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ABSTRACT

Bad design and software defects often make sowaeschard to understand and
lead to maintenance difficulties. In order to déetead fix such defects, researchers have
systematically investigated these issues and degidifferent effective algorithms to
tackle the problems. However, most of these metheds source codes/models for
defect detection and correction. Commercial comgmrike banks, may not be willing to
provide their source models due to data securitgrdfore, it is a huge challenge to
detect software detects by a consulting companyedisas to keep source models
confidential. This thesis analyze security issmesxisting approaches related to defect
detection and develop secure protocols to allowfavare corporation and a consulting
company to exchange data securely without revealmygprivate information, which
make the approach practical in reality. The expenital results confirm the effectiveness

of the proposed approach.
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1. INTRODUCTION

1.1.PROBLEM BACKGROUND

In typical software life cycles, software mainteoamainly includes
adding/removing functionalities, detecting maingditity defects, correcting them, and
modifying the code to improve its quality. Althougtaintainability defects are
sometimes unavoidable, they should be removed fhenctode base as early as possible.
However, detecting and removing are difficult, ths@suming, and to some extent, a
manual process. To detect design defects autortatieaveral automated detection
techniques have been proposed [14] [13] [17] [@Blich are proved effective to improve
software quality. In these settings, detectiongaee manually defined or based on a
huge mount of quality metrics. However, for mostfmoftware companies, they do not
have enough resources to design complicated detetctdls and collect rich rules or
quality metrics. Then it is worthy employing a caliant who has professional skills and
experience to diagnose source models and corrémnoed unreasonable defects.

Unfortunately, even though a plenty of researchkvwas been done regarding
how to detect and remove software defects, fevn@mtconsidered privacy issues in
their approaches. Certainly, it is in commerciahpanies’ best interests not to disclose
source codes, source models or any private infeom&b others in the process of
software evaluation. Then it is a huge challengaufoto preserve privacy without
sharing source models, quality metrics, detectid@srand algorithms between them. To
better understand the problem, this thesis wik fieview the typical process of software
defect detection and correction, and then disdusgtivacy issues in the process.

Software maintainability defects, also called desigomalies, refer to design
situations that adversely affect the maintenanaofifvare. Maintainability defects are
unlikely to cause failures directly, but may catlsam indirectly. In general, they make a
system difficult to change, which may in turn irduze bugs. Software defect detection
refers to find software defects with a set of gyatetrics, and correction is the process
to fix them with series of refactoring operatioRsr example, to correct the blob defect,
many operations can be used to reduce the numbbenctionalities in a specific class:

move methods, extract class, etc. Opdyke defirfast@ing as the process of improving



a code after it has been written by changing tisrival structure without changing its
external behavior. The idea is to reorganize végglrlasses and methods in order to
facilitate future extensions. This reorganizatismsed to improve different aspects of
software-quality: reusability, maintainability, cprexity, etc.

The work [13] presents an effective approach teceind correct software
defects, which is based on Genetic Algorithm (GHjis approach mainly includes two
steps. In the first step, it generates detectitgsritom an initial set of rules representing
random combinations of metrics. Then, Genetic Ruogning (GP) is applied to refine
this set progressively according to each individudd’s ability to detect defects in the
example base. This process takes defect examplessiource models as input, and its
objective is to prevent sharing source models’rmi@ion with consultants in this step.
After generating the detection rules, this apprassds them in the correction step. It
starts by generating some solutions that represeatnbination of refactoring operations
and then evaluate them by their ability to corafects. Eventually, the best solution
would correct most detected defects.

However, the approach [13] has some limitations, Eirst, it has to access
source models to execute detection rules; secondl] take source models as input to
fix detected defects in correction step. All ofgsaeperations will disclose source models
to consulting corporations so that it may not beeptable by most commercial
companies. In this thesis, new security protocspaoposed to overcome some of the
mentioned limitations and the new approach wibbhalla consulting company to evaluate
a commercial banks’ software without revealing pniyate information. At the
beginning, the concept of Trusted Third Party (TTIH) is introduced to model secure
defect detection and correction. Two parties canroanicate safely with the TTP and do
not need to worry about security issues becausecBnRot disclose a party’s private
information to the other. Next, secure protocoks @asigned to replace the TTP such that
during the execution of the protocols, the privatermation is never disclosed.

1.2.PROBLEM DEFINITION
To better understand the thesis’ contributiors important to define the

problems of defect detection and correction, aedotiivacy preserving process. This



section will first introduce the definitions of immgiant concepts related to the new
proposed protocols, and then emphasize on thefepamblems that are tackled by the
approach.

Defect Detection and Correction (DDC): The defestiedtion process consists of
finding code fragments that violate structure onaptic properties on code elements
such as coupling and complexity. The detected ctore refers to fix these defects by
applying refactoring operations.

The functions Defect Detection and Defect Corractould be defined as below.

Defect_Detectioff S b R, (1)
. Input: R represents the detection rules obtained in iterétiand

Sdenotes the source model

. Output: R, represents the detection rules generated andateelin

iterationi +1

The algorithm generates initial detection ruRgsfrom quality metrics and applies these
rules to detect defects in source models. Theiiliewaluate each rule set based on its
ability to detect the number of defects. Next, &yngenerate new rule sBf and evaluate

them again. Eventually, it outputs the best rutefsavhich can detect most defects in

source models, after n iterations.

Defect_Correction( f;, S » f, 2
. Input: I denotes the best detection rules obtained froned&etection,
andf;j represents refactoring operations generatedriatios j , S is the source
model.

. Output: the refactoring seft.

.1 generated and evaluated in iteratipal

Initially, the algorithm generates a set of refsicig operationsf, and applies them to fix

detected defects in source models. Then it detentaining defects witli and evaluates



the set of refactoring based on its ability to eotrdefects. Next, it will generate new

refactoring operationd, and evaluate them too. At last, it will return thest refactoring
set f which would fix most detected defects.

Secure Defect Detection and Correction (SDDC):gmasboth parties’ private
information while following the general DDC proceSsipposeR,, e.g. a consulting
company, owns a set of quality metrics and refaugorP,, e.g. a commercial bank, has
private source models. SDDC allov#sto apply quality metrics to detect software
defects inR,’s source models and fix them without revealid¢s quality metrics,
detection and correction algorithms Bp; or disclosingP,’s source models t#,. In

detection stage, SDDC will take source models,ityuadetrics as input, and output best
detection rules after iterations. Next, SDDC refinefactoring operations and evaluate
them with these rules; eventually generates optrafalctoring solutions as output, which
would correct most defects in source models.

Secure Defect Detection and Secure Defect Correétioctions are defined as

the following.
Defect_Detection € R ),B S)» € R, 3)(
. Input: (B, R) represent$’s private detection rules obtained in iteration

i and(PR,,S) is the source model d®
J Output: the rule seR ,, which is generated and evaluated in iteratied,

only P getsR,,

Equation (3) is similar to Equation (2), and itrtsgdrom generating initial detection rule

R, . Eventually, it outputs the best rule setvhich can detect most defects.

