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3 Introduction

This paper studies the probabilities within the game Jai-alai. Before explaining the prob-
abilities, one first needs to understand the game itself. Jai-alai is a racquetball-like game
where eight ordered players compete against one another in the following manner: Player
1 plays Player 2. The winner of this game plays Player 3, while the loser goes to the end
of the line behind Player 8. In the first seven games, 1 versus 2, 7 versus 3, ..., 7 versus 8,
the winner is awarded one point, and in every game after that two points. A player wins
the match when he is the first to acquire seven or more points. The question involving
probabilities is the following: Suppose all players are of equal ability. Is there any advan-
tage to being in the front of the line (like players 1 and 2) versus being in the end of the
line? Another way of restating the problem is calculate the probabilities each player has of
winning the match given that they all are of equal ability.

Two approaches are used towards solving this problem. The first method involves running
simulations on a computer and tabulating these results. Then using statistics a range can
be set in which the probabilities are bounded. The second approach involves modeling the
game by a Markov Chain. The Markov Chain can be written in matrix form, which in
turn can be manipulated so that the probabilities of the players winning the game can be
calculated exactly. Also in this second approach, it was necessary to look at smaller player
number versions of the Jai-alai game to detect patterns that would be in the regular Eight
Player Game. Each of these methods has advantages and drawbacks. The advantage of the
simulation is that it can give a fair estimate of the probabilities in a short amount of time,
while the advantage of the Markov Chain is that it can give the exact probabilities.

4  First Approach: The Simulation

4.1 Basic Idea of Computer Simulation

The first approach towards solving the problem involves the use of simulations. A program
was written in the Pascal computer language that operates in the following manner. It
takes the player labeled “defender” and has him compete against the player in the front of
the line (In the initial case, Player 1 is the “defender”, Player 2 is first in line). Next, the
computer randomly picks a number between zero and one. If the number is greater then 0.5
{so the probability of each player winning is one-half) the “defender” wins and has either
one or two points added to his score depending on how many total games have been played.
If the “challenger” wins (if number < 0.5), he is awarded the points, and becomes the new
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“defender”. In either case, the loser is put at the end of the line, and the match continues
until one player has acquired the seven or more points needed to win. In each batch the
computer simulated 1 million of these matches. The following is the average probability of
winning from ten of these batches.

4.2 The Results

Player Probability
0.1632634
6.1632991
0.1383588
0.1240282
(.1020501
0.1025616
0.0887368
0.1177020

QO =3 O U W W DD

Notice Player 1 and Player 2 have approximately the same probability of winning. This
result was expected since they held the same position at the beginning of the game, which
means they share the same opportunities of victory. Another point of interest is the steady
decrease in probability of victory as the player number increases, except for Player 8 who
has better chances of winning then Players 5, 6, and 7. One surprising aspect is Players 5
and 6’s approximate equivalence.

4.3 Statistical Analysis of Results

There are several methods of studying the above results using statistics. One method that
can be applied is constructing a confidence interval on each players’ matches won. In each
of these tests, a ninety-five percent confidence interval was used so zg25 = 1.96.

Player C.I.for Player
(0.163034315,0.163492484)
{0.163069995,0.163528204)
{0.138144795,0.138572804)
(0.123823903,0.124232496)
(0.101862475,0.102237724)
(0.102373559,0.102749640)
(0.088560549, 0.088913050)
(0.117502264,0.117901735)

GO =3 O UU W O D
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The above table implies that for a given player ninety-five percent of the time the interval
contains his actual probability of victory. Another point that can be studied is if Player 1
and 2 have the same probability of winning the match. This is worthwhile to do since if the
possibility that their probabilities cannot be equal occurs, it means something is wrong with
the simulation. Again it is possible to calculate whether the two are equal using confidence
intervals between two independent sets of simulations. In every case the test was run, the
possibility that they equaled occurred so the simulation appears to work. One could also
run confidence intervals on players 5 and 6 to see if they too could be equal.

5 Second Approach: Markov Chains

5.1 Theory of Markov Chains

Before delving into the second approach towards solving the problem, it is necessary to have
a quick overview of Markov Chains. Thus, here are a few necessary definitions:

(see for example MARKOV CHAINS: THEORY AND APPLICATIONS by Isaacson and
Madsen.)

Definition 1 The set of all possible outcomes of an experiment is called the sample space
of the experiment. The sample space will be denoted by the symbol, ), and an arbitrary
element of @ will be denoted by w.

Definition 2 A function that maps a sample space into the real numbers is called a random
variable.

