
College of Saint Benedict and Saint John's University College of Saint Benedict and Saint John's University

DigitalCommons@CSB/SJU DigitalCommons@CSB/SJU

Honors Theses, 1963-2015 Honors Program

2014

Achieving Numerical Reproducibility in the Parallelized Floating Achieving Numerical Reproducibility in the Parallelized Floating

Point Dot Product Point Dot Product

Alyssa Anderson
College of Saint Benedict/Saint John's University

Follow this and additional works at: https://digitalcommons.csbsju.edu/honors_theses

 Part of the Computer Sciences Commons, and the Mathematics Commons

Recommended Citation Recommended Citation
Anderson, Alyssa, "Achieving Numerical Reproducibility in the Parallelized Floating Point Dot Product"
(2014). Honors Theses, 1963-2015. 30.
https://digitalcommons.csbsju.edu/honors_theses/30

This Thesis is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for
inclusion in Honors Theses, 1963-2015 by an authorized administrator of DigitalCommons@CSB/SJU. For more
information, please contact digitalcommons@csbsju.edu.

https://digitalcommons.csbsju.edu/
https://digitalcommons.csbsju.edu/honors_theses
https://digitalcommons.csbsju.edu/honors
https://digitalcommons.csbsju.edu/honors_theses?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.csbsju.edu/honors_theses/30?utm_source=digitalcommons.csbsju.edu%2Fhonors_theses%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@csbsju.edu

Achieving Numerical Reproducibility in the Parallelized Floating Point Dot

Product

AN HONORS THESIS

College of St. Benedict/St. John’s University

In Partial Fulfillment

of the Requirements for Distinction

In the Departments of Computer Science and Mathematics

by

Alyssa Anderson

April, 2014

1

PROJECT TITLE: Achieving Numerical Reproducibility in the Parallelized Floating Point Dot

Product

Approved by:

Michael Heroux
Thesis Advisor; Scientist in Residence, Department of Computer Science

Imad Rahal
Reader; Associate Professor of Computer Science; Chair, Department of Computer Science

Bob Hesse
Reader; Associate Professor of Mathematics; Chair, Department of Mathematics

Anthony Cunningham
Director, Honors Thesis Program

Contents

1 Introduction 4

1.1 Introduction to Parallel Computing 5

2 Problem Statement 6

2.1 The Parallel Dot Product . 6

3 Background 7

3.1 Floating Point Numbers . 7
3.1.1 8-bit Floating point Representation 9

3.2 Reproducibility vs. Accuracy 11

4 Methods 11

4.1 Code and Parallel Programming Model 11
4.2 Architecture . 12
4.3 Kahan Summation Algorithm 12
4.4 Knuth Summation Algorithm 17
4.5 The Experiment . 24

5 Results 25

5.1 Double-Precision Results . 25
5.2 Single-Precision Results . 42
5.3 Single-Precision with Double-Precision Accumulator Results . 49

6 Conclusions 54

7 Contributions to this Topic 56

8 Future Work 56

9 Appendix 57

9.1 Source Code . 57
9.1.1 TestDotProductOMPDouble.cpp 57
9.1.2 TestDotProductKahanOMPDouble.cpp 58
9.1.3 TestDotProductKnuthOMPDouble.cpp 61
9.1.4 TestDotProductOMPFloat.cpp 64
9.1.5 TestDotProductKahanOMPFloat.cpp 65
9.1.6 TestDotProductKnuthOMPFloat.cpp 68

2

9.1.7 TestDotProductOMPDoubleAccumulator.cpp 70
9.1.8 TestDotProductKahanOMPDoubleAccumulator.cpp . . 72
9.1.9 TestDotProductKnuthOMPDoubleAccumulator.cpp . . 75

3

1 Introduction

We are taught the importance of real numbers before we reach high school.
The world depends on computers every day to do accurate real-world math-
ematics. However, most people do not know that the way the world un-
derstands real numbers is very different from how computers represent real
numbers, and that this can cause computations to be incredibly inaccurate.
Because real numbers like π = 3.141592... can have an infinite number of dig-
its and because they are not countably infinite, the computer must store real
numbers in a finite representation that approximates real numbers, called
floating point representation. Floating point numbers are often taken for
granted by scientists and computer users alike, because we expect them to
work like real numbers. However, simply by changing the order in which we
add a list of floating point numbers can give us a different result. This result
may even be less accurate than another ordering. This is because floating
point addition is not associative. That is, (a+ b) + c is not necessarily equal
to a+ (b+ c). Correspondingly, one ordering of a sum may produce a more
accurate result than another ordering. While we are not necessarily affected
by this in serial computations, parallel techniques introduce the ability to or-
der computations differently, thus producing a difference in results between
runs.

Reproducibility means getting a bit-wise identical result every time an
application is run. Because scientific applications have come to use parallel
computing techniques in order to solve more and more complex problems,
non-reproducibility is often introduced into scientific applications in the form
of basic operations these applications rely on, such as the dot product. Tech-
niques for achieving reproducibility in parallel computations include elimi-
nating (or reducing) rounding error, using a deterministic computation order,
pre-rounding, and using a super-accumulator. We will use methods that at-
tempt to reduce rounding error. We begin with an explanation of the problem
in section two, and then we cover a review of relevant background knowl-
edge in section three. Next, we describe the methods chosen for addressing
the problem and justify our choice of methods in section four. Section five
presents reproducibility results for each reproducibility technique used. Sec-
tion six draws conclusions about the reproducibility of each method. Section
seven explains our contributions to this field. Section eight describes future
work that may be done in this area, and section nine provides an Appendix
that includes the source code for this thesis.

4

1.1 Introduction to Parallel Computing

We now provide a brief introduction to parallel computing in order to clarify
concepts from this field that are relevant to this thesis. Parallel computing is
an alternative to traditional serial computing, in which software is written to
be run on a single processor and tasks (or units of work) are run one at a time.
Parallel computing, however, involves separating the work of independent
computing tasks among several processors in order to speed up the amount
of time it takes to do all of the tasks from executing them in serial. In
other words, parallel computing is a way of multi-tasking for more efficient
use of computing resources. On a multicore or many- processor, a single
independent software thread may be executed on each core. Independence,
in this context, means that each thread does not depend on the results of
any other threads to do a task. A software thread is a single software unit of
parallel work that has an independent flow of control from the other software
threads.[9] A hardware thread is any hardware unit (a single core in multicore
and many-core architectures) that can execute a single software thread at a
time.[9] Thus, in parallel computing, many software threads may be dispersed
among a few hardware threads. There may also be dependencies among
threads which dictate whether a thread can be executed at a given time.
That is, if the computation of one software thread depends on the result of
another software thread that has not yet finished execution, it must wait until
that thread has finished to execute. This introduces problems such as ”race
conditions” in which two threads are mutually dependent one each other’s
result.[9] These conditions are often difficult to predict or only appear under
specific circumstances and are one reason that parallel computing is much
more difficult than serial computing.[9]

Parallel computing is meant to function in the same way as seqential (or
serial) computing in that we obtain the same results as similar computa-
tions executed in serial (with only one hardware thread). The potential for
decrease in runtime has made parallel computing a necessary tool for com-
puting in the face of limitations in current CPU clock speeds (see Section 2:
Problem Statement). However, as we will see, parallel computing may intro-
duce problems such as non-reproducibility into floating-point computations.

5

2 Problem Statement

Parallel computing has become necessary for increasing performance since
engineers have hit a power wall in computing architectures. This is due to
the fact that increasing the clock speed causes a non-linear increase in the
amount of power required. However, clock speeds have topped out at as high
as 3 GHz, at which point a chip cannot handle higher clock speeds without
overheating. Additionally, Instruction-Level Parallelism (ILP), or parallelism
at the hardware level, has reached its limit since it has been implemented in
computing architectures for decades and is now a natural part of hardware.
[9] Thus, parallel computing, or sharing work among several processors, has
become necessary for maintaining increases in performance. However, paral-
lel computing introduces its own set of challenges that sequential computing
does not have. A full discussion of these challenges is outside of the scope
of this thesis. However, one of these challenges is that parallel computations
may introduce non-reproducibility into computations that were previously
reproducible. With advances geared toward Exascale computing, in which
1018 floating point operations per second (FLOPS) will be possible, repro-
ducibility and accuracy will become increasingly difficult to maintain. [3]

We hope to achieve a bit-reproducible parallel dot product. The dot prod-
uct is a useful operation for studying reproducibility because it is common to
many parallel scientfic computing applications and is non-reproducible when
computed in parallel. Reproducibility in parallel scientific applications is de-
sirable for several reasons. If a result is not reproducible, it may be hard to
validate that the result is correct. Additionally, non-reproducible results can
mask bugs in the code that cause similar variation in results. [2] Having a
reproducible scientific application makes any errors in or problems with the
result distinguishable from those due to the non-associativity of floating point
addition. That is, once the result is reproducible, we can no longer attribute
non-reproducibility to the cause of erroneous or inconsistent results.

2.1 The Parallel Dot Product

The dot product of two vectors x = {x1, x2, ..., xn} and y = {y1, y2, ..., yn} is
defined as

6

x · y =
n�

i=1

xiyi = x1y1 + x2y2 + ...+ xnyn (1)

Each multiplication of corresponding entries of each vector is independent
of the others, and so these computations may be done in parallel. (Ex. Each
parallel thread may compute a local sum of the multiplications of correspond-
ing elements of the two vectors.) However, the result requires adding these
local sums together. Since these sums are all being added to a global result,
they are not independent of each other. Thus, we have what is called a re-

duction pattern, where a commutative operator (addition, in this case) is
used to combine the local results after the results of the first part of the com-
putation were computed in parallel.[9] In our implementations, this means
that each parallel thread may add its result to the global sum with the guar-
antee that no two threads will try to update the global sum at the same time.
However, parallelizing the dot product means that the order in which the lo-
cal results are combined changes between runs. Thus, each thread may finish
its scheduled work at a different time, allowing for whichever thread is ready
first to add its result to the global sum. This is how non-reproducibility is
introduced into the computation.

