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ABSTRACT

The object of this thesis is to demonstrate, by use 
of an IBM-1620 digital computer, a fast efficient method 
for locating natural frequencies of multi-mass rotational 
systems. Stress and deflection characteristics are 
examined at these frequencies also.

The shafts considered in this thesis are simply 
supported and symmetrically loaded with five concen­
trated masses. These five masses are placed at increments 
of 10 inches on a 60 inch shaft. The variable to be 
examined is shaft diameter, which is varied from 0.2 inch 
to 1 inch by increments of 0.2 inch. The effect of shaft 
weight, which is a function of shaft diameter, is examined 
and a definite pattern is obtained for critical speeds.
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INTRODUCTION

This thesis utilizes the facilities of the IBM-1620 
digital computer to locate natural frequencies of a multi­
mass rotational system and examine their effect on 
deflection and stress characteristics in the shaft. Until 
the advent of the digital computer, no practical solution 
to the problem was available for more than two modes of 
vibration. The method investigated is adaptable to any 
rotating-circular shaft with either distributed or con­
centrated masses.

The shafts examined are symmetrically loaded and 
simply supported. The system, (fig. 2-a) composed of 
five concentrated masses, has five critical frequencies 
or five distinct modes of vibration. If the system is 
allowed to operate at or near one of the natural frequen­
cies, the deflection and stress become infinitely large 
and failure will result. In the analysis, the system 
is considered in transverse vibration; thus neglecting 
gyroscopic effects. Variation between the actual bound­
ary condition for moment and deflection and the mathe­
matical boundary conditions are also neglected.

This subject was chosen by the author because of his 
interest in the field of vibration and stress analysis 
and for further knowledge of critical speed. To the 
author’s knowledge no previous work has been attempted 
in analyzing the stress and deflection distribution



curves at various modes or relationships for critical 
speeds of a system containing concentrated masses.
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Stodola was one of the first men to solve the critical 
speed problem of higher order modes. This method considers 
inertia loading and influence coefficients but it becomes 
very lengthy for more than two concentrated masses.

*Den Hartog (2) discusses shaft deflection of a simply 
supported shaft with one concentrated mass operating at 
or near the critical frequency.

Church (1) discusses the same system as Den Hartog
(2) and also demonstrates a tabular method to calculate 
critical frequencies of multi-mass systems with concen­
trated loading.

Macduff and Curreri (3), discuss shaft deflection 
and bending stress characteristics for a single disk and 
shaft system.

Prohl (4) was the first to develop a method to obtain 
mode shapes of shafts which operate at higher order critical 
speeds.

REVIEW OF LITERATURE

* Refer to Bibliography for all references.
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DISCUSSION

The first section of this discussion is an analysis 
of a simply supported shaft with one concentrated mass, 
as illustrated in Church (1), Den Hartog (2). It is 
placed here in order that the reader may have an under­
standing of the principles involved.

Figure (1-a) represents the system where the center 
of gravity and geometric center do not coincide, due 
to machining of the disk. When the shaft rotates at 
an angular frequency of W (rad./sec.), an impressed or 
centrifugal force is set up which causes a deflection 
equal to y. The force, due only to the concentrated 
mass, acts at the center of gravity of the concentrated 
mass and equals m(y+e)W2 . It is balanced by the restor­
ing (spring) force of the shaft which acts at the center 
of the mass and equals Ky for equilibrium:

This equation is for the case where damping is 
negligible. From this equation it is interesting to 
examine the physical action that takes place as the 
rotational speed of the shaft is increased, Figure (1-b).
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FIGURE 1
CURVES PERTAINING $0 THE SINGLE-DISK AND SHAFT SYSTEM
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When the rotational speed is below the critical, the 
center of gravity is outside the geometric center of the 
disk. This can be easily seen, as Y/e will remain positive 
for all speed ratios less than unity. The path of the 
geometric center (S) is a circle at a radius Y about the 
bearing center line (B). The center of gravity also 
follows a circular path at a radius of Y+e about the bear­
ing center line (B).