Defect_Correctiopn @ £, f, )& S » R f., 4)



. Input: (B, T, f;) includes two partsi is the best rule set obtained from (3)

which can detected most defects in source modets fais R's refactoring
generated in iteration ; (P,, S) denotes the source model Bf
. Output: the refactoring seft,, which is generated and evaluated Byin

iteration j +1

Similarly, Equation (4) starts from generating thiéial set of refactoring operationg,

to fix detected defects. In iteration it outputs f. , which will be the input of iteration

j+1
j+1. At last, B, gets the best refactoring sétwhich would fix most detected defects

and thenR, will send f to P, to fix the defects in source models.
Equation (3) and Equation (4) are very similar tu&tion (1) and Equation (2)
except that they will preserve both parties’ prevattformation in the process of defect

detection and correction. Both parties own somesapeiitems. FoR,, he has four private

items: first, the quality metrics; second, the vakt set; third, the process of the best rule

set generation; last, the process to generateptivea refactoring set. Meanwhilé,

only owns private source models. The thesis wilpoise a new approach to implement
algorithms defined by Equation (3) and Equation &hd fulfill security property at the
same time. The remainder of this thesis is organ@efollows. Section 2 is dedicated to
the related work and background. The TTP modeliiBned in Section 3. In Section 4,
the thesis gives an overview of secure protocdien] Section 5 discusses security and
communication analysis and Section 6 presentsdhéation results. Future research

directions are summarized and suggested in Section



2. RELATED WORK

2.1.INTRODUCTION OF EXISTING APPROACHES

The techniques regarding detecting and fixing dedgfects range from fully
automatic detection and correction to guided mamsgection. Design defect detection
and correction can be classified into three braadgories: rules-based detection-
correction, detection and correction combinatiord @isual-based detection.

In the first category, Marinescu [18] defined & G&rules relying on metrics to
detect defects which are at method, class and stdmsytevels. Erni and Lewerentz [6]
introduce the concept of multi-metrics, n-tuplesradtrics expressing a quality criterion
(e.g., modularity) to evaluate frameworks and imprthem. Both of the two existing
solutions require users to manually define threskalues for metrics in the rules, which
is the main limitation of them. To handle this pieoh, Alikacem and Sahraoui express
defect detection as fuzzy rules, with fuzzy lalletsmetrics, e.g., small, medium, large,
and evaluate the rules by means of membershipitunsctAlthough no crisp thresholds
need to be defined, it is not obvious to deterniemembership functions. Moha et al.
[19], in their DECOR approach, they start by désiog defect symptoms using an
abstract rule language. These descriptions inwtifferent notions, such as class roles
and structures. The descriptions are later mappéddtection algorithms. In addition to
the threshold problem, this approach uses hewgigii@approximate some notions, which
results in a high rate of false positives. Khomhlef15] extended DECOR to support
uncertainty and to sort the defect candidates daugly. The majority of existing
approaches to automate refactoring activities aseth on rules that can be expressed as
assertions (invariants, pre- and post-conditiomsyraph transformations. The use of
invariants has been proposed to detect parts granothat require refactoring by
Kataoka et al. [12]. Opdyke [22] suggested theaig@e- and post-condition with
invariants to preserve the behavior of the softwAlethese conditions could be
expressed in the form of rules. Heckel [10] considefactorings activities as graph
production rules (programs expressed as graphsyetder, a full specification of
refactorings would require a large number of rulesaddition, refactoring-rules sets

have to be complete, consistent, non redundantcamect. Furthermore, the algorithm



needs to find the best sequence of applying thefaetoring rules. In such situations,
search-based techniques represent a good altexnativ

In the second category of work, these approactastoe a system by detecting
elements to change to improve the global quality.dxample, in [21], defect detection
is considered as an optimization problem. The asthee a combination of 12 metrics to
measure the improvements achieved when sequensasé refactorings are applied,
such as moving methods between classes. The gtie optimization is to determine
the sequence that maximizes a function, which ceptine variations of a set of metrics
[9]. The fact that the quality in terms of metrissmproved does not necessary means
that the changes make sense. The link betweentdefdcorrection is not obvious,
which make the inspection difficult for the maimters.

The high rate of false positives generated by theraatic approaches
encouraged other researchers to explore semiautosaditions. These solutions took
the form of visualization-based environments. Thmary goal is to take advantage of
the human ability to integrate complex contexta&imation in the detection process.
Kothari et al. [16] presented a pattern-based fraonk for developing tool support to
detect software anomalies by representing poteadifilcts with different colors. Later,
Dhambri et al. [5] proposed a visualization-basggreach to detect design anomalies by
automatically detecting some symptoms. The visaibn metaphor was chosen
specifically to reduce the complexity of dealinglwa large amount of data. Still, the
visualization approach is not obvious when evahgplarge-scale systems. Moreover, the
visualized information is metric-based and is difft to detect complex relationships. In
Kessentini’s approach [13], human interventionesded only to provide defect

examples. Finally, the use of visualization techeggis limited to the detection step.



2.2.KESSENTINI'S APPROACH

Kessentini investigated limitations of the existaqgproaches and proposed a
search-based refactoring scheme, which is the effesitive one now. In this section,
first let’s review the detection and correction gés of this algorithm, and then analyze
its security issues in practice. Figure 2.1 shdvwesgeneral structure of the approach. It
includes two important steps: 1) defects detectioth 2) correction. The detection step
takes a base example (i.e., a set of defects erajguhd a set of quality metrics as inputs,
and generates a set of rules as output. The gerepbcess can generate the best set of
rules that detect the maximum number of defects.

The correction step takes the generated deteatles and a set of refactoring
operations as inputs, and generates a sequenefaofaring as output. The process can
generate the best set of refactoring that minimizesnumber of detected defects using

the detection rules.

Refactoring operations

defect examples

i detection rules . i i
Generation of Code correction | 2¢st refactoring solutions

quality metrics detection rules -

Code to be corrected

Figure 2.1. Overview of the approach

2.2.1. Defect Detection. The detection process starts from an initial setit&fs
representing random combinations of metrics. Ireotd understand the process, readers
have to learn how to generate initial rules filstfact, quality metrics (logic program) is
represented as a forest of ANDOR trees. For exgmpiesider the following logic

program:

C1: defect (blob) :- locClass (upper, 1500), lochet (upper,129).

C2: defect (blob) :- nmd (upper, 100).

C3: defect (spaghettiCode) :- locMethod (upper,151)

C4: defect (functionalDecomposition) :- nPrivFi¢igbper,7), nmd (equal,16).



These logic programs can serve to build the defetection rules. The set of rules C1-C4

can be described as the following:

R1: IF (LOCCLASS> 1500 A LOCMETHOD > 129) v (NMD > 100) THEN
defect = blob

R2: IF (LOCMETHOD> 151) THEN defect = spaghetti code

R3: IF (NPRIVFIELD> 7 A NMD = 16) THEN defect = functional

decomposition

Thus, the first rule is represented as a sub-treedes (AND-OR, metrics) as shown in
Figure 2.2. The main program tree will be a compasiof three sub-trees: R1 AND R2
AND R3. This example contains several special tesngse meanings are listed as

below and shown in Table 2.1.

Blob: It is found in designs where one large class mohpes the behavior of a
system (or part of it), and other classes primaticapsulate data.

Spaghetti Code It is a code with a complex and tangled contalcure.
Functional Decomposition It occurs when a class is designed with the indén
performing a single function. This is found in eqatoduced by non-experienced

object-oriented developers.

LOCCLASS LOCMETHOD
>= 1500 >=129

Figure 2.2. A tree representation of an individwgeé
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Table 2.1. List of related notation

Notation Description
LOCCLASS the number of lines of code in each class
LOCMETHOD the number of lines of code in each mdtho
NMD the number of methods
NPRIVFIELD the number of private fields

After initial rule set generation, this set is nefil progressively according to its
ability to detect defects present in the examptebBue to the very large number of
possible rules (metric combinations), it uses a mdluction heuristic, called Genetic
Programming (GP) to find a near-optimal set of dibe rules. This approach’s defect
detection algorithm is given in Algorithm 1.

