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Introduction  

 Spinal Cord Injury (SCI) is a devastating neurological impairment that involves a 

disruption in the ascending and descending neural pathways of the spinal cord. The disruption of 

these neural tracts can lead to a permanent loss of sensorimotor and autonomic function in the 

affects nearly 130,000 individuals each year with 2-3 million individuals affected across the 

globe and  health care treatments costs of nearly 1,000,000 dollars per patient in the first year 

alone (Jackson 2012). Due to the current inability to regenerate neural tissue post-injury, 

research has pursued alternate methods to help individuals with SCI regain locomotion, bladder 

control, and sexual functions (Musienko 2012, Yoo 2008). These methods called Functional 

Electrical Stimulation (FES) involve the use of a stimulator and the placement of electrodes in 

different parts of the body, dependent upon each respective method, to evoke movement in a 

target limb. Current practices of FES in clinical use to restore function include intramuscular 

stimulation, peripheral nerve stimulation, and epidural stimulation; however these are only the 

current manifestations of past neuroprostheses (NPs); another growing field is the research of 

intraspinal microstimulation (ISMS).  

The use of electrical stimulation to achieve limb movement post SCI began in the early 

20th century, with the use of an electrode to invoke movement in a spinally-transected cats and 

dogs (Philippson 1905, Sherrington 1910). The field would not advance much until the invention 

stimulation via surface electrodes to prevent foot drop (Liberson 1961). Stimulators like these 

and others, such as the ones that were triggered by voluntary muscle contraction were on the 
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market for 10 years until the age of the implanted NPs. NPs  was a product stemmed from the 

 dorsal column stimulators, produced by 

Medtronic, were used to help control pain through means of gate control theory, supra-threshold 

stimulation amplitudes could block nerve pulses caused by pain, and the ability of neural tissue 

to remain within normal compliance parameters or spasticity (Waltz 1997). This era began the 

use to expand the use of FES systems to beyond that of locomotion. Deep brain stimulators for 

respiration and sacral root stimulators for bladder control also becoming used in the clinical 

setting (Kumar 1997, Benabid 1991, Elefteriades & Quin 1998). The rapid technological 

advancements have brought with them a number of new NPs to attempt to help individuals with 

SCI increase their ADLs, such as the four FES focused in this paper. This is not to say that other 

means have not been attempted, however this helps to show the evolution of FES systems and 

the evolution of what would evolution into the clinical use of intramuscular stimulation and 

peripheral nerve stimulation. Due to lack of technological advancement, these types of 

stimulation would be the most accessible and researched methods to evoke movements in SCI 

victims.  

The investment into NPs has stemmed from the lack of neural regeneration post SCI. The 

inability to regrow neural tissue has pushed research to favor NPs in order to attempt to restore 

hypothesized that peripheral nerve tissue could be used to attempt to rebuild the broken neural 

connection in the spine (Richardson 1980). Research has shown that neural tissue regeneration is 

possible in a rat model, however, the success stemmed more from local neural circuits and was 

not comparable to a function restoration of the ascending and descending pathways response for 
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full body control (Jones 2001). There are numerous attempts to repair nerves through means of 

the implantation methods such as the use of scaffolding of biodegradable materials to stimulate 

nerve growth (Grahn 2014). Unfortunately, these methods have not been as successful as 

research would hope and alternatives are needed until nerve regeneration can come to fruition.   

L iterature review 

FES systems are a current hot topic of research; however, missing from this literature is 

the use of comparative studies between ISMS and intramuscular stimulation and as such was the 

intent of this research. The limitations of each method have been recognized, however a direct 

comparison between methods is not present. The purpose of this project is to test the efficacy of 

ISMS compared to intramuscular stimulation, in a rat model, to test the fatigability and 

stimulation levels in the same locomotive movement.  

As stated previously, SCI causes damage to the interneurons in the spinal cord and affects 

the activity of the peripheral and central nervous systems. The result can involve loss of 

sensation, limb movement, bladder control, and sexual function depending on the location and 

severity of injury (Musienko 2012).However, research has shown the neural circuitry pathways 

inferior to the injury are still intact (Bamford 2010). ISMS targets certain CPGs or motor units, 

located in the ventral horn of the grey matter in the spinal cord, to tap into the motor neurons that 

initiate functions such as walking and fire the appropriate muscles to achieve the desired 

movement (Bamford 2012, Mushahwar 2000). Research suggests that the motor neurons that 

control muscles of a movement, such as walking, are all interconnected in a neural network that 

enables the activation of one neuron to activate all the neurons in the CPGs. These CPGs control 

the coordination of such complex synergists muscle movements such as walking and are the 
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natural physiological way in which the brain activates the initiation of these actions. However, 

the use of these CPGs and ISMS to evoke movement is still underway and has not be achieved 

outside of a laboratory setting. There are a number of FES systems that are currently in clinical 

use.  

