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ABSTRACT 

 

Most CAD tools allow system-level simulation for signal integrity by computing 

and connecting models together for the various sub-parts. The success of this model 

derivation depends on the quality of the network parameters. Different errors may 

seriously affect the quality of the frequency characterization: frequency-dependent 

measurement errors, errors due to the numerical simulation and/or discretization, etc. 

When these errors are large, model assembly and simulation becomes difficult and may 

even fail.  This thesis gives an overview of the most significant properties of physically 

valid network parameters, describes existing methods for checking and enforcing these 

properties, and presents several new methodologies for checking and enforcing causality. 

A time domain methodology based on the vector fitting approximation as well as the 

frequency domain methodologies based on the Kramers-Kronig relations enforcement by 

numerical integration and Fast Fourier Transform are presented. A new algorithm is 

developed for a stable recursive convolution after time domain causality enforcement. In 

addition, global qualities of data for system simulations are discussed: a study of an 

accurate causal frequency domain interpolation as well as a robust technique for 

extrapolation to DC is included. 
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1. QUALITY PROPERTIES OF ELECTRICAL LINEAR NETWORKS 

1.1. LINEAR NETWORK MODEL OF A PHYSICAL SYSTEMS 

As modern industry standards reach higher speeds and more complicated 

electrical interfaces are used, the role of signal integrity analysis increasingly grows. 

Electrical signals have to travel between I/O through packages, connectors, traces, and 

vias of the printed circuit boards, backplanes, and more. The goal of signal integrity 

analysis is to provide an accurate assessment of electrical link-paths, connecting a set of 

transmitting and receiving devices to estimate the reliability of the link for signal 

propagation. The complexity of such systems and numerous factors affecting the signal 

naturally leads to the need of a mathematical model to describe this system that can be 

both analyzed and used as a foundation for computer simulations. Linear electrical 

networks are widely used to model such systems. However, mathematical modeling is 

also a source of inaccuracies due to assumptions and approximations, as well as the 

imperfections in the data that the model is applied to. Very thorough and careful handling 

of the model construction and data modification and validation is necessary for the 

trustworthy results and conclusions. This section provides a brief overview of this well-

known model and introduces concepts and definitions necessary for the rest of this work.  

1.1.1. Brief Overview of a Linear Network Modeling Approach. A linear 

electrical system is defined as a set of ports, where each port may have an input signal 

𝑢𝑖(𝑡) and an output signal 𝑣𝑗
𝑢𝑖(𝑡), a response of 𝑢𝑖(𝑡) observed at port 𝑗. Typically, a 

time signal represents voltage amplitude measured at the corresponding electrical port. 

One of the key assumptions of this model is linearity, which means the response of a 

linear combination of signals is a linear combination of responses. Formally: 

 

 𝑣𝑘
𝑎𝑢𝑖+𝑏𝑢𝑗(𝑡) = 𝑎𝑣𝑘

𝑢𝑖(𝑡) + 𝑏𝑣𝑘
𝑢𝑗(𝑡). (1) 

 

Linearity makes it possible to define a total response at a port 𝑣𝑘(𝑡): 
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 𝑣𝑘(𝑡) = 𝑣𝑘
∑ 𝑢𝑖(𝑡)
𝑁
𝑖=1 (𝑡) =∑𝑣𝑘

𝑢𝑖(𝑡)(𝑡)

𝑁

𝑖=1

. (2) 

 

Another important property of the model is time invariance. This property means 

that there is no dependence on the time the input signal was injected: if the input signal is 

shifted in time, the output signal, the channel response, is shifted in time by the same 

amount. Formally: 

 

 𝑣𝑘
𝑢𝑖(𝑡+𝜏)(𝑡) = 𝑣𝑘

𝑢𝑖(𝑡)(𝑡 + 𝜏). (3) 

 

Each pair of ports defines a channel. Linearity provides a convenient way to 

characterize each channel individually. The following section describes network 

characterization parameters and functions. 

1.1.2.  Impulse Response, Transfer Function, and Network Parameters. Any 

linear, time invariant system can be characterized by an impulse response [1]. Impulse 

response ℎ(𝑡) is a response of a system to a Dirac delta function. For a given system: 

 

 𝑣𝑢(𝑡)(𝑡) = ℎ(𝑡) ∗ 𝑢(𝑡), (4) 

 

where “∗” denotes convolution. Further, the Fourier transform of a square-

integrable time domain function 𝑟(𝑡) is defined as [2]: 

 

 𝔽{𝑟(𝑡)} = 𝑅(𝜔) = ∫ 𝑟(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

. (5) 

 

This representation is called frequency domain representation. Using the 

convolution theorem [2] it can be shown that the time domain formula (4) is equivalent to 

the following frequency domain formula: 
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 𝑉(𝜔) = 𝐻(𝜔) ∙ 𝑈(𝜔), (6) 

 

where 𝐻(𝜔) =  𝔽{ℎ(𝑡)} is called the transfer function of the system. Therefore, 

each channel of a linear electrical network can be characterized by the impulse response 

in the time domain and transfer function in the frequency domain.  

 There are several commonly used frequency domain parameters that 

comprehensively define a specific network. One of the most used types of parameters is 

scattering parameters or S-parameters [3]. An S-parameter is a frequency dependent 

matrix with the following definition of its elements: 

 

 𝑆𝑗𝑖(𝜔) =
𝑉𝑗(𝜔)

𝑉𝑖(𝜔)
, (7) 

 

where 𝑉𝑖(𝜔) is a frequency domain representation of an input signal at the port 

𝑖 and 𝑉𝑗(𝜔) is a frequency domain response at the port 𝑗, assuming that there are no other 

input signals in the system besides 𝑉𝑖(𝜔). The transfer function matrix that contains 

frequency-dependent relations between input and output ports can be derived from the S-

parameter matrix, taking into account the port impedances matrix and the reference 

impedance of the network [3]. The following formula relates the transfer function and S-

parameters: 

 

 

𝐻(𝜔)

=
√𝑍0(𝑍𝑜𝑢𝑡 + 𝐼)(𝐼 − 𝑆22𝑍𝑜𝑢𝑡)

−1𝑆21

(√𝑍0𝐼 +
1

√𝑍0
𝑍𝑖𝑛) + (√𝑍0𝐼 −

1

√𝑍0
𝑍𝑖𝑛) (𝑆11 + 𝑆12𝑍𝑜𝑢𝑡(𝐼 − 𝑆22𝑍𝑜𝑢𝑡)−1𝑆21)

, (8) 

 

where 𝑍0 is a reference impedance, 𝑍𝑖𝑛 is a matrix of input port impedances, 

𝑍𝑜𝑢𝑡 is a matrix of output port impedances, 𝐼 is an identity matrix and the S-parameter 

matrix is split into four submatrices: 𝑆11 relates input ports to input ports, 𝑆12 relates 
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input ports to output ports, 𝑆21 relates output ports to input ports, and 𝑆22 relates output 

ports to output ports. Figure 1.1 illustrates the described concepts. 

 

 

 

Figure 1.1. S-parameters of an Electrical Linear Network 

 

 

1.1.3. Sources of Error in Channel Characterization Data. The main sources 

of the channel characterization data are measurements, full-wave simulations and 

analytical models. However, none of them provide ideal data. Measurements always have 

noise from various sources; the results are band limited and can only be obtained at a 

finite discrete set of points. Analytical models use mathematical approximations, simplify 

the reality and do not include all possible components of a system. Futher, there are very 

few geometries that can be accurately expressed by an analytical model. Full-wave 

simulations also use mathematical assumptions, but also are limited in their accuracy by 

numerical errors and the inherent discrete nature of a computer based simulation. 

Any data that is available for describing a physical system is not perfectly 

accurate and does not describe it comprehensively. It is important to be able to estimate 

the quality of existing data in order to assess the reliability of the results and conclusion 

developed based on it. Simulation procedures used to assess signal integrity of a given 
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system are highly sensitive to the data they use. If the data violates important physics 

properties of real systems, the results can be nonsense and wrong decisions can be made 

affecting product design. This work is dedicated to three important properties of physical 

systems: passivity, reciprocity and causality - and studies the algorithms for checking and 

enforcing these properties on the data. In addition, issues of overall data handling for 

accurate system modeling, such as the extrapolation and interpolation of frequency 

domain data, are discussed. 

 

1.2. PASSIVITY AND RECIPROCITY OF LINEAR NETWORKS 

1.2.1. Definitions of Passivity and Reciprocity. High-speed interconnected 

systems do not contain active devices and, thus, are passive because they do not generate 

energy. In other words, the total energy of the output has to be less than or equal to the 

energy of the input at any point of time. The energy of a time domain signal 𝑟(𝑡)  at the 

time point 𝜏 is defined as [1]: 

 

 𝐸𝑟(𝜏) = ∫ [𝑟(𝑡)]2𝑑𝑡
𝜏

−∞
. (9) 

 

Then, if 𝑢(𝑡) is an input of the system and 𝑣(𝑡) is its output, then the following 

inequality has to hold: 

 

 𝐸𝑢(𝜏) − 𝐸𝑣(𝜏) ≥ 0, ∀𝜏. (10) 

 

However, this time domain definition is not very practical, because it requires 

data for the entire time domain from −∞ to +∞ that are not available in a measurement 

or simulation. Further, most of the network characterization data is presented in 

frequency domain and therefore an equivalent definition for the frequency domain is 

necessary. The following necessary condition on the S-parameter matrix is defined in [4] 

and [5] that can be used to check for and enforce passivity. If 𝑆(𝜔) is a scattering matrix 

of a passive system, then 
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 |𝜆𝑘| ≤ 1, ∀𝑘, (11) 

 

where 𝜆𝑘 is an eigenvalue of [𝑆∗ ∙ 𝑆]. 

 As also shown in [4], passive systems are reciprocal which means the response 

at port 𝑖 on the excitation at port 𝑗 is the same as the response at port 𝑗 on the equivalent 

excitation at port 𝑖. In terms of S-parameters the following condition defines reciprocity: 

 

 𝑆𝑖𝑗(𝜔) = 𝑆𝑗𝑖(𝜔), ∀𝑖, 𝑗, 𝜔. (12) 

 

1.2.2. Metrics for Passivity and Reciprocity Quantification. In order to 

quantify the quality of the model in terms of passivity and causality, a formal metric has 

to be used. The following formulas presented in [5] can be used to define the passivity 

quality measure (PQM)  

 

 𝑃𝑄𝑀 = max [
𝑁 − ∑ 𝑃𝑊𝑛

𝑁
𝑛=1

𝑁
] × 100%, (13) 

where  

 𝑃𝑊𝑛 = max

(

 
√max[𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙(𝑆∗(𝜔𝑛) ∙ 𝑆(𝜔𝑛))] − 1.0001

0.1
, 0

)

 . (14) 

 

Similarly, the reciprocity quality measure (RQM) is defined in [5] as: 

 

 𝑅𝑄𝑀 = max [
𝑁 − ∑ 𝑅𝑊𝑛

𝑁
𝑛=1

𝑁
] × 100%, (15) 

 

where 



7 

 

 𝑅𝑊𝑛 = max(

1
𝑁𝑠
∑ |𝑆𝑖𝑗(𝜔𝑛) − 𝑆𝑗𝑖(𝜔𝑛)|𝑖,𝑗 − 10−6

0.1
, 0). (16) 

 

1.2.3. Methods for Enforcing Passivity and Reciprocity. If the reciprocity 

violation is too large, data should not be used at all. Measurements will have to be 

repeated or the simulation redone more carefully. However, in case of a tolerable 

reciprocity violation, a system’s reciprocity can be enforced simply by either copying the 

half above the main diagonal of the S-parameter matrix to the corresponding lower part 

or, alternatively, averaging reciprocal components and assigning the mean value to both 

of them. Either method works well and does not have significant benefits over the other. 

 On the contrary, passivity enforcement is a complicated operation. There are 

two main approaches to the passivity enforcement. The first approach is related to the 

vector fitting algorithm, discussed in details in the section 3.2.1. Following this approach, 

tabulated transfer function is approximated by the rational function with poles and 

residues. As shown in [6], poles and residues can be chosen in such a way that the result 

fitted transfer function is passive. The second approach is to modify the S-parameters 

matrix in every frequency sample by a series of iterative perturbations to enforce 

conditions (11) by using singular value decomposition and assigning the highest 

eigenvalue either to one [7] or to an optimized value less or equal than one [8]. These 

methods are iterative and have a learning rate parameter. Determining a good value for 

this parameter is a difficult task, since a very large value will prevent convergence, while 

the small value will make the procedure too long and inefficient. 

1.3. CAUSALITY OF LINEAR NETWORKS 

1.3.1. Causality Definition. Causality is a property of a physical system that 

reflects an intuitive notion of cause and consequence. Specifically, no system output can 

be observed before the input was applied. As was discussed above, a linear network can 

be defined in time domain by its impulse response ℎ(𝑡). Then causality can be expressed 

as the following condition on impulse response: 
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 ℎ(𝑡) = 0, ∀𝑡 ≤ 𝜏. (17) 

 

While all physical systems are causal, the data that was obtained by 

measurements or simulations does not necessarily satisfy the condition above. Common 

reasons for causality violations are band limitations, finite sampling rate, measurement 

errors, and simulation approximations. There are three given impulse responses in Figure 

1.2. The red curve corresponds to causal impulse response, but the green and blue ones 

are non-causal. 

