243 0.00822 | -0.00603{ 0.00557
0.15 0.000151| -0.00103 | -0.00465 0.00678 | -0.00106| 0.00844
0.20 | 0.000261} -0.00544 | -0.00692 0.00392 | 0.00527 0.01076
0.25 | 0.000360| -0,00908 | -0.00865 0.00076 | 0.01100} 0.01207
0.30 0.000419| -0.01165 -0.00961 -0.00216 0.01535| 0.01231
0.35 0.000414 ) -0.01248 | -0.00924 -0.00408 0.01697| 0.01126
0.40 | 0.000337| -0.01140 | -0,00735 | -0.00465 0.01543] 0.00892
0.45 0.000191} -0.00809 -0.00359 -0.003%42 0.00998§0.00520
0.50 0 -0,00233 0.00233 0 0 ! 0
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CASE II ISOSCELES RIGHT TRIANGULAR PLATE WITH CLAMPED LEGS
AND SIMPLY SUPPCRTED HYPOTENUSE

Procedures for solving this boundary condition are the
same as the procedure for isosceles right triangular nlate
with one leg clamped, hypotenuse and the other leg simply
supported except an extra pair of antisymmetrical bending
moments in edges CD and CO with respected to the diagonal
CB are necessary as shown in Figure 5.

Figure 5.A pair of antisymmetrical bending moments acting
along the edges of a square plate.
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The moment along edge CD can be represented, as before,

by the trigonometric series
)
_ : aindTY
My(¥) =2 Epsin=g

the deflection of the plate caused by this moment will be:

Wy 1%5éél§m?§ 2 [Egtanhﬂgcosh mn(g - é) - mw(g - %),

coshgg

sinh mv(-g - —%)}+

mr mT . x 1
[—ﬁcoth—2.81nh mv(; - 2)‘

sinhﬂg
mw(§ - %).cosh mn(g - %)1}sin Egl (4-22)

In the same manner, the bending moment along edge 0OC is

My(x) = -;%lEmsin mr(1l- g) (4-23)

The deflection of the plate will be:

2

Wem — S; E { 1 O oth Meinh am(L - l)-—mn(Z - 1).
5 4W2D m-l;S sinhgg[_? 2 a 2 a 2
cosh mw(% - %i]- Coihgg[egtanh Egcosh mﬂ(% - %)-

(2 - %)sinh mr(L - %)3} sin mr(1- 3) (4-24)

Now, the complete deflection of the triangular plate
is obtained by summing up expressions (4-3), (4-5), (4-7),
(4-22) and (4-24), i.e.,

w'swl+w2+w3+w4+w5 (4-25)
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To satisfy the boundary conditions of the clamped edges

BO and CO, the following conditions must be satisfied.

(§; )X-O B
(), o= © (4-26)

Equation (4-26) can be expressed an follows:

4o mA 4 o= mngE T 2
T * 7 2 e+ fl(coths - ).

coth~3 -1]E = O

where Nel,3,5..0... (4-27)
42 mp 4= mnE 2
PI T~ F 2 ey - a0 “h'z - )
tanh™ -1]E = 0

Where 1’1:2,4,6........... (4-28)

if the loading is unlformlg distributed over the triangular

64qa
T4’

plate, by assuming Ke as before, equations (4-27),

(4-28) become

nf 2 nw 16 = mnE
Tf[(COth—? - "")COth"? "l] En"' Tfm:zy’.}mzq-n"sz +
= n’ 0
D popy. (mZ-1Z) (m?+n? )2~
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where n=1,3,5.cc0000e0 (4-29)

16 2 mnEn
_— &

nir 2 o
m[(tanh™] - -£)tanha® -1JE + —n
nm 2 n m=,35.. (m.z +n? )2

- 1
nkK = = 0

m=i35-- (n”=m”)(m*en® )’

where n=2,4,6.cessesivse (4-30)

Substituting the numerical values of the coefficients
in equations (4-29) and (4-30), and by considering only the
first ten coeffieients, m=1l through m=10 the following
system of ten equations with ten unknows E, through E,,
is obtained: '
-0.2215E

4.9870El-1.2800E .-O.O?lOEs-O.0303E8-O.0157E10

2 4

= 0.182960K

-1.280031+3.2033E2-0.5680E3—O.1903E5-0.0797E7—O.O399E9

= -0.075911K

—0.5680E2+2.0915E3—O.3072E4-0.1422E6-O.0721E8-0.0404E10
=0.000012K

= -0.004819K
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-0.1903E2-O.19O4E ~-1.2566E -0.129OE6-O.08088 ~0.0512E