In fact, Equation (1) describes only an iteratiéi&®, but Algorithm 1 shows the
whole process. It takes initial rule set and souncelels containing defect examples as

input. Lines 2 construct an initial GP populatibased on a given rule s . The

population stands for a set of possible soluti@psasenting detection rules (metrics
combination). Lines 4-20 encode the main GP lodpclwsearches for the best metrics
combination. During each iteration, it evaluates gluality of each solution (individual)

in the population, and the solution having the ligsess is saved. It generates a new
population of solutions using the crossover opergite 18) to the selected solutions;
each pair of parent solutions produces two chilgnenv solutions). It includes the parent
and child variants in the population and then asplhe mutation operator to each variant;
this produces the population for the next genemafidve algorithm terminates when it
achieves the termination criteria (maximum iteratmmber), and return the best set of

detection rules (solution).

Algorithm 1 Defect_Detectiori,,9

Require: Ry:initial rule set,S source models with defects examples.
1:i=0

2:initial_population=Ry



3:fitness r =0

4:whilei<mdo

5. fitness =0

6: forall rjinR do

7 detected_defects=Execute_Rules(,S
8: fitness_=Comparedetected_defects,$)
9 if fithess r; <fitness_ythen

10: fitness fi=fithess_t

11: fi=rj

12: end if

13: end for

14: if fitness r <fitness _fthen

15: fitnessr = fitness_T;

16: F=r;

17: endif

18:. R+1=Generate_New_Populatidf)

19: =i+l

20: end while

21: returnt

11

GP is introduced here to generate new rules. legges new offsprings using

selection, crossover or mutation in each iteratidew generated rules will be executed

in next iteration and it will be saved as the nasttsolution if its fithess value is greater

than current saved rules.

. Selection

For the initial prototype, it uses stochastic uréa samplying (SUS)
selection algorithm, in which each individual’opability of selection is

directly proportional to its relative fitness imetpopulation.

. Mutation
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It starts by randomly selected a node in the ffeen, if the selected node is a
terminal (quality metric), it is replaced by anatberminal (metric or another
threshold value); if it is a function (and-or)jstreplaced by a new function; and

if tree mutation is to be carried out, the node iémdub-tree are replaced by a
new randomly generated sub-tree. Figure 2.3 shavexample of the mutation
operation.

. Crossover

Two parent individuals are selected and a subirpecked on each one. Then
crossover swaps the nodes and their relative gds-from one parent to the other.

Figure 2.4 shows an example of the crossover psodde ruleR and a ruleR,

form another individual (solution) are combinedyemerate new two rules.

Before mutation
LOCCLASS
>= 1500

After mutation

LOCCLASS
>= 1500

LOCMETHOD
>=129

Figure 2.3. Mutation operator
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LOCCLASS
>= 1500

NPRIVFIELD
>=7

NPRIVFIELD
>=7

Figure 2.4. Crossover operator

LOCCLASS LOCMETHOD
>= 1500 >=129

2.2.2. Defect Correction After generating the detection rules, it uses thethe

correction step. As shown in Algorithm 2, it stdstsgenerating the initial solutiofq

that represents a combination of refactoring opmnatto apply. The defect correction

algorithm takes the best detection rule sginitial refactoring selfo and source models
as input. Then it executes the refactoring sequen@durce models. Next, a fithess
function calculates, after applying the proposddatering, the number of remaining
defects using the detection rules. At last, the selsition ~ f which has the minimum
fithess value is returned. Due to the large nunolbeefactoring combination, a Genetic
Algorithm (GA) is used.

Algorithm 2 Defect_Correction{,f,S

Require: r :the best rule sefg:initial refactoring operation$&: source models.
1: initial_populatior=fy
2:1=0
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3:fitness f =MAX_INTEGER

4:whilei < ndo

5. Excute_Refactorings(9

6: detected defectExecute Rules(,S)

7. fitness £ | detected defects

8. if fitness f > fitness _ifthen

9: fitness f =fitness_f

10.  f=f

11. endif

12: fis1 = Generate_New_Populatidn
13: =i+l

14: end while

15: returnf

The approach views the set of potential solutiapants in an n-dimensional
space, where each dimension corresponds to oretaeifa operation, or called logic
predicate. Initially, it generates a sequence fafatering and executes them on the
detected defects. Then, Genetic Algorithm is applighe crossover operator creates two
offspring from the two selected parents and theatimut operator will randomly change a
dimension (refactoring) with a new refactoring. &fapplying crossover and mutation
operators, the algorithm will generate a set of nefactoring. Then the new refactoring
operations will be executed on source codes again.

Every set of generated refactoring can be viewetlrasny correction solution and
a defined fitness function quantifies the qualityhe proposed refactoring. In fact, the
fitness function checks to minimize the number etiedted defects using the detection
rules. At last, the algorithm will generate thetlmsrection solutions, which are
combinations of refactoring operations, and shaouiltimize, as much as possible, the
number of defects detected using the detectiorsrule
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3. SECURITY ISSUES AND A NAIVE SOLUTION BASED ON TTP

3.1.SECURITY ISSUES IN KESSENTINI'S APPROACH
In this subsection, the thesis will analyze segusisues in Kessentini’'s scheme
and then propose a naive solution based on TTRa®ksin Section 1.1, in the whole

process,P, has four private items an§, owns private source models. In fact, these

private items could be classified as two differigpies of privacy: data privacy and
algorithm privacy.

o Data Privacy

Certainly, quality metrics and the detection ruddsch are combinations of these

metrics are valuable fof,. Meanwhile, forP,, source models are its private data.

Therefore, both parties’ data privacies in the whmiocess have to be preserved
and each party’s private data should not be diedids the other. In order to
preserve data privacy, such secure protocols aieede which implement all
features of Equation (1) and (2), and also havargggroperty at the same time.
In fact, most interaction and data exchange happ#re two functions Execute
Rules and Compare in detection and correctionriiigos, so the main goal of
this thesis is to design secure versions of theftmotions.

. Algorithm Privacy

Besides private data, the processes of findingdsiction rule set and best

refactoring operations are private, td®.will not allow P, to learn them or apply

these algorithms to evaluate its software byfilagtr. Therefore, the secure
protocols should fulfill data privacy and presealgorithm privacy, too.

3.2.INTRODUCTION OF TTP

The goal is to implement Equations (3) and (4) wsgburity property and the
thesis will take two steps to achieve such tafgiest, it redesigns Equations (1)/(2) to
fulfill the requirements Equations (3)/(4) by adglia trusted third party in the process.
Then, it designs new secure protocols that caastite same roles as TTPs. A trusted
third party (TTP) can be described as an entitstédl by other entities with respect to
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security-related services and activities. TTP isngpartial intermediary whose role is to
ensure that each party receives the item it expkdssassumed that the TTP is neutral,
available and trusted by all groups. Sometimesgerttman one TTP might be involved in
a transaction. Typically, a TTP will be an orgatiza licensed or accredited by a
regulatory authority, which will provide securitgrsices, on a commercial basis, to a
wide range of bodies, including those within thedemmunications, finance and retail
sectors.

The use of TTPs is dependent on the fundamentairesgent that the TTP is
trusted by the entities it serves to perform carfanctions. In practice, TTPs could exist
in both public and corporate domains, at the lagatfional and international level. TTPs
should have trust agreements arranged with oth®sTd form a network, thus allowing
a user to communicate securely with every usexvefyeT TP with whom his TTP has an
agreement. Any TTP scheme should also allow fan bational and international
operation, allowing users in any country, whereppropriate TTP resides, to
communicate securely. TTPs can be categorized diogpto their communication
relationships with the users they serve [5], [6]T AP may provide its services through a
combination of the different modes for differenttgaof its service.

o Off-line TTPs

An off-line TTP does not interact with the userige$ during the process of the

given security service unless a problem occurs.éxample, the two parties

directly trade their items, and in case of anybpem, the TTP will be involved to
mediate between the parties.

. On-line TTPs

An on-line TTP is requested by one or both entitie®al-time to provide, or

register, security-related information. Such a T§Rot in the communications

path between the two entities; rather, it is ferifying an item, and generating
and/or storing proof of exchange of items.