3 Background

3.1 Floating Point Numbers

We will use the IEEE-754-2008 standard in our discussion of floating point
numbers, since this is the current approved standard for almost all computer
architectures. Floating point is a binary representation used to approximate
real numbers in computers. Similar to scientific notation of real numbers
(base 10), floating point numbers are represented as base 2. The precision
of a floating point number depends on the number of bits used in its repre-
sentation. A single-precision floating point number, or a float in C++, is 32
bits in length whereas a double-precision floating point number, or double
in C++, is 64 bits in length.

We will discuss double-precision floating point numbers to understand
the specifics of floating point numbers. The leftmost bit of a double-precision
number is the sign bit, which is 0 if positive and 1 if negative. The remaining

7

two parts of the 64-bit number (as we move from the left-most or most
significant bits to the right-most or least significant bits) are split into the
exponent and mantissa (or significand) bits. The exponent is composed of 11
bits, but represents the binary number represented by the 11 bits subtracted
by a fixed offset of 210 − 1, or 1023. The mantissa is made up of 53 bits,
but is represented by the remaining 52 bits. This is because the first bit of
the mantissa is always 1, and thus is an implied bit that does not need to be
physically represented. [7]

Floating point addition of positive numbers works as follows. [7] (See
Example 1 for an example of floating point addition.) First, the mantissa of
the number with the smaller exponent must be shifted to the right a number
of places equal to the difference in exponents. (Both mantissas must now
account for the leading 1 to the left of the mantissa at the start of addition.)
The exponent of this number is then changed to the exponent of the larger
number. The two mantissas are then added using binary addition. If the
result requires that the leading 1 become 10 (due to overflow), then the result
must be shifted to the right one place and 1 must be added to the exponent.
To ensure correct rounding, floating point addition requires that there be
two extra guard bits and a sticky bit (one that becomes the OR of all bits
that pass through it as bits are shifted to the right during addition) to the
right of the mantissa bits. There are several rounding modes maintained by
the IEEE-754 standard, such as round-to-infinity, round-to-zero, round-to-
negative-infinity, and round-to-nearest (in which the floating point number
is rounded to the nearest even floating point number). Round-to-nearest is
the most common and is the rounding mode that we will use. After floating
point addition is computed, any bits retained in the two guard and sticky bits
determine the rounding. We will call these bits GGS. If the first guard bit
is 0, then no rounding is required. If the GGS = 100, then rounding up (by
adding 1 to the least significant - rightmost - mantissa bit) is only required if
the least significant mantissa bit is not 0. If it is 0, then nothing needs to be
done to the result. If GGS = 101, 110, or 111, then rounding up is required.
When rounding up, we must again make sure to shift the result right one
place and add one to the exponent if rounding up requires 1 to be added to
the leading 1. Floating point addition and subtraction work similarly, except
that the mantissas are either added or subtracted depending on the sign bits.
(If both sign bits are equal in addition, then the mantissas are added. If they
are not equal, one is subtracted from the other). If subtraction is involved,
there can be underflow (the leading 1 can become 0, causing the mantissa to

8

be shifted left and the exponent to be reduced a number of times until there
is a leading 1).

Although floating point numbers are meant to represent real numbers,
they are only an approximation of real numbers. Floating point numbers
cannot accurately represent all real numbers, since there is only ever a finite
amount of precision available (usually 32 or 64 bits). Thus, exact arithmetic
is not guaranteed. In fact, there are many special cases in which floating
point arithmetic can fail. A thorough explanation of all of the intricacies
of floating point arithmetic is beyond the scope of this thesis. However, of
main importance is the fact that floating point addition is non-associative.
That is, for floating point numbers a, b, and c, there is no guarantee that
(a + b) + c = a + (b + c). We will see this in Example 1. On the other
hand, floating point addition is in fact commutative, meaning for floating
point numbers a and b, a + b = b + a. Because floating point addition is
non-associative, we know that changing the order in which the sums of the
dot product are accumulated may produce different results. Parallelizing the
dot product causes the order of accumulation of the local sums to be non-
deterministic. Thus, for two vectors x and y, the result may change from
one parallel computation of their dot product to the next.

3.1.1 8-bit Floating point Representation

For simplicity, we will use our own 8-bit (or 1-byte) floating point represen-
tation in IEEE-754-2008 style to show how floating point addition works and
to show how the Kahan and Knuth methods correct for non-associativity.
Our exponent will be composed of 3 bits, consequently having an offset of
22− 1 = 3. Thus, for our purposes, a binary floating point number looks like
s eee m1m2m3m4

and represents the number 1.mmmm× 2eee−3 in binary, or the decimal value
(1 +

�4
n=1 mn ∗ 2−n) ∗ 2eee−3 (∗ − 1 if s == 1).

Example 1. Foating Point Nonassociativity

We will show, using our 8-bit floating point number representation, that
floating point numbers are not associative. Let a, b, and c be floating point
numbers such that
a = 0 110 0100, or 10 in decimal, b = 0 110 0101, or 10.5 in decimal, and
c = 0 001 0001, or 0.265625 in decimal. First, we will compute (a + b) + c.

9

Note that the bit(s) left of the | symbol are to the left of the radix point.
0 110 1|0100 a with leading 1

+ 0 110 1|0101 b with leading 1

0 110 10|1001 a + b before normalization

0 111 1|01001 shifted one to the right and added one to exp

0 111 0100 a + b (no rounding required, truncated last bit)

+ 0 001 0001 c

0 111 1|0100 a + b with leading 1

+ 0 111 0|0000010001 normalized c with leading 1

0 111 1|0100010001 (a + b) + c before rounding

0 111 0100 (a + b) + c (no rounding required)

So, (a+ b) + c = 0 111 0100, which equals 20 in decimal.
Next, we compute a+ (b+ c).

0 110 0101 b

+ 0 001 0001 c

0 110 1|0101 b with leading 1

0 110 0|000010001 normalized c with leading 1

0 110 1|010110001 b + c before rounding

0 110 1|0101
+ 0 000 0|0001 1 to be added for rounding

0 110 0110 b + c

0 110 1|0100 a with leading 1

+ 0 110 0110 b + c with leading 1

0 110 10|1010 a + (b + c) before normalization

0 111 1|01010 a + (b + c) before rounding (no rounding required)

0 111 0101 a + (b + c)

So, a+ (b+ c) = 0 111 0101, which equals 21 in decimal. (a+ b) + c = 20 �=
21 = a+ (b+ c). Thus, floating point numbers are not associative.

Example 2. Floating Point Truncation Error

This example demonstrates how truncation error affects a numerical result.
Because we only have a finite amount of precision available to us in floating
point numbers, the significant digits of a number can be lost if their expo-
nents are too dissimilar. When a large number is added to a small number in
floating point, the result may not accurately account for the smaller number
(the smaller number’s significant digits are shifted to the right to make the
exponents equal for adding) since the smaller number’s significant digits will

10

be truncated if they are shifted more than 3 digits past the least significant
bit. To demonstrate this, we wil add 01110100, or 20 in decimal to 00010001,
or 0.265625.

0 111 0100
+ 0 001 0001

0 111 1|0100 with leading 1

+ 0 111 0|0000010001 with leading 1

0 111 1|0100010001 addition before rounding

0 111 0100 no rounding required: last bit of mantissa = 0 and GGS = 010

As shown, the significant digits of the smaller number were truncated since
they were shifted too far to the right to make the two exponents equal. Thus,
the answer is 20 instead of the exact arithmetic 20.265625. Thus, if our global
sum variable is 20 and we keep adding partial sums of 0.265625 to it, the sum
will not get any bigger than 20, even though the after 4 additions of partial
sums, the global sum should be at least 21, which can be represented by
our 8-bit representation. These extreme cases can wreak havok on numerical
computations, although they are unlikely.

3.2 Reproducibility vs. Accuracy

While reproducibility and accuracy are related, bit-accurate does not mean
the same thing as bit-reproducible. Reproducibility in parallel programming
is defined as ”getting the same result independent of the number of proces-
sors,” but in our case we define it to mean getting the same result on runs
with identical settings.[10] Accuracy, on the other hand, is dependent on the
amount of numerical error in the result.[10] Floating point addition is not
associative due to truncation error. Thus, if a dot product were computed
using infinite precision, then it would be 100% accurate and thus would
be reproducible since every run would give the same, 100% accurate result.
However, the converse does not hold. That is, reproducibility does not imply
accuracy.

4 Methods

4.1 Code and Parallel Programming Model

All code for this thesis is written in C++. All source code may be found
in the Appendix. OpenMP version 3.0 is the programming model used to

11

implement parallelization of the dot product, because of its widespread use
and simplicity.

4.2 Architecture

The target machine on which our tests were conducted is a machine named
Melcior at Saint John’s University in Collegeville, Minnesota. Melchior is an
Intel Xeon MIC Processor with 8 nodes (labeled 0 through 7). All tests were
run on node 1. Each node has 24 thread states running with a clock speed of
1.9 GHz, with the exception of node 2, which has a clock speed of 2.00 GHz.
This particular machine also has two attached coprocessors: an NVIDIA
Tesla K20 card and an Intel PHI 5110P Knights card, neither of which were
used in this thesis. We chose to use the GCC version 4.4.7-4 compiler. The
Linux kernel version of our platform was 2.6.32-431.5.1.el6.x86 64.

4.3 Kahan Summation Algorithm

The Kahan summation algorithm is a technique for enhancing the precision
of a global sum (a sum of computations done on several parallel threads),
such as that required by the parallel reduction pattern in the parallel dot
product. The method was developed in 1965, and uses extra precision by
means of carry digits that hold the truncated part of each intermediate sum in
a correction term. [10] In other words, loss of precision due to truncation error
(see Example 1) can be (at least mostly) recovered by means of a correction
term. Although the Kahan sum can be used for individual summations, since
we are using it for a running sum of multiplications (the dot product), we
will explain the algorithm as a running summation. The Kahan Running
Summation Algorithm is as follows:

1. Let sum, correction, corrected next summand, and new sum be float-
ing point numbers. (The precision of all floating point numbers, includ-
ing the summands, should be the same).