4

5 8

10
=0

-0.129Oh5

-O.O7OlE1—O.l422E3

= -0.000952K

-1.04720E6-O.093OE -0.0631E

7 9

-0.0797E2—O.1060E —0.0930E6-O.8976E -0.0702E8-0.0504E10

4 7

=0

-O.O3O3E1-O.O721E -0.0808E.~0.0702E

3 5

7—0.7854E8-O.0548E

9
= =-0.000303K

-0.0399E,-0.0612E -O.O631E6-O.0548E8-0.6981E ~0.0440E,

4 9 0

=0

-0.0157El-0.0404E -0.0512E -O.O5O4E7-O.O44OE —0.6283E10

3 5 9

= -0.000123K
(4-31)

Solving the avove ten simultaneous equations, the values of Em
can be obtained and are indicated in Table V.



Table V

Values of the coefficients of moments at clamped edges.

By

Es

E4

0.034001Kj{

-0.010691K

-0.002683K

0.000974K

-0.001354K

Eg

Eq

Eg

Eq

B0

1 0.000749K

~-0.000705K

0.000449K

-0.000405K

0.000286K

Substituting the calculated values of the coefficients
E, . into equations (4-6) and (4-23), the bending

E, through

1

moments along the clamped edges of the triangular plate are

10

obtained and are indicated in Table VI.




Bending moments of

TABLE VI

triangular plate along clamped edges

I T
g /28 My(qa ) g 498 My(qa ) g on_ My(qa )

0 0 0.35 | -0.026626 | 0.70 | -0.010994
0.05 | =0.002318 | 0.40 | -0.026706 | 0.75 | =0.007990
0.10 | =0.007009 | 0.45 | -0.025416 | 0.80 | -0.005177
0.15 | =0.013364 | 0.50 | -0.023410 | 0.85 | -0.002798
0.20 | =0.018925 | 0.55 | =0.020933 | 0.90 | -0.001252
0.25 | -0.022647 | 0.60 | -0.017820 | 0.95 | -0.000462
0.30 | =0.025125 | 0.65 | —0.014319 | 1.00 0

29
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Now, by substituting 211 the known values from Table I
and Table V into equations (4-5), (4-=7), (4-22) and (4-24)
and combining the results with equation (4-18) by using
equation (4-25), the deflection of the perpendicular bisector
of the hypotenuse of the isosceles right triangular plate
with clamped legs and simply supported hyvotenuse will be
obtained. Values of moments are also tabulated in Table VII,



TABLE VII

Deflections and moments of right triangular plate with

clamped legs and simply supported hypotenuse (U=0.3)

yy

D.00 0 0 IO 0 0
PD.051 0.000002 0.00117 0.00313 -0.00373 | =0.00066
0.10}| 0.000025 0.0008T7 0.00576 -0.00516 0.00290
0.15{ 0.000077 -0.00109 0.00606 -0.00282 0.00566
0.20] 0.000154 -0.00387 0.00429 0.00197 0,.00810
0.25| 0.000233 -0.00647 0.00186 0.00709 % 0.00972
0.30| 0.000290 -0.00843 -0.00088 0.01159 0.01035
D:35 0.000299 - =0,00907 -0.00291 0.01 582 0.00975
0.40| 0.000252 -0.,00812 -0.00379 0.01320 0.00790
0.45| 0.000145 -0.00520 -0.00297 0.00883 0.00468
0. 50 0 0 0 (0] 0




By comparing the results of the above three different
kinds of boundary conditions, as in Table III, Table IV and
Table VII, the deflections are shown in Figure 6, moments
are shown in Figure 7 and Figure 8. Also, moments of the

clamped edges are compared as shown in Figure 9.
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.0001

.0002

.0003

.0005

.0007

Jc.-y--‘{)..310».\&‘h ,/1-3-0.325a
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VA

Xmy=0.335a //

e ™
\\\_\\\\ ];ax=o'0005?3’
\

simply supported
edges

W, =xqat/D
one leg clamped
W=eqa’/D

two legs clamped
W'-ﬁqu/D

Figure 6. Deflections along the perpendicular bisector

of hypotenuse of the triangular plate of various
boundary conditions




-0.02

-0.01

0.01

0.02
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8imply supported edges
Mp=q' qaz

‘one leg clamped
Mn= @' qa2

two legs clamped
Hn= T qa2

x;;;0.370a n

] 1]
Q\c o MaXe,3225

-,
.
\L{/-‘f—

Figure 7. Bending moments along the perpendicular bisector

of the hypotenuse of the triangular plate with
various boundary conditions



-0.01.