Intramuscular stimulation involves the implantation of intramuscular or surface 

myoelectric electrodes into/on individual muscles, such as the vastus lateralis, rectus femoris, 

vastus intermedius, and the vastus medialias of the quadriceps muscle group, and the use of 

stimulation to evoke limb movement, such as standing (Bhadra 2001). Peripheral nerve 

stimulation uses a generic multi-channel stimulation device, capable of producing necessary 

amplitudes over 10mA, to stimulate a peripheral nerve, such as the tibial or common peroneal 

nerves, innervating a muscle, such as the gastrocnemius, or group of muscles by means of a 

nerve cuff electrode to cause contraction and produce a limb movement, such as plantar flexion 

or dorsiflexion (Schiefer 2013). As such, these methods are highly selective in terms of their 

ability to differentiate and activate muscle groups, making them highly favored as methods to 

help regain function post SCI.  

Unfortunately, these methods of FES are also highly fatigable. Intramuscular and 

peripheral nerve stimulation depolarizes cell membranes of motor neuron axons in the nervous 

system to evoke muscle contraction. Due to the properties of action potentials and of motor 

neuron axon size, intramuscular and peripheral nerve stimulation fire the large and fatigable 

muscle fibers before small fatigue-resistant fibers, which produces a reverse order of motor 

 Larger-diameter axons that 

innervate larger motor units require less stimulation to propagate an action potential compared to 

smaller diameter axons due to the increase in space between the nodes of Raniver, which causes 
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an amplified transmembrane voltage increasing the spread of depolarization down the axon 

(Peckham 2005). The reverse motor recruitment pattern causes targeted large anaerobic muscles, 

responsible for quick powerful movements, to fatigue very rapidly due to constant stimulation. 

The result of this stimulation parameter is a rapid fatigue of mainly type II muscle fibers due to 

the depletion of creatine phosphate and glycogen storage reserves of which are the primarily 

molecules used for energy (Peckham 2005).  These FES methods not only fatigue the muscles 

through reverse motor recruitment, but they also require higher levels of stimulation to achieve 

locomotion. The muscles and peripheral nerve axons that are fired through intramuscular and 

peripheral nerve stimulation means are much larger in size than other neural axons and therefore 

require larger stimulus parameters in order to incite similar contraction strength (Popovic 1999).  

           Intramuscular stimulation and peripheral nerve stimulation are two different FES systems 

that are currently in clinical use. Typical intramuscular systems consist of a large 10 or 8 channel 

stimulator with a number of electrodes attached. The types vary for internal to external 

stimulators with either surface electrodes or percutaneous (implanted) electrodes in the muscle. 

Intramuscular stimulation induces muscle contraction through extracellular electrical currents 

that cause depolarization in intact lower motor units (Bhadra 2001). The mechanism of muscle 

initiation based on electrode placement is extremely selective and allows for the ability to 

discrimination between muscle group and cause contraction of which ever groups are necessary 

for a given movement. These properties in addition to minimal infection rates and a small 

fracture rate make its use very practical (Knutson 2002). Until recently single function 

restoration was the primary focus of intramuscular stimulation. Recently the emergence of 

graded and logical hand grasp NPs have shown great promise in upper limb rehabilitation. NPs 

developed by Peckman et al. involves the use of these two stimulation parameters, graded and 
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logical, to provide a wide range of hand grasp actions, such as opening and closing of the hand 

(graded) and initiation of set functions for hand grasp configurations (logical) (Peckham 2002). 

The emergences of systems such as these are recent but have proven to be successful in limb 

movement. 

The use of intramuscular stimulation has, however, its limitations. Early fatigue onset, 

reverse motor unit recruitment, and size limitations have all led to continued research on 

intramuscular stimulation or the need for innovative solutions for progress in SCI NPs (Troyk 

2001). Due to the mechanism of stimulation by means contraction activation through the use of 

extracellular electrical currents, muscle fibers become fatigued more rapidly as cellular charge 

builds up, coupled with reverse motor recruitment the result leads to impractical use of 

intramuscular stimulus in situations of elongated duration. Lastly, current systems are extremely 

bulky and hard to don and doff these systems, requiring the continuation of research to achieve a 

practical intramuscular stimulation system (Popovic 1999). These limitations greatly reduce the 

ability for chronic use in patients.  

Peripheral nerve cuff stimulation is another FES system that is currently in clinical 

practice for chronic use (Grill 1998). Peripheral nerve stimulation involves electrical current 

stimulus to depolarize nerve axons of motor unit pathways and thus cause muscle contraction. 

Much like intramuscular stimulation, peripheral nerve stimulation requires a large multichannel 

stimulator and penetrating electrodes, spiral electrodes that wrap around the nerve or flat 

interface nerve electrodes that cover the nerve and snap shut (Schiefer 2013). Due to this direct 

contact with the nerves, peripheral nerve stimulation is highly selective in muscle recruitment. 

Peripheral nerve stimulation has been successful in the application of rehabilitation for 

movements such as standing or walking with the stimulation of the femoral nerve through its 



Dube  9  
  

innervation of the primary hip flexors (Fisher 2008). Stimulation of the pudendal nerve has 

shown to help regain bladder function as well (Yoo 2008). The combination of selectivity and 

low electrode fracture rates as well as minimal invasiveness makes peripheral nerve a preferred 

NP for chronic long term use. However, again more research is required to advance peripheral 

nerve stimulation to more practical means.  