2. Initialize sum and correction to 0.0.

3. for i = 1 to the number of summands

• corrected next summand ← next summand - correction

• new sum ← sum + corrected next summand

12

• correction ← (new sum - sum) - corrected next summand

• sum ← new sum

4. end for

At the start of the first iteration, the correction term will be equal to 0.0,
and thus the first corrected next summand will be equal to the first sum-
mand. Thus, sum at the end of the first iteration will be equal to the first sum-
mand and the correction term will be zero since new sum = sum. The idea
is that as more iterations of the for-loop execute, sum will get much bigger in
relation to the individual summands. Thus, the truncation error that is likely
when adding each summand to the overall sum is what the correction term is
recovering, as long as |sum| > |corrected next summand|. The correction
term takes the truncated addition of sum to corrected next summand, which
is stored in new sum, and first subtracts sum (which does not yet have the
next summand, corrected next summand, added to it). By subracting sum,
we thus recover how much was added to sum by a normal addition of sum with
the next summand (a less precise version of the next summand is left over).
The next part of the correction term subtracts the corrected next summand
(the most precise version of the next summand) from this less precise version
of the next summand, thus recovering the bits of the mantissa that were lost
in normal floating point addition since these two terms are of similar mag-
nitude (if both are normalized to have the same exponent as the new sum
variable, their bit difference is beyond the least significant digit of the man-
tissa) and thus this will give an accurate difference that does not lose the
significant bits of the next summand.

The Kahan summation method is ideal for running sums like the dot
product, since only the first few sums are likely to be greater than the next
summand and thus most of the truncated bits will be recovered.

Example 3. Reproducibility by Kahan Method

In this Kahan summation example, since we are using our 8-bit floating point
representation, we will have 8-bit correction terms (all variables will be in our
8-bit floating point representation). Suppose we add floating point numbers
a, b, and c from Example 1 again. We can now show that (a+b)+c = a+(b+c)
when we use the Kahan summation algorithm to compute each sum. As be-
fore,
a = 0 110 0100 = 10,
b = 0 110 0101 = 10.5, and

13

c = 0001 0001 = 0.265625. First, we will compute (a+ b)+ c. The bit(s) left
of the | symbol are to the left of the radix point.

sum = 0.0;
correction = 0.0;
corrected next term = a - correction;

//corrected next term ← 0 110 0100
new sum = sum + corrected next term;

//new sum ← 0 110 0100
correction = (new sum - sum) - corrected next term;

//correction ←
0 110 0100

− 0 000 0000
0 110 0100

− 0 110 0100
0 000 0000

sum = new sum;
//sum ← 0 110 0100

corrected next term = b - correction;
//corrected next term ← b− 0.0 = 0 110 0101

new sum = sum + corrected next term;
//new sum ←

0 110 0100 a

+ 0 110 0101 b

0 111 0100 as in Example 1

correction = (new sum - sum) - corrected next term;
//correction ←

14

0 111 0100
− 0 110 0100

0 111 1|0100
− 0 111 0|10100

0 111 0|10100 new sum - sum before normalization

0 110 1|0100
0 110 0100 new sum - sum = 8

− 0 110 0101 corrected next term = 10.5

0 110 1|0100
− 0 110 1|0101

1 110 0|0001 result before normalization

1 010 1|0000 result = -0.5
sum = new sum;

//sum ← 0 111 0100

corrected next term = c - correction;
//corrected next term ←

0 001 0001
− 1 010 0000

0 010 0|10001
+ 0 010 1|0000

0 010 1|10001
0 010 1000

new sum = sum + corrected next term;
//new sum ←

0 111 0100
+ 0 010 1000

0 111 1|0100
+ 0 111 0|000011000

0 111 1|010011000
0 111 0101

correction = (new sum - sum) - corrected next term;
//correction ← do not need to compute for (a + b) + c since there are
no more iterations

sum = new sum;
//sum ← 0 111 0101

Now we compute (b + c) + a = a + (b + c) by the commutative prop-

15

erty of floating point addition.

sum = 0.0;
correction = 0.0;
corrected next term = b - correction;

//corrected next term ← 0 110 0101
new sum = sum + corrected next term;

//new sum ← 0 110 0101
correction = (new sum - sum) - corrected next term;

//correction ← 0.0
sum = new sum;

//sum ← 0 110 0101

corrected next term = c - correction; //corrected next term ← 00010001
new sum = sum + corrected next term;

//new sum ←
0 110 0001

+ 0 001 0001
0 110 1|0001

+ 0 110 0|000010001
0 110 1|000110001
0 110 0010

correction = (new sum - sum) - corrected next term;
//correction ←

0 110 0010
− 0 110 0101

1 110 0|0011 before normalization

1 011 1|1000
1 011 1000 new sum - sum

− 0 001 0001 corrected next term

1 011 1|1000
− 0 011 0|010001

1 011 1100
sum = new sum;

//sum ← 0 110 0010

corrected next term = a - correction;
//corrected next term ←

16

0 110 0100
− 1 011 1100

0 110 1|0100
+ 0 011 1|1100

0 110 1|0100
+ 0 110 0|0011100

0 110 1|0111100
0 110 1|1000
0 110 1000

new sum = sum + corrected next term;
//new sum ←

0 110 1|0010
+ 0 110 1|1000

0 110 10|1010
0 111 1|01010
0 111 0101

correction = (new sum - sum) - corrected next term;
//correction ← do not need to compute since there are no more iterations

sum = new sum;
//sum ← 0 111 0101

Thus, (a + b) + c = a + (b + c) = 0 111 0101 = 21 when computed using
the Kahan summation algorithm.

4.4 Knuth Summation Algorithm

The Knuth summation algorithm, like the Kahan summation algorithm, is a
technique for enhancing precision in computing a global sum. It is based on
Donald Ervin Knuth’s development of a formal way to analyze error in finite
precision arithmetic. [10] The algorithm comes from Theorm B in Volume 2
of Knuth’s Book, The Art of Computer Programming, given below. [8]

Theorem. Suppose that + is reserved for infinite precision addition (else-

where in this thesis + means floating point addition) and that ⊕ and � are the

(finite) floating point addition and subtraction operators, respectively. Then

for normalized floating point numbers u and v,

u+ v = (u⊕ v) + ((u� u�)⊕ (v � v��))

17

where u� = (u⊕ v)� v and v�� = (u⊕ v)� u�.

In other words, ((u�u�)⊕(v�v��)) gives an explicit formula for the difference
between u+v and u⊕v. Thus, it is the correction term in the algorithm, even
though we cannot expect it to be exact since the theorem uses exact (infinite)
addition to add the correction term to the trancated sum u ⊕ v. However,
since the correction term is exact, we expect improvement over the Kahan
summation. [10] The Knuth summation is an improvement over the Kahan
summation, because its correction term corrects both for truncated bits of v
when |u| > |v| and for truncated bits of u when |v| > |u|. In other words,
the correction term is the same if u and v are reversed. Again, we provide
the algorithm as a running summation. The Knuth Running Summation
Algorithm is as follows:

1. Let sum, correction, u, v, upt, up, and vpp be floating point numbers.
(The precision of all floating point numbers, including the summands,
should be the same).

2. Initialize sum and correction to 0.0.

3. for i = 1 to the number of summands

• u ← sum

• v ← next summand + correction

• upt ← u + v

• up ← upt - v

• vpp ← upt - up

• sum ← upt

• correction ← (u - up) + (v - vpp)

4. end for

Example 4. Reproducibility by Knuth Method

In this Knuth summation example, all variables will again be in our 8-bit
floating point representation. Suppose we add floating point numbers a, b,
and c from Example 1 again. We can now show that (a+ b)+ c = a+(b+ c)
when we use the Knutn summation algorithm to compute each sum. As be-
fore,

18

a = 0 110 0100 = 10,
b = 0 110 0101 = 10.5, and
c = 0001 0001 = 0.265625. First, we will compute (a+ b)+ c. The bit(s) left
of the | symbol are to the left of the radix point.

sum = 0.0;
correction = 0.0;
u = sum;

//u ← 0.0
v = a + correction;

//v ← 0 110 0100
upt = u + v;

//upt ← 0 110 0100
up = upt - v;

//up ← 0.0
vpp = upt - up;

//vpp ← 0 110 0100
sum = upt;

//sum ← 0 110 0100
correction = (u - up) + (v - vpp);

//correction ← 0.0

u = sum;
//u ← 0 100 0100

v = b + correction;
//v ← 0 110 0101

upt = u + v;
//upt ←

0 110 0010
+ 0 110 0101

0 110 1|0100
+ 0 110 1|0101

0 110 10|1001
0 111 1|01001
0 111 0100

up = upt - v;
//up ←

19

0 111 0100
− 0 110 0101

0 111 1|01000
− 0 111 0|10101

0 111 0|10011
0 110 1|0011

vpp = upt - up;
// ←

0 111 0100
− 0 110 0011

0 111 1|0100
− 0 111 0|10011

0 111 0|10101
0 110 1|0101

sum = upt;
//sum ← 0 111 0100

correction = (u - up) + (v - vpp);
//u - up ←

0 110 0100
− 0 110 0011

0 110 1|0100
− 0 110 1|0011

0 110 0|0001
0 010 1|0000
0 010 0000

//v - vpp ←
0 110 0101

− 0 110 0101
0.0

//correction ← 0 010 0000

u = sum;
//u ← 0 111 0100

v = c + correction;
//v ←

20

0 001 0001
+ 0 010 0000

0 010 0|10001
+ 0 010 1|0000

0 010 1|10001
0 010 1000

upt = u + v;
//upt ←

0 111 0100
+ 0 010 1000

0 111 1|0100
+ 0 111 0|000011

0 111 1|0101
up = upt - v;

//up ←
0 111 0101

− 0 010 1000
0 111 1|0101

− 0 111 0|000011
0 111 0|010001
0 101 1|0001

vpp = upt - up;
//vpp ←

0 111 1|0101
− 0 101 1|0001

0 111 1|0101
− 0 111 0|010001

0 111 1|000011
0 111 1|0001

sum = upt;
//sum ← 0 111 0101

correction = (u - up) + (v - vpp);
//correction ← do not need to compute since there are no more iterations

Now we compute (b + c) + a = a + (b + c) by the commutative prop-
erty of floating point addition.

sum = 0.0;

21

correction = 0.0;
u = sum;

//u ← 0.0
v = b + correction;

//v ← 0 110 0101
upt = u + v;