. In-line TTPs

An in-line TTP is positioned in the communicaticatip between the entities.

Such an arrangement allows the TTP to offer a wadge of security services

directly to users. This means that the TTP receilie items from each party,
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authenticates them and delivers them to the réspquarties. Since the TTP
interrupts the communication path, different sggutomains can exist on either

side of it.

3.3.A NAIVE SOLUTION BASED ON TTP

BecauseP, and P, cannot share and exchange their private itemsttliret is
reasonable to design an in-line TTP model in tbénario in order to preserve data and
algorithm privacies.

In detection stage, data privacy includé$ quality metrics and detection rules;
P,’s source models. To preserve data privacy indtap, B and P, should send

detection rules and source models to an in-line, T&spectively. Then, TTP will execute
these rules on source models and compute theeti¢efisness score. After that he sends

the fitness back td&, who then updates its best rule set if the receiieess score is
greater than current one. In addition, to presafgerithm privacy,P, should not learn
the GP iteration process, so it is better to reg@es apply GP to generate new rules
and sends them to TTP for execution, and TTP retcaiculated fithess score B for
evaluation. The iteration process continues arallfin B, will find the best detection
rules. In this model only TTP knows both partiesvate data and algorithm#, and P,

will learn nothing regarding the other’s privatéamation. Figure 3.1 shows the process

and the role of TTP in detection.

source

models f|tness
detectlon
rules

Bank Consultant

update best
A\/ detection rule set
generate new

detection rules
Figure 3.1. TTP model in defect detection
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In correction step, becaus® should call the routine Execute Rules and Compare

to detect remaining defects in each correctiomiten, data privacy is the same as that of
detection phase. Only difference is algorithm priyand so the secure protocols have to
keep the original process to generate refactoihgfisns private. Therefore, the
responsibilities of TTP role in this step are teqarve the same data privacy as that of

detection and keep the refactoring generating jgosafe. In each iteratioR, sends

refactoring operations to TTP who will execute themsource models. Next, TTP

applies detection rule set to detect remainingatsfend informP, the refactorings’
fitness. P, saves the refactoring set as current best soliftibhas a smaller fitness score.
Then B will generate new refactorings and require TTRualuate them. At las®,

obtains the best solutions and then send theR) to fix most detected defects. Figure

3.2 shows the correction step and its output.

TTP @ refactoring
operations
sourceﬁ>
models @ (2) best detection
fithess rules

Bank Consultest

best refactoring set AU refactoring set

generate new
refactorings

Figure 3.2. TTP model in defect correction

3.4.COMPARISON TO IDEAL TTP MODELS
The proposed TTP models are designed to foll@ptiocess of Genetic

Algorithm, so B, has to interact with the TTP role for many rourtdswever, they are
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not ideal TTP models because the communicationd®between a TTP role aril
would leak the fitness score of a rule seBtoln an ideal modelR, and P, send quality

metrics and Genetic Algorithm; source models ta'&,Trespectively. Next, the TTP runs
A to find best detection rules and optimal refaictpisolutions. Finally he applies the

solutions to fix existing defects in source moda #hen returns it td,. In the process,

the TTP do not interact witR,, so no extra information is disclosed.
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4. PRIVACY-PERSERVING DDC PROTOCOLS

4.1. THE ROLE OF SECURE PROTOCOLS

TTP is an ideal model, but in reality it is hardited a fully trusted third party.
Even through, TTP model is definitely the guide $ecure protocol design. If a new
protocol is proved to be able to replace entire TdIE in the model, then the protocol is
secure and implements all functions of TTP role.

The data and algorithm privacies of Kessentini'gsrapch are analyzed in Section

3.1. Algorithm privacy is not hard to preserve hesgit is straightforward to requif@
to execute most steps in the process and he aelyacts withP, when he has to do that.

However, to preserve data privacy is not easy lscthe approach executes generated
rules on source models to obtain the best ruldk®it. to keep the entire private data
secret during the execution? In fact, as mention&kgction 3.1, to preserve privacy, it is
indispensable to design secure version for fundixecute Rules and Compare. In TTP
model, all private data is sent to TTP and the twugines are executed by TTP too. Now,
it is very possible to design secure protocolefmace the TTP role.

First, let us analyze the routine Execute Rulegviery iteration of detection
phase, each new generated rule is a combinatiqoadity metrics. In order to apply
these rules, the function Execute Rules will corapach rule’s thresholds with source
models’ information, e.g. LOCCLASS, NMD, to deternmiif software defects exist in a
class, which meanB, only concerns whether these statistical indicatdesach class are
greater or less than thresholds of its detectitgsrinstead of their actual values. Based
on such investigation, secure comparison technigodsecure multi-party computation

(SMC) can be applied to perform such comparig@rwill execute his rules and evaluate
P,’s software quality according to secure comparissults without learning any private
information of source models. Als®, cannot learnR’s quality metrics, detection rules

from the secure comparison protocol.
Now, a plenty of research work has been done regaskcure comparison.
General two-party computation was introduced by {283, and general computation for

multiple parties was introduced in [3]. Most of #adsting secure protocols focus on
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solutions of secure integer comparison problemthant applications, e.g. online auction,
data mining without learning more details [2], asaton rule mining [24], web services
[1], etc. Secure integer comparison (SC) is theistapoint of SMC protocols. There are
a plenty of specialized solutions to the problemchiprovides efficiency with respect to
generic methods [7] . Most of these solutions @seld on doing calculations on the bits
of integers by using homomorphic encryption or gpting bits as quadratic residues and
non-residues modulo an RSA modulus. The work [BOss that it is more efficient than
previous ones. Therefore, the thesis integratet2@je designs and apply it to handle
secure issues in rule execution.

Second, the thesis discusses how to apply secarecpits to preserve privacy in
the function Compare. Actually, the routine Compar® compute fitness score for each
rule set and in a word it is to calculate what pat®f true defects are found by the

detection rules. The secure protocols should coenthgt fitness without disclosing’s
true defects td3 . To compute the fithess score, it is the key ptwrget the number of

detected true defects. In fact, it is not harchtagine that base examples contain true
defect set defined manually by experienced enginaed detected defects are included
by another set, then the problem to find the nunolbeletected true defects can be
transformed to compute the intersection of two.d&td product for set intersection
computation is another category of secure protamadsit is a perfect solution to tackle
the security issues in the routine Compare. Irfallewing section, the thesis will discuss
the details of how to apply this technique to desigcure version of the Compare

function.

4.2. SECURE INTEGER COMPARISON

Secure multi-party computation (SMC) was first segjgd by Yao[1] as the
millionaires problem, in which two millionaires wiato learn who is richer without
revealing their wealth to each other. The probleith wts solution gave rise to the more
general problem, where multiple parties try to catepsome function securely given
each party contributes some secret input. Sevecalrs integer comparison (SC)
protocols [8] [3] [7] have been widely studied grdposed. Recently, the work [20]
proposed a new secure comparison protocol thabeapplied to check some integer



22

over an interval securely. It uses a perfect bitisgy (PBT), in which the leaf level
contains all possible integers, 0 through n1, &mdgdrotocol is designed to compare two
integers at leaf level. Properly speaking, the seouteger comparison scheme with

arguments (a, b) is a two-party protocol betw&and P, who have n bit inputs a and b
respectively. At the end of the protocé), learns if b _ a without learning b.

This scenario is exactly the same as the situatidmreshold evaluation, and then
it is possible to apply SC to get the comparis@ults. To understand this scheme, first,
the concept of PBT and some definitions will beared. In a word, a PBT is a full
binary tree and all non-leaf nodes exactly havedhitdren. Here a unique label (h, 0) is
used to represent a node in PBT, where h denaesaitte’s height and o denotes its
order in the layer.

Before readers start to understand this algorigome special terms should be
learnt first.