 

 

 

Figure 1.2. Examples of Causal and Non-Causal Impulse Responses 

 

 

Usually, oscillated the causality violation near 𝑡 ≤ 0 moment is caused by 

frequency band limitation or measurement error at high frequencies for the corresponding 

transfer function (see the blue curve in Figure 1.2), but a causality violation similar to the 

green curve can be caused by a wrong simulation model. 
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1.3.2. Delay Causality. Physical systems have time delay. It takes a finite amount 

of time for input to propagate through the system before the output may be observed. 

Therefore, a physically valid system model should be not only causal, but delay causal. In 

terms of impulse response, delay causality property can be expressed using the following 

formula: 

 

 ℎ(𝑡) = 0, ∀𝑡 ≤ 𝜏, (18) 

 

where 𝜏 is a time delay of the system. Delay causality is a more general concept than 

causality. Causality is just a special case with 𝜏 = 0. For this reason, all the following 

results and discussions will be about delay causality, but they also apply to causality. 

1.3.3. Metric for Delay Causality Quantification. Non-causality of the data is 

evidence of a discrepancy between the model and the modeled system. When the 

discrepancy is large, model assembly and simulation becomes difficult, may even fail, 

and the results become invalid and untrustworthy. However, a small discrepancy can still 

leave results in the acceptable error band. It is important to have a quantitative causality 

metric. Delay causality is related to the portion of the energy of the signal which comes at 

the output of the system before the delay time. Because of this, it is natural to define non-

causality of the system as a square root of a ratio of the energy which comes before the 

delay to the total energy: 

 

 𝑁𝑜𝑛­𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦 {ℎ} = √
∫ ℎ2(𝑡)𝑑𝑡
𝜏
−∞

∫ ℎ2(𝑡)𝑑𝑡
∞
−∞

× 100%. (19) 

 

A pictorial explanation of non-causality of the impulse response is given in Figure 

1.3. 
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Figure 1.3. Pictorial Explanation of the Non-Causality Metric 

 

 

Impulse response includes all frequency components. If the physical system is 

designed for a specific type of signal (with specific rise/fall time and bit rate), then it 

might be more useful instead of definition (19) of the non-causality metric to use the 

following definition: 

 

 𝑁𝑜𝑛­𝑐𝑎𝑢𝑠𝑎𝑙𝑖𝑡𝑦{ℎ} = √
∫ 𝑟2(𝑡)𝑑𝑡
𝜏

−∞

∫ 𝑟2(𝑡)𝑑𝑡
∞

−∞

× 100%. (20) 

 

Here, 𝑟(𝑡) is a pulse response of the system: 

 

 𝑟(𝑡) = ∫ ℎ(𝑡 − 𝑠)𝑣(𝑠)𝑑𝑠

∞

−∞

 (21) 

 

where 𝑣(𝑠) is an input pulse signal with specific rise/fall time and bit rate. The metric 

defined by (19) is called causality estimation and the metric defined by (20) is called 

pulse causality estimation. It is important to note that in practice the approximation of 
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these metrics are used. The data is almost always available only over the limited time 

interval and at the discrete points. Therefore, the integrals above are numerically 

approximated and signals and impulse responses are assumed to be zero outside the given 

time interval. These limitations have to be carefully handled for the approximation to be 

accurate. 

An example of the proposed metric is shown below. Both causality and pulse 

causality estimation were calculated for the measured differential insertion loss of a 1.2 in 

microstrip with 2.4 mm SMA connectors and 6 in cables at each side. The detailed 

geometry model of the microstrip is shown in Figure 1.4. 

 

 

 

Figure 1.4. Geometry of the DUT Structure 

 

 

The magnitude of differential insertion loss for the DUT is shown below in Figure 

1.5. Calculated causality estimation for the differential insertion loss of the given 

geometry is equal to 89%, but pulse causality estimation is equal to 99.9% (pulse signal 

was taken with 16 ps rise/fall time and 12.5 Gbps bit rate). Figure 1.6 shows causality 

and pulse causality violations for differential insertion loss of the measured S-parameters 

of the structure given in Figure 1.4. 
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Figure 1.5. Differential Insertion Loss for the Geometry Given in Figure 1.4 

 

 

 

 

Figure 1.6. Causality and Pulse Causality Violations for Differential Insertion 

Loss for the Structure Given in Figure 1.4 
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Therefore, an 11% causality violation for the insertion loss is related to high 

frequency components (more than 12.5 Gbps speed signals contained) and if the system 

is manufactured for less than 12.5 Gbps speed signals, then the model can be considered 

almost 100% causal. 
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2. FREQUENCY DOMAIN METHODS FOR CHECKING AND 

ENFORCING CAUSALITY 

2.1. KRAMERS-KRONIG RELATIONS FOR CAUSAL SYSTEMS 

2.1.1. Definition and Derivation of Kramers-Kronig Relations. Definition of 

causality is naturally formulated in terms of time domain system characterization – 

impulse response. However, in modern electrical systems modeling the data is often 

given in frequency domain. It has a lot of advantages for thorough accurate and efficient 

modelling, simulation and analysis. Therefore, it becomes important to find a condition a 

frequency domain system characterization that is equivalent to system causality. The 

following derivations result in such condition in terms of system’s transfer function. 

Impulse response ℎ(𝑡) will satisfy causality condition if and only if it satisfies the 

following relation: 

 

 ℎ(𝑡) = ℎ(𝑡)𝑠𝑖𝑔𝑛(𝑡), 𝑡 ∈ (−∞,∞). (22) 

 

Let 𝐻(𝜔) be a transfer function corresponded to the impulse response ℎ(𝑡): 

   

 𝐻(𝜔) = 𝔽{ℎ(𝑡)} = ∫ ℎ(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

, (23) 

 

where 𝔽{ℎ(𝑡)} is the Fourier transform operator. Combining (22) and (23) and using the 

convolution theorem (see [2], p. 27, (2-74)), it follows that the transfer function 𝐻(𝜔) 

will satisfy the following equation: 

 

𝐻(𝜔) = 𝔽{ℎ(𝑡)𝑠𝑖𝑔𝑛(𝑡)} =
1

2𝜋
𝔽{ℎ(𝑡)} ∗ 𝔽{𝑠𝑖𝑔𝑛(𝑡)} =

1

2𝜋
𝐻(𝜔) ∗

2

𝑗𝜔
 

 𝐻(𝜔) =
1

𝑗𝜋
∫

𝐻(𝜔′)

𝜔−𝜔′
𝑑𝜔′

∞

−∞
, (24) 
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where “∗ ” denotes the convolution operator. The transformation of a function that 

appears at the end of the derivation is called a Hilbert transform. Further, the following 

notation is used: 

 

 ℍ{𝑢}(𝜔′) ≝
1

𝜋
∫

𝑢(𝜔)

𝜔′ − 𝜔
𝑑𝜔

∞

−∞

 (25) 

 

Summarizing the derivations above, the causality of a system can be expressed as 

a following condition of its transfer function: 

 

 𝐻(𝜔) = −𝑗ℍ{𝐻}(𝜔). (26) 

 

Transfer function 𝐻(𝜔) is a complex function. Hence it can be represented 

as 𝐻(𝜔) = 𝑅𝑒(𝜔) + 𝑗𝐼𝑚(𝜔), where 𝑅𝑒 and 𝐼𝑚 are its real and imaginary parts, 

respectively. Then, (26) can be rewritten as follows using the linearity of the Hilbert 

transform:  

 

 
𝑅𝑒(𝜔) + 𝑗𝐼𝑚(𝜔) = −𝑗ℍ{𝑅𝑒 + 𝑗𝐼𝑚}(𝜔)

= −𝑗ℍ{𝑅𝑒}(𝜔) + ℍ{𝐼𝑚}(𝜔). 
(27) 

 

Equating real and imaginary parts of (27), the following relations are obtained: 

 

 
𝑅𝑒(𝜔) = ℍ{𝐼𝑚}(𝜔) 

𝐼𝑚(𝜔) = −ℍ{𝑅𝑒}(𝜔). 
(28) 

 

These relations are called Kramers-Kronig relations between the real and 

imaginary parts of the transfer function of a causal system. The relations show that the 

real part can be uniquely determined from the imaginary part and the imaginary part can 

be uniquely determined from the real part, which provides the foundation for causality 

checking and the enforcing algorithm discussed in the next chapter. 
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Alternatively, the transfer function can be represented as  𝐻(𝜔) =

 𝜌(𝜔)𝑒−𝑗𝜑(𝜔) = 𝑒−(𝛼(𝜔)+𝑗𝜑(𝜔)), where 𝛼(𝜔) is a logarithm of the transfer function’s 

magnitude and 𝜑(𝜔) is its phase. Assuming there are no frequency points for which 

𝐻(𝜔) =  0, relation (26) is also true for the logarithm of transfer function: 𝑙𝑛(𝐻(𝜔)) =

−(𝛼(𝜔) + 𝑗𝜑(𝜔)). That produces the Kramers-Kronig relations between the magnitude 

and phase of a transfer function of a causal system [2]:  

 

 𝛼(𝜔′) = 𝛼(0) −
𝜔0
2 

𝜋
∫

𝜑(𝜔)

𝜔(𝜔2 − (𝜔′)2)

∞

−∞

𝑑𝜔 (29) 

 𝜑(𝜔′) =
𝜔′ 

𝜋
∫

𝛼(𝜔)

𝜔2−(𝜔′)2

∞

−∞
𝑑𝜔 = −

1 

𝜋
∫

𝛼(𝜔)

𝜔′−𝜔

∞

−∞
𝑑𝜔. (30) 

 

Here, 𝜑(𝜔) is a phase transfer function. It is important to note that the phase can be 

uniquely determined from the magnitude only for the minimal phase systems. Formally, 

the minimal phase system is defined as a system in which the transfer function has both 

poles and zeros inside the unit circle [1]. However, a more insightful description can be 

made through one of the properties of a minimal phase function. It can be shown that any 

transfer function can be decomposed into the product of a minimal phase system transfer 

function with the same magnitude and the transfer function with unity magnitude and 

nonzero phase: 

 

 𝐻(𝜔) = 𝐻𝑚𝑖𝑛(𝜔)𝐻1(𝜔). (31) 

 

It can be shown that arg𝐻1(𝜔) is negative [9] and thus: 

 

 arg𝐻(𝜔) <arg𝐻𝑚𝑖𝑛(𝜔). (32) 

 

The phase delay of a system is defined as: 
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 𝜏𝑝(𝜔) = −
𝜑(𝜔)

𝜔
, (33) 

 

where 𝜑(𝜔) is a phase of a system’s transfer function. The group delay of a system is 

defined as: 

 

 
𝜏𝑔 = lim

𝜔→∞
𝜏𝑝(𝜔)  . (34) 

 

By combining (32) and (34), it is seen that 𝐻𝑚𝑖𝑛(𝜔) is a function which has the smallest 

group out of possible functions with the magnitude equal to the magnitude of 𝐻(𝜔). 

Therefore, the second term 𝐻1(𝜔) basically represents a time shift. 

For a minimal phase system, (30) shows that phase now can be uniquely 

determined from the magnitude. Further, a system can be reduced to a minimal phase 

system by extracting the delay which provides an opportunity for another method for 

causality checking and enforcing. 

2.1.2. Numerical Calculation of the Hilbert Transform. Let 𝑈(𝜔) and 𝑉(𝜔) 

satisfy the following relation: 

 

 𝑉(𝜔′) =
1

𝜋
∫

𝑈(𝜔)

𝜔′−𝜔
𝑑𝜔

∞

−∞
. (35) 

 

For the given frequency points {𝜔0, 𝜔1, … , 𝜔𝑁} and corresponding values 

{𝑈0, 𝑈1, … , 𝑈𝑁}, the values of {𝑉0, 𝑉1, … , 𝑉𝑁} have to be calculated. The transfer function 

of a linear network satisfies the following equation: 

 

 𝐻(−𝜔) = 𝐻∗(𝜔). (36) 

   

Whether 𝑈 is the real part or the magnitude, it is an even function and 𝑈(−𝜔) =

𝑈(𝜔). Therefore, the known frequency band can be extended into the corresponding 

negative frequencies. Integral (35) is taken over the infinite frequency interval, but 
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because of the frequency band limitation it can only be calculated up to the maximum 

given frequency 𝜔𝑁: 

 

 𝑉(𝜔′) =
1

𝜋
∫

𝑈(𝜔)

𝜔′−𝜔
𝑑𝜔

𝜔𝑁

−𝜔𝑁
+ 𝐸𝑟𝑟(𝜔′). (37) 

 

The error will be equal to the integral outside the frequency band: 

 

 𝐸𝑟𝑟(𝜔′) =
1

𝜋
∫

𝑈(𝜔)

𝜔′ − 𝜔
𝑑𝜔

−𝜔𝑁

−∞

+
1

𝜋
∫

𝑈(𝜔)

𝜔′ − 𝜔
𝑑𝜔

∞

𝜔𝑁

. (38) 

 

Assuming that the system is passive, the norm of the real part (as well as of the 

magnitude) of the transfer function is less than one for all the frequency samples. The 

error can then be estimated by the following inequality  

 

 |𝐸𝑟𝑟(𝜔′)| ≤ |log
𝜔𝑁−𝜔′

𝜔𝑁+𝜔′ 
 |. (39) 

 

The error is equal to zero for 𝜔′ = 0, is small near DC, and tends to infinity when 𝜔′ is 

approaching 𝜔𝑁 which means the calculations near maximum frequency will be 

inaccurate. In order to solve this numerical instability, the Kramers-Kronig relations with 

subtractions can be used. 