//upt ← 0 110 0101
up = upt - v;

//up ← 0.0
vpp = upt - up;

//vpp ← 0 110 0101
sum = upt; //sum ← 0 110 0101
correction = (u - up) + (v - vpp);

//correction ← 0.0

u = sum;
//u ← 0 110 0101

v = c + correction;
//v ← 0 001 0001

upt = u + v;
//upt ←

0 110 1|0101
+ 0 001 1|0001

0 110 1|0101
+ 0 110 0|000010001

0 110 1|010110001
0 110 1|0110

up = upt - v;
//up ←

0 110 1|0110
− 0 001 1|0001

0 110 1|0110
− 0 110 0|000010001

0 110 1|010101111
0 110 1|0101
0 110 0101

vpp = upt - up;
//vpp ←

22

0 110 1|0110
− 0 110 1|0101

0 110 0|0001
0 010 1|0000
0 010 0000

sum = upt;
//sum ← 0 110 0110

correction = (u - up) + (v - vpp);
//u - up ←

0 110 0101
− 0 110 0101

0.0
//v - vpp ←

0 001 1|0001
− 0 010 1|0000

0 010 0|10001
− 0 010 1|0000

1 010 0|01111
1 000 1|1110

//correction ← 1 000 1110

u = sum;
//u ← 0 110 0110

v = a + correction;
//v ←

0 110 0100
+ 1 000 1110

0 110 1|0100
− 0 000 1|1110

0 110 1|0100
− 0 110 0|000001111

0 110 1|001110001
0 110 1|0100

upt = u + v;
//upt ←

23

0 110 1|0110
+ 0 110 1|0100

0 110 10|1010
0 111 1|0101
0 111 0101

up = upt - v;
//up ←

0 111 1|0101
− 1 110 1|0100

0 111 1|0101
− 0 111 0|10100

0 111 0|1011
0 110 1|0110

vpp = upt - up;
//vpp ←

0 111 0101
− 0 110 0110

0 111 1|0101
− 0 111 0|10110

0 111 0|10100
0 110 1|0100

sum = upt;
//sum ← 0 111 0101

correction = (u - up) + (v - vpp);
//correction ← do not need to compute since there are no more iterations

Thus, (a + b) + c = a + (b + c) = 0 111 0101 = 21 when computed using
the Knuth summation algorithm.

4.5 The Experiment

To understand how well each of these methods improves the reproducibility
of the dot product, we wrote a test program, called TestDotProductOMP-
Double.cpp, that assigns random floating point values in the range [0.0, 1.0)
to two arrays of a user-specified length, and then computes both a serial dot
product and a parallel dot product. Since the serial result is reproducible, we
only need to compute it once. To see variation in the parallel dot product,
however, the user may specify a number of times to compute the dot product

24

in parallel. TestDotProductOMP.cpp then computes the parallel dot prod-
uct this number of times, and prints the difference between the serial result
and the parallel result for each parallel computation.

This test program was then modified so that the parallel results were
computed using the Kahan and Knuth methods, respectively. To implement
each method in parallel, the algorithms for addition were applied both for ac-
cumulating local sums and as the combiner function for combining the local
sums into the global sum. Our first implementations of the Kahan and Knuth
dot products were done using double-precision floating point numbers. How-
ever, we decided to do a single-precision version of each method, found in
TestDotProductOMPFloat.cpp, TestDotProductKahanOMPFloat.cpp, and
TestDotProductKnuthOMPFloat.cpp. We then implemented versions of each
method in which the values in the two dot product vectors x and y are single-
precision floating point numbers and the accumulators (the variables used for
summation) are double-precision floating point numbers. The idea is that
having a larger accumulator provides extra precision to the summation for
a more accurate, and thus more reproducible result. These implementa-
tions are found in source code files TestDotProductOMPDoubleAccumula-
tor.cpp, TestDotProductKahanOMPDoubleAccumulator.cpp, and TestDot-
ProductKnuthOMPDoubleAccumulator.cpp.

We decided to do 100 parallel dot product computations for each test, and
to run our tests on a variety of problem sizes (10000, 100000, and 1000000)
and numbers of parallel threads (1, 2, 4, 6, and 12). Fifteen tests were run
for each method, one for each combination of our three problem sizes and
five thread sizes.

5 Results

5.1 Double-Precision Results

25

Figure 1: A scatterplot of 100 runs of the original double-precision test
program, TestDotProductOMPDouble.cpp, with problem size 10,000 for each
number of threads (1, 2, 4, 6, and 12). This plot shows the range of variation
in results for each number of threads before using any technique for achieving
reproducibility.

26

Figure 2: A scatterplot of 100 runs of the original double-precision test
program, TestDotProductOMPDouble.cpp, with problem size 100,000 for
each number of threads (1, 2, 4, 6, and 12). This plot shows the range of
variation in results for each number of threads before using any technique
for achieving reproducibility.

27

Figure 3: A scatterplot of 100 runs of the original double-precision program,
TestDotProductOMPDouble.cpp, with problem size 1,000,000 for each num-
ber of threads (1, 2, 4, 6, and 12). This plot shows the range of variation in
results for each number of threads before using any technique for achieving
reproducibility.

28

Figure 4: A scatterplot of 100 runs of TestDotProductKahanOMPDou-
ble.cpp, the double-precision implementation using the Kahan method, with
problem size 10,000 for each number of threads (1, 2, 4, 6, and 12). This plot
shows the range of variation in results for each number of threads.

29

Figure 5: A scatterplot of 100 runs of TestDotProductKahanOMPDou-
ble.cpp, the double-precision implementation using the Kahan method, with
problem size 100,000 for each number of threads (1, 2, 4, 6, and 12). This
plot shows the range of variation in results for each number of threads.

30

Figure 6: A scatterplot of 100 runs of TestDotProductKahanOMPDou-
ble.cpp, the double-precision implementation using the Kahan method, with
problem size 1,000,000 for each number of threads (1, 2, 4, 6, and 12). This
plot shows the range of variation in results for each number of threads.

31

Figure 7: A scatterplot of 100 runs of TestDotProductKnuthOMPDou-
ble.cpp, the double-precision implementation using the Knuth method, with
problem size 10,000 for each number of threads (1, 2, 4, 6, and 12). This plot
shows the range of variation in results for each number of threads.

32

Figure 8: A scatterplot of 100 runs of TestDotProductKnuthOMPDou-
ble.cpp, the double-precision implementation using the Knuth method, with
problem size 100,000 for each number of threads (1, 2, 4, 6, and 12). This
plot shows the range of variation in results for each number of threads.

33

Figure 9: A scatterplot of 100 runs of TestDotProductKnuthOMPDou-
ble.cpp, the double-precision implementation using the Knuth method, with
problem size 1,000,000 for each number of threads (1, 2, 4, 6, and 12). This
plot shows the range of variation in results for each number of threads.

34

Table 1: Double-Precision Non-Reproducible Number of Unique Values Over
100 Runs
Number of Threads Problem Size 10,000 Problem Size 100,000 Problem Size 1,000,000
1 1 1 1
2 22 50 77
4 14 27 75
6 9 23 51
12 4 13 37

Table 2: Double-Precision Kahan Number of Unique Values Over 100 Runs
Number of Threads Problem Size 10,000 Problem Size 100,000 Problem Size 1,000,000
1 1 1 1
2 1 2 2
4 2 2 2
6 2 2 2
12 1 2 2

Table 3: Double-Precision Knuth Number of Unique Values Over 100 Runs
Number of Threads Problem Size 10,000 Problem Size 100,000 Problem Size 1,000,000
1 1 1 1
2 1 2 2
4 2 2 3
6 1 2 2
12 1 2 2

35

Figure 10: The number of times each unique value occurred over 100 runs
for each number of threads for the double-precision implementation of the
Kahan method given problem size 10,000. Tests for 1, 2, and 12 threads did
not show any variation over all 100 runs, so these results are not shown.

36

Figure 11: The number of times each unique value occurred over 100 runs
for each number of threads for the double-precision implementation of the
Kahan method given problem size 100,000. Test for 1 thread will not show
any variation over all 100 runs since it is serial, so results for 1 thread are
not shown.

37

Figure 12: The number of times each unique value occurred over 100 runs
for each number of threads for the double-precision implementation of the
Kahan method given problem size 1,000,000. Test for 1 thread will not show
any variation over all 100 runs since it is serial, so results for 1 thread are
not shown.

38

Figure 13: The number of times each unique value occurred over 100 runs
for each number of threads for the double-precision implementation of the
Knuth method given problem size 10,000. Tests for 1, 2, 6, and 12 threads
did not show any variation over all 100 runs, so these results are not shown.

39

Figure 14: The number of times each unique value occurred over 100 runs
for each number of threads for the double-precision implementation of the
Knuth method given problem size 100,000. Test for 1 thread will not show
any variation over all 100 runs since it is serial, so results for 1 thread are
not shown.

40

Figure 15: The number of times each unique value occurred over 100 runs
for each number of threads for the double-precision implementation of the
Knuth method given problem size 1,000,000. Test for 1 thread will not show
any variation over all 100 runs since it is serial, so results for 1 thread are
not shown.

41

5.2 Single-Precision Results

Table 4: Single-Precision Non-Reproducible Number of Unique Values Over
100 Runs
Number of Threads Problem Size 10,000 Problem Size 100,000 Problem Size 1,000,000
1 1 1 1
2 26 47 74
4 16 45 79
6 10 19 55
12 6 14 34

Table 5: Single-Precision Kahan Number of Unique Values Over 100 Runs
Number of Threads Problem Size 10,000 Problem Size 100,000 Problem Size 1,000,000
1 1 1 1
2 2 2 3
4 2 2 3
6 2 1 3
12 2 1 2

Table 6: Single-Precision Knuth Number of Unique Values Over 100 Runs
Number of Threads Problem Size 10,000 Problem Size 100,000 Problem Size 1,000,000
1 1 1 1
2 2 1 3
4 2 1 2
6 2 2 2
12 2 1 1

42

Figure 16: The number of times each unique value occurred over 100 runs
for each number of threads for the single-precision implementation of the
Kahan method given problem size 10,000. Test for 1 thread will not show
any variation over all 100 runs since it is serial, so results for 1 thread are
not shown.