Coverage Given a PBT, it is said that a tree node (h1,amljers a leaf node (0,

02) if there exists a path from (h1, o0l) to (0) m2the tree. The covering set of a

given leaf node v is the set of all nodes in tB& Fhat cover v. The coverage of a

tree node v is the set of all leaf nodes covered. B-or example, in Figure 4.1,

(2, 1) covers (0, 6). Covering set of the leaf n@@ed) is {(0, 6), (1, 3), (2, 1),

(3, 0)}. The coverage of (2, 1) is {(0, 4), (0,99, 6), (O, 7)}.

RepresenterSet is a minimal set that is the coverage of all &=ain a set of leaf

nodes. In Figure 4.1, {(1, 1)} is a minimal repgater for {(0, 2), (0, 3)}, and {(0,

4)} is a minimal representer for {(0, 4)}. Thenl{(1), (O, 4)} is a minimal

representer for {(0, 2), (0, 3), (0, 4)}.

Homomorphic Encryption [4]: is a form of encryption which allows specific

types of computations to be carried out on cigh¢rand obtain an encrypted

result. For some prime p, it has the followingpedies.

E(m)- Em)= E m+ 1)
E(m°=Ec n)
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In the algorithm Secure Comparison [28],wants to compare its private integer
a to B,’s private b. First,R, creates a representer set for the leaf nodeg (0, @, a).
For each level in the PBT,P, creates a polynomidl whose root is the order of the
representer node with heightP, uses an additively homomorphic public key enciompti
scheme, E, to encrypt the coefficients and sergleiierypted polynomials tB, who

calculates the covering set B of the node (0, bj.dach nodg in B, he securely
evaluates polynomiaP,, on v-o with help of the homomorphic property of the
encryption. He multiplies the results with positredom numbers, and sends the
shuffled results back t& who will learnb < a if any of the results decrypts to 0.

As an example of the algorithm, suppd3enoldsa = 5, B, holdsb = 2. Then,R,
creates the representer {(1, 2), (2, 0)} for thiecddeaf nodes {(0, 0).(0, 5)} which
represents. Next, B generates cofficient set {-1, -2, 0}. He sendsrgpied coefficients
Eo(1), Ep(-2), Exi(0) to P, in order. P, finds the covering of (0,2); {(0,2),(1,1),(2,0)ha
calculates B (2) * Epi (1) * Ep(0), B (1) * Epi (-2 * Epx (0), Epe (0) * Epc (O)) *

Eok (0) and sends back t@ in random orderF, sees one of the outputs decrypts to 0,
she concluded < a. It is not hard to explain the theory of secutteger comparison in a
simple sentence. BecauBgs representer covers all leaf nodes less or dgualthen

b's coverage must include one of nodes in the reptesifb< a.

In detection step, the secure protocols may ajpyayptotocol as belowk, creates
the representer for a threshold and compute coaifticet. Then he sends encrypted
coefficients toP, in order. P, finds the coverage of its corresponding statiktradicator
and calculates the product of encrypted coveradecaefficients. Finally he sends them
back to B, randomly andP, will learn which one is greater based on the detoon

output.
The security of detection algorithm is based onirladility of either side to learn

the other side’s item without private key. In thigtocol, the only way to decry® 's

encrypted representer is to learn the private kefgrtunatelyP, cannot learn the key
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because it belongs t§. P, knows the public key and then he can encryptata aith a
randomr. Similarly, P, receivedEPRi] = (EP[i] * E(B][i].0))" * Ex(0) =E[r *(P[i] +
B[i].0)], then he cannot learR,’s original data for he doesn’t know the random benn

and data’s exact order. He only learns whethestime of two integers is zero or not

based on the property of homomorphic encryption.

4.3. THRESHOLD EVALUATION ALGORITHM

Once a secure comparison solution is found, ibtshard to integrate it to the
threshold evaluation algorithm which executes eatdsecurely by calling the secure
comparison routine. As shown in Algorithm 3, aniudbual rule can be divided into
threshold set and operator set. First, it callsuBe€omparison to compare each pair of
integers; threshold and corresponding informatibsooirce models. Then, apply
operators to the comparison set to get variabléictwis either 1 if the class contains a

defect or 0, otherwise.

Algorithm 3 Threshold_Evaluatiaf(P1, T, O, (P2, 9)

Require: P;: T(Threshold set) =t{, t,,. . . ,t,}, O(Operation set) =i, 0,. . . ,Gn-1},
P,: §(Statistics information of source models) 1, S...., S}

1: C(Comparison set) = €, G,..., Gy}, Wherec; = Secure_Comparisa(t;)
2:b=c101C0z ... Qn-1Cm

3: returnb

Take rule R1 as an example, for rule R1, T={15%,100}, O={x, v}, S=
{LOCCLASS, LOCMETHOD, NMD}. Then C={LOCCLASS> 1500, LOCMETHOD
>129, NMD >100} and R=g1 A c2v c3}. Thus, ifbis 1, then the detected class is a

blob, otherwise ib is 0, no blob defect in this class.

4.4.USING SECURE SET INTERSECTION TO COMPUTE FITNESS
As data privacy mentioned in Section 3, the maiedlye is to implement secure
protocols for Execute Rules and Compare functiblasv a secure comparison algorithm
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is proposed, which can replace Execute Rules dod &lvo parties to evaluate each
individual rule securely. In this subsection, thedis will discuss how to apply secure set
intersection techniques to compute fitness andaoepihe function Compare.

First, let's learn how to compute an individualerset’s fithess score. The fitness
function checks to maximize the number of detedief@cts in comparison to the
expectedones in the base of examples. Kesserdimiach [13] defined the fitness
function as

p p
(.t P
2
In the functionf is normalized in the range [0, Jis the number of detected

classes antlis the number of defects in the base of examgldias value 1 if the ith

detected classes exists in the base example (wateame defect type), and value 0

otherwise. From the function, it is clear that senmation ofg, is actually the size of
intersection between detected defects and defett®iexample base. In fadt, may not

be willing to disclose true defects in the basengple to P, becauseR, might create fake
rules conformed to these true defects to show &ffeetiveness of his solution,
otherwise. Thus, it is better to keep the true cdsfprivate while computing fitness. A
secure Compare function is already proposed, bglwhj can obtain the size of

intersection of two defect set and thus learn ffecveness of this rule set. Onée

gets the size of intersection set, it is straightrd to calculate the fitness by applying

the proposed fitness function.

Algorithm 4 Compare((P1, D), (P2, E))

Require: P;: DS(Detected defect set)(=dy, tb,. . . ,di ; P: ESDefect examples in

source models)=ey,e,..., & ; E and D are additively homomorphic semantically

secure encryption/decryption functions, respecyivalis the public key.
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1: P,: EE(Encrypted defect examples) =e,ee,....eq; , whereeg = Ep(e)

2: P, sendEE to P,

3: P1: P(Product set) = {1, p2, ..., pn}, Wherep; = d; xeg
4:e=1

5:forall pje Pdo

6: if pp* Othen

7. Pire=exp

8: endif

9: end for

10: P;: sendsto P,

11:P,: d=D(e)

12:P,: learns the effectiveness of this rule set

13: P,: computes the fitness and return iPto

In Algorithm 4, all elements in the input s&S andESare binary numbers,

whose values are either 1 or 0. FiBstuses homomorphic encryption algorithm to
encrypt true defects and then sends the sequerfgdrarder, who will compute each

p, . Afterward the product of all non-zeng is calculated and its decryption result shows
the size oDSandESs intersection. NextP, computes the fitness score of this rule set

and return it toB, who will update his optimal rule set based os Huore.

