
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2013

Secure design defects detection and correction Secure design defects detection and correction

Wenquan Wang

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Wang, Wenquan, "Secure design defects detection and correction" (2013). Masters Theses. 5396.
https://scholarsmine.mst.edu/masters_theses/5396

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229044732?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5396&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5396&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5396?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5396&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

i

ii

SECURE DESIGN DEFECTS DETECTION AND CORRECTION

by

WENQUAN WANG

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2013

Approved by

Wei Jiang, Advisor
Dan Lin

Marouane Kessentini

iii

 2013

Wenquan Wang

All Rights Reserved

iii

ABSTRACT

Bad design and software defects often make source codes hard to understand and

lead to maintenance difficulties. In order to detect and fix such defects, researchers have

systematically investigated these issues and designed different effective algorithms to

tackle the problems. However, most of these methods need source codes/models for

defect detection and correction. Commercial companies, like banks, may not be willing to

provide their source models due to data security. Therefore, it is a huge challenge to

detect software detects by a consulting company as well as to keep source models

confidential. This thesis analyze security issues in existing approaches related to defect

detection and develop secure protocols to allow a software corporation and a consulting

company to exchange data securely without revealing any private information, which

make the approach practical in reality. The experimental results confirm the effectiveness

of the proposed approach.

iv

ACKNOWLEDGMENTS

I would like to express my gratitude to my academic advisor Dr. Wei Jiang for the

remarks and engagement through the learning process of this master thesis. Without his

funding supports and kindly help, it is impossible for me to finish all research work and

graduate from Computer Science department. Furthermore I would like to thank the

committee members, Dr. Dan Lin and Dr. Marouane Kessentini for their useful

comments. Also, I like to thank my family members, who have supported me throughout

entire process. Finally, I must thank all my dear friends who have helped me and

encouraged me ever.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS .. vii

LIST OF TABLES ... viii

SECTION

1. INTRODUCTION .. 1

1.1. PROBLEM BACKGROUND .. 1

1.2. PROBLEM DEFINITION .. 2

2. RELATED WORK ... 6

2.1. INTRODUCTION OF EXISTING APPROACHES .. 6

2.2. KESSENTINI’S APPROACH.. 8

2.2.1. Defect Detection. .. 8

2.2.2. Defect Correction ... 13

3. SECURITY ISSUES AND A NAIVE SOLUTION BASED ON TTP 15

3.1. SECURITY ISSUES IN KESSENTINI’S APPROACH 15

3.2. INTRODUCTION OF TTP .. 15

3.3. A NAIVE SOLUTION BASED ON TTP .. 17

3.4. COMPARISON TO IDEAL TTP MODELS ... 18

4. PRIVACY-PERSERVING DDC PROTOCOLS ... 20

4.1. THE ROLE OF SECURE PROTOCOLS... 20

4.2. SECURE INTEGER COMPARISON .. 21

4.3. THRESHOLD EVALUATION ALGORITHM ... 24

4.4. USING SECURE SET INTERSECTION TO COMPUTE FITNESS 24

4.5. SECURE PROTOCOL FOR DEFECT DETECTION 26

4.6. SECURE PROTOCOL FOR DEFECT CORRECTION 28

4.7. COMPLEXITY ANALYSIS .. 29

4.8. COMPARISON TO TTP MODELS .. 29

5. A SIMPLE EXAMPLE OF THE PROPOSED PROTOCOLS 31

vi

6. EXPERIMENTAL RESULTS ... 35

7. CONCLUSION AND FUTURE WORK ... 38

APPENDIX ... 39

BIBLIOGRAPHY ... 44

VITA .. 46

vii

LIST OF ILLUSTRATIONS

 Page

Figure 2.1. Overview of the approach .. 8

Figure 2.2. A tree representation of an individual rule ... 9

Figure 2.3. Mutation operator ... 12

Figure 2.4. Crossover operator.. 13

Figure 3.1. TTP model in defect detection ... 17

Figure 3.2. TTP model in defect correction .. 18

viii

LIST OF TABLES

 Page

Table 2.1. List of related notation ... 10

Table 6.1. Program Statistics .. 36

Table 6.2. Running Time Comparison(Seconds) .. 37

1

1. INTRODUCTION

1.1. PROBLEM BACKGROUND

In typical software life cycles, software maintenance mainly includes

adding/removing functionalities, detecting maintainability defects, correcting them, and

modifying the code to improve its quality. Although maintainability defects are

sometimes unavoidable, they should be removed from the code base as early as possible.

However, detecting and removing are difficult, time-consuming, and to some extent, a

manual process. To detect design defects automatically, several automated detection

techniques have been proposed [14] [13] [17] [23], which are proved effective to improve

software quality. In these settings, detection rules are manually defined or based on a

huge mount of quality metrics. However, for most small software companies, they do not

have enough resources to design complicated detection tools and collect rich rules or

quality metrics. Then it is worthy employing a consultant who has professional skills and

experience to diagnose source models and correct potential unreasonable defects.

Unfortunately, even though a plenty of research work has been done regarding

how to detect and remove software defects, few of them considered privacy issues in

their approaches. Certainly, it is in commercial companies’ best interests not to disclose

source codes, source models or any private information to others in the process of

software evaluation. Then it is a huge challenge for us to preserve privacy without

sharing source models, quality metrics, detection rules and algorithms between them. To

better understand the problem, this thesis will first review the typical process of software

defect detection and correction, and then discuss the privacy issues in the process.

Software maintainability defects, also called design anomalies, refer to design

situations that adversely affect the maintenance of software. Maintainability defects are

unlikely to cause failures directly, but may cause them indirectly. In general, they make a

system difficult to change, which may in turn introduce bugs. Software defect detection

refers to find software defects with a set of quality metrics, and correction is the process

to fix them with series of refactoring operations. For example, to correct the blob defect,

many operations can be used to reduce the number of functionalities in a specific class:

move methods, extract class, etc. Opdyke defines refactoring as the process of improving

2

a code after it has been written by changing its internal structure without changing its

external behavior. The idea is to reorganize variables, classes and methods in order to

facilitate future extensions. This reorganization is used to improve different aspects of

software-quality: reusability, maintainability, complexity, etc.

The work [13] presents an effective approach to detect and correct software

defects, which is based on Genetic Algorithm (GA). This approach mainly includes two

steps. In the first step, it generates detection rules from an initial set of rules representing

random combinations of metrics. Then, Genetic Programming (GP) is applied to refine

this set progressively according to each individual rule’s ability to detect defects in the

example base. This process takes defect examples from source models as input, and its

objective is to prevent sharing source models’ information with consultants in this step.

After generating the detection rules, this approach uses them in the correction step. It

starts by generating some solutions that represent a combination of refactoring operations

and then evaluate them by their ability to correct defects. Eventually, the best solution

would correct most detected defects.

However, the approach [13] has some limitations, too. First, it has to access

source models to execute detection rules; second, it will take source models as input to

fix detected defects in correction step. All of these operations will disclose source models

to consulting corporations so that it may not be acceptable by most commercial

companies. In this thesis, new security protocols are proposed to overcome some of the

mentioned limitations and the new approach will allow a consulting company to evaluate

a commercial banks’ software without revealing any private information. At the

beginning, the concept of Trusted Third Party (TTP) [11] is introduced to model secure

defect detection and correction. Two parties can communicate safely with the TTP and do

not need to worry about security issues because TTP cannot disclose a party’s private

information to the other. Next, secure protocols are designed to replace the TTP such that

during the execution of the protocols, the private information is never disclosed.