Peripheral nerve stimulation suffers from many of the same short comings as 

intramuscular stimulation such as early fatigue onset and reverse motor recruitment. The 

stimulation of peripheral nerve motor neuron axons fire the largest axons first, due to the inverse 

relationship between stimulus amplitude and axon diameter, which fires the largest and most 

fatigable motor units and ends up leading to fatigue more rapidly. The practical use of peripheral 

nerve stimulation also requires a large stimulator and number of electrodes in order to invoke 

limb movement. These limitations are small in regard to the current uses of peripheral nerve 

stimulation, but must be overcome if fatigue-resistant movements are to become a reality. 

Epidural stimulation stimulates interneurons in the spinal cord by means of a cylindrical 

surface electrode embedded in the sub-dural space in the vertebral column. Epidural stimulation 

relies on the depolarization of afferent neurons in the spinal cord to awaken sensory pathways 

that then activate the spinal motor units to cause muscle contraction. This is accomplished via 

sub-threshold or supra-threshold stimulation. Sub-threshold stimulation parameters are beneath 

the amplitude required for motor activation and, as such, establish a physiological state that 

enhances spinal circuitries excitability and allows for sensory-mediated movement (Gerasimenko 

2003). Supra-threshold stimulation produces amplitudes above that required for direct motor 

activation to invoke muscle contraction and limb movement (Ichiyama 2008).   Sub-threshold 

stimulation is a well-established technique for locomotor training in individuals with incomplete 
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SCI to recovery stepping (Dietz and Harkema 2004). The epidural stimulation allows for the 

activation of the sensory pathways responsible for movements such as walking. When exposed to 

a movement such as standing, epidural stimulation primes afferent neurons in the sensory 

pathway to travel up the spinal cord. Efferent pathways are then activated as a result and desired 

movements are then achieved. The incomplete injury allows increases the probability of the 

sensory signal reaching the brain and eliciting walking via the spinal cord.  

Locomotor training is a well-established method for the recovery of stepping in 

individuals with incomplete SCI. The sensory information carried by afferent neurons helps to 

facilitate the formation of the proper neural circuitries needed to walk (Ahn 2006). Research has 

shown that the two important factors in locomotor training are the load receptor input, which are 

the proprioceptive and mechanoreceptor inputs from the lower leg to the spinal cord, and the hip 

joint afferents, which are the same but in the location of the hip joints. These two afferent 

pathways are responsible for the activation of the swing phase (hip) and the continuation of 

ongoing activity (load receptor) (Abraham 1985, Grillner 1978).  There are a verity of factors 

that determine the success of locomotor training, such as age, time from injury, severity of 

injury, and a number of other factors. Due to the nature of locomotor training where improper 

weight bearing or stimulation can lead to success or disaster, the ability to gauge effectiveness of 

particular training regiments are unreliable and inconsistent (Fong 2009). These flaws lead to the 

need for a controlled and consistent robotic unit to assist with locomotion, but progress is still in 

the works (Fong 2009). Most NPs are able to use these neural networks due to the plasticity of 

the spinal cord and would be useless without these important properties. However, there are 

some that do not rely upon the spinal cord at all to accomplish limb movement.  
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Supra-threshold epidural stimulation, although, not as well established as intramuscular 

and peripheral nerve stimulation for locomotion, has successfully achieved full weight- bearing 

standing in a 23 year old man with complete paraplegia (Harkema 2011). The supra-threshold 

stimulus amplifies the sensory signal large enough that the desired motion of standing is 

activated through reflex pathways which propagate the desired action. The primary limitation of 

epidural stimulation focuses on the lack of selectivity to perform complex limb movement due to 

electrical spread and activation of agonist and antagonist muscle groups.  

Traditionally used for the treatment of chronic pain, epidural stimulation has recently 

come to the forefront of FES system research, as demonstrated by the successful full weight 

bearing standing in a patient with complete paraplegia and the voluntary muscle contraction of 

the toes in a patient with complete motor function loss (Harkema 2011 & Angeli 2014). Epidural 

stimulation achieves muscle contraction from the activation of the neuromuscular pathways in 

the spinal cord. This is accomplished through the use of a surgically implanted electrode that lies 

on top of the dura mater of the spinal cord. As stated previously, the use of epidural stimulation 

in regards to locomotion utilizes two different types of stimulation parameters; sub threshold 

(10-200 µA) and supra threshold (20-300 µA) (Fong 2009). Sub threshold stimulation has been 

used to prime the neural networks in order that sensory triggered movements may be facilitated. 

A more natural motor unit recruitment pattern is facilitated because the afferent neurons cause 

depolarization of the motor pathways and produce movement (Musienko 2007).  Supra threshold 

stimuli depolarize, through electrical spread, which is the event of electrical current flooding into 

surrounding tissue, the motor pools of the ventral horn of the gray matter to evoke limb 

movement (Fong 2009). Both of these methods have been successful in producing walking and 

standing, as well as improving neural plasticity in a feline and rat models. 
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Epidural stimulation is limited in practical usage as compared to other FES systems. 