4.5.SECURE PROTOCOL FOR DEFECT DETECTION

As mentioned in section 2, one of the researchsgedb implement
Defect_Detection Now it is already described that how to applyt8@reserve privacy
in routine Execute Rules; how to compute fitnessisdy by set intersection algorithm.
Thereby, it is not hard to design secure prototmisletect detection. As the protocol
shown in Algorithm 5, the thesis divide the oridipeocess into two sequences of actions

performed byR, and B,, respectively. They call Threshold Evaluations @winpares to

preserve data privacy, ari®l controls the process of GP to achieve algorithivaepy.
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Algorithm 5 Defect_Detectiogi(P1, Ry), (P2, S, B)

Require: (P1, Ry): Py's initial rules, P, S, B: P,’s source models and defect examples.
1:P1:i=0
2: Py initial_population=Ry

3: Py fitness 1 =0

4:whilei <mdo

5:

6
7
8:
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

26
27

Py fitness i =0
forall r;in R do
Pi: detected_defects ¥ O
for all clask in Sdo
P1, Po: (P1, b) = Threshold_Evaluatia((P1, T_y , O_y ), (P2, class))
if b= 1then
Pi: detected_defects ¥ detected_defects ¥ 1
end if
end for
P1: fithess_y = Comparg(P,, detected_defects) r (P, E))
if fitness r; <fithess_ythen
Pi: fitness r; =fithess_y
P fi=r
end if
end for
if fitness f <fitness rithen
P,: fitness r =fitness r
P F =T
end if
P:: Ri+1 = Generate_New_Populatid)
Pri=i+1
:end while

creturn 7
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4.6. SECURE PROTOCOL FOR DEFECT CORRECTION

Once PR, finds the best detection rules, he will choosgpraefactoring to fix all
detected defects. For correction, they also need¢bange information to correct
existing defects and evaluate the effectivenessfattoring operations. In the process,

B chooses a refactoring set for the current defeutissends them tB, for execution.
P, will run the refactoring operators on source medelid then they will exchange
information to compute the fitness for this refaictg sequence. NexE may apply

Genetic Algorithm to generate new offsprings or mefactorings and follow the same
procedure as previous to evaluate them. The itgrantinues and finally, the process
outputs the best refactoring set which can fix nadegects. Algorithm 6 shows the secure

correction process.

Algorithm 6 Defect_Correctiod(P,, 7, ), (P2 9)

Require: (Py, T, fo): © is the best rule sefy is initial refactoring operationsP{, 9: Sis
the source model.

1: Py: initial_population= fy

2:P1:i=0

3: P;: fitness_f = MAX_INTEGER

4:whilei <ndo

5: P,: Execute Refactorings(9

6 P,: detected_defects O

7 for all claskin Sdo

8: P1, P2: (P1, b) = Threshold_Evaluatior®g, T_r, O_ 1), (P, clasg))
9 if b= 1then

10: P,: detected defectsdetected _ defects1

11: end if

12:  end for

13: Pq: fitness_jff= [detected_defedts

14: if fitness_f > fitness_jfthen
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15: P,: fitness _f = fitness_f

A

16: P f =f

17:  endif

18:  Pu: fis1 := Generate_New_Populatid(
19: Pei=i+l

20: end while

21: return f

4.7.COMPLEXITY ANALYSIS

The total running cost depends on the numbeandliclate item sets , e.g. number
of detection rules and thresholds, number of refaags, the rounds of GA and GP.
Suppose in detection st&mriginal rules are generated from quality metdns source
models contain | classes; each iteration will gateem new rules and the GP iteration
will terminate after n rounds, then time complexg (k*I+m*n*l) . Similarly, in
correction step the time complexity depends omahiefactorings, the number of
generated new refactorings in each iteration ardtion rounds.

In this scheme, the running cost is highly relatedomparison times because the
algorithm would encrypt data in each comparisomdywvhich is the most time-
consuming action in the comparison process. IntexhdiSC protocol should be called
for each threshold of every individual rule, so thenber of total execution rounds is
inevitable huge. Suppose each rule has r averagghibids, then SC would be executed
r*(k*I+m*n*l) times. The thesis will verify the performance & fSrotocols and discuss

how to improve it in experimental results section.

4.8. COMPARISON TO TTP MODELS

Secure protocols are already implemented to pres#ata and algorithm privacy
and they can replace TTPs to some extent. Nowslebmpare the two types of different
secure solutions and analyze what informationgsldsed in the process. In the detection

and correction TTP model®, and P, never interact except that finally sends
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refactoring solutions td,. TTPs execute each individual rule, every refactpr
operation and compute fitness, so no private infdion would be revealed. However, in
secure protocols, they have to communicate to égeales and compute fitness, thEen
or P, may learn something in the communication rounds.example,R, would

generate a plenty of rules and a certain numb#resh may evaluate a same index, e.g.,
a rule contains ‘IF (NMD< 100)’; another rule includes ‘IF (NMR 90)’, if both

comparison results are trug, would know the interval of NMD and even the exact
value in some cases.

Moreover, P, will learn how to compute fitness while he calie routine
Compares, which is the information disclosed is fiiotocol. By contrast, iP, is

requested to calculate the fitness, it should kttewtotal number of true defects which is
an input parameter of the fitness function. In srewme information has to be revealed
by the protocol Compares anyway.

However, compared to TTP models, the proposed sgmotocols preserved
most private data and algorithm information evethére exist risks to leak minor part of

them. For example, in the routine Execute RuRes private quality metrics and
detection rules are kept secigts source models are never disclosedtdoo. In

addition, Compare function keeps true defect infation private and® cannot learn it.
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5. A SIMPLE EXAMPLE OF THE PROPOSED PROTOCOLS

This section will introduce an example case hemevew the secure defect
detection and correction process. In the processs R1, R2 and R3 are used to detect
source models. Take a piece of source models ierajpp as example and suppose class
Prjlnfos contains more than methods and the ctassear 1500 lines, then it is a blob
based on rule R1. Similarly, suppose class Gantgggontains spaghetti code and class
DeprecatedProjectExport- Data violates rule R3.

In detection stepP, will generate initial rule set R1, R2, R3 and resjLP, to

collect related information from source modelsdomparison. For instance, R1 requires

LOCCLASS and LOCMETHOD, thef, should count the number of code lines in each

class and the number of code lines of each metheddh class. To judge whether a class

violates R1, the only way is compare R1’s threstidtdcollected information frork,.

For security reason, the protocols apply securarBsmomputation technique for
comparison. Thus, no confidential information Vel leaked and the two parties can still

learn what kinds of defects exist in each cla&sand P, will call Threshold Evaluation

routine to do the detection as following.

Threshold_Evaluation@, {1500, 129, 100}, &, Vv}), (B, {1621, 145, 134}))

Then, B, and B, call Secure Comparison to compare each pair efers.

Secure_Comparison], 1500), (&, 1621))
Secure_Comparison, 129), (B, 145))
Secure_Comparison, 100), (F,, 134))

Next, B combines these results together with operatobeiasv.

1621>1500A 145>129v 134>100
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In this example, the output is true and tHerdetermines that class Prjinfos is a blob for

secure comparison results judge that it violatestiie R1. This is just a round of an
individual rule to detect a single class. Finafigch rule should be applied to detect every
class and the total rounds will be up3®on (e.g.n classes in source models). After

detection,P, and P, call Compares to compute fitness score of this set. Supposg

expresses its detection results with an integeaséelow.

{d}={1,0,0}{0, 1,0} {0, 0, 0}, {0, 0, O}, {0, O, 1}}
{ed} ={E(1), E(0), E(0), E(0), E(1), E(0), E(0), E(0(0), E(0), E(0), E(0),
E(0), E(0), E(1)}

Each subset represents the defects of a clashiankree integers in the subset denotes
three types of defects. The integer is eitherthéfclass contains this type of defect or 0

otherwise. ThenPR, encrypts each integer and sends the sequencedétd P, who

should also describe its example base with an eéntegt.