This value of Y is required to achieve equilibrium 
between the spring and inertia forces acting on the 
system. As the speed ratio increases to unity, the shaft 
is in a state of "indifferent equilibrium". In other 
words, the geometric center oscillates about the bearing 
center line. At speeds greater than the critical., the 
value of Y becomes negative and below the critical, Y is 
positive. In the limit Y/e becomes -1 or the center of 
gravity approaches the center line of the bearings thus 
eliminating the inertia force. At these high speeds, 
the shaft is very stable. This sign change represents 
a change in phase, or angle, between the exciting force

Ovector meW and the radius Y. At low speeds, this angle 
is 0°, while at high speeds, it approaches 1B0°.

Bending stress is examined by Macduff and Curreri
(3) for this system:

(2 )

where:
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Eliminating W
Y = w L3/4SEI 
w = 4SYEI/L3 
M = 12YEI/L2

(2a) ST = 6DEY/L2
Values for Y/e can be obtained from Equation I. If the 
eccentricity (e) is approximated, a value for deflection 
on both sides of the critical frequency can be obtained. 
With these values, and the above formula, bending stress 
can be obtained at the critical frequency.

The study of the one mass, simply supported shaft 
involves all the basic principles necessary to understand 
the problem. An expansion of these principles is given 
in the remainder of the discussion.

The system shown in Figure (2-a) represents a 
problem which might be encountered in the design of 
an automobile driveshaft or a turbine shaft on a jet 
engine. This system will be analyzed by M. A. Prohl’s 
(5 ) method developed in 1945* This method is basically 
the same as that used for torsional vibration, except 
that there are four integrations rather than two. It 
is derived from the basic transverse vibration equation 
of a beam as discussed by Miller (4 ).

Due to the length of this problem, it is especially 
suited for solution by the digital computer. As in the



FIGURE 2

(a) MULTI-MASS SYSTEM

(b) EQUIVALENT. SYSTEM

vO
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method for torsional vibration, an estimated natural 
frequency is used to start the calculation and determine 
the acceleration and hence the inertia force on the beam. 
Once the inertia loading is found, shear, bending moment, 
slope and deflection can be determined at each station 
in the system. With the boundary conditions known at 
the first support, it is possible to start at this 
support and vary the frequency until we obtain satisfactory 
boundary conditions at the next support. When these 
boundary conditions are satisfied, the system is in 
equilibrium.

It is essential to an understanding of this method 
to recall from strength of materials the following basic 
equations:

To adapt these equations to the problem, it is first 
necessary to divide the shaft into concentrated masses 
connected by weightless shaft sections or springs, Figure 
(2-b). Basically, a numerical integration procedure is 
used to solve these equations and thus obtain values for 
shear, moment, slope and deflection along the beam. For 
a given mode of vibration the masses must be multiplied
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by the acceleration YW to determine the loading on the 
beam. The integration or summation of these inertia 
loads gives the shear diagram for a general case, Figure 
(3-a). Starting with the initial shear at Station 0 and 
since the change in shear along the beam is:

(4) AV = mYW2 
the shear at Station 1 is:

2

(4a) Vi = VG + m0Y0W2 
and the shear over Section 2 is:

(4b) Vjj - Vx + hi-lY-lW2 = VQ + hIoYqW2 + m ^ W 2 
From the values of shear moments at each station 

and the bending moment diagram can be found Figure (3-b). 
Since:

M = J V dx
(5) Mx - Mq + Vx DX

M2 = %  + V2DX - Mq + ViDX + V2DX 
To obtain the slope curve, Figure (3-c), note that the 
moment between Station 0 and 1 is given by:

(5a) M = Wo + (ML - lVb)X:/DX
Therefore:

(6)

but at Station 1:

(6a)
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FIGURE ?
GRAPHICAL REPRESENTATION OF ELEMENTARY BEAM EQUATIONS
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The deflection curve, Figure (3-c), can be obtained by- 
integrating the slope equation.