Definition 3 A stochastic process is a family of random variables defined on some sample
space, (1.

Definition 4 The set of distinct values assumed by the stochastic process is called the state
space. If the state space of a stochastic process is countable, or finite, the process will be
called a chain.

Definition 5 A stochastic process Xy, k = 1,2, ... with state space § = 1,2,3,... is said to
satisfy the Markov property if for every n and all states 1,12, ...,1, it is true that

P[Xn - ian -1 = ine, Xpg = -2y, X1 = il} = P[Xn = i Xp-1 = inwl]'
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To clarify, a Markov Chain involves a process that moves from one state to another state
with a certain probability. Take for instance the following example: Suppose a student is
doing homework and decides that after twenty minutes she will fiip a coin to determine
whether she will continue studying. If the coin comes up heads, she will study twenty more
minutes and then repeat the coin toss. If the coin comes up tails, she will go to bed. The
possibilities continue studying and go to bed are states in the Markov chain each with
transition probability 0.5 (Assuming of course she flipped a fair coin). Notice that a process
in continue studying in turn has 0.5 probability of entering into continue studying or go to
bed. On the other hand a process in go fo bed can only move into go 1o bed and thus has
probability one. (A state that enters only into itself is called an absorbing state). Here is
the general picture of this Markov Chain.

C.S.

5 5
C.§ G.T.B

5 5 1
c.s G.T.B. G.T.B

5.2 Application to Jai-alai

Locking at Jai-alai, notice the following similarities to the Markov Process. In Jai-alai, the
probability of the players having a particular score and place in line is dependent only upon
what occurred in the previous game. It also can be shown that the Jai-alai game must have
a finite number of states. Thus it is possible to model Jai-alai as a Markov Chain where
each game is a state and the probability of moving into a state {game) is only dependent on
the outcome of the game before it. But how are these states in the game defined? Consider
the following notation: Each player is represented by a set of ordered pairs, and where this
set of ordered pairs lies determines their place in line. For example the initial state would
look like the this: (1,0)(2,0)(3,0)(4,03(5,0)(6,0)(7,0)(8,0) Since this is the beginning of the
game, each player has zero points and their order is 1-8. Now the two states that a process
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in the initial state can go into look like:

Playerlwins = (1,1)(3,0)(4,0)(5,0}(6,0)(7,0}(8,0)(2,0)
Player2wins = (2,1)(3,0)(4,0)(5,0)6,0)7,0)8,0)(1,0)
transition probabilities of a process entering each equal -%

5.3 Markov and Matrices

The next set of definitions explain the relation between Markov Chains and matrices,

A Markov Chain can be interpreted as a matrix in the following manner. Each row corre-
sponds to a state in the chain. If a state = can enter state y with probability p, then matrix
row z, column y, will have p in it. For instance in the Study / Go To Bed example the
matrix would look like:

Notice that every entry is non-negative and less than or equal to one. Also note that the
sum of each row equals one. These properties as well as those mentioned in the above
paragraph define a Transition Matriz for a Markov Chain . Thus a general form form for
a transition matrix P of a Markov Chain would look like:

211 Piz . Pin
P21 P22 - Pon

Pnl Pa2z v Pun
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Where the p;; are the probabilities of going from state ¢ to j in the Markov Chain in one
step.

In the Markov Chain for Jai-alai, all the states where a player wins the match are absorbing
states. So for each row ¢ in the transition matrix that corresponds to an absorbing state,
column ¢ has a value of 1. Thus if the transition matrix P is reconfigured such that the
absorbing states were in the first rows and columns, our new transition matrix would look
like:

1 0 0 0 0

Q 1 0 0 0 0

P* = 0 0o .. 1 0 0 .. 0
1n Tz - Tk @11 12 o Q1(n-k)
T2, T2 o T2k 420 Q22 o q2,(n-k)
Tnd Tn2 oo Tk dnl n2 oo dn(n—k)

Where the r;; are the probabilities of entering an absorbing state from a non-absorbing
state, ¢; ; are the probabilities of entering into a non-absorbing state from a non-absorbing
state. Notice that the submatrix of absorbing states going into absorbing states is the
identity matrix, and the submatrix of absorbing states going into non-absorbing states is
the zero matrix. Thus matrix P* could be rewritten as:

. [T 0
P‘(RQ)

If P* is an n by n matrix and the number of absorbing states is k, then [ is k£ by %, 0 is
kby (n—k), Ris(n—k) by k, and Q is (n — k) by (n — k). Finally (as can be found
in Isaacson) to calculate the probability of eventually entering an absorbing state from @,
one needs to find N = (I — Q)~!, and then calculate NR. Another piece of information
that can be calculated is the average number of steps it takes for a non-absorbing state to
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enter an absorbing state. This is found by taking the desired non-absorbing state’s row,
and summing up the entries of this row. For the Jai-alai problem this is equivalent to the
average number of games played before the match ends.