{e}={{1,0,0}{0,0,0}{1,0,0}{0,0,0}, {0, 0, 1}}

Next, P, calculates the product of each paireaf ande , then sums them up together to

get the following result.

EQ xEQ)=EQ+1)=E(2

B receives E(2) fronP, and learns that the intersection is two after yjgtaon. So the

fitness of this rule set will be

f=(2/3 +2/3)/2 = 0.67
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Next, Genetic Programming process will perform soy®r and mutation to generate new

offsprings (new rules), anB, and P, will apply these new rules to detect source models

again. For example, GP algorithm removed OR opmrati R1, then a new rule R1’ will

be generated as below.

R1 : IF (LOCCLASS> 1500A LOCMETHOD > 129) THEN defect = blob
Thus, for secure comparison algorithm, the inpat @amput would be changed as the
following. T={1500, 129}, S={LOCCLASS, LOCMETHOD}Q={A}, C={LOCCLASS
>1500, LOCMETHOD=> 129} and R€1 A C2

If the new rule’s fitness is better than previones B, will record the new rule
as current best solution. Finallf?, will get best detection rule set which is suitatole
P,’s source models. In correction step, this rulengétbe used to detect existing detects
after each correction.

For correction, initiallyR, creates a n-dimensional refactoring solutionsserdis
them to P, for execution. In the above example, supposedfaetoring solutions are as

below.

MoveMethod(getWebLink, Prjinfos, DeprecatedProjegtartData),
MoveAttribute(WebLink, Prjinfos, DeprecatedProjexpirtData),
PushDownMethod(actionPerformed, GanttApplet, DegtietiProjectExportData)

In the process, a fitness function is used to qfyatite quality of the proposed
refactorings, which checks to minimize the numietedected defects using the
detection rules generated in detection step.

Next, B will generate new refactoring solutions by Gengéligorithm and

requestP, to execute them again. For instance, the mutap@nator may change

PushDownMethod to Movethod and a new set of refaxgs will be as the following.
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MoveMethod(getWebLink, Prjinfos, DeprecatedProjegiartData),
MoveAttribute(WebLink, Prjinfos, DeprecatedProjexpiertData),
MoveRelation(GanttHTMLEXxport, getDescription, Pfps);

If the new solutions are better than all of oth®yditness comparison, thel} saves
them as current best solutions. At last, the p®eel select an optimal solution which

fixes most defects. Theif, can apply the solutions to correct defects isasrce

models.
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6. EXPERIMENTAL RESULTS

This section will discuss how to test the securgqmols. For Generic
Programming and Generic Algorithm in defect detacfind correction, the work [13]
has already verified their precision and recaksaso the thesis do not plan to provide
additional evaluations. This section will focustbe secure comparison protocol because
it is the most time-consuming part in the wholegess.

First, it is very important to compute the runntirge of secure comparison for it
is important to know how it impacts the proposedrapch. The cost of this algorithm
highly depends on the bit size of encryption anchgjgtion keys. Usually the keys are
very large binary numbers, e.g. 512; 1024; 2048 lind people prefer to choose long bit
keys for it is hard to be cracked. However, longskeeally make the algorithm much
inefficient and even unacceptable. The experimgimtsv that for if two integers’
comparison in the range of [0 - 512], the costi86 for 1024 bit keys and over 1.25s for
2048 bit keys. Because the protocols have to dgeoison for every detection rule, the
total running cost will be unbearable if long béyls are used. In reality, it is safe enough
to use 1024 bit keys to encrypt private data. Tihghe following experiments, only
1024 bit keys are applied to the detection andection algorithms.

Kessentini tests his approach with some open-squragrams: GanttProject
(Gantt for short) v1.10.2, Quick UML v2001, ArgoUMI0.19.8, and Xerces-J v2.7.0 as
the Table 6.1 shown. The performance of Kessestapproach is highly related to
Generatic Algorithm which is actually unchangedhis scheme, whose running cost
indeed depends on comparison times, the numbdasses and rules. Thus, in the
experimental settings, the thesis will pay morerdgtbn on measuring its performance
under different size of source models rather tram many programs are used. Then the
research work decides to use GanttProject and Xéoceo it for they are medium-sized
programs and the results would clearly show thieice between two approaches. In
addition, some classes or some defects are renfawadhe program to verify the
performance of the secure approach in various siosna
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Table 6.1. Program Statistics

Systems Number of Classes KLOC
GanttProject v1.10.2 245 31
Xerces-J v2.7.0 991 240
ArgoUML v0.19.8 1230 1160
Quick UML v2001 142 19

As previously mentioned, three types of defect$ balanalyzed. In a word, blobs
are classes that do too much; spaghetti Code €S€ddie that does not use appropriate
structuring mechanisms; finally, functional decomsiion (FD) is code that is structured
as a series of function calls. These represerdréift types of design risks. In the study,
the thesis uses a cross validation procedure aa@pan source project is evaluated by
using the remaining two systems as base of exanfpbeexample, Xerces-J is analyzed
using some defects examples from Gantt. The compgts of metrics, used to generate
rules, and applied refactorings can be found in.[16

Table 6.2 summarizes the testing results. In tipeements, SC represents the
approach with secure comparison, and SC & SI magetdoth secure comparison and
set intersection are applied to the approach. DEITGOR are the abbreviations of
detection and correction, respectively. The expenital results are not exciting because
the proposed approach is much slower than thenatigne. The main reason is that the
protocols have to do too many secure comparisoosdier to preserve both parties’
privacies. For example, the GanttProject programains 245 classes and it is supposed
that every individual rule has three operatorsv@rage, because a rule set includes three
different rules to detect three types of defettsntthe total number of comparison to
evaluate a rule set is 245 x 3 x 3 = 2205. It inteed that the average cost of running
secure comparison once is 0.18s, thus the deteaionithm will cost 2205 x 0.18 =
396.9s which is very close to the experimentallteblowever, you may observe that
there is no significant difference between the<o$tSC and SC & S, which is because
the set intersection algorithm only runs once foeatire rule set. In the first scenario of
GanttProjects, the execution rounds for SC and S& &e 2205 and 1, respectively, that
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is why Sl didn’t cost too much time even if it ktibntains encryption and decryption

algorithms.

The table also shows that even if some classegareved from GanttProject to
make it a small project, the running cost is stillch higher than Kessentini’'s approach.
To make it worse, the algorithm will cost similané to do the detection even if all
defects are deleted from the program, which is i@e#he protocols cannot reduce the
comparison times in detection step. For a largegimam like Xerces-J, the detection

process will cost nearly twenty minutes and it wpend almost fifty minutes to fix

existing defects.

Table 6.2. Running Time Comparison(Seconds)

Original SC SC&SI
DET | COR| DET COR DET COR
Gantt | 245 | 10| 14 9 | 7.76| 16.87 350.46| 704.21] 359.07 801.57
Gantt 81 10| 14 9 | 1.84| 4.19| 97.44, 19983 97.8¢/ 202.b1
Gantt 81 O 0 0 1064 0 96.26 0 96.74 0
Xerces| 991 | 11| 17,10|41.51|79.87| 1219.21| 2933.26| 1321.04| 3107.25

SystemsClassesBlob| SC|FD

Another important issue is that the secure compargnd set intersection
algorithms are implemented with C language becthesapproach integrates a C/C++
package, GMP into the developed algorithms fordangeger computation, but the
detection and correction algorithms are writterhwliava. Then, it will cost more time to
call C routines in a Java program. Next step,@dles will be rewritten with C language
and be integrated together, thus the algorithmlvalmuch efficient than the current one.
Moreover, in the future’s work, it is possible twide private data into different security
levels and only encrypt data in high levels, tHemalgorithms’ performance will be
significantly improved and its expected runnirmgeimight be reduced to the same

magnitude as the original one.
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7. CONCLUSION AND FUTURE WORK

This paper analyzes privacy issues in design defgetction and correction and
then models TTP models in both defect detectioncancection processes. In addition, it
designs new secure protocols to allow a third p@rgyerform such detection and
corrections without leaking any private informatidiime main contribution is that the
thesis propose a practical approach to replace @&nBsnake it possible for a Consultant
to offer detection and correction services whilesgrving both parties’ privacy.