Y = fo dx
(7 )

Y = ^ ( 0  X + CU
Y = l].(M0X8/2 + (Mx - M0)X3/6DX) + 0oX + Y0

but at Station 1
X = DX(7a)
Yl = DX/EI(Mo/3 + M]_/6) DX + 0oDX + YQ

By progressing across the beam general equations 
can be obtained that are adaptable to the digital 
computer. These equations are in computer form:

( S )

Let:
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Let:

Normally it is possible to eliminate two of the four 
basic boundary conditions at the supports, as they are 
zero. In the case of a simply supported shaft, moment 
and deflection are zero and the unknown boundary conditions 
are shear and slope. In the method used, it will be 
assumed that one of these unknown boundary conditions is 
zero and the other is unity. With this assumption it is 
possible to calculate shear force, moment, slope and deflec­
tion in terms of the unity boundary condition. The 
assumption is then reversed and the above steps repeated to 
obtain shear force, moment, slope and deflection in terms 
of this boundary condition. Finally the results of both 
solutions are added to obtain the complete solution.
The equations for the known boundary conditions at the 
right support are:

(9a) Y = A Vo + B 0O
(9b) M = C Vo + D 0o

By considering either of the above boundary conditions 
as zero it is possible to obtain Vq in terms of 0O or 
vice versa. This value is then substituted into the 
equation for the second known boundary condition. If 
both are zero, the boundary conditions are satisfied
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and the beam is capable of supporting vibration. There 
are four possible ways that the second boundary condition 
can be expressed; namely, moment/initial slope, moment/ 
initial shear, deflection/initial slope, or deflection/ 
initial shear. In this thesis the deflection was 
chosen as zero and the moment was expressed in terms of 
initial slope. Figures (4-9) represent a plot of moment/ 
initial slope versus frequency for each shaft diameter 
considered. When the moment/initial slope remainder 
becomes zero, the boundary conditions are satisfied and 
a critical frequency is obtained.

Relations can also be obtained for shaft deflection, 
bending stress and shear stress at the critical speed.
Each of these relations will be in terms of either 0O 
or V 0. In this thesis the relation with 8o is used in 
the mathematical solution for simplicity. The solution 
for 0 is not carried out in this thesis but will beO
shown here for future reference. All deflections will be
caused by inertia forces and a deflection equation can
be written at each station in terms of these forces.
The following equations utilize influence coefficients. An
influence coefficient is a deflection caused by a unit
load. For example, a means a deflection at point one

11
due to a unit load at point one. The deflection at 
station one for this problem is:













16







24

A total of five equations can be written with five 
unknowns. Therefore, a solution for deflection at 
each station can be obtained. By taking these results 
for deflection and using the deflection/slope ratio 
plots in this thesis, a value for 0Qcan be obtained 
for each case considered. With this value of 0O
deflection, shear stress and bending stress can be 
expressed as absolute values.

The deflection/initial slope versus beam length 
curves, Figure (12), are found by utilizing the deflec­
tion boundary condition (Equation 9a) at the right 
support. From this, one unknown Vq is found in terms 
of the second unknown 0O. This ratio is then substi­
tuted at each station to eliminate V and obtainO
deflection in terms of initial slope. These calcula­
tions are made at each critical frequency for all 
diameter shafts.

The same procedure is used to find moment and
shear force in terms of initial slope. For each of
these a new ratio was set up using the same approach as
above. The three ratios (Y ,T , V ) are equalRAT RAT RAT
at the natural frequency. Once moment and slope are 
obtained at each station, the maximum bending stress 
and shear stress are found by use of the following 
formula: gip_ T (NX) ( D/2)

(11) Q = 7 dA



vn
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The values for bending stress in terms of initial slope 
are plotted for each mode, Figures(13-17). A curve is 
also drawn to show the magnitude of both bending, Figure 
(19), and shear stress, Figure (1&), at each mode for 
each shaft examined.