1.2. PROBLEM DEFINITION

To better understand the thesis’ contribution, it is important to define the

problems of defect detection and correction, and the privacy preserving process. This

3

section will first introduce the definitions of important concepts related to the new

proposed protocols, and then emphasize on the specific problems that are tackled by the

approach.

Defect Detection and Correction (DDC): The defect detection process consists of

finding code fragments that violate structure or semantic properties on code elements

such as coupling and complexity. The detected correction refers to fix these defects by

applying refactoring operations.

The functions Defect Detection and Defect Correction could be defined as below.

1Defect_Detection(,)i iR S R
+

→ (1)

• Input: iR represents the detection rules obtained in iteration i and

Sdenotes the source model

• Output: 1iR
+

 represents the detection rules generated and evaluated in

iteration 1i +

The algorithm generates initial detection rules 0R from quality metrics and applies these

rules to detect defects in source models. Then it will evaluate each rule set based on its

ability to detect the number of defects. Next, it may generate new rule set 1R and evaluate

them again. Eventually, it outputs the best rule set r̂ , which can detect most defects in

source models, after n iterations.

1ˆDefect_Correction(, ,)j jr f S f
+

→ (2)

• Input: r̂ denotes the best detection rules obtained from Defect Detection,

and fj represents refactoring operations generated in iteration j , S is the source

model.

• Output: the refactoring set 1jf
+

 generated and evaluated in iteration 1j +

Initially, the algorithm generates a set of refactoring operations 0f and applies them to fix

detected defects in source models. Then it detects remaining defects with ̂r and evaluates

4

the set of refactoring based on its ability to correct defects. Next, it will generate new

refactoring operations 1f and evaluate them too. At last, it will return the best refactoring

set f̂ which would fix most detected defects.

Secure Defect Detection and Correction (SDDC): preserve both parties’ private

information while following the general DDC process. Suppose 1P , e.g. a consulting

company, owns a set of quality metrics and refactoring; 2P , e.g. a commercial bank, has

private source models. SDDC allows 1P to apply quality metrics to detect software

defects in 2P ’s source models and fix them without revealing 1P ’s quality metrics,

detection and correction algorithms to 2P ; or disclosing 2P ’s source models to 1P . In

detection stage, SDDC will take source models, quality metrics as input, and output best

detection rules after iterations. Next, SDDC refines refactoring operations and evaluate

them with these rules; eventually generates optimal refactoring solutions as output, which

would correct most defects in source models.

Secure Defect Detection and Secure Defect Correction functions are defined as

the following.

1 2 1 1Defect_Detection ((,), (,)) (,)s i iP R P S P R
+

→ (3)

• Input: 1(,)iP R represents 1P ’s private detection rules obtained in iteration

i and 2(,)P S is the source model of 2P

• Output: the rule set 1iR
+

 which is generated and evaluated in iteration 1i + ,

only 1P gets 1iR
+

Equation (3) is similar to Equation (2), and it starts from generating initial detection rule

0R . Eventually, it outputs the best rule set r̂ which can detect most defects.

1 2 1 1ˆDefect_Correction ((, ,), (,)) (,)s j jP r f P S P f
+

→ (4)

5

• Input: 1 ˆ(, ,)jP r f includes two parts; ̂r is the best rule set obtained from (3)

which can detected most defects in source models, and jf is 1P ’s refactoring

generated in iteration j ; 2(,)P S denotes the source model of 2P

• Output: the refactoring set 1jf
+ which is generated and evaluated by 1P in

iteration 1j +

Similarly, Equation (4) starts from generating the initial set of refactoring operations 0f

to fix detected defects. In iteration j , it outputs 1jf
+

 which will be the input of iteration

1j + . At last, 1P gets the best refactoring set f̂ which would fix most detected defects

and then 1P will send f̂ to 2P to fix the defects in source models.

Equation (3) and Equation (4) are very similar to Equation (1) and Equation (2)

except that they will preserve both parties’ private information in the process of defect

detection and correction. Both parties own some private items. For 1P , he has four private

items: first, the quality metrics; second, the best rule set; third, the process of the best rule

set generation; last, the process to generate the optimal refactoring set. Meanwhile, 2P

only owns private source models. The thesis will propose a new approach to implement

algorithms defined by Equation (3) and Equation (4), and fulfill security property at the

same time. The remainder of this thesis is organized as follows. Section 2 is dedicated to

the related work and background. The TTP model is outlined in Section 3. In Section 4,

the thesis gives an overview of secure protocols. Then, Section 5 discusses security and

communication analysis and Section 6 presents the validation results. Future research

directions are summarized and suggested in Section 7.

6

2. RELATED WORK

2.1. INTRODUCTION OF EXISTING APPROACHES

The techniques regarding detecting and fixing design defects range from fully

automatic detection and correction to guided manual inspection. Design defect detection

and correction can be classified into three broad categories: rules-based detection-

correction, detection and correction combination, and visual-based detection.

In the first category, Marinescu [18] defined a list of rules relying on metrics to

detect defects which are at method, class and subsystem levels. Erni and Lewerentz [6]

introduce the concept of multi-metrics, n-tuples of metrics expressing a quality criterion

(e.g., modularity) to evaluate frameworks and improve them. Both of the two existing

solutions require users to manually define threshold values for metrics in the rules, which

is the main limitation of them. To handle this problem, Alikacem and Sahraoui express

defect detection as fuzzy rules, with fuzzy labels for metrics, e.g., small, medium, large,

and evaluate the rules by means of membership functions. Although no crisp thresholds

need to be defined, it is not obvious to determine the membership functions. Moha et al.

[19], in their DÉCOR approach, they start by describing defect symptoms using an

abstract rule language. These descriptions involve different notions, such as class roles

and structures. The descriptions are later mapped to detection algorithms. In addition to

the threshold problem, this approach uses heuristics to approximate some notions, which

results in a high rate of false positives. Khomh et al. [15] extended DECOR to support

uncertainty and to sort the defect candidates accordingly. The majority of existing

approaches to automate refactoring activities are based on rules that can be expressed as

assertions (invariants, pre- and post-conditions), or graph transformations. The use of

invariants has been proposed to detect parts of program that require refactoring by

Kataoka et al. [12]. Opdyke [22] suggested the use of pre- and post-condition with

invariants to preserve the behavior of the software. All these conditions could be

expressed in the form of rules. Heckel [10] considers refactorings activities as graph

production rules (programs expressed as graphs). However, a full specification of

refactorings would require a large number of rules. In addition, refactoring-rules sets

have to be complete, consistent, non redundant, and correct. Furthermore, the algorithm

7

needs to find the best sequence of applying these refactoring rules. In such situations,

search-based techniques represent a good alternative.

In the second category of work, these approaches refactor a system by detecting

elements to change to improve the global quality. For example, in [21], defect detection

is considered as an optimization problem. The authors use a combination of 12 metrics to

measure the improvements achieved when sequences of simple refactorings are applied,

such as moving methods between classes. The goal of the optimization is to determine

the sequence that maximizes a function, which captures the variations of a set of metrics

[9].The fact that the quality in terms of metrics is improved does not necessary means

that the changes make sense. The link between defect and correction is not obvious,

which make the inspection difficult for the maintainers.