2.1.3. Kramers-Kronig Relations with Subtractions. The relations obtained 

previously can be generalized for a set of so-called subtraction points. If two functions 

𝑈(𝜔) and 𝑉(𝜔) satisfy the Kramers-Kronig relations, then, as it was shown in [10] and 

[11], for a set of frequency points {𝜎0, 𝜎1, … , 𝜎𝑀} called subtraction points, the following 

relations hold: 

 

 𝑉(𝜔′) − 𝐿𝑉(𝜔
′) = −

∏ (𝜔′ − 𝜎𝑞)
𝑀
𝑞=1

𝜋
∫

𝑈(𝜔) − 𝐿𝑈(𝜔)

∏ (𝜔 − 𝜎𝑞)
𝑀
𝑞=1

𝑑𝜔

𝜔′ − 𝜔

∞

−∞

 (40) 
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where 𝐿𝑉(𝜔) and 𝐿𝑈(𝜔) are Lagrange polynomials of functions 𝑉(𝜔) and 𝑈(𝜔), 

respectively, constructed in the set of subtraction points. Using this generalized 

formulation, function 𝑉(𝜔) can be reconstructed from 𝑈(𝜔): 

 

 𝑉(𝜔′) = 𝐿𝑉(𝜔
′) −

∏ (𝜔′ − 𝜎𝑞)
𝑀
𝑞=1

𝜋
∫

𝑈(𝜔) − 𝐿𝑈(𝜔)

∏ (𝜔 − 𝜎𝑞)
𝑀
𝑞=1

𝑑𝜔

𝜔′ − 𝜔

∞

−∞

. (41) 

 

This method was proposed in [11] for checking causality using the real part of a 

transfer function 𝑈(𝜔) to reconstruct the imaginary part 𝑉(𝜔) and the difference 

between the given imaginary and reconstructed parts was used to quantify causality. 

However, in the proposed method, a Lagrange polynomial 𝐿𝑉(𝜔) is constructed based on 

the values of the original imaginary part which is acceptable for causality checking, but 

makes direct application of this method for causality enforcement impossible. 

Nevertheless, the generalization of that approach opens an entire class of methods for 

enforcing causality. Further sections describe the general approach and some of the 

specific methods from the class. 

 

2.2. MORE CAUSALITY CONDITIONS FOR A TRANSFER FUNCTION OF 

LINEAR ELECTRICAL NETWORK 

2.2.1. Paley-Wiener Theorem and Its Implications.  In addition to Kramers-

Kronig relations, causality of impulse response ℎ(𝑡) implies more conditions for the 

corresponding transfer function 𝐻(𝜔) = 𝑅𝑒(𝜔) + 𝑗𝐼𝑚(𝜔) = 𝜌(𝜔)𝑒−𝑗𝜑(𝜔). The impulse 

response of a linear electrical network is assumed to have finite energy based on the 

physics of a modeled system. This implies that the magnitude of the transfer function is 

square-integrable: 

 

 ∫ 𝜌2(𝜔)𝑑𝜔
∞

−∞
< ∞. (42) 

 

The following theorem formulates a necessary and sufficient condition for a 

square-integrable function to be a magnitude of a transfer function of a causal system. 
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Paley-Wiener Theorem. [2] For a real valued square-integrable function 𝜌(𝜔), 

there exists a corresponding function 𝜑(𝜔) such that the function 𝐻(𝜔) = 𝜌(𝜔)𝑒−𝑗𝜑(𝜔) 

is a Fourier image of a causal impulse response ℎ(𝑡) if, and only if, the following integral 

is finite: 

 

 ∫
|𝑙𝑛 𝜌(𝜔)|

1+𝜔2

∞

−∞
< ∞. (43) 

 

It is important to note, that this condition does not provide a complete method for 

checking causality. If the magnitude of 𝐻(𝜔) satisfies (43), it does not mean that 𝐻(𝜔) is 

a transfer function of a causal system. It only means that there exists corresponding phase 

function such that the resulting function will describe a causal system. There are several 

important implications from the Paley-Wiener theorem. 

Corollary 1. If ℎ(𝑡) is a causal impulse response with nonzero energy, then the 

corresponding transfer function 𝐻(𝜔) cannot be zero in any interval: 

 

 ∄(𝜔1, 𝜔2):𝐻(𝜔) = 0 ∀𝜔 ∈ (𝜔1, 𝜔2). (44) 

 

Proof. If 𝐻(𝜔) = 0 in (𝜔1, 𝜔2), then 𝜌(𝜔) = 0 in (𝜔1, 𝜔2). 𝑙𝑛(0) = ∞ and 

consequentially: 

 

 

 
∫

|𝑙𝑛 𝜌(𝜔)|

1 + 𝜔2

∞

−∞

≥ ∫
|𝑙𝑛 𝜌(𝜔)|

1 + 𝜔2

𝜔2

𝜔1

= ∫
|𝑙𝑛 0|

1 + 𝜔2

𝜔2

𝜔1

= ∞. (45) 

 

Corollary 2. If 𝐻1(𝜔) and 𝐻2(𝜔) are transfer functions of a causal system with 

corresponding impulse responses ℎ1(𝑡) and ℎ2(𝑡) and there exists an interval (𝜔1, 𝜔2) in 

which they are the equal, then these functions are equal on the entire frequency range. 

Proof. If ℎ1(𝑡) and ℎ2(𝑡) are causal, then ℎ1(𝑡) − ℎ2(𝑡) is also causal. The 

Fourier transform is linear and so 𝔽{ℎ1(𝑡) − ℎ2(𝑡)} = 𝐻1(𝜔) − 𝐻2(𝜔). As a transfer 
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function of a causal system the only way 𝐻1(𝜔) − 𝐻2(𝜔) can have zero magnitude in an 

interval is if it is an identical zero on the entire frequency range. 

Corollary 3. The following asymptotical equation has to hold: 

 

 ∃(0 < 𝜀 < 1): |𝜌(𝜔)| = 𝑜(𝜔1−𝜀), 𝜔 → ∞. (46) 

 

2.2.2. Causality and Linear Phase Systems. A perfectly linear phase is a 

common approximation for the simplicity of modeling and prototyping. However, it turns 

out that such approximation violates causality and thus can invalidate simulation results. 

The thorough analysis of this phenomenon is presented in this section. 

Delay causal systems can’t have perfectly linear phase, if magnitude is frequency 

dependent. Let 𝐻(𝜔) =  𝜌(𝜔)𝑒−𝑗𝜔𝜏 be a transfer function with a linear phase and 

frequency dependent magnitude, where  𝜏  is a delay of the system. Impulse response ℎ(𝑡) 

of transfer function 𝐻(𝜔) is calculated using the inverse Fourier transform: 

 

 ℎ(𝑡) =
1

2𝜋
∫ 𝐻(𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
∞

−∞
. (47) 

Further, 

 

 

ℎ(𝑡) =
1

2𝜋
∫ 𝐻(𝜔)𝑒𝑗𝜔𝑡𝑑𝑡
0

−∞

+
1

2𝜋
∫ 𝐻(𝜔)𝑒𝑗𝜔𝑡𝑑𝑡
∞

0

 

=
1

2𝜋
∫ (𝐻(−𝜔)𝑒−𝑗𝜔𝑡 + 𝐻(𝜔)𝑒𝑗𝜔𝑡)𝑑𝜔
∞

0
. 

 

(48) 

 

Using the fact that 𝐻(−𝜔) = 𝐻∗(𝜔),  it can be derived that: 

 

 ℎ(𝑡) =
1

2𝜋
∫ 𝜌(𝜔)(𝑒𝑗𝜔(𝜏−𝑡) + 𝑒−𝑗𝜔(𝜏−𝑡))𝑑𝜔
∞

0
. (49) 

 

From (49), ℎ(𝑡 + 𝜏) can be calculated: 
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 ℎ(𝜏 + 𝑡) =
1

2𝜋
∫ 𝜌(𝜔)(𝑒𝑗𝜔𝑡 + 𝑒−𝑗𝜔𝑡)𝑑𝜔
∞

0
. (50) 

 

Analogously, 

 

 ℎ(𝜏 − 𝑡) =
1

2𝜋
∫ 𝜌(𝜔)(𝑒𝑗𝜔𝑡 + 𝑒−𝑗𝜔𝑡)𝑑𝜔
∞

0

. (51) 

 

Therefore, ℎ(𝜏 + 𝑡) = ℎ(𝜏 − 𝑡), which means the impulse response is symmetric 

regarding 𝜏 and if there is some response after 𝜏, there should be the same response 

before it. If the impulse response is delay causal then ℎ(𝜏 − 𝑡) is equal to zero for all 

positive 𝑡. In this case, ℎ(𝜏 + 𝑡) should be also equal to zero. It is possible if, and only if, 

the impulse response is a delta function (centered at 𝜏) which results in the magnitude of 

the transfer function being frequency independent. 

It is shown below that a small perturbation of the phase for network parameters 

can significantly change the impulse response. Three different insertion losses are 

constructed: the first, 𝑆𝐷𝐷1 , is the original differential insertion loss for the geometry 

given in Figure 1.4; the second, 𝑆𝐷𝐷2, is the insertion loss with the same magnitude as the 

original one, but the phase is perfectly linear; the third, 𝑆𝐷𝐷3, is the insertion loss with the 

same amplitude as the original one, but the phase is equal to a perfectly linear phase plus 

the reversed nonlinear part of the original one. Figure 2.1 and Figure 2.2 show that all 

three cases have absolutely the same amplitudes and the maximal difference between 

phases is equal to 0.2%. Impulse responses for all three cases are shown in Figure 2.3. 

The blue curve corresponds to the original insertion loss 𝑆𝐷𝐷1; the red curve corresponds 

to the insertion loss with a perfectly linear phase 𝑆𝐷𝐷2  (nonlinear part of the phase is 

removed from  𝑆𝐷𝐷1); and the green curve corresponds to  𝑆𝐷𝐷3 insertion loss (nonlinear 

part of the phase in 𝑆𝐷𝐷1 that is reversed). 
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Figure 2.1. Magnitudes for 𝑆𝐷𝐷1, 𝑆𝐷𝐷2, and 𝑆𝐷𝐷3 Insertion Losses 

 

 

 

Figure 2.2. Unwrapped Phases for 𝑆𝐷𝐷1, 𝑆𝐷𝐷2, and 𝑆𝐷𝐷3 Insertion Losses 
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Figure 2.3. Impulse Responses Corresponding to 𝑆𝐷𝐷1 (original insertion loss), 

𝑆𝐷𝐷2 (insertion loss with linear phase), and 𝑆𝐷𝐷3 (insertion loss with reversed nonlinear 

part of the phase) 

 

 

Even though magnitudes for all three cases are absolutely the same and the 

difference between phases is small, the shapes of the corresponding impulse responses 

are absolutely different. The original impulse response is physical as the causality is 

equal to 89% and the impulse responses with a linear phase and reversed nonlinear part 

of the phase are nonphysical. Causality of the impulse response with a linear phase is 

equal to 50% and causality of the impulse response with reversed nonlinear part of the 

phase is equal to 11%. One of the implications of this is that if there is a causality 

violation for network parameters, it is possible to make a small perturbation in the phase 

that improves causality of the system function without changing the magnitude. 

 

2.3. DELAY CAUSALITY ENFORCEMENT USING KRAMERS-KRONIG 

RELATIONS 

Kramers-Kronig relations (28), (29), and (30) derived previously suggest a 

methodology for checking and enforcing causality of a linear network model: take a 

transfer function, separate it into two corresponding parts, and reconstruct one of the 

parts using the other by enforcing Kramers-Kronig relations. There are four possible 

approaches: reconstruct the phase from the magnitude, the imaginary part from the real 

part, or the real part from the imaginary part, and if the DC value of the magnitude is 

known then the rest can be reconstructed from the phase. However, as it is shown further, 
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only the first two approaches are practical for sampled, band-limited data. The following 

formulas define reconstruction: 

 

 

𝜑(𝜔′) =
𝜔′ 

𝜋
∫

𝛼(𝜔)

𝜔2 − (𝜔′)2

∞

−∞

𝑑𝜔

=
1 

2𝜋
∫

𝛼(𝜔)

𝜔 − 𝜔′
𝑑𝜔

∞

−∞

−
1 

2𝜋
∫

𝛼(𝜔)

𝜔 + 𝜔′
𝑑𝜔

∞

−∞

  

(52) 

 𝐼𝑚(𝜔′) =
1

𝜋
∫

𝑅𝑒(𝜔)

𝜔′−𝜔
𝑑𝜔

∞

−∞
. (53) 

 

Both approaches require numerical calculation of the Hilbert transform. The 

following section describes the initial approach for such a calculation and its challenges. 

2.3.1. General Method for Enforcing Kramers-Kronig Relations with 

Subtractions. This section describes a general approach for reconstructing a function 

from its Kramers-Kronig relations counterpart using the subtractions technique. 