The first and main problem to be examined was 
locating critical frequencies of a multi-mass rotational 
system, without damping. The only variable examined is 
shaft diameter, which ranges from 0.2 to 1 inch in 
increments of 0.2 for these relationships. The curves 
in Figures(4-9) are moment (right support)/initial slope 
ratio versus frequency. These curves, one for each 
diameter considered, cross the axis five times and go 
off to infinity after the last crossing. Each of 
these crossings represent a critical frequency.

The value of critical speed thus obtained considers 
the system in transverse vibration, where the system 
would not be rotating. In the actual case, rotation 
exists; therefore, if the shaft carries one or more disks 
the gyroscopic forces must be considered, (6). These 
forces tend to resist the shaft deflection or result in 
a moment opposing the inertia moment. This reduces 
the deflection and tends to raise the critical speed.

A second assumption was made that the bearings are 
rigid and do not deflect. This is erroneous as every 
bearing will deflect somewhat, due to loading conditions.
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This deflection will tend to lower critical speed as the 
shaft is more flexible.

Another assumption, which is not exactly true, is 
that of zero moment at the end supports. The moment 
approaches zero if the initial slope is small. For 
large slopes the assumption of zero moment is not 
true as bearings will tend to resist larger deflections. 
This assumption would tend to lower the critical speed 
of the system as it becomes a more flexible system when 
considering the moments (at supports) as zero.

Figure 10, critical speed versus shaft diameter, shows 
the rate at which the critical speed increases with shaft 
diameter. When the higher order critical speeds are com­
pared to the fundamental, Figure 11, a definite ratio is 
obtained. For a diameter of 0.2 inch or a ratio of shaft 
mass to concentrated mass of 0.13 the following pattern 
(1:4:9:15. #:22.S) is obtained. At the other extreme the 
1 inch diameter or a shaft mass to concentrated mass 
ratio of 3.3 is (1:4:9:16:24.#) and appears to be asymp­
totic at a ratio of (1:4:9:16:25), for large diameter 
shafts.

The shaft deflection/initial slope ratio versus shaft 
lenght, Figure 12, curves are examined by varying diam­
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eters from 0.3 to 0.8 inches. These curves show that the 
deflection curve has a definite form for each mode regard­
less of shaft diameter. This means that the deflection/ 
slope ratio is independent of shaft diameter.

By examining the bending stress/initial slope ratio 
versus beam length curves, Figures (13-17) it is discov­
ered that bending stress is dependent on shaft diameter.
Only one value of bending stress is plotted, but both 
compressive and tensile stress of equal magnitude exist.
The values plotted are on the bottom of the shaft relative 
to the deflection/initial slope ratio curves, Figure 12.
It should be kept in mind that the shaft is in a state of 
indifferent equilibrium and this stress will alternate 
from positive to negative values, but the sign of stress 
slope ratio remains constant as slope changes to cancel 
sign of bending stress. Figure 19 shows a plot of maximum 
bending stress/initial slope ratio versus mode. It can be 
seen that this ratio increases greatly between the fourth 
and fifth modes. This increase is due to direction and 
magnitude of inertia forces and initial slope value.

From the shear stress/initial slope ratio verses beam 
length, Figure 18, a definite increase is noted as the mode 
of vibration increases. This increase is due to the inertia 
force which is proportional to frequency squared.
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CONCLUSION

A conclusion can be reached, from the discussion 
and results shown on the foregoing pages, that this 
approach to the problem of multiple critical speed can 
be adapted to a system with numerous supports and an 
infinite number of concentrated masses.