The high rate of false positives generated by the automatic approaches

encouraged other researchers to explore semiautomatic solutions. These solutions took

the form of visualization-based environments. The primary goal is to take advantage of

the human ability to integrate complex contextual information in the detection process.

Kothari et al. [16] presented a pattern-based framework for developing tool support to

detect software anomalies by representing potential defects with different colors. Later,

Dhambri et al. [5] proposed a visualization-based approach to detect design anomalies by

automatically detecting some symptoms. The visualization metaphor was chosen

specifically to reduce the complexity of dealing with a large amount of data. Still, the

visualization approach is not obvious when evaluating large-scale systems. Moreover, the

visualized information is metric-based and is difficult to detect complex relationships. In

Kessentini’s approach [13], human intervention is needed only to provide defect

examples. Finally, the use of visualization techniques is limited to the detection step.

8

2.2. KESSENTINI’S APPROACH

Kessentini investigated limitations of the existing approaches and proposed a

search-based refactoring scheme, which is the most effective one now. In this section,

first let’s review the detection and correction phases of this algorithm, and then analyze

its security issues in practice. Figure 2.1 shows the general structure of the approach. It

includes two important steps: 1) defects detection and 2) correction. The detection step

takes a base example (i.e., a set of defects examples) and a set of quality metrics as inputs,

and generates a set of rules as output. The generation process can generate the best set of

rules that detect the maximum number of defects.

The correction step takes the generated detection rules and a set of refactoring

operations as inputs, and generates a sequence of refactoring as output. The process can

generate the best set of refactoring that minimizes the number of detected defects using

the detection rules.

Generation of

detection rules

defect examples

quality metrics
Code correction

detection rules

Code to be corrected

Refactoring operations

best refactoring solutions

Figure 2.1. Overview of the approach

2.2.1. Defect Detection. The detection process starts from an initial set of rules

representing random combinations of metrics. In order to understand the process, readers

have to learn how to generate initial rules first. In fact, quality metrics (logic program) is

represented as a forest of ANDOR trees. For example, consider the following logic

program:

C1: defect (blob) :- locClass (upper, 1500), locMethod (upper,129).

C2: defect (blob) :- nmd (upper, 100).

C3: defect (spaghettiCode) :- locMethod (upper,151).

C4: defect (functionalDecomposition) :- nPrivField (upper,7), nmd (equal,16).

9

These logic programs can serve to build the defect detection rules. The set of rules C1-C4

can be described as the following:

R1 : IF (LOCCLASS ≥ 1500 ∧ LOCMETHOD ≥ 129) ∨ (NMD ≥ 100) THEN

 defect = blob

R2 : IF (LOCMETHOD ≥ 151) THEN defect = spaghetti code

R3 : IF (NPRIVFIELD ≥ 7 ∧ NMD = 16) THEN defect = functional

 decomposition

Thus, the first rule is represented as a sub-tree of nodes (AND-OR, metrics) as shown in

Figure 2.2. The main program tree will be a composition of three sub-trees: R1 AND R2

AND R3. This example contains several special terms whose meanings are listed as

below and shown in Table 2.1.

Blob: It is found in designs where one large class monopolizes the behavior of a

 system (or part of it), and other classes primarily encapsulate data.

Spaghetti Code: It is a code with a complex and tangled control structure.

 Functional Decomposition: It occurs when a class is designed with the intent of

 performing a single function. This is found in code produced by non-experienced

 object-oriented developers.

Figure 2.2. A tree representation of an individual rule

OR

AND NMD >= 100

LOCCLASS

>= 1500

LOCMETHOD

>= 129

10

Table 2.1. List of related notation

Notation Description

LOCCLASS the number of lines of code in each class

LOCMETHOD the number of lines of code in each method

NMD the number of methods

NPRIVFIELD the number of private fields

After initial rule set generation, this set is refined progressively according to its

ability to detect defects present in the example base. Due to the very large number of

possible rules (metric combinations), it uses a rule induction heuristic, called Genetic

Programming (GP) to find a near-optimal set of detection rules. This approach’s defect

detection algorithm is given in Algorithm 1.

In fact, Equation (1) describes only an iteration of GP, but Algorithm 1 shows the

whole process. It takes initial rule set and source models containing defect examples as

input. Lines 2 construct an initial GP population, based on a given rule set 0R . The

population stands for a set of possible solutions representing detection rules (metrics

combination). Lines 4-20 encode the main GP loop, which searches for the best metrics

combination. During each iteration, it evaluates the quality of each solution (individual)

in the population, and the solution having the best fitness is saved. It generates a new

population of solutions using the crossover operator (line 18) to the selected solutions;

each pair of parent solutions produces two children (new solutions). It includes the parent

and child variants in the population and then applies the mutation operator to each variant;

this produces the population for the next generation. The algorithm terminates when it

achieves the termination criteria (maximum iteration number), and return the best set of

detection rules (solution).

Algorithm 1 Defect_Detection(R0,S)

Require: R0:initial rule set, S: source models with defects examples.

1: i=0

2: initial_population=R0

11

3: fitness_ r̂ =0

4: while i ≤m do

5: fitness_ r̂ i=0

6: for all r j in Ri do

7: detected_defects_rj=Execute_Rules(r j,S)

8: fitness_rj=Compare(detected_defects_rj,S)

9: if fitness_̂r i＜fitness_rj then

10: fitness_ r̂ i=fitness_rj

11: ̂r i=r j

12: end if

13: end for

14: if fitness_ r̂ ＜fitness_ ̂r i then

15: fitness_ r̂ = ˆ_fitness ri

16: ̂r = r̂ i

17: end if

18: Ri+1=Generate_New_Population(Ri)

19: i=i+1

20: end while

21: return ̂r

GP is introduced here to generate new rules. It generates new offsprings using

selection, crossover or mutation in each iteration. New generated rules will be executed

in next iteration and it will be saved as the new best solution if its fitness value is greater

than current saved rules.

• Selection

For the initial prototype, it uses stochastic universal samplying (SUS)

 selection algorithm, in which each individual’s probability of selection is

 directly proportional to its relative fitness in the population.

• Mutation

12

It starts by randomly selected a node in the tree. Then, if the selected node is a

terminal (quality metric), it is replaced by another terminal (metric or another

threshold value); if it is a function (and-or), it is replaced by a new function; and

if tree mutation is to be carried out, the node and its sub-tree are replaced by a

new randomly generated sub-tree. Figure 2.3 shows an example of the mutation

operation.

• Crossover

Two parent individuals are selected and a sub-tree is picked on each one. Then

crossover swaps the nodes and their relative sub-trees from one parent to the other.

Figure 2.4 shows an example of the crossover process. The rule 1R and a rule 2R

form another individual (solution) are combined to generate new two rules.

OR

AND NMD >= 100

LOCCLASS

>= 1500

LOCMETHOD

>= 129

Before mutation

OR

AND NMD >= 100

LOCCLASS

>= 1500

LOCMETHOD

>= 129

After mutation

Figure 2.3. Mutation operator

13

OR

AND NMD >= 100

LOCCLASS

>= 1500

LOCMETHOD

>= 129

AND

NPRIVFIELD

>= 7

NMD= 16

OR

AND
NPRIVFIELD

>= 7

LOCCLASS

>= 1500

LOCMETHOD

>= 129

AND

NMD>=100 NMD= 16

Figure 2.4. Crossover operator

2.2.2. Defect Correction After generating the detection rules, it uses them in the

correction step. As shown in Algorithm 2, it starts by generating the initial solution 0f

that represents a combination of refactoring operations to apply. The defect correction

algorithm takes the best detection rule set r̂ , initial refactoring set 0f and source models

as input. Then it executes the refactoring sequence on source models. Next, a fitness

function calculates, after applying the proposed refactoring, the number of remaining

defects using the detection rules. At last, the best solution ^ f which has the minimum

fitness value is returned. Due to the large number of refactoring combination, a Genetic

Algorithm (GA) is used.