0.01

0.02

35

simply supported edges
Mt-aﬂqaz

one leg clamped
My=g"qa2

two legs clamped
My=15"qa”

Figure 8. Bending moments along the perpendicular bisector

of the hypotenuse of the triangular plate with
various boundary conditions
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-0.04
«0.03 one leg clamped
L ] W 2
Mx= B qa
two legs clamped
w2
Mx=]‘ qa
-0.0330 \
\
WA
\
-0.0268\
-0.01
K

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 9. Bending moments along clamped edges
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V. DISCUSSION

To find the value of the coefficients Em’ theoretically
one has to consider an infinite number of coefficients and
“thus solve an infinite number of simuwtaneous equations., In
this thesis, it is considered accurate enough to use only
the first ten coefficients and solve for .the ten unknowns

E, through E

1 10°

The difference between considering only the first ten
coefficients and the infinite coefficients is quite small.
As it can be seen, by considering only the first four
coefficients in equation (4-21) and the first five
cdefficienta in equation (4-31), the results, which are
tabulated in Table VIII and Table IX, are. almost the same
as those obtained with ten coefficients.

The results from both Case 1 and Case 2 of this thesis
can be used to design those isosceles right triangular plates
which fit the above boundary conditions. As it can be seen,
when'the_nume;ical values of the uniformly distributed load,
the thickness.of the plate and the Young's modulus are known,
the corresponding deflections and bending moments at any
point of the triangular plates can be found from equations
(4-8), (4-25), (4-6), and those formulas listed in Chapter
I11.
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Table VIII

Values of the coefficients of moments at clamped edge by
considering only the first four coefficients in exoression

(4-21)

0.041206K | -0.018629K { 0.002300K |-0,001995K

Table IX
Values of the coefficient of moments at clamped edges
oy considering only the first five coefficients in

expression (4-%1)

&
n

[

E 10.033989K |{-0.010690K | -0.002749K | 0.001010K |-0.001466K
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VI. CONCLUSION

.From the results obtained in this thesis, the following

conclusions were observed:

1. In the case of symmetry the maximum deflection of an
isosceles right triangular plate simply supported on all
edges under constant load q or simply supvorted hypotenuse
and clamped legs under constant load q occurs in the
perpendicular bisector of the hypotenuse of the plate,
that is:

In a simply supnofted triangular plate

Wimax = 0000660 gqa*/D where x=y=0.310a

In triangular plate with clamped legs and simply
supported hypotenuse

W' = 0.000305 q24/D where x=y=0.33%5a
2, From H. J. Fletcher's work (5) the maximum deflection
of an isosceles right triangular plate clamped along the

diagonal and simply supported on the edges is
Wpax = 0.000370 qat/D where x=y=0.255a

3. Because of unsymmetry the maximum deflection of an
isosceles right triangular plate with one leg clamped,
hypotenuse and the other leg simply supported does not occur
on the perpendicular bisector of the hypotenuse of the plate.
The largest deflection in the perpendicular bisector of the

hypotenuse is



W = 0.000425 qa4/D where x=y=0,325a

4, Because of symmetry, —.']-;- = -117 or wxx' vy
x y

perpendicular bisegtor of the hypotenuse of an isosceles
right triangular plate simply supported on all edges and an
isosceles right triangular plate with a simply supported
hypotenuse and clamped legs.

_2_
Ty
il e v
Tx Ty
The principal planes are im the n and t directions in
these cases. By comparing Figure 7 and Figure 8, the
largest moment of the triangular plate in the perpendicular
bisector of the hypotenuse should be:
In a simply supported triangular plate

2 where x=y=«(0,325a

(Mn) Mmax-o.ozzs qa

max

this is also the maximum moment in the above plate.
In a triangular plate with clamped legs and simply
supported hypotenuse

(M), ,=0.0140 qa° where x=y=0.370a

Also, by comparing Figure 7, Figure 8 and Figure 9,
the maximum moment in an isosceles right triangular plate
éith one leg clamped, hypotenuse and the other leg simply
supnorted is on the clamped edge, i.e.,

40

.W both on the .
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hmax=(mx)max= f0.03155 qa2 where x=y=0,5a

5. By comparing Figure 7 and Figure 8 the bending moments
on tne perpendicular.bisector‘of the hypotenuse on an
isosceles right triangular plate with a simply supported
| hypotenuée and clamped legs énd an isosceles right triangular
vplate with one leg clamped, hypotenuse and the other leg
simply supported are aporoximately equal, but the difference
of the bending moments between both the above two nlates and
the simply supported plate is large, especially near the

right angle of the triangular plate.

6. From Figure 9, tne bending moments along the clamped
edge between an isosceles right triangular plate simply
supported hypotenuse and élamped legs and an isosceles
right triangular plate with one leg clamped, hypotenuse and

the other leg simply supported are also apnroximately equal.
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