From an examination of the moment/initial slope 
remainder versus frequency curves, a definite relation­
ship was discovered between the frequencies at different 
modes of vibration, Figure (11). By a comparison of the 
relationship obtained for the 0.2 inch diameter shaft 
(shaft mass/cone. mass ratio of 0 .13) and the 1 inch 
diameter shaft (shaft mass/conc. mass ratio of 3.3) a 
maximum deviation of S.Qi+ percent is obtained at the fifth 
mode. If the asymptotic condition is compared to the
0.2 inch diameter shaft, a deviation of 8.<3 percent exists 
at the fith mode. These deviations are acceptable when 
discussing critical speed, since the mathematical solu­
tion neglects many variables such as gyroscopic effect, 
bearing elasticity, and variation in boundary moment which 
would affect the actual system. Also it is impossible 
to operate a machine within ten percent of a critical 
frequency due to the large amplitudes of vibration.
With these facts in mind, very good results could be 
obtained by using the basic energy method (for locating
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fundamental critical speeds) and the asymptotic relation­
ship (1:4:9:16:25) for either concentrated or distributed 
loading conditions. A close examination of the above 
relationship shows that each number stands for the mode 
of vibration squared and could be extended to systems 
with more than five masses.

From the deflection/initial slope ratio versus 
beam length curve both deflection and slope can be 
expressed as inertia load divided by modulus of elas­
ticity and moment of inertia times a constant. These 
curves, therefore, are useful for any diameter shaft 
or material as long as the beam dimensions are not 
changed.

From the bending stress/initial slope ratio versus 
beam length, it can be concluded that the only variables 
are area moment of inertia, and modulus of elasticity.
As the diameter increases, the magnitude of this curve 
increases. By comparing the bending stress and shear 
stress ratios, the bending stress is shown to be the 
governing stress for a particular mode; and, therefore, 
would be the value to design the system by.

In conclusion, the author suggests that the results 
of this thesis be extended in^future thesis to determine 
stress values and deflection values by the method shown 
in the discussion.
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SUGGESTIONS FOR FUTURE THESIS TOPICS

1. Apply this method to shaft of three supports, two 
rigid supports or cantilever beam with more than 
one mass.

2. Electrical analogy of critical speed by using 
inductors, condenser and resistors to simulate 
mass, spring constant and friction respectively.

3. Investigate spring scale of simply supported 
shaft in the multi-mass system, to see if spring 
scale changes with change in mode.

4. Incorporate friction into the solution of critical 
speed either by this method, analog computer, or 
electrical analogy.

5. Continuation of this thesis by the method discussed 
in the discussion to determine the initial slope. 
With this value of initial slope and the stress 
graphs in this thesis find magnitude of bending and
shear stress.
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cccccccccccc

CRITICAL SPEEDS OF A ROTATIONG MULTI-MASS SYSTEM 
W IS THE STARTING ROTATIONAL VEL. IN RAD/SEC

<R. J, IN) (COL 8)
(COL 16) 
(COL 24) 
(COL 32) 
(COL 40) 
(COL 4 8 ) 

(COL 56) 
(COL 6 4 ) 

(COL 6 7 ) 

LISTED

WF IS THE FINAL DITTO
DW IS THE DESIRED INCREMENT OF ROTATIONAL VEL.
E IS THE MODULUS OF ELASTICITY
DX IS 1/2 THE DISTANCE BETWEEN THE LOADS
WT IS THE WE I GMT/CUBIC INCH OF THE SHAFT
sd) is the concentrated load (in p o u n d s) 
d IS thf diameter of the shaft
NX (INTEGER) IS 2*(NO. OF LOADS +1)
THE ABOVE INPUT DATA MUST BE PUNCHED IN THE ORDER
WITH FORMAT (8E8.0.I3)