Algorithm 2 Defect_Correction(̂r ,f0,S)

Require: r̂ :the best rule set, f0:initial refactoring operations, S: source models.

1: initial_population=f0

2: i=0

14

3: fitness_ f̂ =MAX_INTEGER

4: while i ≤ n do

5: Excute_Refactorings(fi, S)

6: detected_defects=Execute_Rules(̂r ,S)

7: fitness_fi=｜detected_defects︱

8: if fitness_ f̂ ＞ fitness_fi then

9: fitness_ f̂ =fitness_fi

10: f̂ = f i

11: end if

12: fi+1 = Generate_New_Population(fi)

13: i=i+1

14: end while

15: return f̂

The approach views the set of potential solutions as points in an n-dimensional

space, where each dimension corresponds to one refactoring operation, or called logic

predicate. Initially, it generates a sequence of refactoring and executes them on the

detected defects. Then, Genetic Algorithm is applied. The crossover operator creates two

offspring from the two selected parents and the mutation operator will randomly change a

dimension (refactoring) with a new refactoring. After applying crossover and mutation

operators, the algorithm will generate a set of new refactoring. Then the new refactoring

operations will be executed on source codes again.

Every set of generated refactoring can be viewed as a new correction solution and

a defined fitness function quantifies the quality of the proposed refactoring. In fact, the

fitness function checks to minimize the number of detected defects using the detection

rules. At last, the algorithm will generate the best correction solutions, which are

combinations of refactoring operations, and should minimize, as much as possible, the

number of defects detected using the detection rules.

15

3. SECURITY ISSUES AND A NAIVE SOLUTION BASED ON TTP

3.1. SECURITY ISSUES IN KESSENTINI’S APPROACH

In this subsection, the thesis will analyze security issues in Kessentini’s scheme

and then propose a naive solution based on TTP. As said in Section 1.1, in the whole

process, 1P has four private items and 2P owns private source models. In fact, these

private items could be classified as two different types of privacy: data privacy and

algorithm privacy.

• Data Privacy

Certainly, quality metrics and the detection rules which are combinations of these

metrics are valuable for 1P . Meanwhile, for 2P , source models are its private data.

Therefore, both parties’ data privacies in the whole process have to be preserved

and each party’s private data should not be disclosed to the other. In order to

preserve data privacy, such secure protocols are desired, which implement all

features of Equation (1) and (2), and also have security property at the same time.

In fact, most interaction and data exchange happen in the two functions Execute

Rules and Compare in detection and correction algorithms, so the main goal of

this thesis is to design secure versions of the two functions.

• Algorithm Privacy

Besides private data, the processes of finding best detection rule set and best

 refactoring operations are private, too. 1P will not allow 2P to learn them or apply

 these algorithms to evaluate its software by itself later. Therefore, the secure

 protocols should fulfill data privacy and preserve algorithm privacy, too.

3.2. INTRODUCTION OF TTP

The goal is to implement Equations (3) and (4) with security property and the

thesis will take two steps to achieve such target. First, it redesigns Equations (1)/(2) to

fulfill the requirements Equations (3)/(4) by adding a trusted third party in the process.

Then, it designs new secure protocols that can act as the same roles as TTPs. A trusted

third party (TTP) can be described as an entity trusted by other entities with respect to

16

security-related services and activities. TTP is an impartial intermediary whose role is to

ensure that each party receives the item it expects. It is assumed that the TTP is neutral,

available and trusted by all groups. Sometimes, more than one TTP might be involved in

a transaction. Typically, a TTP will be an organization licensed or accredited by a

regulatory authority, which will provide security services, on a commercial basis, to a

wide range of bodies, including those within the telecommunications, finance and retail

sectors.

The use of TTPs is dependent on the fundamental requirement that the TTP is

trusted by the entities it serves to perform certain functions. In practice, TTPs could exist

in both public and corporate domains, at the local, national and international level. TTPs

should have trust agreements arranged with other TTPs to form a network, thus allowing

a user to communicate securely with every user of every TTP with whom his TTP has an

agreement. Any TTP scheme should also allow for both national and international

operation, allowing users in any country, where an appropriate TTP resides, to

communicate securely. TTPs can be categorized according to their communication

relationships with the users they serve [5], [6]. A TTP may provide its services through a

combination of the different modes for different parts of its service.

• Off-line TTPs

An off-line TTP does not interact with the user entities during the process of the

 given security service unless a problem occurs. Fox example, the two parties

 directly trade their items, and in case of any problem, the TTP will be involved to

 mediate between the parties.

• On-line TTPs

An on-line TTP is requested by one or both entities in real-time to provide, or

 register, security-related information. Such a TTP is not in the communications

 path between the two entities; rather, it is for verifying an item, and generating

 and/or storing proof of exchange of items.

• In-line TTPs

An in-line TTP is positioned in the communication path between the entities.

 Such an arrangement allows the TTP to offer a wide range of security services

 directly to users. This means that the TTP receives the items from each party,

17

 authenticates them and delivers them to the respective parties. Since the TTP

 interrupts the communication path, different security domains can exist on either

 side of it.

3.3. A NAIVE SOLUTION BASED ON TTP

Because 1P and 2P cannot share and exchange their private items directly, it is

reasonable to design an in-line TTP model in this scenario in order to preserve data and

algorithm privacies.

In detection stage, data privacy includes 1P ’s quality metrics and detection rules;

2P ’s source models. To preserve data privacy in this step, 1P and 2P should send

detection rules and source models to an in-line TTP, respectively. Then, TTP will execute

these rules on source models and compute the rule set’s fitness score. After that he sends

the fitness back to 1P who then updates its best rule set if the received fitness score is

greater than current one. In addition, to preserve algorithm privacy, 2P should not learn

the GP iteration process, so it is better to request 1P to apply GP to generate new rules

and sends them to TTP for execution, and TTP returns calculated fitness score to 1P for

evaluation. The iteration process continues and finally, 1P will find the best detection

rules. In this model only TTP knows both parties’ private data and algorithms; 1P and 2P

will learn nothing regarding the other’s private information. Figure 3.1 shows the process

and the role of TTP in detection.

TTP

Bank Consultant

source

models

detection

rules

fitness

update best

detection rule set
generate new

detection rules

1

4,8...n

3,7...n-1

2,6...n-2

5,9...n-3

Figure 3.1. TTP model in defect detection

18

In correction step, because 1P should call the routine Execute Rules and Compare

to detect remaining defects in each correction iteration, data privacy is the same as that of

detection phase. Only difference is algorithm privacy, and so the secure protocols have to

keep the original process to generate refactoring solutions private. Therefore, the

responsibilities of TTP role in this step are to preserve the same data privacy as that of

detection and keep the refactoring generating process safe. In each iteration, 1P sends

refactoring operations to TTP who will execute them on source models. Next, TTP

applies detection rule set to detect remaining defects and inform 1P the refactorings’

fitness. 1P saves the refactoring set as current best solution if it has a smaller fitness score.