First, due to the location of the electrode, epidural stimulation lacks the sensitivity to coordinate 

specific movements compared to intramuscular and peripheral nerve stimulation, although due to 

afferent and efferent pathway movements are coordinated in a more natural fashion. Electrode 

location also enhances the stimulation spill over, or essentially electrical spread, as compared 

with other FES systems due to the large number of neural pathways between the subdural space 

and the ventral motor horns and can produce unwanted movements due to activation of undesired 

neuromuscular pathways. Lastly epidural stimulation requires high stimulation parameters as 

compared to ISMS and therefore warrants caution. However, it should be noted that the natural 

motor recruitment pattern facilitated through epidural stimulation holds promise for chronic 

fatigue resistant movement.  

 ISMS targets the interneuron effector pathways between the brain and muscles to enact 

muscle contraction. However, ISMS differs in this regard from other FES methods as electrodes 

penetrate into the ventral horn of the gray matter in comparison to an epidural electrode that lies 

on top of the spinal cord dura mater. Research has suggested that ISMS triggers the activation of 

recruitment of motor units follows an increasing fashion of smallest to largest as proportionate to 

the load (Henneman 1965). It is proposed that ISMS provides a more fatigue resistant method of 

locomotion by tapping into CPGs and hence firing motor neurons in a more natural fashion in a 

feline model (Mushahwar 2000). In addition, ISMS also uses lower levels of stimulation to 

achieve limb movement (Grahn 2014). As ISMS directly stimulates the motor pools of the 

ventral horn of the effector neurons, the stimulation distance is decreased significantly and 
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allows for stimulation parameters of micro amps to reach threshold level; much lower than any 

other FES system.  

Although not in clinical use, ISMS holds promise for a solution to limitations of current 

NP devices. ISMS works much like epidural stimulation, as electrical current from an external 

stimulator through penetrating electrode that depolarize the motor unit in the ventral horn of the 

gray matter. The method of motor unit 

This activation mechanism thus provides better resistance to muscle fatigue than methods such 

as intramuscular or peripheral nerve stimulation (Bamford 2005).  It is well-established that the 

stimulation of the ventral horn activates feline CPGs which allow for increased muscle fatigue 

resistance (Mushahwar 2000). ISMS has also shown the capability to perform single joint to 

whole limb synergistic movements through stimulation from one electrode (Mushahwar and 

Horch 2000).  

 Apart from the stimulation physiological advantages, ISMS also has a number of other 

advantages compared to other FES systems. The distance from contractile muscles and the 

protection of the spinal column provides a relatively stable and mechanically sound environment 

for electrode implantation for ISMS (Prochazka 2001). Also, due to the mechanism of 

stimulation, ISMS stimulation amplitudes are smaller (.04 to .12 mA) compared to peripheral 

nerve (0.1 to 5 mA) and intramuscular stimulation (20mA) to evoke relatively the same muscle 

contraction response due to the direct perforation of the neural tissue with the electrode.  Lastly, 

ISMS requires fewer electrodes to cause muscle contraction and limb movement as other FES 

systems as its ability to tap into CPGs allows for a more controlled and coordinated muscle 

response becaus
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one electrode to initiate walking as compared to more for other methods due to the inability to 

fire more than one muscle.   

ISMS does however have limitations that do not allow it to be practical for clinical use at 

this time. Due to the lack of consistent electrode delivery systems, ISMS can have poor 

selectivity in regards to electrode placement and as such can result in unwanted muscle 

contraction. ISMS electrodes are implanted by hand due to the lack of a stereotactic frame and 

therefore have a higher tendency to miss intended location by lateral movement and depth.  Also 

the general lack of spinal cord mapping makes targeting precise neuromuscular pathways 

extremely hard. ISMS also involves invasive surgery in order to emplace penetrating electrodes 

in the ventral horn. Lastly, due to insufficient wireless electrical stimulators, ISMS is impractical 

for use outside of lab setting. However, it should be noted that limb movement has been achieved 

by ISMS from a distance of 10m through wireless transmitter which although still limits ISMS 

usage is a key step towards translation out of lab settings (Grahn, 2014).  

   Besides the methods mentioned in this literature review, there are a number of other 

methods in preliminary research that propose solutions to the limitations posed by these four FES 

systems. Optogentics is a new technique that utilizes the use of viral gene delivery to express 

Channelrhoposin-2 in cells of a given target area, which are then activated upon photo 

stimulation (Boyden 2005). Cell populations can then be turn on or off by means of light 

exposure through optical fibers in the targeted cell population. The use of closed loop optogentic 

control of the thalamus has proved to be useful in the disruption of seizures after cortical injury 

(Paz 2013). Optogentics has also been used to restore respiratory breathing via photo stimulation 

of targeted phrenic nerve cells (Alilian 2008).  Research has been shown that initiation of 

locomotor-like activity has been produced through light activation of glutamatergic neurons in 
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the hindbrain and spinal cord (Hagglund 2009). Optogentic research shows great promise for a 

number of research areas including SCI, however due to the novelty it will take time to tell if it 

can bring new light to this problem.  