DIMENSION S(2)
OLDT * 0.0

1 READ 1000. W* WF * DW. E» DX. WT, S(l). D* NX 
NW *(WF - W)/DW 
WSTOR * W 
TH * 1.0 
VL * 0.0 
TSW2 « 1
B * 64.*DX/(E*D**4*3.1415927)
S(2) « 3.1415927*D*D*DX*WT/1544.
S(l) « S(l)/386. + S(2)
DO 999 LW * 1. NW 
ISW1 » 1 

20 WSQ * W*W 
25 TSUM « 0.0 

YL « 0.0 
TL1 « 0.0 
TL2 * 0.0
DO 400 IX * 2. NX. 2
DO 400 JX * 1* 2
V* VL+ YL*S(JX)*WSQ
T * TL1 ♦ V*DX
TSUM * TSUM + TL1 + TL2
Y * YL -*■ (TH ♦ B*(T/6.+TL1/3.+TSUM/2.))*DX 
IF (ISW1)40.30.40 

30 < * IX-1



IF (JX -2)35.32.35 
32 K 3 IX
35 PUNCH 1001* K » V. T* Y 
40 YL » Y 

TL2 « TL1 
TL1 » T 

400 VL ■ V
IF (TH)430.420»430 

430 YT * Y 
TTH * T 
TH « 0.0 
VL « 1*0 
GO TO 25 

420 TH « 1.0 
VL * 0.0
T = -YT/Y * T + TTH 
PUNCH 1002. W, T 
IF (ISW2)510.500.510 

510 ISW2 * 0
SOLDT * T/ABSF(T)
GO TO 600

500 IF(ISWl) 520.610.520 
520 ST » T/ABSF(T)

SOLDT * OLDT/ABSF(OLDT)
550 IF (ST - SOLDT)700.600.700 
600 OLDT-T 
610 W*W5T0R

W » W + DW 
099 WSTOR ■ W 

GO TO 1
700 W * W-T*DW/(T - OLDT)

ISW1 -0 
OLDT*T 
GO TO 20

1000 FORMAT (8E8.0.I3)
1001 FORMAT (3H K*.I3.5H, V-.E14.7.5H,
1002 FORMAT (3H0W=.E14.7,5H. T*.E14.7)

END

T*.E14.7,5H. Y**E14.7) -P--F-
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C CALCULATION OF SHAFT DFFLFCTI ON AND STRESS AT CRITICAL SPEFD.

DIMENSION TT(12),YT(12)»TV(12),YV(12),VT(12)»VV(12)
1 READ 1001 ♦ D. NX
S = 32,0/(3.1415926 * D**3)
B = 16.0/(3.0 * 3.1415926 * D**2)
KX * NX/2 - 1 
DO 100 K = 1* KX
READ 1002 ♦ (VT(I)* TT(I), YT(I)*I»1# NX)
READ 1002. (VV(I). TV(I). YV(I),I=1, NX)
READ 1003. W, T 
PUNCH 1003. W, T 
PUNCH 1004
YRAT * -YT(NX)/YV(NX)
TRAT » -TT(NX)/TV(NX)
VRAT * -VT(NX)/(VV(NX)+1.0)
IF(K-(K/2)*2)10.10.11

10 VRAT =—VT(NX)/(VV(NX)—1.0)
11 DO 100 1=1, NX

Y = YV{I)*YRAT + YT(I )
T = TV(I)*TRAT + TT <I)
V * V V (I)*VRAT + V T (I )
ST * T * S
SR * B 4 V

100 PUNCH 1005. I. ST. SR, T, V, Y 
GO TO 1

1001 FORMAT (56X.E8.0.13)
1002 FORMAT (1IX♦E14.7,5X.E14.7,5X,E14.7)
1003 FORMAT (3H0W=»E14.7»5H» T-.E14.7)
1004 FORMAT (2H K.5X.11HBEND STRESS,3X♦12HSHEAR STRESS,6X♦6HM0MENT, 

110X.5HSHEAR.7X.10HDEFLECTION)
1005 F0RMAT(1X.I2,5(3X,E12.5))

END -E-vn
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