5.4 Application of Markov Matrices

To create the Transition Matrix, it first is necessary not only to calculate all the possible
states in the game, but also to describe all the possible ways a process can move into the
various states. A Pascal program, Combo.pas, generated as output all the states, and how a
process in one state entered into other states. This output is in the same form as described
earlier for the states in the Jai-alai game, except that the parenthesis and commas have
been removed. Remember that to find some patterns in the Jai-alai game it is good to look
at some smaller player number versions of the game, and thereby detect possible patterns
from those versions. Here is the output for the three-player game (first player to acquire
two points wins match, first two games are worth one point, every game after is worth two
points} and how the computer assigned the states to a matrix.

Combo.out continued State StateRepresented
102030 102030 1 102030
113020 213010 2 113020
122030 221030 3 122030
122030 221030 4 312011
9 9 5 331120
113020 213010 6 221131
312011 311021 7 213010
331120 332110 8 221030
331120 332110 9 311021
9 9 10 322110
312011 311021 11 122131
221131 122131 221131
122131
9 9
9 9
9 9

9

The first string is the initial state for the three-player game. The next string is a state
that a process from intial state might enter. This state contains the information that player
1 is the defender, has one point and is about to compete against Player 3 who has zero
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points, and the next player waiting in line is Player 2 who has zero points. Once again the
following string is a state that the previous one could move into, and again contains certain
information. This procedure continues on until there exists a state where a the following
one is equal to it. This means the state is an absorbing state, and it has probability of
one that it will enter into itself. In Jai-alai this state is interpreted as someone winning
the game. The lines that contain only the digit 9 exist for the program interpreting the
data, Matrix.pas. Matrix.pas has a procedure that converts the above data into a transition
matrix P. Then another procedure rearranges the matrix into the P* mentioned earlier.
Now that P* is created, all that is necessary is to find N = (I — @)~'. However for very
large matrices, calculating N can become quite arduous. Thus it becomes necessary to take
advantage of any special properties that the matrix (I — @) may have. Since the matrices
for smaller player number versions of the Jai-alai game are similar to what the eight player
game matrix looks like, it is useful to observe the Transition matrix for the three-player
game and make some conclusions from that.

[ 3 5 6 8 10 11 1 2 4 7 9 \
i 3
1 5
1 6
1 8
* 1 10
Fr= 1 11
0 0.5 0.5 1
0.5 0 05 2
0.5 0.5 0 4
0.5 0 05| 7
0.5 0.5 019
Consequently,
1 2 4 7 9
1 0.5 —0.5 1
1 -0.5 2
1 -0.5|7
1 |9

Note two interesting observations of {7 — )): first, it is upper triangular; and second, there
are at most three entries per row, so for a large matrix (/ — () is sparse. These observations
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led towards the first approach of calculating (I — @)~!. Although for larger player number
games, 3-Player Game and up, the matrices do not fit the pattern exactly, it is possible
to alter them into the same form as for the 3-Player Game. The following is the actual
N = (I - @), R, and N R matrices for the three player game.

1 2 4 7 9
1 05 0.25 05 0.25
1 0.3
1

N=(1-0)" -

0 o~ o DN

3 5 6 8 10 11

0.5 0.5
0.5
0.5 0.5

© ~1 o DD P

3 5 6 8 10 11
.25 0.125 0.125 0.25 0.125 0.125
0.5 0.25 0.25

0.5 0.5

NER=

0.5 025 0.25
0.5 0.5

W =3 i NS

5.5 First Approach: (/- Q) ' =1+Q+Q*+Q>+..+Q' + ...

It can be shown that if the sequence of matrices (J™ converges to the zero matrix as n gets
large, then the above equation is true (See for instance SPARSE MATRICES by U Schen-
del). @ does converge to the zero matrix since it is strictly upper triangular and | ¢;; [< 1
for all 1 < 4,7 < &k where ¢ is £ by &. But even better is the fact that Q™ converges
to the zero matrix for a finite number n by the following: @ is the one-step transition of
non-absorbing states into non-absorbing states. This implies Q™ is the n-step transition
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of non-absorbing states into non-absorbing states. But since the number of states in the
Jai-alai game is finite, there is a § > 0 where § is equal to the longest possible transition
from a non-absorbing state to a non-absorbing state. Thus if § = & then Q% = 0. So by
calculating the longest set of steps from the initial state to the last non-absorbing state, the
value of é can be determined. This algorithm gave results for the three, four, five, and six
player games which are as follows:

Three-Player Game

The expected length of the match is 2.500000000 games
Player 1 has probability 0.375000000

Player 2 has probability 0.375000000

Player 3 has probability 0.250000000

Four-Player Game

The expected length of the match is 4,187500000 games
Player 1 has probability 0.296875000

Player 2 has probability 0.296875000

Player 3 has probability 0.156250000

Player 4 has probability 0.256000000

Five-Player Game

The expected length of the match is 6.070312500 games
Player 1 has probability 0.251953125

Player 2 has probability 0.251953125

Player 3 has probability 0.183593750

Player 4 has probability 0.175781250

Player 5 has probability 0.136718750

Six-Player Game

The expected length of the match is 8.395874023 games
Player 1 has probability 0.209869385

Player 2 has probability 0.209869385

Player 3 has probability 0.159057617

Player 4 has probability 0.150695801

Player 5 has probability 0.112792969

Player 6 has probability 0.157714844
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These results were compared to the corresponding computer simulations, and appear to be
valid. However, all attempts to calculate the results for the Seven-Player Game failed due
to computer constraints. Thus a different approach was needed to solve this game, and in
the end the Eight-Player game.

5.6 Second Approach: Gaussian Backsubstitution

Originally the approach of calculating the inverse using the Gaussian substitution was ruled
out since this technique usually takes an excessively large amount of calculations to com-
pute the inverse. However, notice that the elimination half of the Gaussian technique was
unnecessary since the matrix (I - @) was already in upper triangular form. Thus all that
needed to be done to compute the inverse was the backsubstitution technique (See for ex-
ample Burden & Faires). Simply put, the backsubstitution technique does a series of row
multiplications and additions to other rows to change (I ~ Q) to I. At the same time these
operations are also performed on an identity matrix, so as ({ — @) is converted to I, [ is
converted to (I — @)1, This new technique of calculating N = (I — @)~ together with
~ the original technique for calculating NV R drastically reduced the amount of time necessary
to calculate the results for the Five and Six-Player games, and after a long amount of time
was able to calculate the results for the Seven-Player game:

Seven-Player Game

The expected length of the match is 10.782016754 games
Player 1 has probability 0.186703682

Player 2 has probability 0.186703682

Player 3 has probability 0.157234192

Player 4 has probability 0.137237549

Player 5 has probability 0.108762741

Player 6 has probability 0.120042801

Player 7 has probability 0.103315353

This approach, although faster then the previous one, was not fast enough to calculate the
Eight-Player Game. Once again, a different technique was need to calculate the inverse.
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5.7 Third Approach: Z{(/ - Q)= (100 ... 0)

In the Jai-alai problem, the only information desired is the probability of each player winning
the game given their initial place in line. But the matrices have been defined to have the
initial or first game of the matrix as the first row of {). So instead of calculating the inverse
of (I —Q), it is sufficient to calculate the first row of (I —@)~*, which will be called . Now
since (I — Q)" }(I — Q) = I it follows that Z(I ~ Q) = (100 ... 0). Then ZR = j = set
of probabilities of entering absorbing states from initial states. The algorithm calculated
Z = (x1,2%2,..., 2%} from the following:

3?1(1) = 1
zi{q2) +2201) = 0
z1(g1,3) + r2(q2,3) + z3(l) = 0
]
0
e = 0
zi{qie) + . +2x(1) = 0
or
T, = 1
Ty = "3«'1((]1,2)
r3 = —a1{q3) — r2(qe,3)
zr = —z1{q1r) = 2{@2k) = o~ Tho1{Gh—1,k)

Once again this new approach took less computer time then the previous one.