Methods 

Subjects  

 Studies were conducted in vivo in eight adult female Sprague-Dawley rats weighing 225-

290 grams. Five out of these eight were used in this study; two were used as a SCI model, one 

for an intramuscular model, and two were used which had healthy intact spinal cord, three died 

due to analgesic and anesthetic complications. Rats were housed individually in standard 

conditions on 12-hour light/dark cycles with ad libitum access to water and food. All procedures 

were conducted in accordance with National Institutes of Health guidelines and approved by the 

Mayo Clinic Institutional Animal Care and Use Committee. A rodent SCI model was selected for 

this proof-of-principle study due to the retention of functional properties required for limb 

control and as an inexpensive alternative to feline and larger animal models.  

Rodent model of Spinal Cord Injury 

 Two animals were used to as chronic SCI models. Animals were anesthetized with 

ketamine (80 mg/kg) and xylazine (5 mg/kg) and placed on a heating pad to maintain core 

temperature. The surgical procedure was as follows: The fourth thoracic vertebra (T4) was 

identified by means of counting down the spinous process from the anatomical landmark of the 

second thoracic vertebra found in between the shoulder blades. Upon identification of T4 a 

bilateral laminectomy was performed to reach the sub-dural cavity in order to expose the spinal 

cord. A complete transection of the spinal cord was then performed upon at the T4 level. 



Dube  16  
  

Following the verification of complete transection, the incision was closed by intramuscular and 

skin sutures, at which point the animal rested for seven day in order to allow time to recover 

from spinal shock. To prevent infection and ensure proper recovery, intraperitoneal (I.P.0 

injections of buprenorphine (5µg/kg, twice per day) and intramuscular (I.M.) BaytrilTM (5 mg/kg, 

twice per day) were administered. Urinary bladders were expressed three times per day until 

reflex voiding was reached. To maintain joint flexibility and decrease spasticity, passive flexion 

and extension of the hind limbs were performed. Additionally a nociceptive paw pinch test was 

conducted to ensure complete SCI.  

Intraspinal Microstimulation 

 Upon the completion of the seven day recovery period for two animals or day one for the 

two healthy controls, the animals were prepped and anesthetized. A bilateral laminectomy and 

durotomy were then performed to expose the lumbar spinal cord at the first through third lumbar 

(L1-L3) levels. The spine and hip were then stabilized with jaw clamp, hip pins, and a tail clamp, 

to ensure that the body was stable while allowing free movement of the limbs (Figure 1). Teflon-

insulated Tungsten stimulating microelectrodes (127µm in diameter with 30-60µm exposed tip) 

were manually inserted approximately 1.8mm deep into the ventral horn of the gray matter of the 

spinal cord (Watson 2008).Electrode was inserted approximately 1mm lateral from midline 

beginning at the rostral level of the L1 vertebra with a reference electrode inserted into the lateral 

abdominal muscles. The electrode was removed and reinserted in 1mm increments caudally 

towards the third lumbar vertebra (L3) if desired hind limb movement was not achieved. 

Stimulation amplitude was linearly increased to maximum, 10 µA to 100 µA, at each electrode 

location while pulse width and frequency were sustained was 0.2 ms and 25 Hz, respectively, 

until desired extension of the hind limb was achieved through stimulation. Upon achievement of 
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desired extension, cyanoacrylate adhesive was used to fix the microelectrode to the spinal cord. 

Fatigue studies were conducted at sustained amplitudes of 70 µA, with a pulse width of 0.2 ms 

and frequency of 25 Hz for a total stimulation time of 30 seconds. A 30 second rest period was 

enacted after each trial for stimulation amplitudes and fatigue studies to ensure animal returned 

to normal. All stimulation studies were acute and lasted no longer than eight hours in accordance 

with the Institutional Animal Care and Use Committee protocol.  

Intramuscular stimulation  

 One day after arrival of animals, the non- SCI animals were prepped and anesthetized. 

Non SCI animals were used for convenience as literature has shown intact and SCI animals 

evoke the same amplitude of response (Grahn 2014).  At which point the animals were stabilized 

in same apparatus as the ISMS subjects, with the same hind limb freedom of movement. At this 

point, a stimulation needle was inserted into the median of the hamstring muscles, particularly 

the biceps femoris and semitendinosus muscles to invoke hind limb extension.  When desired 

movement was achieved, electrode was fixed with a cyanoacrylate adhesive. Stimulation 

amplitudes were then linearly increased to maximum, from 300 µA to 1000 µA, at a constant 

pulse width of 0.2 ms and frequency of 50 Hz. Fatigue studies were conducted at sustained 

amplitudes of 700 µA, with a pulse width of 0.2 ms and frequency of 50 Hz for total stimulation 

time of 30 seconds. For each stimulation amplitude and fatigue trial, a 30 second recovery period 

was enacted to allow for conditions to return to normal.  

Kinematic analysis 

 Opaque markers were placed on the hip beginning on the iliac crest, knee, and ankle 

joints, as well as the fifth metatarsal so that limb movement could be monitored with motion 
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analysis (Figure 2). The animals were placed on a mounted spinal unit (Kopf Instruments, 

Tujunga, CA) and a parasagittal view, at 50 frames per second using one 2048x1088 pixels ace 

GigE cameras (Basler, Ahrensburg, Germany), was used to capture limb movement. Templo 2D 

motion analysis system (Contemplas, Kempten, Germany) was used to analyze kinematic 

response to stimulation. Data was analyzed using Microsoft excel. Angle change was calculated 

by subtracting angle of limb during stimulation from baseline angle prior to start of stimulation.  