For given frequency points {𝜔0, 𝜔1, … , 𝜔𝑁} and corresponding values 

{𝑈0, 𝑈1, … , 𝑈𝑁}, the values of {𝑉0, 𝑉1, … , 𝑉𝑁} have to be calculated. At each frequency 

point of interest 𝜔𝑘, a set of corresponding subtraction frequency points  {𝜎0
𝑘, 𝜎1

𝑘, … , 𝜎𝑀𝑘

𝑘 } 

are defined. 𝐿𝑉
𝑘  and 𝐿𝑈

𝑘  are Lagrange polynomials of functions 𝑉 and 𝑈, respectively, 

constructed in the corresponding set of subtraction points. These points are selected from 

the given frequency data set so that the values of functions 𝑉 and 𝑈 are known in them 

and the Lagrange polynomials can be constructed. Then Kramers-Kronig relations with 

subtractions (41) can be written as follows: 

 

𝑉(𝜔𝑘) = 𝐿𝑉
𝑘 (𝜔𝑘) −

∏ (𝜔𝑘−𝜎𝑞
𝑘)

𝑀𝑘
𝑞=1

𝜋
[∫

𝑈(𝜔)−𝐿𝑈
𝑘 (𝜔)

∏ (𝜔−𝜎𝑞
𝑘)

𝑀𝑘
𝑞=1

𝑑𝜔

𝜔𝑘−𝜔

𝜔𝑁

−𝜔𝑁
+ ∫

𝑈(𝜔)−𝐿𝑈
𝑘 (𝜔)

∏ (𝜔−𝜎𝑞
𝑘)

𝑀𝑘
𝑞=1

𝑑𝜔

𝜔𝑘−𝜔𝛺𝑁
], 

(54) 

 

where 𝛺𝑁 = (−∞,−𝜔𝑁)⋃  (𝜔𝑁, ∞). The following derivation provides more 

details of the term 𝑉(𝜔𝑘) − 𝐿𝑉
𝑘 (𝜔𝑘): 
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 𝑉(𝜔𝑘) − 𝐿𝑉
𝑘 (𝜔𝑘) = 𝑉𝑘 − ∑ 𝑉(𝜎𝑞

𝑘)∏
𝜔𝑘−𝜎𝑝

𝑘

𝜎𝑞
𝑘−𝜎𝑝

𝑘

𝑀𝑘
𝑝=1
𝑝≠𝑞

𝑀𝑘
𝑞=1 . (55) 

 

Since subtraction points belong to the given frequency points set, 𝑉(𝜎𝑞
𝑘) = 𝑉𝑚 for 

some 𝑚. Then, (55) can be rewritten as an inner product of the vector 𝑉̅ of unknown 

values 𝑉𝑘  and the vector 𝑀𝑘
̅̅ ̅̅ , where the 𝑚𝑡ℎ element of this vector is: 

 

 𝑀𝑘
̅̅ ̅̅

𝑚
=

{
 

 − ∏
𝜔𝑘−𝜎𝑝

𝑘

𝜔𝑚−𝜎𝑝
𝑘

𝑀𝑘
𝑝=1
𝑝≠𝑞

, 𝜔𝑚 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝜔𝑘, 𝑚 ≠ 𝑘

1, 𝑚 = 𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (56) 

 

Finally, expression (54) can be rewritten in the following matrix form: 

 

 𝑀̿ ∙ 𝑉̅ = −
1

𝜋
(𝐼 ̅ + 𝐿̅ + 𝐸̅). (57) 

 

The following notation is used in the formula above: 

 𝑉̅ is a vector of unknown values 𝑉𝑘; 

 𝑀̿ is a matrix where each row is a corresponding vector 𝑀𝑘
̅̅ ̅̅ ; 

 𝐼 ̅is a vector of the right side integral within the given frequency range. It can be 

calculated semi-analytically using a linear approximation of 𝑈(𝜔): 

 

 𝐼𝑘 = ∫
∏ (𝜔𝑘−𝜎𝑞

𝑘)
𝑀𝑘
𝑞=1

∏ (𝜔−𝜎𝑞
𝑘)

𝑀𝑘
𝑞=1

𝑈(𝜔)−𝐿𝑈
𝑘 (𝜔)

𝜔𝑘−𝜔
𝑑𝜔

𝜔𝑁

−𝜔𝑁
. (58) 

 

 

 𝐿̅ is a vector of integrals of 𝐿𝑈
𝑘 (𝜔) over the outside the frequency range. It is an 

integral of a rational function and can be calculated analytically.  
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 𝐿𝑘 = − ∫
∏ (𝜔𝑘 − 𝜎𝑞

𝑘)
𝑀𝑘
𝑞=1

∏ (𝜔 − 𝜎𝑞
𝑘)

𝑀𝑘
𝑞=1

𝐿𝑈
𝑘 (𝜔)

𝜔𝑘 − 𝜔
𝑑𝜔

Ω𝜔𝑁

 (59) 

 

 𝐸̅ is a vector of integrals of 𝑈(𝜔) outside the frequency range. In practice, 𝑈(𝜔) 

is not given outside the frequency range and has to be extrapolated. The extrapolated 

function is written as 𝑈̃(𝜔) in the rest of this work. 

 

 𝐸𝑘 = ∫
∏ (ω𝑘 − 𝜎𝑞

𝑘)
𝑀𝑘
𝑞=1

∏ (𝜔 − 𝜎𝑞
𝑘)

𝑀𝑘
𝑞=1

𝑈̃(𝜔) 

𝜔𝑘 − 𝜔
𝑑𝜔

𝛺𝜔𝑁

 (60) 

 

After all the parts of the matrix equation (57) are calculated, it can be solved and 

new values of 𝑉(𝜔𝑘) are obtained. These values are an approximation to the Kramers-

Kronig relations counterpart of 𝑈(𝜔) in the given frequency points 𝜔𝑘. 

The proposed class of methods can be used to reconstruct imaginary part from the 

real part of a transfer function or the phase from the magnitude of the transfer function to 

enforce causality. There are several parameters of this method that can be varied for a 

better performance and/or accuracy. The following section discusses these parameters 

and gives some guidelines on the choice of them. 

2.3.2. Parameters of the Proposed Class of Methods for Enforcing Kramers-

Kronig Relations.  There are two important parameters in the method described above: a 

scheme of choosing subtraction points and the way 𝑈(𝜔) is extrapolated outside the 

given frequency range. Both of these parameters heavily affect the accuracy of the 

calculations and the reliability of the obtained causality enforced data. This section 

provides a general guideline for choosing these parameters as well as a detailed analysis 

of some practical cases. 

2.3.2.1. Subtractions scheme. Using subtraction points adds stability to the 

calculations. Subtractions reduce the error caused by the limitation of the frequency band 

(see [11]). At the frequency points near DC the error is too small and a small number of 

subtractions is enough, but near the maximum frequency where the error becomes large 
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more subtractions might be necessary. However, there are two sources of errors in (54). 

The first is caused by the limitation of the frequency band and can be reduced by 

increasing the number of subtractions. The other error is in Lagrange polynomial 𝐿𝑉 and 

is caused by using approximate values already calculated for the imaginary part. This 

error becomes larger with an increasing number of subtractions. From here it follows that 

increasing the number of subtractions reduces one error, but amplifies the other error and 

vice versa. It is important to find the optimal number of subtractions for (54), but this 

problem still remains open. 

Since the Lagrange polynomial is defined in the same set of subtraction points, it 

is beneficial for reducing the Lagrange approximation error to include advance 

knowledge about the 𝑉(𝜔) function into the structure of the subtraction scheme. 

Specifically, it is known that: 

 

 𝑉(−𝜔) = −𝑉(𝜔). (61) 

 

Therefore, using opposite frequency points together will not increase the 

propagating approximation error while increasing the number of subtractions used and 

thus will decrease the integral instability error. Further, (61) implies that 𝑉(0) = 0, 

which means that using 𝜎 = 0 as a subtraction point is also beneficial since that 

guarantees that reconstructed 𝑉(𝜔) will have a correct value at zero. Lastly, the 

following trick can be applied: the front delay of a channel can be estimated as a linear 

part of the phase. The line that connects the first and the last given frequency point can be 

used as a linear part of the phase. When this line is subtracted in the delay extraction 

phase, the last phase value becomes zero. Putting another subtraction point there 

improves the stability of calculations without damaging the accuracy. 

2.3.2.2. Extrapolation of U(𝝎). Another important part of specifying the 

Kramer-Kronig based causality enforcement algorithm is an extrapolation technique for 

𝑈(𝜔) outside the given frequency range. It has to satisfy two conditions to be physical: 
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continuity and the Paley-Wiener theorem. The following equations formalize these 

conditions: 

  

 𝑈̃(𝜔𝑁) = 𝑈(𝜔𝑁), (62) 

 |𝑈̃(𝜔)| = 𝑜(𝜔1−𝜖),𝜔 → ∞, 0 < 𝜀 < 1. (63) 

 

If these conditions are satisfied, then the Paley-Wiener theorem guarantees that 

there exists one, and only one, function 𝑉(𝜔) that is a causal counterpart of 𝑈(𝜔). 

Further, if the extrapolation is chosen in a way that the integration of 𝐸𝑘 can be done 

analytically or at least tightly bound, then this error can be effectively compensated for 

and the accuracy of the overall causality enforcement technique becomes very good. 

It is easy to comply with the first condition, while the second is more 

complicated. For this reason, existing techniques of extrapolation often violate it and will 

potentially lead to inaccurate nonphysical results in the calculation. However, for 

simplicity reasons it may still be acceptable in practical applications. The two most 

widespread non-causal techniques for extrapolation are constant extrapolation and its 

special case, zero extrapolation (often called zero padding). While both obviously violate 

the Paley-Wiener theorem (and zero extrapolation violates continuity as well), the 

inaccuracy may be tolerable in most practical cases. Constant extrapolation gives a 

chance to calculate 𝐸𝑘 analytically and compensate for it which improves the accuracy of 

the causality enforcement technique. 

Finally, the method proposed below gives a potential solution for a causal 

analytical extrapolation. 

2.3.2.2.1 Causal analytical extrapolation technique proposal. One of the 

implications of the Paley-Wiener theorem is that values at a finite number of points do 

not define the causality of a function. Specifically, if the function is known only at finite 

number of points, it can always be defined in the rest of the domain in a way that it 

becomes causal. The causal extrapolation problem can be formulated for a given set of 

frequency points 𝜔0, 𝜔1, … , 𝜔𝑁 and corresponding values 𝐻0, 𝐻1, … , 𝐻𝑁 to find an 

analytical function 𝐻̃(𝜔) such that it is causal and for any given point 𝜔𝑘: 𝐻̃(𝜔𝑘) = 𝐻𝑘. 
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This problem currently remains open and this work does not fully solve it, however, the 

following framework for a potential solution is being proposed. 

Let 𝑈𝑘 and 𝑉𝑘 be Kramers-Kronig counterparts associated with the given value 

𝐻𝑘. Then, they satisfy Kramer-Kronig relations with subtractions from (55): 

 

 𝑉𝑘 = 𝐿𝑉
𝑘 (𝜔𝑘) − [𝐼𝑘 + 𝐿𝑘 + 𝐸𝑘]. (64) 

 

As was discussed previously, the matrix as well as the vectors 𝐼𝑘 and 𝐿𝑘 can be 

calculated semi-analytically. Let the extrapolated values of 𝑈(𝜔) that are integrated in 

the term 𝐸𝑘 be the following sum: 

 

 𝑈̃(𝜔) = ∑ 𝛼𝑟 √𝜔
𝑟+2𝑁

𝑟=0 . (65) 

 

If the corresponding integrals can be calculated analytically or at least tightly 

bound, the problem can be optimized over values of 𝛼𝑟 to minimize the error between the 

values of 𝑉𝑘 obtained through causality enforcement and the given data samples. 

 Special case of this technique is to use only one term, square root. This can be 

calculated analytically and directly applied to the described causality enforcement 

algorithm. Appendix A contains derivations of the error compensation term for this case. 

2.3.3. Using Fast Fourier Transform for Efficient Enforcement of Kramers-

Kronig Relations. Another method that can be used for enforcing Kramers-Kronig 

relations efficiently is the Fast Fourier transform (FFT) and the inverse Fourier transform 

(IFFT). As shown in (24), the Hilbert integral is a convolution. Convolution in frequency 

domain is equivalent to the multiplication in time domain [2]. Using this, the following 

equivalence can be derived [12], [13]: 

 

 

𝑔(𝜔′) = ℍ{𝑓(𝜔)} =
1

𝜋
∫

𝑓(𝜔)

𝜔′ − 𝜔
𝑑𝜔

∞

−∞

 

𝑔(𝜔′) =
1

𝜋
(𝑓(𝜔) ∗

1

𝜔
) = 𝔽{𝔽−1{𝑓(𝜔)} ∙ (𝑗 ∙ sign(𝑡))}, 

(66) 
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where 𝔽 is the Fourier transform operator and 𝔽−1 is the inverse Fourier transform 

operator and 𝑡 is a variable in the inverse Fourier transform domain. Using a discrete 

approach to calculate the Fourier transform and its inverse provides a way to substitute 

the Hilbert integral with the discrete Hilbert transform (DHT) defined as: 

 

 𝑑ℍ{𝑓(𝜔)} = 𝐹𝐹𝑇{𝐼𝐹𝐹𝑇{𝑓(𝜔)} ∙ (𝑗 ∙ sign(𝑡))}. (67) 

 

Thus, the calculation of the Hilbert integral is equivalent to the calculation of two 

Fourier transforms and function multiplication. As was shown in [13], this observation 

can be used for causality enforcement. The imaginary part can be reconstructed from the 

real part and the minimum phase can be reconstructed from the magnitude using this 

Fourier transform-based approach. 

To illustrate the DHT-based causality enforcing algorithm, the following example 

was considered. A single-ended high-speed link containing SMA connectors and a 

stripline was measured. Figure 2.4 shows the magnitude and phase of its insertion loss. 

 

 

 

Figure 2.4. Magnitude and Phase of a High-Speed Link Path Transfer Function 
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The DHT-based causality enforcement algorithm reconstructing the minimal 

phase from the magnitude was applied. Figure 2.5 shows the nonlinear part of the phase 

of the transfer function before and after causality enforcement. 

 

 

 

Figure 2.5. Nonlinear Phase before/after DHT-Based Causality Enforcement 

 

 

Figure 2.6 shows impulse responses before and after the causality enforcement. 

 

 

 

Figure 2.6. Impulse Responses before/after DHT-Based Causality Enforcement 
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This method uses the discrete Fourier transform, and therefore enforces causality 

in the time domain points corresponding to the given frequency domain sample points. 