Then 1P will generate new refactorings and require TTP to evaluate them. At last, 1P

obtains the best solutions and then send them to 2P to fix most detected defects. Figure

3.2 shows the correction step and its output.

TTP

Bank Consultant

source

models best detection

rulesfitness

best refactoring set
update best

refactoring set

generate new

refactorings

1
2

n 5,9...n-1

2

refactoring

operations

4,8...n-2

3,7...n-3

����������

Figure 3.2. TTP model in defect correction

3.4. COMPARISON TO IDEAL TTP MODELS

 The proposed TTP models are designed to follow the process of Genetic

Algorithm, so 1P has to interact with the TTP role for many rounds. However, they are

19

not ideal TTP models because the communication rounds between a TTP role and 1P

would leak the fitness score of a rule set to 1P . In an ideal model, 1P and 2P send quality

metrics and Genetic Algorithm; source models to a TTP, respectively. Next, the TTP runs

A to find best detection rules and optimal refactoring solutions. Finally he applies the

solutions to fix existing defects in source model and then returns it to 2P . In the process,

the TTP do not interact with 1P , so no extra information is disclosed.

20

4. PRIVACY-PERSERVING DDC PROTOCOLS

4.1. THE ROLE OF SECURE PROTOCOLS

TTP is an ideal model, but in reality it is hard to find a fully trusted third party.

Even through, TTP model is definitely the guide for secure protocol design. If a new

protocol is proved to be able to replace entire TTP role in the model, then the protocol is

secure and implements all functions of TTP role.

The data and algorithm privacies of Kessentini’s approach are analyzed in Section

3.1. Algorithm privacy is not hard to preserve because it is straightforward to require 1P

to execute most steps in the process and he only interacts with 2P when he has to do that.

However, to preserve data privacy is not easy because the approach executes generated

rules on source models to obtain the best rule set. How to keep the entire private data

secret during the execution? In fact, as mentioned in Section 3.1, to preserve privacy, it is

indispensable to design secure version for function Execute Rules and Compare. In TTP

model, all private data is sent to TTP and the two routines are executed by TTP too. Now,

it is very possible to design secure protocols to replace the TTP role.

First, let us analyze the routine Execute Rules. In every iteration of detection

phase, each new generated rule is a combination of quality metrics. In order to apply

these rules, the function Execute Rules will compare each rule’s thresholds with source

models’ information, e.g. LOCCLASS, NMD, to determine if software defects exist in a

class, which means 1P only concerns whether these statistical indicators of each class are

greater or less than thresholds of its detection rules instead of their actual values. Based

on such investigation, secure comparison techniques and secure multi-party computation

(SMC) can be applied to perform such comparison. 1P will execute his rules and evaluate

2P ’s software quality according to secure comparison results without learning any private

information of source models. Also, 2P cannot learn 1P ’s quality metrics, detection rules

from the secure comparison protocol.

Now, a plenty of research work has been done regarding secure comparison.

General two-party computation was introduced by Yao [29], and general computation for

multiple parties was introduced in [3]. Most of the existing secure protocols focus on

21

solutions of secure integer comparison problem and their applications, e.g. online auction,

data mining without learning more details [2], association rule mining [24], web services

[1], etc. Secure integer comparison (SC) is the starting point of SMC protocols. There are

a plenty of specialized solutions to the problem which provides efficiency with respect to

generic methods [7] . Most of these solutions are based on doing calculations on the bits

of integers by using homomorphic encryption or encrypting bits as quadratic residues and

non-residues modulo an RSA modulus. The work [20] shows that it is more efficient than

previous ones. Therefore, the thesis integrate [20] to the designs and apply it to handle

secure issues in rule execution.

Second, the thesis discusses how to apply secure protocols to preserve privacy in

the function Compare. Actually, the routine Compare is to compute fitness score for each

rule set and in a word it is to calculate what percent of true defects are found by the

detection rules. The secure protocols should compute the fitness without disclosing 2P ’s

true defects to 1P . To compute the fitness score, it is the key point to get the number of

detected true defects. In fact, it is not hard to imagine that base examples contain true

defect set defined manually by experienced engineers and detected defects are included

by another set, then the problem to find the number of detected true defects can be

transformed to compute the intersection of two sets. Dot product for set intersection

computation is another category of secure protocols and it is a perfect solution to tackle

the security issues in the routine Compare. In the following section, the thesis will discuss

the details of how to apply this technique to design secure version of the Compare

function.

4.2. SECURE INTEGER COMPARISON

Secure multi-party computation (SMC) was first suggested by Yao[1] as the

millionaires problem, in which two millionaires want to learn who is richer without

revealing their wealth to each other. The problem with its solution gave rise to the more

general problem, where multiple parties try to compute some function securely given

each party contributes some secret input. Several secure integer comparison (SC)

protocols [8] [3] [7] have been widely studied and proposed. Recently, the work [20]

proposed a new secure comparison protocol that can be applied to check some integer

22

over an interval securely. It uses a perfect binary tree (PBT), in which the leaf level

contains all possible integers, 0 through n1, and this protocol is designed to compare two

integers at leaf level. Properly speaking, the secure integer comparison scheme with

arguments (a, b) is a two-party protocol between 1P and 2P who have n bit inputs a and b

respectively. At the end of the protocol, 1P learns if b _ a without learning b.

This scenario is exactly the same as the situation in threshold evaluation, and then

it is possible to apply SC to get the comparison results. To understand this scheme, first,

the concept of PBT and some definitions will be covered. In a word, a PBT is a full

binary tree and all non-leaf nodes exactly have two children. Here a unique label (h, o) is

used to represent a node in PBT, where h denotes the node’s height and o denotes its

order in the layer.

Before readers start to understand this algorithm, some special terms should be

learnt first.

Coverage: Given a PBT, it is said that a tree node (h1, o1) covers a leaf node (0,

 o2) if there exists a path from (h1, o1) to (0, o2) in the tree. The covering set of a

 given leaf node v is the set of all nodes in the PBT that cover v. The coverage of a

 tree node v is the set of all leaf nodes covered by v. For example, in Figure 4.1,

(2, 1) covers (0, 6). Covering set of the leaf node (0, 6) is {(0, 6), (1, 3), (2, 1),

(3, 0)}. The coverage of (2, 1) is {(0, 4), (0,5), (0, 6), (0, 7)}.

Representer Set: is a minimal set that is the coverage of all leaves in a set of leaf

 nodes. In Figure 4.1, {(1, 1)} is a minimal representer for {(0, 2), (0, 3)}, and {(0,

 4)} is a minimal representer for {(0, 4)}. Then {(1, 1), (0, 4)} is a minimal

 representer for {(0, 2), (0, 3), (0, 4)}.

Homomorphic Encryption [4]: is a form of encryption which allows specific

 types of computations to be carried out on ciphertext and obtain an encrypted

 result. For some prime p, it has the following properties.

0 1 0 1() () ()E m E m E m m⋅ = +

() ()cE m E c m= ⋅

23

In the algorithm Secure Comparison [20], 1P wants to compare its private integer

a to 2P ’s private b. First, 1P creates a representer set for the leaf nodes (0, 0) … (0, a).