43

Figure 17: The number of times each unique value occurred over 100 runs
for each number of threads for the single-precision implementation of the
Kahan method given problem size 100,000. Tests for 1, 6, and 12 threads
did not show any variation over all 100 runs, so these results are not shown.

44

Figure 18: The number of times each unique value occurred over 100 runs
for each number of threads for the single-precision implementation of the
Kahan method given problem size 1,000,000. Test for 1 thread will not show
any variation over all 100 runs since it is serial, so results for 1 thread are
not shown.

45

Figure 19: The number of times each unique value occurred over 100 runs
for each number of threads for the single-precision implementation of the
Knuth method given problem size 10,000. Test for 1 thread will not show
any variation over all 100 runs since it is serial, so results for 1 thread are
not shown.

46

Figure 20: The number of times each unique value occurred over 100 runs
for each number of threads for the single-precision implementation of the
Knuth method given problem size 100,000. Tests for 1, 2, 4, and 12 threads
did not show any variation over all 100 runs, so these results are not shown.

47

Figure 21: The number of times each unique value occurred over 100 runs
for each number of threads for the single-precision implementation of the
Knuth method given problem size 1,000,000. Tests for 1 and 12 threads did
not show any variation over all 100 runs, so these results are not shown.

48

5.3 Single-Precision with Double-Precision Accumula-

tor Results

Table 7: Single-Precision with Double Accumulator Non-Reproducible Num-
ber of Unique Values Over 100 Runs
Number of Threads Problem Size 10,000 Problem Size 100,000 Problem Size 1,000,000
1 1 1 1
2 1 4 27
4 1 3 11
6 1 3 6
12 1 4 5

Table 8: Single-Precision with Double Accumulator Kahan Number of
Unique Values Over 100 Runs
Number of Threads Problem Size 10,000 Problem Size 100,000 Problem Size 1,000,000
1 1 1 1
2 1 2 1
4 1 2 3
6 1 2 1
12 1 1 1

Table 9: Single-Precision with Double Accumulator Knuth Number of Unique
Values Over 100 Runs
Number of Threads Problem Size 10,000 Problem Size 100,000 Problem Size 1,000,000
1 1 1 1
2 1 2 1
4 1 2 2
6 1 2 1
12 1 1 1

49

Figure 22: The number of times each unique value occurred over 100 runs
for each number of threads for the single-precision with double precision ac-
cumulator implementation of the Kahan method given problem size 100,000.
Tests for 1 and 12 threads did not show any variation over all 100 runs, so
these results are not shown.

50

Figure 23: The number of times each unique value occurred over 100 runs for
each number of threads for the single-precision with double precision accu-
mulator implementation of the Kahan method given problem size 1,000,000.
Tests for 1, 2, 6, and 12 threads did not show any variation over all 100 runs,
so these results are not shown.

51

Figure 24: The number of times each unique value occurred over 100 runs
for each number of threads for the single-precision with double precision ac-
cumulator implementation of the Knuth method given problem size 100,000.
Tests for 1 and 12 threads did not show any variation over all 100 runs, so
these results are not shown.

52

Figure 25: The number of times each unique value occurred over 100 runs for
each number of threads for the single-precision with double precision accu-
mulator implementation of the Knuth method given problem size 1,000,000.
Tests for 1, 2, 6, and 12 threads did not show any variation over all 100 runs,
so these results are not shown.

53

6 Conclusions

We want to achieve a bit-wise reproducible result over all 100 runs of a
single implementation of the parallel dot product. For a very conservative
probability bound, we can assume that we only need to guarantee that the
last bit of a floating point number is reproducible. Then, as a worst-case
probability we have a 50% chance that the last bit is correct on a given
run. Over 100 runs, the probability of this bit being correct every run is
then (.5)100 = 7.88860905221 ∗ 10−31 by the multiplicative property of the
probability of independent events occurring.

We first consider the double-precision results. As expected, both meth-
ods significantly improved the reproducibility of the dot product. However,
neither method was able to guarantee a reproducible result for most problem
sizes and number of threads. The original results (before a reproducibility
technique is applied) show a large amount of variation in the results, with as
many as 77 different unique values over 100 runs for problem size 1,000,000
(see Tables 1-3). Thus, in the best worst case, the amount of reproducibilty
in the dot product is as low as 33% for a problem size of 1,000,000. Note that
the amount of non-reproducibility also grows as the problem size grows. How-
ever, as the number of threads increase, the amount of non-reproducibility
often decreases or does not change.

After applying the Kahan and Knuth methods, we begin to see a bi- and
tri-modal tendency for the results to vary between two or three distinct val-
ues. Figures 10-15 show us the exact number of times each distinct value
appears over 100 runs for each thread size. All results for Kahan and Knuth
for thread amounts that are not shown were 100% reproducible. For both
the Kahan method, a problem size of 10,000 was at least 93% reproducible
for each number of threads. In the Knuth method, a problem size of 10,000
was at least 97% reproducible for each number of threads. Problem size
100,000 was at least 88% reproducible for the Kahan method and at least
93% reproducible for the Knuth method. Problem size 1,000,000 was at least
74% reproducible for both methods. As we can see, the reproducibility of
these methods decreases as problem size increases. While both sums are ef-
fective for small problem sizes, the Knuth sum is an improvement over the
Kahan sum for small problem sizes. It is not surprising that the amount
reproducibility gained in each method converges to a similar value for large
problem sizes, however, because both methods are nearly identical for run-
ning summations, and thus the first few terms that are added are the only

54

ones in which the Knuth sum has a more accurate correction term.
Although the Kahan and Knuth methods were effective in increasing re-

producibility in the parallel dot product, we can conclude that they are not
good methods if we desire a 100% reproducible result. Additionally, while
we expect the Knuth to be an improvement over the Kahan method for its
improved correction term, we do not see much difference in the reproducibil-
ity of the result. This is due to the fact that for running sums, the Knuth
method is nearly identical to the Kahan method except for the first few terms
in which the next summand may be larger than the accumulated sum.

We now move on to the single-precision and single-precision with double-
precision accumulator results. We hoped that by doubling the size of the
accumulator variables, we could show improvement in the reproducibility of
the Kahan and Knuth methods from the single-precision implementations.
The single-precision results show similar numbers of unique values to that
of the double-precision results (see Tables 4-6). In fact, there is even more
variation in results from double-precision, with the most variation before
adding reproducibility methods to be 79 distinct values for a problem size of
1,000,000. Additionally, there are more tri-modal results when implementing
the Kahan and Knuth methods than for the double-precision versions. Fig-
ures 16-21 show that for single-precision results using the Kahan and Knuth
methods, the amount of reproducibility guaranteed was much lower on aver-
age, and increased with the number of threads. However, for a problem size
of 100,000 both methods were at least 99% reproducible.

When the accumulator was doubled, the number of unique values de-
creased significantly overall, especially in Table 7, before the Kahan and
Knuth methods were applied (see Tables 7-9). Additionally, problem sizes
of 10,000 were 100% reproducible for every number of threads for both the
Kahan and Knuth implementations. Problem size 1,000,000 was at least 91%
reproducible using the Kahan method, and at least 99% reproducible using
the Knuth method. However, the reproducibility decreased significantly for
a problem size of 100,000 for numbers of threads less than 6 (see Figures
22 and 24). Thus, overall, doubling the size of the accumulator variables
improved reproducibility only for smaller problem sizes.

55

7 Contributions to this Topic

This thesis has made several contributions to this field that have not pre-
viously been done. First, a thorough explanation of the Kahan and Knuth
algorithms was provided. This is useful from a teaching perspective since the
examples in our 8-bit floating point representation show hardware-level be-
havior of floating point numbers (and their non-associability) in a way that
is easy to understand. Additionally, these examples show how the Kahan
and Knuth methods attempt to retain correction terms in order to provide a
more reproducible floating point summation. Another contribution from this
thesis is in the results section scatterplots showing variation over 100 runs
of each implementation of the floating point dot product. Previous research
has shown error bound values for implementations of the Kahan and Knuth
methods in scientific applications by showing a table of error values deduced
from many runs. Our plots expose total non-reproducibility behavior over
many runs by plotting values from each individual run. Thus, by viewing
these plots, we can see how many distinct values are apparent over 100 runs
of a single implementation (this gives us an idea of how reproducible each
implementation is).

8 Future Work

Future topics for exploration include researching the affect of using differ-
ent methods for achieving reproducibility on application performance. An-
other useful avenue is comparing the accuracy obtained by using Kahan and
Knuth methods to that achieved by other reproducibility methods, such as
pre-rounding or the use of a superaccumulator to get 100% accurate and
reproducible results.[3] [1] One may also explore several more methods for
reproducibility in an attempt to find the method with the most reproducible
result while minimizing inaccuracy and run-time. Demmel and Nguyen have
written several papers on numerical reproducibility and methods for achiev-
ing reproducible floating point summation while achieving good performance.
[5] [6] [4] An interesting application to explore is the non-reproducibility of
parallel Monte Carlo particle simulations due to non-reproducibility of com-
munication between processors, introduced by Cleveland et al.[2]

56

9 Appendix

9.1 Source Code

9.1.1 TestDotProductOMPDouble.cpp

1 // TestDotProductKahanOMPDouble.cpp

2 //

3 // Routine to show reproducibility of the parallel dot

product

4 // using summation for double -precision floating point

5 // numbers.

6 //

7 //g++ -fopenmp TestDotProductOMPDouble.cpp -o testDotProd

8 #include <fstream >

9 #include <iostream >

10 #include <cstdlib >

11 using std::endl;

12 using std::cout;

13 #include <omp.h>

14

15 #include <vector >

16

17 /*

18 * Method to compute the dot product in parallel using

19 * dynamic scheduling of threads.