That implies that an impulse response obtained from the frequency domain transfer 

function using IFFT will be perfectly causal. However, since DHT enforces causality and 

not delay causality, the data after enforcement has to be modified to return the delay 

portion of the phase. That will shift the impulse response and if the delay value is not 

divisible by the time step, non-causal ripples may appear before the delay. There are two 

possible solutions for this issue. If the delay is approximated by the closest value that is 

divisible by the step response, the ripples will be gone. Another similar solution is to 

return the delay in time domain by shifting the impulse response and then perform FFT to 

obtain the final transfer function. 

The DHT-based causality enforcement approach has several major advantages 

over the approaches discussed in the previous sections. First of all, it provides a way to 

directly deal with the discrete, band-limited data and removes the problem of singularity 

(39) in the integral calculation. Second, frequency domain methods of causality 

enforcement from the previous sections do not guarantee a perfectly causal time domain 

response if it is constructed from the causality enforced frequency domain channel 

characterization using IFFT. However, as shown above, the DHT-based method provides 

a 100% causal function in the time domain. In addition, this is a much more efficient 

algorithm. For a frequency domain function sampled in 𝑁 frequency points, the time of 

causality enforcement using the Hilbert integral is proportional to 𝑁2 or to 𝑁2𝑀 if the 

definition with 𝑀 subtractions is used. At the same time, the DHT-based approach is 

proportional to 𝑁 log𝑁, which is much faster. And finally, this method is much easier to 

implement since FFT and IFFT are readily available functions that do not need to be 

reimplemented. 

  

2.4. CAUSALITY ENFORCEMENT APPLICATION EXAMPLES 

This section illustrates the importance of using causality enforcement and 

provides examples of the algorithms described previously. It is often impossible to 

measure the link path of interest directly. In this case, the following technique is applied. 

Additional fixtures are attached to the system of interest which can be measured 
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individually, then the entire system with fixtures is measured, and finally the 

mathematical procedure is applied to compensate for the fixtures. The mathematical 

procedure of removing the effects of the known part of the system is called de-

embedding. There are a lot of different algorithms for de-embedding. One of the current 

popular approaches is the 2X fixture de-embedding procedure [14]. This approach uses 

S-parameters complex value matrix arithmetic and is quite sensitive to the quality of the 

input data. This section illustrates how causality enforcement improves accuracy of the 

fixture de-embedding procedure result. 

The 2X fixture de-embedding procedure consists of two main steps. First, 

measured S-parameters of the 2X structure are mathematically processed to obtain S-

parameters of the left and right 1X fixtures. Then these fixtures are mathematically de-

embedded from the measured S-parameters of the total structure to obtain the DUT’s 

frequency domain characteristics. To demonstrate the importance of causality 

enforcement, S-parameters of the 2X structure were modified to add some artificial non-

causal noise. To do that, random noise uniformly distributed over the interval 

[−0.05, 0.05] was added to the through components of the fixture’s transfer function. 

Figure 2.7 illustrates that the difference in the phase before extraction of its linear part is 

almost unnoticeable. However, the nonlinear part of phase shown in Figure 2.8 has a 

large deviation which, as it will be demonstrated later, has a big impact on the time 

domain simulation result. 

 

 

 

Figure 2.7. Total Phase of the 2X Structure without the Noise, with the Noise, and 

after the Causality Enforcement 
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Figure 2.8. Nonlinear Part of the Phase of the 2X Structure without the Noise, 

with the Noise, and after Causality Enforcement 

 

 

The original data, noisy data, and the data after causality enforcement were each 

used to obtain the 1X fixture and the DUT. Figure 2.9 and Figure 2.10 show the 

magnitude and total phase of  𝑆21  and  𝑆11 of the extracted DUT for all the cases. For the 

single-ended through simulation, the transfer function is equal to  
1

2
𝑆21. 
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Figure 2.9. Magnitude and Total Phase of the Extracted DUT 𝑆11 
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Figure 2.10. Magnitude and Total Phase of the Extracted DUT  𝑆21 

 

 

The difference in 𝑆21 appears to be relatively small until a closer look at the 

nonlinear part of the phase is taken. Figure 2.11 shows a significant difference in the non-

linear part of the phase of the obtained results. 

 

 

 

Figure 2.11. Nonlinear Part of the Phase of DUT  𝑆21 
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extracted DUTs as well as the etalon DUT obtained by a direct measurement. Figure 2.12 

shows these eye diagrams. 

 

 

 

Figure 2.12. Comparison of the Transient Simulation Results of a DUT Extracted 

Using Measured 2X Structure, Noisy 2X Structure, and 2X Structure with Causality 

Enforcement 

 

 

The noisy data shows significantly more pessimistic channel estimation while the 

causal data most closely matches that of the etalon DUT, even better than the original 

measured 2X structure before causality enforcement. Therefore, causality enforcement is 

an extremely useful technique to ensure the validity of the frequency domain data and 

quality of the time domain simulations. It can also be noted that it provides an effective 

method to clean the noise in the phase. 
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3. TIME DOMAIN METHOD FOR CHECKING AND ENFORCING 

DELAY CAUSALITY 

Delay causality has to be enforced before the system model is used for a 

simulation to ensure valid and accurate results. The previous chapter describes a 

methodology for checking and enforcing causality using frequency domain system 

characterization. However, some simulation methodologies use impulse or step response 

as system characterization input. Then, the response of a system for a long input wave is 

obtained by convolving the impulse response with the input. Frequency domain causality 

enforcement methods are not the best choice for such simulation techniques as they will 

require additional computation time to convert data between time and frequency domains 

and will also introduce extra numerical errors in these transforms. Therefore, the 

technique for enforcing causality directly for an impulse response is necessary. This 

chapter gives a detailed analysis of such an approach. 

 

3.1. CAUSALITY ENFORCEMENT FOR IMPULSE RESPONSE 

This section describes a method of transforming a non-causal impulse response 

function in time domain to make it causal and the changes applied to the corresponding 

transfer function in frequency domain. 

3.1.1. Time Domain Procedure for Enforcing Causality of Impulse Response. 

Let ℎ(𝑡) be an impulse response of a physical system with delay 𝜏 > 0. The function 

ℎ(𝑡) can be represented as a sum of odd and even functions regarding 𝑡 = 𝜏: 

 

 ℎ(𝑡) = ℎ𝑒(𝑡) + ℎ𝑜(𝑡), (68) 

 

where: 

 

 ℎ𝑒(𝑡) =
ℎ(𝑡)+ℎ(𝑡−𝜏)

2
, (69) 
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 ℎ𝑜(𝑡) =
ℎ(𝑡)−ℎ(𝑡−𝜏)

2
. (70) 

 

Then, the modified impulse response function ℎ̂(𝑡) is defined as: 

 

 ℎ̂(𝑡) = ℎ𝑒(𝑡) + 𝑠𝑖𝑔𝑛(𝑡 − 𝜏)ℎ𝑒(𝑡). (71) 

 

This modification is equivalent to the following procedure: take the part of the 

impulse response before the delay, add its mirror image regarding the delay point to the 

part after the delay, and then set the part before the delay to zero. Figure 3.1 shows this 

time domain procedure. 

 

 

 

Figure 3.1. Time Domain Causality Enforcement Procedure 

 

 

The modified function ℎ̂(𝑡) is a delay causal function, since for 𝑡 < 𝜏: 

 

 ℎ̂(𝑡) = ℎ𝑒(𝑡) + 𝑠𝑖𝑔𝑛(𝑡 − 𝜏)ℎ𝑒(𝑡) = ℎ𝑒(𝑡) − ℎ𝑒(𝑡) = 0. (72) 
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3.1.2. Frequency Domain Equivalence for Time Domain Enforcement.  

This section describes the changes to the corresponding transfer function in the 

frequency domain related to the steps of the time domain enforcement algorithm.  

Table 3.1 shows the parallel steps. Therefore, it is shown that the time domain 

causality enforcement algorithm is equivalent to the frequency domain causality 

enforcement using Kramers-Kronig relations between the real and imaginary parts of the 

transfer function. 

 

Table 3.1. Time Domain Causality Enforcement and Its Frequency Domain 

Equivalence 

Time Domain Frequency Domain 

Shift the impulse response ℎ(𝑡) to 

the left by 𝜏 to obtain ℎ(𝑡 − 𝜏) 

Extract delay: 

𝐻′(𝜔) = 𝐻(𝜔)𝑒−𝑗ω𝜏  

Represent the shifted impulse 

response as a sum of odd and even 

functions. 

ℎ(𝑡 − 𝜏) = 

ℎ(𝑡−𝜏)+ℎ(𝜏−𝑡)

2
+
ℎ(𝑡−𝜏)−ℎ(𝜏−𝑡)

2
  

Represent the transfer function 

with the extracted delay as the sum of the 

real and imaginary parts (note the even 

part of the impulse response corresponds 

to the real part of the transfer function and 

the odd part corresponds to the imaginary 

[]) 

𝐻′(𝜔) = 𝑅𝑒′(𝜔) + 𝑗𝐼𝑚′(𝜔)  

 

Remove the odd part from the 

shifted impulse response. 

Remove the imaginary part from 

the transfer function with extracted delay. 

Calculate the new odd part of the 

impulse response as 𝑠𝑖𝑔𝑛(𝑡 − 𝜏)ℎ𝑒(𝑡) 

Multiplication on 𝑠𝑖𝑔𝑛(𝑡) in time 

domain corresponds to the Hilbert 

transform in the frequency domain. 

Calculate the imaginary part of the 

transfer function with extracted delay as 

the Hilbert transform of its real part: 

𝐼𝑚′(𝜔) = −ℍ{𝑅𝑒′}(𝜔)  
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Table 3.2. Time Domain Causality Enforcement and Its Frequency Domain     

Equivalence (cont.) 

Shift the modified impulse 

response by   on the right side: 

ℎ̂(𝑡) =
ℎ(𝑡−𝜏)+ℎ(2𝜏−𝑡)

2
+

ℎ(𝑡−𝜏)−𝑠𝑖𝑔𝑛(𝑡−𝜏)ℎ(2𝜏−𝑡)

2
  

Return the delay for the modified 

transfer function: 

𝐻̂(𝜔) = [𝑅𝑒′(𝜔) −

ℍ{𝑅𝑒′}(𝜔)]𝑒𝑗𝜔𝜏  

 

3.2. CAUSALITY ENFORCEMENT FOR VECTOR FITTING BASED 

SIMULATION 

3.2.1. Vector Fitting Approximation of Transfer Function. Frequency domain 

system characterization is usually obtained by measurements and/or simulations. Most of 

the time the result is tabulated data at certain frequency samples. Often it is much more 

beneficial to approximate this data with an analytical model. Physical models of electrical 

systems suggest that the most suitable class of functions to describe such models 

analytically is a class of rational functions. There are several reasons to prefer the rational 

functions: the result models are causal (not necessarily delay causal), passivity can be 

enforced at the construction stage, channel characterization can be analytically converted 

to the time domain, and finally, a corresponding circuit model can be generated to be 

used in further analysis and simulations. Thus, the tabulated transfer function can be 

approximated by a rational function with complex poles 𝑝1, 𝑝2, … , 𝑝𝑛 and complex 

residues 𝑞1, 𝑞2, … , 𝑞𝑛: 

 

 𝐻(𝑗𝜔) ≈ ∑
𝑞𝑖

𝑗𝜔−𝑝𝑖

𝑛
𝑖=1 . (73) 

 

The algorithm of vector fitting developed in [15] and [6] provides a way to 

construct such a representation. The corresponding impulse response can be obtained 

analytically and can be represented as the following sum: 

 

 ℎ(𝑡) ≈ ∑ 𝑞𝑖𝑒
𝑝𝑖𝑡 𝑛

𝑖=1 . (74) 
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One of many applications of vector fitting is efficiently calculating the output of 

an electrical linear network.  

3.2.2. Semi-Analytical Recursive Convolution. Channel response is obtained by 

convolving the impulse response with the input signal. Let 𝑟(𝑡) be the input signal and 

ℎ(𝑡) be the impulse response of the considered system. Then, the channel response with 

time domain enforced causality 𝑦(𝑡) for 𝑡 ∈ [0, 𝑇] can be calculated by the following 

formula: 

 

 𝑦(𝑡) = ∫ ℎ(𝑡 − 𝑠)𝑟(𝑠)𝑑𝑠
𝑡

0
. (75) 

 

If both the impulse response and input signal are given as tabulated data for 

discrete time samples, then the straightforward approach of calculating convolution as an 

integral (75) has a calculation time that depends on the length of the input signal as a 

quadratic function, which makes it computationally inefficient. However, once impulse 

response is represented by (74), the recursive semi-analytical algorithm for convolution 

proposed in [16] can be used. For this approach (75) can be rewritten as: 

 

 𝑦(𝑡) = ∑ 𝑞𝑖 
𝑛
𝑖=1 ∫ 𝑒𝑝𝑖(𝑡−𝑠)𝑟(𝑠)𝑑𝑠

𝑡

0
= ∑ 𝑞𝑖 

𝑛
𝑖=1 𝑢𝑖(𝑡). (76) 

 

Then, to calculate a particular value of 𝑦(𝑡𝑘), each integral 𝑢𝑖(𝑡𝑘) under the 

summation can be expressed in the recursive formula: 

 

 
𝑢𝑖(𝑡𝑘) = ∫ 𝑒𝑝𝑖(𝑡𝑘−𝑠)𝑟(𝑠)𝑑𝑠

𝑡𝑘−1
0

+ ∫ 𝑒𝑝𝑖(𝑡𝑘−𝑠)𝑟(𝑠)𝑑𝑠
𝑡𝑘
𝑡𝑘−1

=

𝑒𝑝𝑖∆𝑡𝑢𝑖(𝑡𝑘−1) + 𝛿𝑖
𝑘. 