For each level i in the PBT, 1P creates a polynomial iT whose root is the order of the

representer node with height i. 1P uses an additively homomorphic public key encryption

scheme, E, to encrypt the coefficients and sends the encrypted polynomials to 2P who

calculates the covering set B of the node (0, b). For each node v in B, he securely

evaluates polynomial v hP
⋅

 on v o⋅ with help of the homomorphic property of the

encryption. He multiplies the results with positive random numbers, and sends the

shuffled results back to 1P who will learn b a≤ if any of the results decrypts to 0.

As an example of the algorithm, suppose 1P holds a = 5, 2P holds b = 2. Then, 1P

creates the representer {(1, 2), (2, 0)} for the set of leaf nodes {(0, 0)…(0, 5)} which

represents a. Next, 1P generates cofficient set {-1, -2, 0}. He sends encrypted coefficients

Epk(1), Epk(-2), Epk(0) to 2P in order. 2P finds the covering of (0,2); {(0,2),(1,1),(2,0)} and

calculates (Epk (2) * Epk (1))r * Epk (0), (Epk (1) * Epk (-2))r * Epk (0), (Epk (0) * Epk (0))r *

Epk (0) and sends back to 1P in random order. 1P sees one of the outputs decrypts to 0,

she concludes b a≤ . It is not hard to explain the theory of secure integer comparison in a

simple sentence. Because 1P ’s representer covers all leaf nodes less or equal to a, then

b’s coverage must include one of nodes in the representer if b a≤ .

In detection step, the secure protocols may apply the protocol as below. 1P creates

the representer for a threshold and compute coefficient set. Then he sends encrypted

coefficients to 2P in order. 2P finds the coverage of its corresponding statistical indicator

and calculates the product of encrypted coverage and coefficients. Finally he sends them

back to 1P randomly and 1P will learn which one is greater based on the decryption

output.

The security of detection algorithm is based on the inability of either side to learn

the other side’s item without private key. In this protocol, the only way to decrypt 1P ’s

encrypted representer is to learn the private key, unfortunately 2P cannot learn the key

24

because it belongs to 1P . 2P knows the public key and then he can encrypt its data with a

random r. Similarly, 1P received EPR[i] = (EP[i] * E(B[i].o))r * Epk(0) = E[r *(P[i] +

B[i].o)], then he cannot learn 2P ’s original data for he doesn’t know the random number r

and data’s exact order. He only learns whether the sum of two integers is zero or not

based on the property of homomorphic encryption.

4.3. THRESHOLD EVALUATION ALGORITHM

Once a secure comparison solution is found, it is not hard to integrate it to the

threshold evaluation algorithm which executes each rule securely by calling the secure

comparison routine. As shown in Algorithm 3, an individual rule can be divided into

threshold set and operator set. First, it calls Secure Comparison to compare each pair of

integers; threshold and corresponding information of source models. Then, apply

operators to the comparison set to get variable b which is either 1 if the class contains a

defect or 0, otherwise.

Algorithm 3 Threshold_Evaluations((P1, T, O), (P2, S))

Require: P1: T(Threshold set) = {t1, t2,. . . ,tm}, O(Operation set) ={o1, o2,. . . ,om-1},

 P2: S(Statistics information of source models) = { s1, s2,…, sm}

1: C(Comparison set) = { c1, c2,…, cm}, where ci = Secure_Comparison(si, ti)

2: b = c1 o1 c2 o2 … om-1 cm

3: return b

Take rule R1 as an example, for rule R1, T={1500, 129, 100}, O={∧, ∨}, S=

{LOCCLASS, LOCMETHOD, NMD}. Then C={LOCCLASS ≥ 1500, LOCMETHOD

≥129, NMD ≥100} and R={c1 ∧ c2 ∨ c3}. Thus, if b is 1, then the detected class is a

blob, otherwise if b is 0, no blob defect in this class.

4.4. USING SECURE SET INTERSECTION TO COMPUTE FITNESS

As data privacy mentioned in Section 3, the main objective is to implement secure

protocols for Execute Rules and Compare functions. Now a secure comparison algorithm

25

is proposed, which can replace Execute Rules and allow two parties to evaluate each

individual rule securely. In this subsection, the thesis will discuss how to apply secure set

intersection techniques to compute fitness and replace the function Compare.

First, let’s learn how to compute an individual rule set’s fitness score. The fitness

function checks to maximize the number of detected defects in comparison to the

expectedones in the base of examples. Kessentini’s approach [13] defined the fitness

function as

1 1

2

p p

i i
i i

a a

t p
f

= =+

=

∑ ∑

In the function, f is normalized in the range [0, 1]; p is the number of detected

classes and t is the number of defects in the base of example; ia has value 1 if the ith

detected classes exists in the base example (with the same defect type), and value 0

otherwise. From the function, it is clear that the summation of ia is actually the size of

intersection between detected defects and defects in the example base. In fact, 2P may not

be willing to disclose true defects in the base example to 1P because 1P might create fake

rules conformed to these true defects to show false effectiveness of his solution,

otherwise. Thus, it is better to keep the true defects private while computing fitness. A

secure Compare function is already proposed, by which 2P can obtain the size of

intersection of two defect set and thus learn the effectiveness of this rule set. Once 2P

gets the size of intersection set, it is straightforward to calculate the fitness by applying

the proposed fitness function.

Algorithm 4 Compares((P1, D), (P2, E))

Require: P1: DS(Detected defect set) = ﹛ d1, d2,. . . ,dm﹜ ; P2: ES(Defect examples in

source models) =﹛ e1,e2,…, em﹜ ; E and D are additively homomorphic semantically

secure encryption/decryption functions, respectively; pk is the public key.

26

1: P2: EE(Encrypted defect examples) =﹛ ee1,ee2,…,eem﹜ , where eei = Epk(ei)

2: P2: send EE to P1

3: P1: P(Product set) = { p1, p2, …, pm}, where pi = di ×eei

4: e = 1

5: for all pi ∈ P do

6: if pi ≠ 0 then

7: P1: e = e × pi

8: end if

9: end for

10: P1: sends e to P2

11: P2: d = D(e)

12: P2: learns the effectiveness of this rule set

13: P2: computes the fitness and return it to P1

In Algorithm 4, all elements in the input sets DS and ES are binary numbers,

whose values are either 1 or 0. First 2P uses homomorphic encryption algorithm to

encrypt true defects and then sends the sequence to 1P in order, who will compute each

ip . Afterward the product of all non-zero ip is calculated and its decryption result shows

the size of DS and ES’s intersection. Next, 2P computes the fitness score of this rule set

and return it to 1P , who will update his optimal rule set based on this score.

4.5. SECURE PROTOCOL FOR DEFECT DETECTION

As mentioned in section 2, one of the research goals is to implement

Defect_Detections. Now it is already described that how to apply SC to preserve privacy

in routine Execute Rules; how to compute fitness securely by set intersection algorithm.

Thereby, it is not hard to design secure protocols for detect detection. As the protocol

shown in Algorithm 5, the thesis divide the original process into two sequences of actions

performed by 1P and 2P , respectively. They call Threshold Evaluations and Compares to

preserve data privacy, and 1P controls the process of GP to achieve algorithm privacy.

27

Algorithm 5 Defect_Detections((P1, R0), (P2, S, E))

Require: (P1, R0): P1’s initial rules, (P2, S, E): P2’s source models and defect examples.