20 *

21 * @param[in] n the number of vector elements

22 * @param[in] x, y the input vectors

23 * @param[out] result a float value , on exit will contain the

result

24 *

25 * @return returns parallel dot product result

26 */

27 double ComputeDotProductOMP(int n, double * x, double * y) {

28 double result = 0.0;

29 #pragma omp parallel for reduction (+: result) schedule(

dynamic ,1)

30 for (int i=0; i<n; i++) result += x[i]*y[i];

31 return result;

32 }

33

34 int main(int argc , char * argv []) {

35

36 if (argc !=3) {

57

37 cout << "Usage: " << argv [0] << " length_of_vector" << "

number_of_trials" << endl;

38 exit (1);

39 }

40

41 int n = atoi(argv [1]); // problem size

42 int numtrials = atoi(argv [2]); // number of times to

compute the parallel dot product

43

44 cout << "Problem size = " << n << endl;

45 cout << "Number of trials = " << numtrials << endl;

46

47 int nthreads;

48 #pragma omp parallel

49 nthreads = omp_get_num_threads ();

50 cout << "Number of threads = " << nthreads << endl;

51

52 // Generate random values

53 std::vector < double > x(n), y(n);

54 for (int i=0; i<n; ++i) {

55 x[i] = drand48 ();

56 y[i] = drand48 ();

57 }

58

59 // Compute serial dot product

60 double result = 0.0;

61 for (int i=0; i<n; i++) result += x[i]*y[i];

62

63 //Print difference between serial dot product and parallel

dot products

64 cout.precision (17);

65 for (int i=0; i<numtrials; ++i)

66 cout << result - ComputeDotProductOMP(n, &x[0], &y[0]) <<

endl;

67

68 return 0 ;

69 }

9.1.2 TestDotProductKahanOMPDouble.cpp

1 // TestDotProductKahanOMPDouble.cpp

2 //

3 // Routine to show reproducibility of the parallel dot

product

58

4 // using Kahan summation for double -precision floating point

5 // numbers.

6 // g++ -fopenmp TestDotProductKahanOMPDouble.cpp -o

testDotProd

7 #include <fstream >

8 #include <iostream >

9 #include <cstdlib >

10 using std::endl;

11 using std::cout;

12 #include <omp.h>

13

14 #include <vector >

15

16 //a type to hold accumulator sum and correction terms for

local and global sums

17 struct esum_type{

18 double sum;

19 double correction;

20 };

21

22 /*

23 * Method to compute the dot product in parallel using

24 * Kahan summation and dynamic scheduling of threads.

25 *

26 * @param[in] n the number of vector elements

27 * @param[in] x, y the input vectors

28 * @param[out] result a float value , on exit will contain the

result

29 *

30 * @return returns parallel dot product result

31 */

32 double ComputeDotProductKahanOMP(int n, double * x, double *

y) {

33 esum_type sum; // global accumulator

34 sum.sum = 0.0;

35 sum.correction = 0.0;

36 double corrected_next_term , new_sum;

37 #pragma omp parallel shared(sum)

38 {

39 esum_type priv_sum; // local accumulator

40 priv_sum.sum = 0.0;

41 priv_sum.correction = 0.0;

42 double priv_corrected_next_term , priv_new_sum;

43 #pragma omp for schedule(dynamic ,1)

44 for (int i=0; i<n; i++) {

59

45 priv_corrected_next_term = x[i]*y[i] + priv_sum.

correction;

46 priv_new_sum = priv_sum.sum + priv_corrected_next_term;

47 priv_sum.correction = priv_corrected_next_term - (

priv_new_sum - priv_sum.sum);

48 priv_sum.sum = priv_new_sum;

49 }

50 #pragma omp critical // ensures that no two threads will

access global sum at the same time

51 {

52 corrected_next_term = priv_sum.sum + sum.correction;

53 new_sum = sum.sum + corrected_next_term;

54 sum.correction = corrected_next_term - (new_sum - sum.

sum);

55 sum.sum = new_sum;

56 }

57 }

58 return sum.sum;

59 }

60

61 int main(int argc , char * argv []) {

62

63 if (argc !=3) {

64 cout << "Usage: " << argv [0] << " length_of_vector" << "

number_of_trials" << endl;

65 exit (1);

66 }

67

68 int n = atoi(argv [1]); // problem size

69 int numtrials = atoi(argv [2]); // number of times to

compute the parallel dot product

70

71 cout << "Problem size = " << n << endl;

72 cout << "Number of trials = " << numtrials << endl;

73

74 int nthreads;

75 #pragma omp parallel

76 nthreads = omp_get_num_threads ();

77 cout << "Number of threads = " << nthreads << endl;

78

79 // Generate random values

80 std::vector < double > x(n), y(n);

81 for (int i=0; i<n; ++i) {

82 x[i] = drand48 ();

83 y[i] = drand48 ();

60

84 }

85

86 // Compute serial dot product

87 double result = 0.0;

88 for (int i=0; i<n; i++) result += x[i]*y[i];

89

90 //Print difference between serial dot product and parallel

dot products

91 cout.precision (17);

92 for (int i=0; i<numtrials; ++i)

93 cout << result - ComputeDotProductKahanOMP(n, &x[0], &y

[0]) << endl;

94

95 return 0 ;

96 }

9.1.3 TestDotProductKnuthOMPDouble.cpp

1 // TestDotProductKnuthOMPDouble.cpp

2 //

3 // Routine to show reproducibility of the parallel dot

product

4 // using Knuth summation for double -precision floating point

5 // numbers.

6 // g++ -fopenmp TestDotProductKnuthOMPDouble.cpp -o

testDotProd

7 #include <fstream >

8 #include <iostream >

9 #include <cstdlib >

10 using std::endl;

11 using std::cout;

12 #include <omp.h>

13

14 #include <vector >

15

16 //a type to hold accumulator sum and correction terms for

local and global sums

17 struct esum_type{

18 double sum;

19 double correction;

20 };

21

22 /*

23 * Method to compute the dot product in parallel using

61

24 * Knuth summation and dynamic scheduling of threads.

25 *

26 * @param[in] n the number of vector elements

27 * @param[in] x, y the input vectors

28 * @param[out] result a float value , on exit will contain the

result

29 *

30 * @return returns parallel dot product result

31 */

32 double ComputeDotProductKnuthOMP(int n, double * x, double *

y) {

33 esum_type sum; // global accumulator

34 sum.sum = 0.0;

35 sum.correction = 0.0;

36 double u, v, upt , up , vpp;

37 #pragma omp parallel shared(sum)

38 {

39 esum_type priv_sum; // local accumulator

40 priv_sum.sum = 0.0;

41 priv_sum.correction = 0.0;

42 double priv_u , priv_v , priv_upt , priv_up , priv_vpp;

43 #pragma omp for schedule(dynamic ,1)

44 for (int i=0; i<n; i++) {

45 priv_u = priv_sum.sum;

46 priv_v = x[i]*y[i] + priv_sum.correction;

47 priv_upt = priv_u + priv_v;

48 priv_up = priv_upt - priv_v;

49 priv_vpp = priv_upt - priv_up;

50 priv_sum.sum = priv_upt;

51 priv_sum.correction = (priv_u - priv_up) + (priv_v -

priv_vpp);

52 }

53 #pragma omp critical // ensures that no two threads will

access global sum at the same time

54 {

55 u = sum.sum;

56 v = priv_sum.sum + sum.correction;

57 upt = u + v;

58 up = upt - v;

59 vpp = upt - up;

60 sum.sum = upt;

61 sum.correction = (u - up) + (v - vpp);

62 }

63 }

64 return sum.sum;

62

65 }

66

67 int main(int argc , char * argv []) {

68

69 if (argc !=3) {

70 cout << "Usage: " << argv [0] << " length_of_vector" << "

number_of_trials" << endl;

71 exit (1);

72 }

73

74 int n = atoi(argv [1]); // problem size

75 int numtrials = atoi(argv [2]); // number of times to

compute the parallel dot product

76

77 cout << "Problem size = " << n << endl;

78 cout << "Number of trials = " << numtrials << endl;

79

80 int nthreads;

81 #pragma omp parallel

82 nthreads = omp_get_num_threads ();

83 cout << "Number of threads = " << nthreads << endl;

84

85 // Generate random values

86 std::vector < double > x(n), y(n);

87 for (int i=0; i<n; ++i) {

88 x[i] = drand48 ();

89 y[i] = drand48 ();

90 }

91

92 // Compute serial dot product

93 double result = 0.0;

94 for (int i=0; i<n; i++) result += x[i]*y[i];

95

96 //Print difference between serial dot product and parallel

dot products

97 cout.precision (17);

98 for (int i=0; i<numtrials; ++i)

99 cout << result - ComputeDotProductKnuthOMP(n, &x[0], &y

[0]) << endl;

100

101 return 0 ;

102 }

63

9.1.4 TestDotProductOMPFloat.cpp

1 // TestDotProductKahanOMPFloat.cpp

2 //

3 // Routine to show reproducibility of the parallel dot

product

4 // using summation for single -precision floating point

5 // numbers.

6 //

7 //g++ -fopenmp TestDotProductOMPFloat.cpp -o testDotProd

8 #include <fstream >

9 #include <iostream >

10 #include <cstdlib >

11 using std::endl;

12 using std::cout;

13 #include <omp.h>

14

15 #include <vector >

16

17 /*

18 * Method to compute the dot product in parallel using

19 * dynamic scheduling of threads.

20 *

21 * @param[in] n the number of vector elements

22 * @param[in] x, y the input vectors

23 * @param[out] result a float value , on exit will contain the

result

24 *

25 * @return returns parallel dot product result

26 */

27 float ComputeDotProductOMP(int n, float * x, float * y) {

28 float result = 0.0;

29 #pragma omp parallel for reduction (+: result) schedule(

dynamic ,1)

30 for (int i=0; i<n; i++) result += x[i]*y[i];

31 return result;

32 }

33

34 int main(int argc , char * argv []) {

35

36 if (argc !=3) {

37 cout << "Usage: " << argv [0] << " length_of_vector" << "

number_of_trials" << endl;

38 exit (1);

39 }

64

40

41 int n = atoi(argv [1]); // problem size

42 int numtrials = atoi(argv [2]); // number of times to

compute the parallel dot product

43

44 cout << "Problem size = " << n << endl;

45 cout << "Number of trials = " << numtrials << endl;

46

47 int nthreads;

48 #pragma omp parallel

49 nthreads = omp_get_num_threads ();

50 cout << "Number of threads = " << nthreads << endl;

51

52 // Generate random values

53 std::vector < float > x(n), y(n);

54 for (int i=0; i<n; ++i) {

55 x[i] = drand48 ();

56 y[i] = drand48 ();

57 }

58

59 // Compute serial dot product

60 float result = 0.0;

61 for (int i=0; i<n; i++) result += x[i]*y[i];

62

63 //Print difference between serial dot product and parallel

dot products

64 cout.precision (17);

65 for (int i=0; i<numtrials; ++i)

66 cout << result - ComputeDotProductOMP(n, &x[0], &y[0]) <<

endl;

67

68 return 0 ;

69 }

9.1.5 TestDotProductKahanOMPFloat.cpp

1 // TestDotProductKahanOMPFloat.cpp

2 //

3 // Routine to show reproducibility of the parallel dot

product

4 // using Kahan summation for single -precision floating point

5 // numbers.