Results  

Stimulus Strength and Graded Response 

 Graded response of linearly increasing stimulation amplitude of ISMS exhibited 

proportional increased extension movement.  The results observed a wide range of angle 

changes, depending on stimulus strength, of the hip and knee joints (Figure 3&4) in 100% of 

healthy intact models and 100% in SCI models. Strength of muscle contraction was measured as 

angle change from baseline. Although other methods are preferred, such as EMG, these methods 

were not available for analysis. EMG methods for data collection were conducted, however 

acquisition and subsequent analysis of data was unable to be performed. Angle change was used 

as an increase in muscle contraction, as measured through EMG, has been shown in the literature 

to be coupled with a proportional increase in the angle from baseline of the subject and the 

opposite holds true, a decrease in muscle contraction results in a decrease of angle change from 

baseline (Mushahwar 2000, Mushahwar 2002). The literature has also shown intact and SCI rats 

evoke similar amplitudes of muscle contraction during locomotion in ISMS, and therefore SCI 

model rats and intact ISMS fatigue and stimulus strength was combined (Grahn 2014).   
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Graded response for ISMS was conducted in 0.2ms stimulation periods with a linear 

increase in stimulation amplitudes between trials (10µA to 100µA). Peak angle change occurred 

at 90-100 µA for both hip and knee joints. Threshold amplitude to evoke movement was found to 

be at 40 µA for both joint angles. The hip joint evoked more than double the angle change of the 

knee joint for ISMS (50o±9.5, 17o± 6.5, respectively). The magnitude of angle changes, and 

therefore indirectly muscle contraction, was directly correlated with stimulation amplitudes as 

shown by (R2) of (0.96 and 0.97 for the hip and knee 

respectively p < 0.05) for both joints. The results show a positive proportional increase of angle 

change a result of increased stimulus strength.  

 The intramuscular stimulation is to be viewed as a case study due to the lack of subjects 

(n=1) and number of trails per subject (n=2). Intramuscular stimulation displayed a wide range of 

angle changes from baseline from graded responses due to linear increasing stimulation 

amplitudes (Figure 5&6) of the hip and knee joints in the one intramuscular rodent. Graded 

response of intramuscular stimulation was conducted in 0.2ms stimulation periods with a linear 

increase of stimulation amplitudes (300 µA to 1000 µA) between trials. Stimulation amplitudes 

were then increased linearly Threshold stimulation amplitude required to evoke movement was 

found at 225 µA for both hip and knee joints. Threshold amplitude was not included in figures 

5&6 as only one trial was used to establish a threshold for each joint. The maximum angle 

change was observed 1000 µA for both joints. The hip joint, however, was more varied than the 

knee joint in regards to linear proportional increase of stimulus amplitude as denoted by the 

figures. The angle changes, again indirect measures of muscle contraction, were directly 

correlated with a proportional increase 

coefficients (R2) of (0.7303 and 0.8533 for the hip and knee respectively, p < 0.05) for each 
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joints. The results suggest a positive linear relationship between stimulus strength and angle 

changed, however less conclusive than ISMS studies.  

Fatigue studies  

 Fatigue studies comparing angle change of ISMS and intramuscular hip and knee joints 

in response to stimulation over a period of 30 s were measured as percent change from maximum 

angle to minimum angle during stimulation. The focus of this study was to measure fatigue over 

time and not the absolute value of the total angle change over time as the stimulation parameters 

were different between these two different stimulation types. Hip percent change of the angles 

through all of the trials equaled medians of 8.11o and 2.40o for ISMS and intramuscular 

stimulation respectively. Figures 7A, 7B, and 9 display a graphical representation of the 

individual trials and average angle changes, respectively, over time for the hip joint from 

baseline of the fatigue studies. Variation in the ISMS hip studies was drastically increased as 

compared to intramuscular stimulation. Both stimulation parameters have similar muscle force 

contractions as shown by the similarity in angle change. Figures 8A, 8B and 10 show a graphical 

representation of the individual trials and average angle changes, respectively, over time for the 

knee joint from baseline of the two stimulation parameters.  Knee fatigue percent change of 

angles throughout all of the trials equaled medians 4.67o and 6.58o for ISMS and intramuscular 

stimulation respectively.  

Discussion 

 The results have two main implications upon the questions addressed in this study; is 

there a linearly increase in muscle contraction as a result of an increase in stimulation amplitude 

of ISMS and one that is comparable to clinically use intramuscular stimulation. The second 
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being the fatigue resistance of ISMS as compared to intramuscular stimulation. The objective of 

both is to compare the efficiency of ISMS as compared to a clinically used FES system 

intramuscular stimulation in regards to the range of muscle contraction and fatigue resistance, 

which for this study was measured using angle change from baseline.  