(77) 

 

Integrals 𝛿𝑖
𝑘 can be calculated numerically, but that is an extra calculation burden 

and a source of a potentially large numerical error. Instead of calculating them 

numerically, they can be calculated analytically if the input signal is approximated by 

linear interpolation. On the interval [𝑡𝑘−1, 𝑡𝑘] the following approximation is used: 
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 𝑟(𝑠) ≈ 𝑟(𝑡𝑘−1) +
𝑠 − 𝑡𝑘−1
𝑡𝑘 − 𝑡𝑘−1

(𝑟(𝑡𝑘) − 𝑟(𝑡𝑘−1)). (78) 

 

Using (78) the following formula can be obtained: 

 

 𝛿𝑖
𝑘 =

1

𝑝𝑖
[𝑟(𝑡𝑘) (

𝑒𝑝𝑖∆𝑡−1

𝑝𝑖∆𝑡
− 1) − 𝑟(𝑡𝑘−1) (

𝑒𝑝𝑖∆𝑡−1

𝑝𝑖∆𝑡
− 𝑒𝑝𝑖∆𝑡)]. (79) 

 

Assuming that  𝑢𝑖(0) = 0, all the values of 𝑦(𝑡) can be recursively calculated. 

This recursive, semi-analytical algorithm for the convolution achieves linear asymptotic 

complexity. Note that while this algorithm is asymptotically much better than the FFT 

approach, it does not necessarily beat it in practice. For input signals containing 𝑁 

samples and vector fitting with 𝑀 poles, Table 3.3 shows the comparison of the 

asymptotic complexity of different approaches. Recursive convolution is dominant for 

the very large 𝑁. However, for 𝑁 < 2𝑀, FFT is a more efficient approach. Typical values 

for 𝑀 are around 100, which makes it unlikely for 𝑁 to reach that threshold. However, 

the benefit of using recursive convolution is that it automatically enforces passivity and 

causality (not delay causality) for the model. 

 

Table 3.3. Asymptotic Complexity of Different Transient Simulation Algorithms 

 
Naïve 

Convolution 
FFT 

Vector Fitting 

and 

Recursive Convolution 

Asymptotic 

complexity 
𝑂(𝑁2) 𝑂(𝑁𝑙𝑜𝑔𝑁) 𝑂(𝑀𝑁) 
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3.2.3. Stable Recursive Convolution with Causality Enforcement. To be able 

to use the recursive convolution approach together with the time domain causality 

enforcement described earlier, modifications to the algorithm have to be made. This 

section derives the modified algorithm. Let  𝑟(𝑡) be an input signal and ℎ̂(𝑡) be the 

modified impulse response (71). Then, the channel response with time domain enforced 

causality 𝑦(𝑡) for 𝑡 ∈ [0, 𝑇] can be calculated by the following formula: 

 

 𝑦(𝑡) = ∫ ℎ̂(𝑡 − 𝑠)𝑟(𝑠)𝑑𝑠
𝑡

0
. (80) 

 

If impulse response ℎ(𝑡) is given by (74), then the modified impulse response will 

be given as the following: 

 

ℎ̂(𝑡) = ℎ1(𝑡) + ℎ2(𝑡) 

ℎ1(𝑡) = {

0,                        𝑡 < 𝜏

∑𝑞𝑖𝑒
𝑝𝑖𝑡

𝑛

𝑖=1

, 𝑡 ≥ 𝜏
 

ℎ2(𝑡) = {

0,                                  𝑡 < 𝜏

∑ 𝑞𝑖𝑒
𝑝𝑖(2𝜏−𝑡)𝑛

𝑖=1 , 𝜏 ≤ 𝑡 ≤ 2𝜏
0,                              𝑡 > 2𝜏

. 

(81) 

 

For efficient numerical calculations it is important to obtain the recursive formula 

for (80). The values of the input signal 𝑟(𝑡) are given at the discrete points 𝑡𝑘 = 𝑘∆𝑡, 𝑘 =

0,1, … ,𝑁 and ∆𝑡 =
𝑇

𝑁
. Then channel response at 𝑡 = 𝑡𝑘 can be written as the following: 

 

 
𝑦𝑘 = ∫ ℎ̂(𝑡 − 𝑠)𝑟(𝑠)𝑑𝑠

𝑡

0
= ∫ (ℎ1(𝑡) + ℎ2(𝑡))𝑟(𝑠)𝑑𝑠

𝑡

0
=

∑ 𝑞𝑖(𝐴𝑖,𝑘 + 𝐵𝑖,𝑘)
𝑛
𝑖=1 , 

(82) 

 

where: 
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 𝐴𝑖,𝑘 = ∫ 𝑒𝑝𝑖(𝑡𝑘−𝑠)𝑟(𝑠)𝑑𝑠

𝑡𝑘−𝑘0

0

,    𝑡𝑘0 = 𝜏 
(83) 

 𝐵𝑖,𝑘 = ∫ 𝑒𝑝𝑖(𝑡2𝑘0+𝑠−𝑡𝑘)𝑟(𝑠)𝑑𝑠
𝑡𝑘−𝑘0
𝑡𝑘−2𝑘0

. (84) 

 

Similar to the recursive convolution approach without causality enforcement, a 

recursive formula for 𝐴𝑖,𝑘 can be obtained: 

 

𝐴𝑖,𝑘 = ∫ 𝑒𝑝𝑖(𝑡𝑘−𝑠)𝑟(𝑠)𝑑𝑠

𝑡𝑘−𝑘0

0

 

= ∫ 𝑒𝑝𝑖(𝑡𝑘−𝑠)𝑟(𝑠)𝑑𝑠

𝑡(𝑘−1)−𝑘0

0

  + ∫ 𝑒𝑝𝑖(𝑡𝑘−𝑠)𝑟(𝑠)𝑑𝑠

𝑡𝑘−𝑘0

𝑡(𝑘−1)−𝑘0

 

 

 𝐴𝑖,𝑘 = 𝑒
𝑝𝑖∆𝑡𝐴𝑖,𝑘−1 + 𝛼𝑖,𝑘, (85) 

 

where 𝑘 ≥ 𝑘0, 𝐴𝑖,𝑘0 = 0 and 

 

 𝛼𝑖,𝑘 = ∫ 𝑒𝑝𝑖(𝑡𝑘−𝑠)𝑟(𝑠)𝑑𝑠
𝑡𝑘−𝑘0
𝑡(𝑘−1)−𝑘0

. (86) 

 

Integral (86) can be calculated by the same semi-analytical method as integral 𝛿𝑖
𝑘. 

The modified formula is: 

 

 𝛼𝑖,𝑘 =
𝑒
𝑝𝑖𝑡𝑘0

𝑝𝑖
[𝑟𝑘−𝑘0 (

𝑒𝑝𝑖∆𝑡−1

𝑝𝑖∆𝑡
− 1)  − 𝑟𝑘−1−𝑘0 (

𝑒𝑝𝑖∆𝑡−1

𝑝𝑖∆𝑡
− 𝑒𝑝𝑖∆𝑡)]. (87) 

 

Similarly, the recursive formula for 𝐵𝑖,𝑘 can be obtained: 

 



47 

 

 𝐵𝑖,𝑘 = 𝑒−𝑝𝑖∆𝑡𝐵𝑖,𝑘−1 + 𝛽𝑖,𝑘
1 − 𝛽𝑖,𝑘

2 , (88) 

 

where 𝑘 ≥ 𝑘0, 𝐵𝑖,𝑘0 = 0 and 

 

 

𝛽𝑖,𝑘
1 = ∫ 𝑒𝑝𝑖(𝑡2𝑘0−

(𝑡𝑘−𝑠))𝑟(𝑠)𝑑𝑠

𝑡𝑘−𝑘0

𝑡𝑘−1−𝑘0

 

𝛽𝑖,𝑘
2 = ∫ 𝑒𝑝𝑖(𝑡2𝑘0−

(𝑡𝑘−𝑠))𝑟(𝑠)𝑑𝑠
𝑡𝑘−2𝑘0
𝑡𝑘−1−2𝑘0

. 

 

(89) 

However, calculations of 𝐵𝑖,𝑘 based on (88) will be numerically unstable. Vector 

fitting guarantees that poles have a negative real part, and so −𝑝𝑖 will have a positive real 

part and then 𝑒−𝑝𝑖∆𝑡 will be a very large number and all numerical errors will be greatly 

amplified. Figure 3.2 shows the instability of the algorithm, based on (88). 

 

 

 

Figure 3.2. Instability Issue of the Recursive Convolution for Causality Enforced 

Impulse Response 
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One can see that instability occurs at the time point of the double delay because it 

is the point where coefficient 𝛽𝑖,𝑘
2  starts being used. Ideally, it would balance 𝛽𝑖,𝑘

1  and the 

formula would work. However, a numerical error in calculations of these coefficients 

becomes majorly amplified by the  𝑒−𝑝𝑖∆𝑡 term (which is very large because −𝑝𝑖 has a 

positive real part) and leads to tremendous instability. To avoid this issue, making 

backward calculations in time is suggested: recursively calculate 𝐵𝑖,𝑘 from 𝐵𝑖,𝑘+1. For 

such an algorithm, (88) can be modified: 

 

 𝐵𝑖,𝑘 = 𝑒
𝑝𝑖∆𝑡(𝐵𝑖,𝑘+1 − 𝛽𝑖,𝑘+1

1 + 𝛽𝑖,𝑘+1
2 ). (90) 

 

Figure 3.2 illustrates that this algorithm does not have an instability problem. 

Analogous to (87), 𝛽𝑖,𝑘
1  and  𝛽𝑖,𝑘

1  can be calculated semi-analytically using a piecewise 

linear approximation of the input signal: 

 

𝛽𝑖,𝑘
1 =

𝑒𝑝𝑖(𝑡𝑘0−∆𝑡)

𝑝𝑖
[𝑟𝑘−1−𝑘0 (

𝑒𝑝𝑖∆𝑡 − 1

𝑝𝑖∆𝑡
− 1) 

− 𝑟𝑘−𝑘0 (
𝑒𝑝𝑖∆𝑡 − 1

𝑝𝑖∆𝑡
− 𝑒𝑝𝑖∆𝑡)] 

𝛽𝑖,𝑘
2 =

𝑒−𝑝𝑖∆𝑡

𝑝𝑖
[𝑟𝑘−1−2𝑘0 (

𝑒𝑝𝑖∆𝑡−1

𝑝𝑖∆𝑡
− 1)  − 𝑟𝑘−2𝑘0 (

𝑒𝑝𝑖∆𝑡−1

𝑝𝑖∆𝑡
− 𝑒𝑝𝑖∆𝑡)]. 

(91) 

 

For the numerical calculation of the iterative algorithm based on (91), it is 

necessary to calculate the last point 𝐵𝑁: 

 

 𝐵𝑖,𝑁 = ∫ 𝑒𝑝𝑖(𝑡2𝑘0+𝑠−𝑡𝑁)𝑟(𝑠)𝑑𝑠

𝑡𝑁−𝑘0

𝑡𝑁−2𝑘0

= ∑ ∫ 𝑒𝑝𝑖(𝑡2𝑘0+𝑠−𝑡𝑁)𝑟(𝑠)𝑑𝑠

𝑡𝑁+(𝑚+1)−𝑘0

𝑡𝑁+𝑚−2𝑘0

𝑘0−1

𝑚=0

 (92) 

 
𝐵𝑖,𝑁 = ∑

𝑒𝑝𝑖(𝑡𝑁+𝑚−𝑡𝑁)

𝑝𝑖
[𝑟𝑁+𝑚−𝑘0 (

𝑒𝑝𝑖∆𝑡−1

𝑝𝑖∆𝑡
− 1)  − 𝑟𝑁+(𝑚+1)−𝑘0 (

𝑒𝑝𝑖∆𝑡−1

𝑝𝑖∆𝑡
−

𝑘0−1
𝑚=0

𝑒𝑝𝑖∆𝑡)]. 

(93) 
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3.2.4. Application Example and Results Comparison. The following 

application example illustrates the proposed recursive convolution algorithm with time 

domain causality enforcement. S-parameters of the stripline structure were measured and 

used to simulate the response of a 10 Gbps pulse with a 30 ps rise time. For a matched 

channel transfer function of a through channel, it is equal to the S21 component of the 

channel’s S-parameters. Figure 3.3 shows the magnitude and phase of the measured S21 

component.  

 

 

 

Figure 3.3. Measured Transfer Function of the Stripline 

 

 

S-parameters of the real system must be causal; however, because of 

measurement errors they still have to be checked before use. For this example, less than 

0.1% of the pulse response energy has come before the delay, thus this data can be 

considered causal. Further, the transfer function was multiplied on 𝑒𝑗𝛼√𝜔, where 𝛼 was a 

random variable with values evenly distributed over the interval [−0.1, 0.1], which 

introduced some random nonlinear distortion to the transfer function’s phase. Since 

magnitude was not modified and causal functions should satisfy Kramer-Kronig relations 

between magnitude and phase, the modified S-parameters become non-causal. Figure 3.4 
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shows the real and imaginary part of the transfer function after the phase noise 

introduction. 