Moreover, the secure comparison is a time-consuipéngin detection process,
and the thesis analyzes its performance and cosmpamneaing time of the approach with
that of the original one. Experimental results grtive effectiveness of this approach. In
the future, more defect detection and correctigor@hms will be investigated and
design common secure protocols may be designedhvane suitable to most popular
detection and correction algorithms.

Finally, the proposed secure protocols may leakespnvate information
compared to ideal models. In the following work,mneffective and efficient SDDC
protocols would be developed, which might be asiigeas the ideal TTP models.



APPENDIX

A SIMPLE EXAMPLE OF SOURCE MODELS
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Attribute(GanttCSVEXxport,prjinfos,Prjinfos,N, privet
Attribute(GanttProject,prjinfos,Prjinfos,N,public);
Attribute(GanttXFIGSaver,prjinfos,Prjinfos,N,privgt
Attribute(PrjIinfos,sDescription,String,N,public);
Attribute(Prjlnfos,sOrganization,String,N,public);
Attribute(PrjInfos,sProjectName, String,N,public);
Attribute(Prjlnfos,sWebLink,String,N,public);
Class(PrjInfos,N,N,public);
Method(NewProjectWizard,createNewProject,PrjInfos,
Y,N,N,public);

Method(Prjlnfos,Prjinfos,N,N,N,N,public);
Method(PrjInfos,Prjinfos,N,Y,N,N,public);
Method(Prjlnfos,getDescription,String,N,N,N,pubfic)
Method(PrjInfos,getName,String,N,N,N,public);
Method(PrjInfos,getOrganization,String,N,N,N,pulslic
Method(PrjInfos,getWebLink,String,N,N,N,public);
Parameter(GanttCSVExport,GanttCSVExport,prjinfos,
Prjlnfos,declaration);
Parameter(GanttHTMLEXxport,save,prjinfos,Prjinfos)deation);
Parameter(GanttXFIGSaver,GanttXFIGSaver,prjinfos,
PrjInfos,declaration);
Parameter(PrjInfos,PrjInfos,sDescription,Stringldestion);
Parameter(PrjInfos,Prjinfos,sOrganization, Stringlaketion);
Parameter(PrjInfos,Prjinfos,sProjectName,Strindatation);
Parameter(PrjInfos,Prjinfos,sWebLink,String,dediarg);
Relation(GanttHTMLEXxport;save;getDescription,PriafN);
Relation(GanttHTMLEXxport;save;getName,Prjinfos,N);
Relation(GanttHTMLEXxport;save;getOrganization,Figs)N);
Relation(GanttHTMLEXxport;save;getWebLink,Prjinfo3;N
Relation(GanttProject;getDescription;getDescripfjinfos,N);
Relation(GanttProject;getOrganization;getOrganmgirjinfos,N);



Relation(GanttProject;getWebLink;getWebLink,Prjlafd);
Attribute(GanttApplet,button,JButton,N,private);
Attribute(GanttApplet,fileLocation,String,N,private
Class(GanttApplet,N,N,public);
Generalisation(GanttApplet,JApplet);
Method(GanttApplet,GanttApplet,N,N,N,N,public);
Method(GanttApplet,actionPerformed,void,Y,N,N,palyli
Method(GanttApplet,createContainer,Container,N, NrNate);
Method(GanttApplet,init,void,N,N,N,public);
Method(GanttApplet,main,void,Y,N,static,public);
Parameter(GanttApplet,actionPerformed,e,ActionEdectaration);
Parameter(GanttApplet,actionPerformed,ganttFrameBanject,local);
Parameter(GanttApplet,actionPerformed,inSinput&trleecal);
Parameter(GanttApplet,actionPerformed,urlURL,lgcal)
Parameter(GanttApplet,createContainer,panelJPacel)
Parameter(GanttApplet,init,fileLocationParamStriocal);
Parameter(GanttApplet,main,appletGanttApplet,lqcal)
Parameter(GanttApplet,main,args,String[],declargtio
Parameter(GanttApplet,main,frameJFrame,local);
Relation(GanttApplet;actionPerformed;getCodeBasplétiN);
Relation(GanttApplet;actionPerformed;getinputStrgaiRi Connection,N);
Relation(GanttApplet;actionPerformed;openConnegti&i,N);
Relation(GanttApplet;actionPerformed;openXMLStream,
GanttProject,InputStream-String);
Relation(GanttApplet;actionPerformed;printStack B;dtrowable,N);
Relation(GanttApplet;actionPerformed;setVisible,dbmw,boolean);
Relation(GanttApplet;actionPerformed;toString, UR);,N
Relation(GanttApplet;createContainer;add,Conta@®@mponent);
Relation(GanttApplet;createContainer;addActionlListe
AbstractButton,ActionListener);
Relation(GanttApplet;init;createContainer,GanttAgip\);
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Relation(GanttApplet;init;getParameter,Applet, Sijin
Relation(GanttApplet;init;setContentPane,JApplenamer);
Relation(GanttApplet;main;createContainer,Gantt&ppl);
Relation(GanttApplet;main;pack,Window,N);
Relation(GanttApplet;main;setContentPane,JFramegiuer);
Relation(GanttApplet;main;setDefaultCloseOperatiérame,int);
Relation(GanttApplet;main;setVisible,Window,boolgan
Attribute(DeprecatedProjectExportData,myExportOpsio
GanttExportSettings,N,package);
Attribute(DeprecatedProjectExportData,myFilenam&§iN,package);
Attribute(DeprecatedProjectExportData, myGanttChart,
GanttGraphicArea,N,package);
Attribute(DeprecatedProjectExportData,myProject f@moject,N,package);
Attribute(DeprecatedProjectExportData,myResourceCha
ResourceLoadGraphicArea,N,package);
Attribute(DeprecatedProjectExportData,myTree,Gae]N,package);
Attribute(DeprecatedProjectExportData,myXslFoS¢Bping,N,package);
Class(DeprecatedProjectExportData,N,N,public);
Method(DeprecatedProjectExportData,DeprecatedREpjportData,
N,Y,N,N,public);
Parameter(DeprecatedProjectExportData,DeprecatgdifEaportData,
myExportOptions,GanttExportSettings,declaration);
Parameter(DeprecatedProjectExportData, DeprecatgdfEaportData,
myFilename,String,declaration);
Parameter(DeprecatedProjectExportData, DeprecatpdfEaportData,
myGanttChart,GanttGraphicArea,declaration);
Parameter(DeprecatedProjectExportData,DeprecatgdifEaportData,
myProject,GanttProject,declaration);
Parameter(DeprecatedProjectExportData, DeprecatpdfEaportData,
myResourceChart,ResourceLoadGraphicArea,declajation

Parameter(DeprecatedProjectExportData,DeprecatgdifEaportData,
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myTree,GanttTree,declaration);
Parameter(DeprecatedProjectExportData, DeprecatpdfEaportData,
myXslFoScript,String,declaration);
Parameter(GanttProject,doExport,exportDataDeprdPatgectExportData,
local);

Parameter(PDFExportProcessor,doExport,exportData,
DeprecatedProjectExportData,declaration);
Parameter(ProjectExportProcessor,doExport,expaDat
DeprecatedProjectExportData,declaration);
Relation(GanttProject;doExport;doExport,ProjectExPoocessor,

DeprecatedProjectExportData);
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