1: P1: i = 0

2: P1: initial_population = R0

3: P1: fitness_ r̂ = 0

4: while i ≤m do

5: P1: fitness_ r̂ i = 0

6: for all r j in Ri do

7: P1: detected_defects_rj = 0

8: for all classk in S do

9: P1, P2: (P1, b) = Threshold_Evaluations((P1, T_ rj , O_ rj), (P2, classk))

10: if b = 1 then

11: P1: detected_defects_rj = detected_defects_rj + 1

12: end if

13: end for

14: P1: fitness_rj = Compares((P1, detected_defects_rj), (P2, E))

15: if fitness_ r̂ i < fitness_rj then

16: P1: fitness_ r̂ i = fitness_rj

17: P1: r̂ i = r j

18: end if

19: end for

20: if fitness_ r̂ < fitness_ ̂r i then

21: P1: fitness_ r̂ = fitness_ r̂ i

22: P1: r̂ = r̂ i

23: end if

24: P1: Ri+1 = Generate_New_Population(Ri)

25: P1: i = i + 1

26: end while

27: return ̂r

28

4.6. SECURE PROTOCOL FOR DEFECT CORRECTION

Once 1P finds the best detection rules, he will choose proper refactoring to fix all

detected defects. For correction, they also need to exchange information to correct

existing defects and evaluate the effectiveness of refactoring operations. In the process,

1P chooses a refactoring set for the current defects and sends them to 2P for execution.

2P will run the refactoring operators on source models and then they will exchange

information to compute the fitness for this refactoring sequence. Next, 1P may apply

Genetic Algorithm to generate new offsprings or new refactorings and follow the same

procedure as previous to evaluate them. The iteration continues and finally, the process

outputs the best refactoring set which can fix most defects. Algorithm 6 shows the secure

correction process.

Algorithm 6 Defect_Corrections((P1, r̂ , f0), (P2, S))

Require: (P1, r̂ , f0): r̂ is the best rule set, f0 is initial refactoring operations; (P2, S): S is

the source model.

1: P1: initial_population = f0

2: P1: i = 0

3: P1: fitness_ f̂ = MAX_INTEGER

4: while i ≤ n do

5: P2: Execute_Refactorings(fi, S)

6: P1: detected_defects = 0

7: for all classk in S do

8: P1, P2: (P1, b) = Threshold_Evaluation((P1, T_ r̂ , O_ r̂), (P2, classk))

9: if b = 1 then

10: P1: detected_defects = detected _ defects + 1

11: end if

12: end for

13: P1: fitness_fi = |detected_defects|

14: if fitness_ f̂ > fitness_fi then

29

15: P1: fitness _f̂ = fitness_fi

16: P1: f̂ = fi

17: end if

18: P1: fi+1 := Generate_New_Population(fi)

19: P1: i = i + 1

20: end while

21: return f̂

4.7. COMPLEXITY ANALYSIS

 The total running cost depends on the number of candidate item sets , e.g. number

of detection rules and thresholds, number of refactorings, the rounds of GA and GP.

Suppose in detection step k original rules are generated from quality metrics and source

models contain l classes; each iteration will generate m new rules and the GP iteration

will terminate after n rounds, then time complexity is O(k*l+m*n*l) . Similarly, in

correction step the time complexity depends on initial refactorings, the number of

generated new refactorings in each iteration and iteration rounds.

In this scheme, the running cost is highly related to comparison times because the

algorithm would encrypt data in each comparison round, which is the most time-

consuming action in the comparison process. In addition, SC protocol should be called

for each threshold of every individual rule, so the number of total execution rounds is

inevitable huge. Suppose each rule has r average thresholds, then SC would be executed

r*(k*l+m*n*l) times. The thesis will verify the performance of SC protocols and discuss

how to improve it in experimental results section.

4.8. COMPARISON TO TTP MODELS

Secure protocols are already implemented to preserve data and algorithm privacy

and they can replace TTPs to some extent. Now let us compare the two types of different

secure solutions and analyze what information is disclosed in the process. In the detection

and correction TTP models, 1P and 2P never interact except that finally 1P sends

30

refactoring solutions to 2P . TTPs execute each individual rule, every refactoring

operation and compute fitness, so no private information would be revealed. However, in

secure protocols, they have to communicate to execute rules and compute fitness, then 1P

or 2P may learn something in the communication rounds. For example, 1P would

generate a plenty of rules and a certain number of them may evaluate a same index, e.g.,

a rule contains ‘IF (NMD ≤ 100)’; another rule includes ‘IF (NMD ≥ 90)’, if both

comparison results are true, 1P would know the interval of NMD and even the exact

value in some cases.

Moreover, 2P will learn how to compute fitness while he calls the routine

Compares, which is the information disclosed in this protocol. By contrast, if 1P is

requested to calculate the fitness, it should know the total number of true defects which is

an input parameter of the fitness function. In short, some information has to be revealed

by the protocol Compares anyway.

However, compared to TTP models, the proposed secure protocols preserved

most private data and algorithm information even if there exist risks to leak minor part of

them. For example, in the routine Execute Rules, 1P ’s private quality metrics and

detection rules are kept secret;2P ’s source models are never disclosed to 1P too. In

addition, Compare function keeps true defect information private and 1P cannot learn it.

31

5. A SIMPLE EXAMPLE OF THE PROPOSED PROTOCOLS

This section will introduce an example case here to review the secure defect

detection and correction process. In the process, rules R1, R2 and R3 are used to detect

source models. Take a piece of source models in appendix as example and suppose class

PrjInfos contains more than methods and the class is over 1500 lines, then it is a blob

based on rule R1. Similarly, suppose class GanttApplet contains spaghetti code and class

DeprecatedProjectExport- Data violates rule R3.

In detection step, 1P will generate initial rule set R1, R2, R3 and request 2P to

collect related information from source models for comparison. For instance, R1 requires

LOCCLASS and LOCMETHOD, then 2P should count the number of code lines in each

class and the number of code lines of each method in each class. To judge whether a class

violates R1, the only way is compare R1’s thresholds to collected information from 2P .

For security reason, the protocols apply secure 2-party computation technique for

comparison. Thus, no confidential information will be leaked and the two parties can still

learn what kinds of defects exist in each class. 1P and 2P will call Threshold Evaluation

routine to do the detection as following.

Threshold_Evaluation((1P , {1500, 129, 100}, {∧, ∨}), (2P , {1621, 145, 134}))

Then, 1P and 2P call Secure Comparison to compare each pair of integers.

Secure_Comparison((1P , 1500), (2P , 1621))

Secure_Comparison((1P , 129), (2P , 145))

Secure_Comparison((1P , 100), (2P , 134))

Next, 1P combines these results together with operators as below.

1621≥1500 ∧ 145≥129 ∨ 134≥100

32

In this example, the output is true and then 1P determines that class PrjInfos is a blob for

secure comparison results judge that it violates the rule R1. This is just a round of an

individual rule to detect a single class. Finally, each rule should be applied to detect every

class and the total rounds will be up to 3 n× (e.g. n classes in source models). After

detection, 1P and 2P call Compares to compute fitness score of this rule set. Suppose 1P

expresses its detection results with an integer set as below.