Graded response stimulation was shown to be consistent and repeatable as well show a 

positive linear relationship between stimulation amplitude and angle change, which is an indirect 

indication of muscle contraction force, in trials as shown by the R2 values for the hip and knee 

joints (0.96 and 0.97). The range of angle change consisted of threshold to a maximum change of 

50o±9.5o for the hip joint, which was the high observed value in both ISMS and intramuscular 

stimulation studies conducted. Knee joint angle change range was considerably smaller at 17o± 

6.5o. The differences in magnitude between the two joints could be explain through means of the 

site of the electrode in the spinal cord in regards to vertebral level or gray matter level or the 

activation of agonist and antagonist muscles based on motor units that are activated by 

stimulation. If the electrode activated hip flexor muscle pathways as well as activation of 

hamstring and quadriceps muscles then we would observe such a trend as this where the knee 

angle change is significantly lower due to competition between agonist and antagonist muscle 

groups, but an overall increase in hip angle change as no competition exist due to sole hip 

extensor activation. The overall variance as observed with standard deviation, of the hip and 

knee angle changes is substantial but appears consistent at each stimulation parameter suggesting 

equal proportional increase between trials but a difference in overall angle change. The most 

likely explanation for the variance stems from the lack of selectivity of muscles activated by the 

ISMS electrode and as a result would lead to a difference in absolute angle change without 

affecting the slope.  
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 In the intramuscular case study, the overall hip angle change reaches a maximum angle 

change of 26.8o±0.5o and displays a linear positive relationship in stimulus amplitude and muscle 

contraction force 7303) with a considerable 

amount more variability between stimulation amplitudes; although it must be noted that this 

conclusion is weakly supported due to a low coefficient correlation and the lack of subjects. 

Knee angle changes in comparison surpass that of the ISMS knee joint changes with a maximum 

of 31.9o±0.45. The knee joint for intramuscular stimulation showed a strong positive linear 

relationship in muscle contraction force as a result of stimulus amplitude as shown by the 

8533) which although is stronger than hip angle. However, 

again it must be noted the lack of subjects and therefore the weak support of this conclusion due 

to the small sample size. The analysis of these results is not surprising. The high selectivity of 

intramuscular stimulation would explain the higher maximal knee joint angle change as 

stimulation directly activates the hamstring muscle group. This explanation would also account 

for the difference in hip angle change as well since intramuscular stimulation would primary 

stimulation the hamstrings and not true hip extensor muscles.  

 Due to low sample size, statistical analysis was not able to be achieved in the fatigue 

studies and as a result more qualitative measures were used. In the analysis of the average fatigue 

studies (figures 9 &10) the fatigue resistance, as measured by percent change of maximum angle 

appears to be fairly consistent between the two stimulation parameters as the slope of the lines 

for ISMS and intramuscular stimulation indicate. Examination upon the individual trails of each 

stimulation type of ISMS and Intramuscular help to shed some light on the explanation of this 

conclusion. Figures 7A and 8A show the extreme variability of ISMS not only between subjects 

but also within subjects. Rat 2 (figure 7A) shows the potential for great targeting and fatigue 
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resistibility of ISMS, however other trials such as rat 3 show a large degree of variability from 

the previous subject and within the subject. Hip angle change of intramuscular stimulation in the 

fatigue studies (figure 7B) was also shown to have less variation as compared to ISMS, but there 

is still a large degree of variation between the subjects. The analysis of knee angle changes over 

time from baseline (Figure 8A) shows a large variability between trials and subjects in ISMS, 

more so than the hip angle changes. The mechanism of CPG activation of ISMS helps to explain 

this phenomenon as the different electrode locations of the subject could have fired different 

motor units that lead to extension, but produced different knee angles based upon the muscles 

that were contracted. Knee angle change during stimulation for the different trials of 

intramuscular stimulation (figure 8B) was shown to have the lowest variability in this study. This 

is to be expected however, based upon the well-established literature and the mechanism of 

intramuscular stimulation.  

The data conducted herein suggests qualitatively that the two stimulation parameters are 

not different in regards to the fatigue resistance. ISMS appears to not be more fatigue resistant 

then conventional intramuscular stimulation. Variability between different ISMS trials was 

significantly higher than intramuscular stimulation (figures 7A,7B, 8A, 8B), which is not a 

surprise as the delivery of ISMS is considerably less selective than intramuscular stimulation and 

as such might have an impact upon significance and findings of this study.  

The equal rate of fatigue between ISMS and intramuscular can help to support ISMS as a 

potential use for SCI over conventional means such as intramuscular stimulation use as it offers a 

number of advantages and does not compromise muscle fatigue resistance. Due to activation of 

muscle through CPGs, limb movements appear more natural in coordination of muscle control 

and activation of synergistic muscle movements. A visual observation of ISMS shows the leg 
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move in a more controlled, smoother and coordinated movement as compared to the jerky and 

single muscle movement of intramuscular stimulation. Also, the location of implantation in the 

spine reduces potential damage to the tissue caused by mechanical strain as electrodes do not 

have to travel through joints or are in locations of muscle contraction such as those used in 

intramuscular stimulation (Prochazka 2001). Also, tissue damage to the spinal cord has also been 

proven to be minimal (Bamford 2010). With advancements in ISMS electrode delivery systems 

and improving mapping of spinal level circuitry, ISMS could progress to allow natural and 

coordinated for individuals with SCI.  