5.8 Calculating the Probabilities for the Eight-Player Game

Before continuing on, it is necessary to notice the growth of the matrix size as the number
of players grew.
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Game States
Three — Player 11
Four — Player 43
Five — Player 203
Siz — Player 1999
Seven — Player 21327
FEight — Player 844767

It would have been impossible to calculate the probabilities for the Eight-Player Game as
is with anything less then a Cray SuperComputer. So it became necessary to break the
Eight-Player Game down to a size much more manageable. To begin with, since players
1 and 2 share a certain symmetry, it is only necessary to look at half of the matches, say
those where player 2 is the winner of the first game. So now the size has been cut down
to 422,383. Now suppose this is broken again into two halves, run these two halves sepa-
rately, and find the average of their respective probabilities. This reduces the matrix size to
roughly 211,191, This procedure can be continued until the matrices are at a manageable
size for the computer to manipulate. Then each of the results for the matrices (probabil-
ities and expected number of games) can be summed and averaged together to give the
average for the half player2winsfirstgame. Finally given this result one needs to average
Player 1 and 2’s probabilities to find the results for the total match. In actuality, the half
player2winsfirstgame was cut into eighteen smaller matrices {at first sixteen, but two of
them were too large and needed to be cut again). Here are the results for the Eight-Player
Game:

The expected number of games is 13.777956963
Player 1 has probability 0.163116857
Player 2 has probability 0.163116857
Player 3 has probability 0.138615549
Player 4 has probability 0.124012306
Player 5 has probability 0.102026485
Player 6 has probability 0.162595806
Player 7 has probability 0.088775754
Player 8 has probability 0.117740393

Looking back at the Confidence Intervals in Section 4.3, notice that the Confidence Intervals
did contain all of the above actual probabilities except Player 3’s chances of victory. This is
acceptable since the Confidence Intervals are only ninety-five percent accurate; it is within
the realm of possibility to have them fail one of the eight times.
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6 Patterns in Jai-alai

While working on different player number Jai-alai games, a few patterns kept appearing.
First, in every even player game, the last player in line had better chances of winning
then anyone else in the lower half. This could be attributed to the last player having
the opportunity of winning the fewest number of games necessary to win the match. For
instance in the Four-Player Game, Player 4 needs to win only two games to win the match
while every other player needs to win three games. This does not work for the odd player
games because the last player does not have the advantage of be able to play fewer games
and win the match then everyone else; he shares that advantage with the player in line
above him. Another observation involves the way the Transition Matrices were created. To
keep the matrices in upper-triangular form, it was necessary to 'pretend’ some states were
different when in reality they were equal. For example, in the Five-Player game there was
the state: 5523334312, which could be generated from 1253233343 or 5312233343. Instead
of having a process from these two states go into the same state, the process entered a
different state. So in general this technique eliminated the possibility of two process from
different states entering into the same state. However this splicing of states did not alter the
probabilities. This splicing though drastically increased the sizes of the matrices as made
apparent by the following table.

Game NumberofStates NumberofUniqueStates
Three — Player 11 11

Four — Player 43 43

Five — Player 203 199

Six — Player 1999 1599

Seven — Player 21327 11263

Eight — Player 844767 ?

So as the number of players increased, the number of spliced states roughly doubled. (The
amount of unique states has not been calculated for the eight player game since this would
entail merging and sorting data files whose sum is over 30 megabytes). All these extra states
make for a strong argument against splicing. However, not splicing creates matrices not in
upper triangular form, and also matrices that are no longer sparse. Besides that, these new
mastrices also could not be broken into smaller pieces as done for the Eight-Player Game,
and calculating the inverse (or just the first row of it) would no longer be a simple task.
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7  Future Work

The previous paragraph mentions the problems of not splicing the states in the Transition
Matrix, but possibly the compact version of the matrix has some 'nice’ properties within
it that enable it to to solve the problem. This should be looked into, since as the size of
the matrices gets larger, any reduction in matrix size reduces memory and thus also time
it takes to run the program.

Another aspect that could be looked into is changing the basic assumption. Suppose all
players but one are of equal ability, and that one player is only slightly worse then everyone
else. Are his chances of winning the game altered drastically from when he was equal to
everyone else? Some preliminary work has been done on this involving Player 1 in the Eight-
Player game. His chances of defeating each player were forty-nine percent, while everyone
else chances remained the same. The first column of victories is with Player One having
equal probabilities of winning, while the second one is the output from unequal ability.

Player Normal Altered
1 163564 152877

2 163507 166087
3 138738 140236
4 123593 124577
3 102238 103079
6 102395 103724
7 88165 89638
8 117800 119782

Player One wins 10687 {or one percent) fewer matches in the altered probability simulation
then in the second equal probability simulation. So it appears that his chances for victory
have changed proportionately with his probability against other players. IHowever, these
calculations need to be done to all players in the line, to see if they are affected in any way
differently. More importantly however, if they are affected differently, an explanation why
they are is in order.
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