 

 

 

Figure 3.4. Measured Transfer Function of the Stripline with Additional Phase Noise 

 

 

Then, the modified S-parameters were used to obtain the pulse response both with 

and without time domain causality enforcement. Figure 3.5 shows the original causal pulse 

response, pulse response of the modified non-causal S-parameters, and pulse response of 

the modified S-parameters with enforced causality. 
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Figure 3.5. Comparison of Pulse Responses with and without Causality 

Enforcement 
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4. SYSTEM LEVEL MODELING QUALITY 

Existing measurement techniques have numerous limitations. Obtained data is 

noisy, discrete, and band-limited while the mathematical model of a linear network 

describes a system analytically and continuously on the infinite frequency band. Because 

of this, the result of simulations is always just an approximation. Since systems become 

more sensitive at the high frequencies, these errors become much larger as well. As high-

speed data links keep evolving, data rates keep increasing and it becomes extremely 

important to improve the accuracy of the models and simulation procedures. While any 

limitations and deviations in the data decrease the accuracy, it can still be acceptable as 

long as important assumptions of the simulation procedure itself are not violated. If this 

happens, the output of such simulation does not describe the system under test at all and 

relying on such data can lead to making wrong decisions. This section is dedicated to two 

such assumptions, shows the importance of not violating them, and proposes techniques 

for enforcing them on the data. 

 

4.1. EXTRAPOLATION OF FREQUENCY DOMAIN DATA TO DC 

Modern frequency domain measurement equipment cannot simultaneously cover 

high and low frequency ranges with good resolution and accuracy. For high-speed 

systems considered by signal integrity engineers, it is essential to capture the high-

frequency behavior. It is very common to receive data that lacks several values next to 

DC and the DC point itself. However, many simulation techniques rely on the assumption 

that data starts from 0 𝐻𝑧 and has even frequency steps. One of the important examples is 

the Fast Fourier Transform (FFT) algorithm often used for transient simulations. 

Therefore, it becomes critical to extrapolate the data into the DC region before using it in 

the simulations. The technique proposed below allows doing such an extrapolation in a 

way that is compliant with the expected physical behavior. 

For a transfer function of a linear electrical network 𝐻(𝜔) = 𝑅𝑒(𝜔) + 𝑗𝐼𝑚(𝜔) =

𝑒−𝜌(𝜔)−𝑗𝜑(𝜔),  the following condition is true: 
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 𝐻(−𝜔) = 𝐻∗(𝜔), (94) 

 

which implies the following relations: 

 

 
ρ(−𝜔) = 𝜌(𝜔)  𝑅𝑒(−𝜔) = 𝑅𝑒(𝜔) 

𝜑(−𝜔) = −𝜑(𝜔)  𝐼𝑚(−𝜔) = −𝐼𝑚(𝜔). 
(95) 

 

Given that two first available data points and their corresponding values are 

𝜔1, 𝜔2 and 𝐻(𝜔1),𝐻(𝜔2), the values at the corresponding negative frequency points are 

also known. Besides, (95) implies that 𝜑(0) = 𝐼𝑚(0) = 0. Therefore, extrapolation can 

be substituted by interpolation between the first given positive frequency and its opposite 

frequency point. Interpolation is a much more stable numerical algorithm and it controls 

the behavior as long as the values at certain points of the interpolated function are known. 

There can be several different ways to choose the interpolation technique. Below there is 

a specific practical approach for a linear electrical network transfer function extrapolation 

to DC: 

 

 𝐼𝑚̃(𝜔) =
𝐼𝑚(𝜔1)𝜔2 − 𝐼𝑚(𝜔2)𝜔1

𝜔1
3𝜔2 − 𝜔2

3𝜔1
(𝜔3 − 𝜔1

2𝜔) +
𝐼𝑚(𝜔1)

𝜔1
𝜔. (96) 

 

 

If  |𝐻(𝜔1)| > |𝐻(𝜔2)|: 

 

 

𝑅𝑒̃(𝜔) =
𝑅𝑒(𝜔1) − 𝑅𝑒(𝜔2)

𝜔1
2 − 𝜔2

2 𝜔2

+ (𝑅𝑒(𝜔1) −
𝑅𝑒(𝜔1) − 𝑅𝑒(𝜔2)

𝜔1
2 − 𝜔2

2 𝜔1
2), 

(97) 

 

else: 
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𝜌̃(𝜔) =  
𝜌(𝜔2) − 𝜌(𝜔1)

𝜔2 −𝜔1
𝜔 + (𝜌(𝜔1) −

𝜌(𝜔2) − 𝜌(𝜔1)

𝜔2 − 𝜔1
𝜔1) 

𝑅𝑒̃(𝜔) = √[𝑒𝜌̃(𝜔)]2 − [𝐼𝑚̃(𝜔)]
2
. 

 

(98) 

To illustrate the accuracy of the proposed extrapolation method, data containing a 

DC point was taken. The first five values were removed and the described extrapolation 

technique was applied. Figure 4.1 and Figure 4.2 show the comparison between the 

original and extrapolated values for the imaginary and real parts respectively. 

Extrapolation error at all the samples does not exceed 2%. 

 

 

 

Figure 4.1. Original and Extrapolated Imaginary Part 
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Figure 4.2. Original and Extrapolated Real Part 

 

 

Figure 4.3 shows impulse responses obtained from the frequency domain data 

using the inverse Fast Fourier transform. The red curve was obtained using the original 

data that had the DC value. The blue curve was obtained using the same data, but without 

the first several low frequency points. Finally, the green curve was obtained from the data 

with missing low frequencies after the extrapolation technique was applied. 

 

 

 

Figure 4.3. Impulse Responses of Data with and without DC Value 
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There are noticeable differences between the impulse responses. The response 

without the DC point has much bigger causality violations which can be seen in the 

zoomed-in area. These inaccuracies significantly add up for the long waveform 

simulation. On the other hand, it can also be seen that the impulse response after the 

extrapolation is very close to the original impulse response that was calculated using the 

data containing the DC point, showing the quality of the proposed technique. 

 To illustrate the effects of the missing DC samples on the time domain 

simulation, the following example was produces in FEMAS [17]. Figure 4.4 shows the 

magnitude of the measured transfer function of the fixture of a high-speed PCB. 

 

 

 

Figure 4.4. Measured Magnitude and Phase of the High-Speed PCB Fixture 

 

 

It was used for a transient simulation of five repetitions of PRBS9, with a 10 Gbps 

bit rate and 30 ps rise/fall time. The results are shown below in the Figure 4.5. 
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Figure 4.5. Effect of the Missing Low Frequency Samples on the Long Transient 

Simulation 

 

 

It is clearly seen that the missing DC points create a big instability and inaccuracy 

of the final results, while the proposed DC extrapolation method restores the results to the 

original accurate values. 

 

4.2. ACCURATE FREQUENCY DOMAIN INTERPOLATION TECHNIQUE 

System-level simulation for signal integrity usually requires connecting together 

models of the various subparts. Different measurements and/or simulations might be a 

source of frequency characteristic data corresponding to those subparts. The frequency 

characteristics can be measured or simulated for different frequency samples. To obtain 

the whole system it is necessary to cascade the frequency characteristics corresponding to 

subparts of the model. Frequency characteristics can be cascaded only if they are given at 

the same frequency samples. Therefore, interpolation of such frequency responses is 

necessary to reduce the data to common frequency samples. Different interpolation 

methodologies can be used to reduce all frequency responses to the same frequency 

samples [18], [19]. However, not every methodology, even some very intuitive and 

widely used, provide an accurate, physically valid results. This section is dedicated to a 
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thorough analysis of such methods, their challenges and proposes an accurate 

interpolation method. 

4.2.1. Naïve Linear Frequency Domain Interpolation. The simplest frequency 

domain interpolation method is a linear interpolation of the real and imaginary parts of 

the given frequency responses. Assume that the original frequency response 𝐻(𝜔) is 

given at frequency samples 𝜔1, 𝜔2, … , 𝜔𝑁 with the corresponding values 

𝐻1, 𝐻2, … , 𝐻𝑁 , 𝐻𝑘 = 𝑅𝑘 + 𝑗𝐼𝑘. These values have to be interpolated at the frequency 

samples  𝜔̅1, 𝜔̅2, … , 𝜔̅𝑀 to corresponding values 𝐻̅1, 𝐻̅2, … , 𝐻̅𝑁 , 𝐻̅𝑘 = 𝑅̅𝑘 + 𝑗𝐼𝑘̅. The linear 

interpolation of the real and imaginary parts of the transfer function can be done using the 

following formulas: 

 

 

𝑅̅𝑖 =
𝜔̅𝑖 − 𝜔𝑘+1
𝜔𝑘 − 𝜔𝑘+1 

𝑅𝑘 +
𝜔̅𝑖 − 𝜔𝑘
𝜔𝑘+1 − 𝜔𝑘 

𝑅𝑘+1 

𝐼𝑖̅ =
𝜔̅𝑖 − 𝜔𝑘+1
𝜔𝑘 − 𝜔𝑘+1 

𝐼𝑘 +
𝜔̅𝑖 − 𝜔𝑘
𝜔𝑘+1 − 𝜔𝑘 

𝐼𝑘+1, 

(99) 

 

where 𝜔̅𝑖 ∈ [𝜔𝑘 , 𝜔𝑘+1 ]. The interpolation done using (99) can work well for short 

structures, but if the structure is long the interpolation can create artificial effects in the 

time domain. Linear interpolation using (99) was done for the frequency responses of a 

measured 3 m differential cable and differential 1.2 in microstrip with 2.4 mm SMA 

connectors and 6 in cables at each side. The detailed geometry model of the microstrip is 

shown in Figure 4.6. Figure 4.7 shows the magnitudes and phases of the frequency 

responses of the measured microstrip and 3 m cable. 

 

 

 

Figure 4.6. Geometry Model of the Microstrip 
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The microstrip with connectors was measured up to 30 GHz and the 3 m cable 

was measured up to 14 GHz. The original frequency responses for both structures are 

given on frequency samples with a 10 MHz step. Interpolation was done for a 10.2 MHz 

frequency step (original frequency samples changed just by 2%). 

 

 

 

Figure 4.7. Magnitudes/Phases of SDD21 of the 3 m Cable and Microstrip 

 

 

Effectively, it corresponds to the pulse/step responses with the rise/fall time equal 

to one time step. In the presented cases, the time step is equal to 35 ps for the 3 m cable 

and 18 ps for the microstrip. Figure 4.8 and Figure 4.9 demonstrate that even a small 

change in frequency step can cause artificial effects on the impulse response of a 3 m 

cable after interpolation. 

 

 

 

Figure 4.8. Impulse Response before and after Interpolation for the 3 m Cable 
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Figure 4.9. Step Response before and after Interpolation for the 3 m Cable 

 

 

It can be seen that the energy of the impulse response was redistributed over the 

time interval which also caused the decrease of the amplitude of the main pulse. 

However, Figure 4.10 and Figure 4.11 show that the same effect is not observed for the 

microstrip. They show the impulse and step responses before and after interpolation for 

the microstrip, respectively. For this case, no distortion in time domain responses after 

the interpolations is observed. 

 

 

 

Figure 4.10. Impulse Responses before and after Interpolation for the Microstrip 
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Figure 4.11. Step Responses before and after Interpolation for the Microstrip 

 

 

The artifacts shown in Figure 4.8 and Figure 4.9 are related with the spectral 

leakage phenomena originated by the lack of coherence [20]. 

 

4.2.2. Artifacts after Frequency Domain Interpolation. To analyze the nature 

of the artifacts shown in Figure 4.8 and Figure 4.9, the magnitudes and phases of the 

frequency responses before and after interpolation need to be inspected. Figure 4.12 and 

Figure 4.13 show the magnitudes and phases of the original and interpolated frequency 

responses respectively for a 3 m cable. 

 

 

 

Figure 4.12. Magnitude of SDD21 of the 3 m Cable before and after Interpolation 
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Figure 4.13. Phase of SDD21 of the 3 m Cable before and after Interpolation 

 

 

Figure 4.12 and Figure 4.13 show that the magnitude interpolation is very 

inaccurate. The reason for the inaccuracy is the real and imaginary parts of the frequency 

responses for long structures are highly oscillated and the linear interpolation of 

real/imaginary parts cannot give a good result because of insufficient frequency samples 

per oscillation period. However, as shown in Figure 4.14 and Figure 4.15, the same 

interpolation method gives an accurate result for a short microstrip structure. 

 

 

 

Figure 4.14. Magnitude of SDD21 of the Microstrip before and after Interpolation 
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Figure 4.15. Phase of SDD21 of the Microstrip before and after Interpolation 

 

 

The real and imaginary parts of the short structures do not oscillate as much as the 

long structures, and so there are enough sample points per oscillation period which results 

in a more accurate interpolation. 

However, the reason for the artifacts appearing in Figure 4.8 and Figure 4.9 is not 

the magnitude oscillation of the interpolated frequency response shown in Figure 4.12. 

These artifacts in the time domain will not disappear if the magnitude is corrected with 

the logarithmic interpolation using the following formula: 

 

 log10|𝐻̅𝑖| =
𝜔̅𝑖−𝜔𝑘+1

𝜔𝑘−𝜔𝑘+1 
log10|𝐻𝑘| +

𝜔̅𝑖−𝜔𝑘

𝜔𝑘+1−𝜔𝑘 
log10|𝐻𝑘+1|, (100) 

 

where 𝜔̅𝑖 ∈ [𝜔𝑘 , 𝜔𝑘+1 ]. The corrected magnitude of the SDD21 of the 3 m cable 

interpolated using (100) is shown in Figure 4.16. 

 



64 

 

 

Figure 4.16. SDD21 of th 3 m Cable Using the Corrected Magnitude Interpolation 

 

 

Magnitude-based interpolation is better than real/imaginary-based interpolation 

because unlike the latter, magnitudes are generally not oscillated or oscillated at much 

lower frequencies and the undersampling problem does not manifest itself. 