 The results of this study have concluded that the fatigue resistance of ISMS compared to 

Intramuscular stimulation is not significant upon observation of the fatigue studies. Although not 

the expected outcome, this conclusion points to ISMS as an equally capable method of FES as 

compared to current clinical devices with a number of distinct advantages. The field of ISMS is 

still relatively new and as such is still limited to the laboratory; however, continued research can 

help to establish repeatable and consistent studies to allow the translation to clinical use.  

 Future studies could be improved upon in a number of ways and methods. The next step 

to continue this research would be to establish EMG in addition to angle change to add strength 

to the data. Although, angle change can suffice as a measure of muscle fatigue and muscle 

contraction force indirectly, the combination of EMG data along with angle change would 

increase the validity of the results. As a measure of muscle electrical activity, EMG represents an 

ideal measure for fatigue and contraction force by allowing researchers to quantify muscle 

contraction force in real time. EMG in the combination with visual quantifiable angle change 

would allow researchers to not only see fatigue but also determine angle changes as a result of 

force contraction. Despite the obvious nature of this idea, the implications are important as 
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researchers could tune muscle contraction as a result of manipulating stimulus amplitudes to 

meet the specifics of complex movements and allow for a greater range of movements and more 

coordinated movements than the jerky and single dimensional movements of conventional 

methods such as intramuscular stimulation and peripheral nerve stimulation that we have today. 

With a range of stimulus parameters, movements could be activation enough muscle force to 

evoke an 180o angle change to allow a patient to stand up or one that allows for muscle force that 

mimics that more of walking motions. From the combination of angle change and EMG, the 

tracking of gait angle changes as a result of muscle contraction could be mapped and used to 

further fine tune this devices for practical use. Other methods would focus on the consistency 

and selectivity of ISMS.   

  Future experiments would include a number of improvements to enhance the 

implantation and selectivity of these methods. As mentioned the selectivity and accuracy of 

ISMS are non-ideal compared to other methods in clinical use. To help alleviate the problems 

associated with a lack of selectivity, there are two main tools that will be needed. First, the 

development of a stereotactic frame in a rat model of ISMS. This would be a system that is 

improved to the current apparatus seen in figure 1, but one in which a coordinate system could be 

used so that an electrode could be implanted on a series of arms to a depth that would be 

measured and therefore allow for the replication of electrode placement in the exact location 

based off of the coordinates observed. A stereotactic frame is a system that would allow for 

improved selectivity of ISMS targets, such as the ventral horns, as coordinates that evoked 

desired movements could be recorded more precisely and easily repeatable. Stereotactic 

navigation would also bring the additional bonus of improving current mapping of spinal cord 

circuitry in to attempt to facilitate translational mapping to humans if possible. The use of a 
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stereotactic frame would be instrumental in the repeatable implantation of electrodes into the 

spinal cord.  

 Another device that would be essential to progress the current research and methods of 

ISMS is the development of a microelectrode array. A microelectrode array consists of some 

biologically compatible material to serve as a base from which columns of bundled electrodes 

protrude out from. The columns of electrodes consist of a number of different electrodes of 

various lengths to allow for different levels of stimulation, of any tissue such as the spinal cord. 

The benefits of such a method are tri-fold. Firstly, the implantation of an array as compared to an 

equal number of electrode insertions greatly decrease the amount of damage upon the implanted 

tissue as it takes only one perforation of the surface as compared to several. The vast number of 

electrodes and the various depths in a microelectrode array allow for increased mapping of the 

spinal cord. The time to implant an electrode and subsequent stimulation to map movement 

would be drastically decreased as the number of insertions decreases from a number of 

electrodes to one larger array which would substitute for many. Lastly, the use of a 

microelectrode array increases the efficiency of multi-electrode movements for synergist 

movement such as walking, as the single array allows for the coordination of a number of 

different electrodes that would be stimulate different motor units. The coordination of these 

different motor units would allow for controlled activation of muscles for each phase of walking. 

The ability to use one platform to evoke a complex movement as compared to the use of several 

electrode leads offers a distinct advantage compared to traditional means.  

Conclusion  
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 The current FES systems offer a number of different distinct advantages and 

disadvantages depending on the system. However, progress is still needed to help increase the 

ADLs of SCI victims. The current FES systems, although effective in limb locomotion, are 

hampered by the limitations of reverse motor unit recruitment and early onset fatigue. In order 

achieve a new level of care and treatment in SCI victims these limitations must be overcome or 

new methods must be utilized to ensure progress continues. One thing is for certain, research 

must continue in order to hone the current methods of intramuscular stimulation and peripheral 

nerve stimulation or advocating of new methods such as epidural stimulation or ISMS as new 

procedures to restore limb function to victims of SCI.   
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Table 1. List of abbreviations used in this paper 
Name of term Abbreviation  
Spinal Cord Injury SCI 
Activities of Daily Living ADL 
Functional Electrical Stimulation FES 
Neuroprostheses NP 
Intraspinal Microstimulation ISMS 
Central Pattern Generators CPG 
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