6 // g++ -fopenmp TestDotProductKahanOMPFloat.cpp -o

testDotProd

65

7 #include <fstream >

8 #include <iostream >

9 #include <cstdlib >

10 using std::endl;

11 using std::cout;

12 #include <omp.h>

13

14 #include <vector >

15

16 //a type to hold accumulator sum and correction terms for

local and global sums

17 struct esum_type{

18 float sum;

19 float correction;

20 };

21

22 /*

23 * Method to compute the dot product in parallel using

24 * Kahan summation and dynamic scheduling of threads.

25 *

26 * @param[in] n the number of vector elements

27 * @param[in] x, y the input vectors

28 * @param[out] result a float value , on exit will contain the

result

29 *

30 * @return returns parallel dot product result

31 */

32 float ComputeDotProductKahanOMP(int n, float * x, float * y)

{

33 esum_type sum; // global accumulator

34 sum.sum = 0.0;

35 sum.correction = 0.0;

36 float corrected_next_term , new_sum;

37 #pragma omp parallel shared(sum)

38 {

39 esum_type priv_sum; // local accumulator

40 priv_sum.sum = 0.0;

41 priv_sum.correction = 0.0;

42 float priv_corrected_next_term , priv_new_sum;

43 #pragma omp for schedule(dynamic ,1)

44 for (int i=0; i<n; i++) {

45 priv_corrected_next_term = x[i]*y[i] + priv_sum.

correction;

46 priv_new_sum = priv_sum.sum + priv_corrected_next_term;

66

47 priv_sum.correction = priv_corrected_next_term - (

priv_new_sum - priv_sum.sum);

48 priv_sum.sum = priv_new_sum;

49 }

50 #pragma omp critical // ensures that no two threads will

access global sum at the same time

51 {

52 corrected_next_term = priv_sum.sum + sum.correction;

53 new_sum = sum.sum + corrected_next_term;

54 sum.correction = corrected_next_term - (new_sum - sum.

sum);

55 sum.sum = new_sum;

56 }

57 }

58 return sum.sum;

59 }

60

61 int main(int argc , char * argv []) {

62

63 if (argc !=3) {

64 cout << "Usage: " << argv [0] << " length_of_vector" << "

number_of_trials" << endl;

65 exit (1);

66 }

67

68 int n = atoi(argv [1]); // problem size

69 int numtrials = atoi(argv [2]); // number of times to

compute the parallel dot product

70

71 cout << "Problem size = " << n << endl;

72 cout << "Number of trials = " << numtrials << endl;

73

74 int nthreads;

75 #pragma omp parallel

76 nthreads = omp_get_num_threads ();

77 cout << "Number of threads = " << nthreads << endl;

78

79 // Generate random values

80 std::vector < float > x(n), y(n);

81 for (int i=0; i<n; ++i) {

82 x[i] = drand48 ();

83 y[i] = drand48 ();

84 }

85

86 // Compute serial dot product

67

87 float result = 0.0;

88 for (int i=0; i<n; i++) result += x[i]*y[i];

89

90 //Print difference between serial dot product and parallel

dot products

91 cout.precision (17);

92 for (int i=0; i<numtrials; ++i)

93 cout << result - ComputeDotProductKahanOMP(n, &x[0], &y

[0]) << endl;

94

95 return 0 ;

96 }

9.1.6 TestDotProductKnuthOMPFloat.cpp

1 // TestDotProductKnuthOMPFloat.cpp

2 //

3 // Routine to show reproducibility of the parallel dot

product

4 // using Knuth summation for single -precision floating point

5 // numbers.

6 // g++ -fopenmp TestDotProductKnuthOMPFloat.cpp -o

testDotProd

7

8 #include <fstream >

9 #include <iostream >

10 #include <cstdlib >

11 using std::endl;

12 using std::cout;

13 #include <omp.h>

14

15 #include <vector >

16

17 //a type to hold accumulator sum and correction terms for

local and global sums

18 struct esum_type{

19 float sum;

20 float correction;

21 };

22

23

24 /*

25 * Method to compute the dot product in parallel using

26 * Knuth summation and dynamic scheduling of threads.

68

27 *

28 * @param[in] n the number of vector elements

29 * @param[in] x, y the input vectors

30 * @param[out] result a float value , on exit will contain the

result

31 *

32 * @return returns parallel dot product result

33 */

34 float ComputeDotProductKnuthOMP(int n, float * x, float * y)

{

35 esum_type sum; // global accumulator

36 sum.sum = 0.0;

37 sum.correction = 0.0;

38 float u, v, upt , up, vpp;

39 #pragma omp parallel shared(sum)

40 {

41 esum_type priv_sum; // local accumulator

42 priv_sum.sum = 0.0;

43 priv_sum.correction = 0.0;

44 float priv_u , priv_v , priv_upt , priv_up , priv_vpp;

45 #pragma omp for schedule(dynamic ,1)

46 for (int i=0; i<n; i++) {

47 priv_u = priv_sum.sum;

48 priv_v = x[i]*y[i] + priv_sum.correction;

49 priv_upt = priv_u + priv_v;

50 priv_up = priv_upt - priv_v;

51 priv_vpp = priv_upt - priv_up;

52 priv_sum.sum = priv_upt;

53 priv_sum.correction = (priv_u - priv_up) + (priv_v -

priv_vpp);

54 }

55 #pragma omp critical // ensures that no two threads will

access global sum at the same time

56 {

57 u = sum.sum;

58 v = priv_sum.sum + sum.correction;

59 upt = u + v;

60 up = upt - v;

61 vpp = upt - up;

62 sum.sum = upt;

63 sum.correction = (u - up) + (v - vpp);

64 }

65 }

66 return sum.sum;

67 }

69

68

69 int main(int argc , char * argv []) {

70

71 if (argc !=3) {

72 cout << "Usage: " << argv [0] << " length_of_vector" << "

number_of_trials" << endl;

73 exit (1);

74 }

75

76 int n = atoi(argv [1]); // problem size

77 int numtrials = atoi(argv [2]); // number of times to

compute the parallel dot product

78

79 cout << "Problem size = " << n << endl;

80 cout << "Number of trials = " << numtrials << endl;

81

82 int nthreads;

83 #pragma omp parallel

84 nthreads = omp_get_num_threads ();

85 cout << "Number of threads = " << nthreads << endl;

86

87 // Generate random values

88 std::vector < float > x(n), y(n);

89 for (int i=0; i<n; ++i) {

90 x[i] = drand48 ();

91 y[i] = drand48 ();

92 }

93

94 // Compute serial dot product

95 float result = 0.0;

96 for (int i=0; i<n; i++) result += x[i]*y[i];

97

98 //Print difference between serial dot product and parallel

dot products

99 cout.precision (17);

100 for (int i=0; i<numtrials; ++i)

101 cout << result - ComputeDotProductKnuthOMP(n, &x[0], &y

[0]) << endl;

102

103 return 0 ;

104 }

9.1.7 TestDotProductOMPDoubleAccumulator.cpp

70

1 // TestDotProductKahanOMPFloat.cpp

2 //

3 // Routine to show reproducibility of the parallel dot

product

4 // using summation for single -precision floating point

5 // numbers.

6 //

7 //g++ -fopenmp TestDotProductOMPFloat.cpp -o testDotProd

8 #include <fstream >

9 #include <iostream >

10 #include <cstdlib >

11 using std::endl;

12 using std::cout;

13 #include <omp.h>

14

15 #include <vector >

16

17 /*

18 * Method to compute the dot product in parallel using

19 * dynamic scheduling of threads.

20 *

21 * @param[in] n the number of vector elements

22 * @param[in] x, y the input vectors

23 * @param[out] result a float value , on exit will contain the

result

24 *

25 * @return returns parallel dot product result

26 */

27 double ComputeDotProductOMP(int n, float * x, float * y) {

28 double result = 0.0;

29 #pragma omp parallel for reduction (+: result) schedule(

dynamic ,1)

30 for (int i=0; i<n; i++) result += x[i]*y[i];

31 return result;

32 }

33

34 int main(int argc , char * argv []) {

35

36 if (argc !=3) {

37 cout << "Usage: " << argv [0] << " length_of_vector" << "

number_of_trials" << endl;

38 exit (1);

39 }

40

41 int n = atoi(argv [1]); // problem size

71

42 int numtrials = atoi(argv [2]); // number of times to

compute the parallel dot product

43

44 cout << "Problem size = " << n << endl;

45 cout << "Number of trials = " << numtrials << endl;

46

47 int nthreads;

48 #pragma omp parallel

49 nthreads = omp_get_num_threads ();

50 cout << "Number of threads = " << nthreads << endl;

51

52 // Generate random values

53 std::vector < float > x(n), y(n);

54 for (int i=0; i<n; ++i) {

55 x[i] = drand48 ();

56 y[i] = drand48 ();

57 }

58

59 // Compute serial dot product

60 double result = 0.0;

61 for (int i=0; i<n; i++) result += x[i]*y[i];

62

63 //Print difference between serial dot product and parallel

dot products

64 cout.precision (17);

65 for (int i=0; i<numtrials; ++i)

66 cout << result - ComputeDotProductOMP(n, &x[0], &y[0]) <<

endl;

67

68 return 0 ;

69 }

9.1.8 TestDotProductKahanOMPDoubleAccumulator.cpp

1 // TestDotProductKahanOMPFloat.cpp

2 //

3 // Routine to show reproducibility of the parallel dot

product

4 // using Kahan summation for single -precision floating point

5 // numbers.