Despite the similarity of the interpolated and the original magintudes shown in 

Figure 4.16, the time domain artifacts are still present. Figure 4.17 shows the impulse and 

step responses before and after the interpolation with the corrected magnitude. The 

difference from interpolation of the real/imaginary parts is that the artificial small copies 

of the main impulse from both sides have different signs while the signs of the artifacts 

are the same in case of the interpolation of the real/imaginary parts. 

 

 

 

Figure 4.17. Impulse and Step Response of the 3 m cable before and after 

Magnitude Interpolation 
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The artifacts seen in Figure 4.17 resemble the aliasing effect in the time domain 

[1]. Similar to frequency domain aliasing, the effect occurs when the data is 

undersampled. For undersampled time domain data, the frequency response gets 

corrupted and, in the same way, the time domain response gets corrupted if the frequency 

response is undersampled. However, if the step is small enough the aliasing phenomenon 

does not occur. On the contrary, the artifacts of the inaccurate interpolation appear even if 

the interpolation step is smaller than the original step for which no artifacts are observed. 

To understand the reason behind the artifacts seen in Figure 4.8, Figure 4.9, and 

Figure 4.17, the nonlinear part of the phase before and after the interpolation should be 

observed. Extracting the linear part of the transfer function can be done by multiplying 

the transfer function by 𝑒𝑗𝜔𝜏, where 𝜏 is a system front delay. This transformation is 

equivalent to the shift of the time domain impulse response by – 𝜏 [2]. Figure 4.18 shows 

that the nonlinear part of the phase after interpolation oscillates around the original phase 

of the 3 m cable. The oscillation amplitude is pretty small, -0.05 radians (less than 3°), 

but it turns out to be enough to create small copies of the main pulse on both sides of the 

phase. 

 

 

Figure 4.18. Nonlinear Part of the 3 m Cable Phase before and after Interpolation 
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As shown in [21], the nonlinear part of the phase plays a critical role in the 

causality property of the transfer function. Thus, the non-causal effects observed in the 

impulse response after the interpolation are expected. The non-causality in this case is not 

a reason for the time domain artifacts, but rather both effects are results of the incorrect 

interpolation. 

Figure 4.19, Figure 4.20, and Figure 4.21 illustrate that these artifacts are indeed 

smaller copies of the original impulse response and they are moving when the 

interpolation step is changing. The artifacts are close to the main pulse for the 10.2 MHz 

interpolation step in Figure 4.8. For the 11 MHz interpolation step in Figure 4.19, the 

distance from the main pulse and artifacts increases on both sides. For the 14.9 MHz 

interpolation step in Figure 4.20, the left and the right side artifacts are approaching each 

other and for the 15 MHz interpolation step in Figure 4.21, the left and the right side 

artifacts meet each other. For real/imaginary interpolation these artifacts have the same 

sign and are summed, while in the case of magnitude correction, the artifacts have 

opposite signs and they cancel each other. This phenomenon is periodic and the length of 

the period is 5 MHz (50% of the original frequency step). 

 

 

 

Figure 4.19. Impulse Responses before and after the 11 MHz Step Interpolation 
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Figure 4.20. Impulse Responses before and after 14.9 MHz Step Interpolation 

 

 

 

Figure 4.21. Impulse Responses before and after the 15 MHz Step Interpolation 
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4.2.3. Linear Phase Extraction Technique for Accurate Interpolation. The 

problem of interpolation shown in Figures 4.15-4.17 exists in the fact that the real and 

imaginary parts of the 3 m cable are highly oscillated and, in the case of the 10 MHz 

frequency step, there is an insufficient number of frequency samples per period. The 

interpolation procedure of this type of data is very sensitive. 

In Figure 4.22 there is a given real part of the frequency response of the 3 m cable 

before and after 10.2 MHz step interpolation (a similar picture takes place for the 

imaginary part). 

 

 

 

Figure 4.22. Real Parts of the Frequency Response of the 3 m cable before and 

after 10.2 MHz Frequency Step Interpolation 

 

 

This problem can be solved if the linear part of the phase before interpolation is 

removed and then returned after interpolation is done. Figure 4.23 shows that the linear 

phase extraction before interpolation gives an accurate approximation of the nonlinear 

part of the phase. Therefore, the obtained impulse and step responses do not have the 

unwanted artifacts as shown in Figure 4.24 and Figure 4.25. 
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Figure 4.23. Nonlinear Part of the Phase of the Frequency Response of the 3 m 

Cable Using Interpolation with and without Removing the Linear Part 

 

 

 

Figure 4.24. Impulse Responses before and after Interpolation Using Linear Phase 

Extraction before Interpolation 

 

 

 

Figure 4.25. Step Responses before and after Interpolation Using Linear Phase 

Extraction before Interpolation 
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The interpolation is much more accurate if the linear portion of the phase is 

removed before interpolation and returned after interpolation because it makes the 

real/imaginary parts or phase of the transfer function smoother and less oscillated. This 

method is especially important for electrically long structures. 
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APPENDIX 

DERIVATION OF SQUARE ROOT-BASED CAUSAL EXTRAPOLATION 

The following integral has to be calculated: 

 

 ∫
√𝜔𝑑𝜔 

∏ (𝜔−𝜎𝑞)
𝑁
𝑞=1 (𝜔−𝜔𝑘)

∞

𝜔𝑁
. (101) 

 

Using the substitution 𝑧 = √𝜔, the integral above transforms into: 

 

 

∫
√𝜔𝑑𝜔 

∏ (𝜔 − 𝜎𝑞)
𝑁
𝑞=1 (𝜔 − 𝜔𝑘)

∞

𝜔𝑁

= 2∫
𝑧2𝑑𝑧 

∏ (𝑧2 − 𝜎𝑞)
𝑁
𝑞=1 (𝑧2 − 𝜔𝑘)

∞

√𝜔𝑁

. 

(102) 

 

Using fractional decomposition: 

 

 

 ∫
𝑧2𝑑𝑧 

∏ (𝑧2−𝜎𝑞)
𝑁
𝑞=1 (𝑧2−𝜔𝑘)

∞

√𝜔𝑁
= (∑ ∫

𝛼𝑞𝑑𝑧

𝑧2−𝜎𝑞

∞

√𝜔𝑁

𝑁
𝑞=1 ) + ∫

𝛽𝑑𝑧

𝑧2−𝜔𝑘

∞

√𝜔𝑁
. (103) 

 

 

To derive 𝛼𝑞 and 𝛽, the expression is combined into a common denominator and 

then for each 𝑧 = √𝜎𝑞 and 𝑧 = √𝜔𝑘 there is an equation of numerators being equal. The 

resulting formulas are: 

 

 
𝛼𝑞 =

𝜎𝑞

𝜎𝑞−𝜔𝑘
(∏ (𝜎𝑞 − 𝜎𝑝)

𝑁
𝑝=1
𝑝≠𝑞

)

−1

, 

and 

(104) 

 𝛽 = 𝜔𝑘(∏ (𝜔𝑘 − 𝜎𝑝)
𝑁
𝑝=1 )

−1
. (105) 

 

 

Now, the generic integral ∫
𝑑𝑧

𝑧2−𝑎

∞

𝐵
 has to be solved. The following formula gives 

the generic solution: 
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 ∫
𝑑𝑧

𝑧2−𝑎

∞

𝐵
=

1

2√𝑎
ln |

𝐵+√𝑎

𝐵−√𝑎
|. (106) 

 

Using the derived generic integral the following final formula is obtained: 

 

 

∫
√𝜔𝑑𝜔 

∏ (𝜔−𝜎𝑞)
𝑁
𝑞=1 (𝜔−𝜔𝑘)

∞

𝜔𝑁
=

∑ [
√𝜎𝑞

(𝜎𝑞−𝜔𝑘)∏ (𝜎𝑞−𝜎𝑝)
𝑁
𝑝=1
𝑝≠𝑞

ln |
√𝜔𝑁+√𝜎𝑞

√𝜔𝑁−√𝜎𝑞
|]𝑁

𝑞=1 +  

(107) 

+
√𝜔𝑘

∏ (𝜔𝑘−𝜎𝑝)
𝑁
𝑝=1

ln |
√𝜔𝑁+√𝜔𝑘

√𝜔𝑁−√𝜔𝑘
|. 

 

 

Now, the same integral over the negative part of the spectrum has to be 

calculated: 

 

 

 

 ∫
√|𝜔|𝑑𝜔 

∏ (𝜔−𝜎𝑞)
𝑁
𝑞=1 (𝜔−𝜔𝑘)

−𝜔𝑁

−∞ 
. (108) 

 

The following transformation is applied: 

 

 ∫
√|𝜔|𝑑𝜔 

∏ (𝜔−𝜎𝑞)
𝑁
𝑞=1 (𝜔−𝜔𝑘)

−𝜔𝑁

−∞ 
= (−1)𝑁+1 ∫

√𝜔𝑑𝜔 

∏ (𝜔+𝜎𝑞)
𝑁
𝑞=1 (𝜔+𝜔𝑘)

∞

𝜔𝑁 
. (109) 

 

Derivations equivalent to the positive frequencies case result in the following 

expression: 

 

 

 ∫
√𝜔𝑑𝜔 

∏ (𝜔+𝜎𝑞)
𝑁
𝑞=1 (𝜔+𝜔𝑘)

∞

𝜔𝑁 
= 2(∑ ∫

𝛾𝑞𝑑𝑧

𝑧2+𝜎𝑞

∞

√𝜔𝑁

𝑁
𝑞=1 ) + 2∫

𝜗𝑑𝑧

𝑧2+𝜔𝑘

∞

√𝜔𝑁
. (110) 
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To derive 𝛾𝑞 and 𝜗, the expression is combined into a common denominator and 

then for each 𝑧 = 𝑗√𝜎𝑞 and 𝑧 = 𝑗√𝜔𝑘 there is an equation of numerators being equal. 

The resulting formulas are: 

 

 𝛾𝑞 =
−𝜎𝑞

−𝜎𝑞 + 𝜔𝑘
(∏(−𝜎𝑞 + 𝜎𝑝)

𝑁

𝑝=1
𝑝≠𝑞

)

−1

= (−1)𝑁+1𝛼𝑞 , (111) 

 

and 

 𝜗 = −𝜔𝑘(∏ (𝜎𝑝−𝜔𝑘)
𝑁
𝑝=1 )

−1
= (−1)𝑁+1𝛽. (112) 

 

Now, the generic integral ∫
𝑑𝑧

𝑧2+𝑎

∞

𝐵
 has to be solved. The following formula gives 

the generic solution: 

 

 ∫
𝑑𝑧

𝑧2+𝑎

∞

𝐵
=

𝜋

2𝑎
−

1

𝑎
arctan

𝐵

𝑎
. (113) 

 

 

Using the derived generic integral the following final formula is obtained: 

 

 

 

∫
√|𝜔|𝑑𝜔 

∏ (𝜔−𝜎𝑞)
𝑁
𝑞=1 (𝜔−𝜔𝑘)

−𝜔𝑁

−∞ 
= ∑ [

√𝜎𝑞

(𝜎𝑞−𝜔𝑘)∏ (𝜎𝑞−𝜎𝑝)
𝑁
𝑝=1
𝑝≠𝑞

(𝜋 −𝑁
𝑞=1

2 arctan√
𝜔𝑁

𝜎𝑞
)] +

√𝜔𝑘

∏ (𝜔𝑘−𝜎𝑝)
𝑁
𝑝=1

(𝜋 − 2 arctan√
𝜔𝑁

𝜔𝑘
). 

(114) 

 

Using these derivations, the extrapolation error compensation term can be 

derived: 

 

 

 

𝐸𝑘 = ∫
∏ (𝜔𝑘 − 𝜎𝑞

𝑘)
𝑀𝑘
𝑞=1

∏ (𝜔 − 𝜎𝑞
𝑘)

𝑀𝑘
𝑞=1

𝑈̃(𝜔) 

𝜔𝑘 − 𝜔
𝑑𝜔

𝛺𝜔𝑁

= ∫
∏ (𝜔𝑘 − 𝜎𝑞

𝑘)
𝑀𝑘
𝑞=1

∏ (𝜔 − 𝜎𝑞
𝑘)

𝑀𝑘
𝑞=1

𝑈(𝜔𝑁)

√𝜔𝑁
√|𝜔| 

𝜔𝑘 − 𝜔
𝑑𝜔

𝛺𝜔𝑁

= 𝐸𝑘
+ + 𝐸𝑘

−, 

(115) 
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 𝐸𝑘
+ =

𝑈(𝜔𝑁)

√𝜔𝑁
(∑ [√𝜎𝑞∏

𝜔𝑘−𝜎𝑝

𝜎𝑞−𝜎𝑝

𝑁
𝑝=1
𝑝≠𝑞

ln |
√𝜔𝑁+√𝜎𝑞

√𝜔𝑁−√𝜎𝑞
|]𝑁

𝑞=1 −√𝜔𝑘 ln |
√𝜔𝑁+√𝜔𝑘

√𝜔𝑁−√𝜔𝑘
|), (116) 

 

 

𝐸𝑘
− =

𝑈(𝜔𝑁)

√𝜔𝑁
(∑ [√𝜎𝑞∏

𝜔𝑘−𝜎𝑝

𝜎𝑞−𝜎𝑝

𝑁
𝑝=1
𝑝≠𝑞

(𝜋 − 2 arctan√
𝜔𝑁

𝜎𝑞
)]𝑁

𝑞=1 − √𝜔𝑘 (𝜋 −

2 arctan√
𝜔𝑁

𝜔𝑘
)). 

(117) 
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