6 // g++ -fopenmp TestDotProductKahanOMPFloat.cpp -o

testDotProd

7 #include <fstream >

8 #include <iostream >

72

9 #include <cstdlib >

10 using std::endl;

11 using std::cout;

12 #include <omp.h>

13

14 #include <vector >

15

16 //a type to hold accumulator sum and correction terms for

local and global sums

17 struct esum_type{

18 double sum;

19 double correction;

20 };

21

22 /*

23 * Method to compute the dot product in parallel using

24 * Kahan summation and dynamic scheduling of threads.

25 *

26 * @param[in] n the number of vector elements

27 * @param[in] x, y the input vectors

28 * @param[out] result a float value , on exit will contain the

result

29 *

30 * @return returns parallel dot product result

31 */

32 double ComputeDotProductKahanOMP(int n, float * x, float * y

) {

33 esum_type sum; // global accumulator

34 sum.sum = 0.0;

35 sum.correction = 0.0;

36 double corrected_next_term , new_sum;

37 #pragma omp parallel shared(sum)

38 {

39 esum_type priv_sum; // local accumulator

40 priv_sum.sum = 0.0;

41 priv_sum.correction = 0.0;

42 double priv_corrected_next_term , priv_new_sum;

43 #pragma omp for schedule(dynamic ,1)

44 for (int i=0; i<n; i++) {

45 priv_corrected_next_term = x[i]*y[i] + priv_sum.

correction;

46 priv_new_sum = priv_sum.sum + priv_corrected_next_term;

47 priv_sum.correction = priv_corrected_next_term - (

priv_new_sum - priv_sum.sum);

48 priv_sum.sum = priv_new_sum;

73

49 }

50 #pragma omp critical // ensures that no two threads will

access global sum at the same time

51 {

52 corrected_next_term = priv_sum.sum + sum.correction;

53 new_sum = sum.sum + corrected_next_term;

54 sum.correction = corrected_next_term - (new_sum - sum.

sum);

55 sum.sum = new_sum;

56 }

57 }

58 return sum.sum;

59 }

60

61 int main(int argc , char * argv []) {

62

63 if (argc !=3) {

64 cout << "Usage: " << argv [0] << " length_of_vector" << "

number_of_trials" << endl;

65 exit (1);

66 }

67

68 int n = atoi(argv [1]); // problem size

69 int numtrials = atoi(argv [2]); // number of times to

compute the parallel dot product

70

71 cout << "Problem size = " << n << endl;

72 cout << "Number of trials = " << numtrials << endl;

73

74 int nthreads;

75 #pragma omp parallel

76 nthreads = omp_get_num_threads ();

77 cout << "Number of threads = " << nthreads << endl;

78

79 // Generate random values

80 std::vector < float > x(n), y(n);

81 for (int i=0; i<n; ++i) {

82 x[i] = drand48 ();

83 y[i] = drand48 ();

84 }

85

86 // Compute serial dot product

87 double result = 0.0;

88 for (int i=0; i<n; i++) result += x[i]*y[i];

89

74

90 //Print difference between serial dot product and parallel

dot products

91 cout.precision (17);

92 for (int i=0; i<numtrials; ++i)

93 cout << result - ComputeDotProductKahanOMP(n, &x[0], &y

[0]) << endl;

94

95 return 0 ;

96 }

9.1.9 TestDotProductKnuthOMPDoubleAccumulator.cpp

1 // TestDotProductKnuthOMPDoubleAccumulator.cpp

2 //

3 // Routine to show reproducibility of the parallel dot

product

4 // using Knuth summation for single -precision floating point

5 // numbers , but with a double -precision accumulator.

6 // g++ -fopenmp TestDotProductKnuthOMPDoubleAccumulator.cpp -

o testDotProd

7

8 #include <fstream >

9 #include <iostream >

10 #include <cstdlib >

11 using std::endl;

12 using std::cout;

13 #include <omp.h>

14

15 #include <vector >

16

17 //a type to hold accumulator sum and correction terms for

local and global sums

18 struct esum_type{

19 double sum;

20 double correction;

21 };

22

23

24 /*

25 * Method to compute the dot product in parallel using

26 * Knuth summation and dynamic scheduling of threads.

27 *

28 * @param[in] n the number of vector elements

29 * @param[in] x, y the input vectors

75

30 * @param[out] result a float value , on exit will contain the

result

31 *

32 * @return returns parallel dot product result

33 */

34 double ComputeDotProductKnuthOMP(int n, float * x, float * y

) {

35 esum_type sum; // global accumulator

36 sum.sum = 0.0;

37 sum.correction = 0.0;

38 double u, v, upt , up , vpp;

39 #pragma omp parallel shared(sum)

40 {

41 esum_type priv_sum; // local accumulator

42 priv_sum.sum = 0.0;

43 priv_sum.correction = 0.0;

44 double priv_u , priv_v , priv_upt , priv_up , priv_vpp;

45 #pragma omp for schedule(dynamic ,1)

46 for (int i=0; i<n; i++) {

47 priv_u = priv_sum.sum;

48 priv_v = x[i]*y[i] + priv_sum.correction;

49 priv_upt = priv_u + priv_v;

50 priv_up = priv_upt - priv_v;

51 priv_vpp = priv_upt - priv_up;

52 priv_sum.sum = priv_upt;

53 priv_sum.correction = (priv_u - priv_up) + (priv_v -

priv_vpp);

54 }

55 #pragma omp critical // ensures that no two threads will

access global sum at the same time

56 {

57 u = sum.sum;

58 v = priv_sum.sum + sum.correction;

59 upt = u + v;

60 up = upt - v;

61 vpp = upt - up;

62 sum.sum = upt;

63 sum.correction = (u - up) + (v - vpp);

64 }

65 }

66 return sum.sum;

67 }

68

69 int main(int argc , char * argv []) {

70

76

71 if (argc !=3) {

72 cout << "Usage: " << argv [0] << " length_of_vector" << "

number_of_trials" << endl;

73 exit (1);

74 }

75

76 int n = atoi(argv [1]); // problem size

77 int numtrials = atoi(argv [2]); // number of times to

compute the parallel dot product

78

79 cout << "Problem size = " << n << endl;

80 cout << "Number of trials = " << numtrials << endl;

81

82 int nthreads;

83 #pragma omp parallel

84 nthreads = omp_get_num_threads ();

85 cout << "Number of threads = " << nthreads << endl;

86

87 // Generate random values

88 std::vector < float > x(n), y(n);

89 for (int i=0; i<n; ++i) {

90 x[i] = drand48 ();

91 y[i] = drand48 ();

92 }

93

94 // Compute serial dot product

95 double result = 0.0;

96 for (int i=0; i<n; i++) result += x[i]*y[i];

97

98 //Print difference between serial dot product and parallel

dot products

99 cout.precision (17);

100 for (int i=0; i<numtrials; ++i)

101 cout << result - ComputeDotProductKnuthOMP(n, &x[0], &y

[0]) << endl;

102

103 return 0 ;

104 }

References

[1] A. Arteaga, O.Fuhrer, and T. Hoefler, Designing bit-reproducible

portable high-performance applications, Proceedings of the 28th IEEE

77

International Parallel And Distributed Processing Symposium (IPDPS),
IEEE Computer Society, Apr. 2014.

[2] Mathew A. Cleveland, Thomas A. Brunner, Nicholas A. Gentile, and
Jeffrey A. Keasler, Obtaining identical results with double precision global

accuracy on different numbers of processors in parallel particle monte

carlo simulations, Journal of Computational Physics 251 (2013), no. 0,
223 – 236.

[3] Sylvain Collange, David Defour, Stef Graillat, and Roman Iakymchuk,
Full-speed deterministic bit-accurate parallel floating-point summation

on multi- and many-core architectures, Tech. report, Feb 2014.

[4] J. Demmel and Hong Diep Nguyen, Fast reproducible floating-point sum-

mation, Computer Arithmetic (ARITH), 2013 21st IEEE Symposium
on, April 2013, pp. 163–172.

[5] James Demmel and Yozo Hida, Accurate and efficient floating point

summation, SIAM J. Sci. Comput. 25 (2003), no. 4, 1214–1248.

[6] James Demmel and Hong Diep Nguyen, Numerical reproducibility and

accuracy at exascale, Proceedings of the 2013 IEEE 21st Symposium
on Computer Arithmetic (Washington, DC, USA), ARITH ’13, IEEE
Computer Society, 2013, pp. 235–237.

[7] V. Carl Hamacher, Computer organization and embedded systems,
McGraw-Hill, New York, NY, 2012.

[8] Donald E. Knuth, The art of computer programming, volume 2 (3rd

ed.): Seminumerical algorithms, Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1997.

[9] M. McCool, J. Reinders, and A. Robison, Structured parallel program-

ming: Patterns for efficient computation, Elsevier Science, 2012.

[10] Robert W. Robey, Jonathan M. Robey, and Rob Aulwes, In search

of numerical consistency in parallel programming, Parallel Comput. 37
(2011), no. 4-5, 217–229.

78

	Achieving Numerical Reproducibility in the Parallelized Floating Point Dot Product
	Recommended Citation

	Introduction
	Introduction to Parallel Computing

	Problem Statement
	The Parallel Dot Product

	Background
	Floating Point Numbers
	8-bit Floating point Representation

	Reproducibility vs. Accuracy

	Methods
	Code and Parallel Programming Model
	Architecture
	Kahan Summation Algorithm
	Knuth Summation Algorithm
	The Experiment

	Results
	Double-Precision Results
	Single-Precision Results
	Single-Precision with Double-Precision Accumulator Results

	Conclusions
	Contributions to this Topic
	Future Work
	Appendix
	Source Code
	TestDotProductOMPDouble.cpp
	TestDotProductKahanOMPDouble.cpp
	TestDotProductKnuthOMPDouble.cpp
	TestDotProductOMPFloat.cpp
	TestDotProductKahanOMPFloat.cpp
	TestDotProductKnuthOMPFloat.cpp
	TestDotProductOMPDoubleAccumulator.cpp
	TestDotProductKahanOMPDoubleAccumulator.cpp
	TestDotProductKnuthOMPDoubleAccumulator.cpp