{ id } ={{1, 0, 0}, {0, 1, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 1}}

{ ied } = {E(1), E(0), E(0), E(0), E(1), E(0), E(0), E(0), E(0), E(0), E(0), E(0),

 E(0), E(0), E(1)}

Each subset represents the defects of a class and the three integers in the subset denotes

three types of defects. The integer is either 1 if the class contains this type of defect or 0

otherwise. Then, 1P encrypts each integer and sends the sequence set {ied } to 2P who

should also describe its example base with an integer set.

{ ie } = {{1, 0, 0}, {0, 0, 0}, {1, 0, 0}, {0, 0, 0}, {0 , 0, 1}}

Next, 2P calculates the product of each pair of ied and ie , then sums them up together to

get the following result.

E(1) × E(1) = E(1 + 1) = E(2)

1P receives E(2) from 2P and learns that the intersection is two after decryption. So the

fitness of this rule set will be

f = (2/3 + 2/3)/2 = 0.67

33

Next, Genetic Programming process will perform crossover and mutation to generate new

offsprings (new rules), and 1P and 2P will apply these new rules to detect source models

again. For example, GP algorithm removed OR operation in R1, then a new rule R1’ will

be generated as below.

R1’ : IF (LOCCLASS ≥ 1500 ∧ LOCMETHOD ≥ 129) THEN defect = blob

Thus, for secure comparison algorithm, the input and output would be changed as the

following. T={1500, 129}, S={LOCCLASS, LOCMETHOD}, O={∧}, C={LOCCLASS

≥1500, LOCMETHOD ≥ 129} and R=C1 ∧ C2.

If the new rule’s fitness is better than previous ones, 1P will record the new rule

as current best solution. Finally, 1P will get best detection rule set which is suitable to

2P ’s source models. In correction step, this rule set will be used to detect existing detects

after each correction.

For correction, initially 1P creates a n-dimensional refactoring solutions and sends

them to 2P for execution. In the above example, suppose the refactoring solutions are as

below.

MoveMethod(getWebLink, PrjInfos, DeprecatedProjectExportData),

MoveAttribute(WebLink, PrjInfos, DeprecatedProjectExportData),

PushDownMethod(actionPerformed, GanttApplet, DeprecatedProjectExportData)

In the process, a fitness function is used to quantify the quality of the proposed

refactorings, which checks to minimize the number of detected defects using the

detection rules generated in detection step.

Next, 1P will generate new refactoring solutions by Genetic Algorithm and

request 2P to execute them again. For instance, the mutation operator may change

PushDownMethod to Movethod and a new set of refactorings will be as the following.

34

MoveMethod(getWebLink, PrjInfos, DeprecatedProjectExportData),

MoveAttribute(WebLink, PrjInfos, DeprecatedProjectExportData),

MoveRelation(GanttHTMLExport, getDescription, PrjInfos);

If the new solutions are better than all of others by fitness comparison, then 1P saves

them as current best solutions. At last, the process will select an optimal solution which

fixes most defects. Then, 2P can apply the solutions to correct defects in its source

models.

35

6. EXPERIMENTAL RESULTS

This section will discuss how to test the secure protocols. For Generic

Programming and Generic Algorithm in defect detection and correction, the work [13]

has already verified their precision and recall rates, so the thesis do not plan to provide

additional evaluations. This section will focus on the secure comparison protocol because

it is the most time-consuming part in the whole process.

First, it is very important to compute the running time of secure comparison for it

is important to know how it impacts the proposed approach. The cost of this algorithm

highly depends on the bit size of encryption and decryption keys. Usually the keys are

very large binary numbers, e.g. 512; 1024; 2048 bits, and people prefer to choose long bit

keys for it is hard to be cracked. However, long keys really make the algorithm much

inefficient and even unacceptable. The experiments show that for if two integers’

comparison in the range of [0 - 512], the cost is 0.18s for 1024 bit keys and over 1.25s for

2048 bit keys. Because the protocols have to do comparison for every detection rule, the

total running cost will be unbearable if long bit keys are used. In reality, it is safe enough

to use 1024 bit keys to encrypt private data. Then in the following experiments, only

1024 bit keys are applied to the detection and correction algorithms.

Kessentini tests his approach with some open-source programs: GanttProject

(Gantt for short) v1.10.2, Quick UML v2001, ArgoUML v0.19.8, and Xerces-J v2.7.0 as

the Table 6.1 shown. The performance of Kessentini’s approach is highly related to

Generatic Algorithm which is actually unchanged in this scheme, whose running cost

indeed depends on comparison times, the number of classes and rules. Thus, in the

experimental settings, the thesis will pay more attention on measuring its performance

under different size of source models rather than how many programs are used. Then the

research work decides to use GanttProject and Xerces to do it for they are medium-sized

programs and the results would clearly show the difference between two approaches. In

addition, some classes or some defects are removed from the program to verify the

performance of the secure approach in various scenarios.

36

Table 6.1. Program Statistics

Systems Number of Classes KLOC

GanttProject v1.10.2 245 31

Xerces-J v2.7.0 991 240

ArgoUML v0.19.8 1230 1160

Quick UML v2001 142 19

As previously mentioned, three types of defects will be analyzed. In a word, blobs

are classes that do too much; spaghetti Code (SC) is code that does not use appropriate

structuring mechanisms; finally, functional decomposition (FD) is code that is structured

as a series of function calls. These represent different types of design risks. In the study,

the thesis uses a cross validation procedure and one open source project is evaluated by

using the remaining two systems as base of examples. For example, Xerces-J is analyzed

using some defects examples from Gantt. The complete lists of metrics, used to generate

rules, and applied refactorings can be found in [16].

Table 6.2 summarizes the testing results. In the experiments, SC represents the

approach with secure comparison, and SC & SI means that both secure comparison and

set intersection are applied to the approach. DET and COR are the abbreviations of

detection and correction, respectively. The experimental results are not exciting because

the proposed approach is much slower than the original one. The main reason is that the

protocols have to do too many secure comparisons in order to preserve both parties’

privacies. For example, the GanttProject program contains 245 classes and it is supposed

that every individual rule has three operators in average, because a rule set includes three

different rules to detect three types of defects, then the total number of comparison to

evaluate a rule set is 245 × 3 × 3 = 2205. It is mentioned that the average cost of running

secure comparison once is 0.18s, thus the detection algorithm will cost 2205 × 0.18 =

396.9s which is very close to the experimental result. However, you may observe that

there is no significant difference between the costs of SC and SC & SI, which is because

the set intersection algorithm only runs once for an entire rule set. In the first scenario of

GanttProjects, the execution rounds for SC and SC & SI are 2205 and 1, respectively, that

37

is why SI didn’t cost too much time even if it still contains encryption and decryption

algorithms.

The table also shows that even if some classes are removed from GanttProject to

make it a small project, the running cost is still much higher than Kessentini’s approach.

To make it worse, the algorithm will cost similar time to do the detection even if all

defects are deleted from the program, which is because the protocols cannot reduce the

comparison times in detection step. For a larger program like Xerces-J, the detection

process will cost nearly twenty minutes and it will spend almost fifty minutes to fix

existing defects.

Table 6.2. Running Time Comparison(Seconds)

Systems Classes Blob SC FD
Original SC SC&SI

DET COR DET COR DET COR

Gantt 245 10 14 9 7.76 16.87 350.46 704.21 359.07 801.57

Gantt 81 10 14 9 1.84 4.19 97.44 199.83 97.87 202.51

Gantt 81 0 0 0 1.64 0 96.26 0 96.74 0

Xerces 991 11 17 10 41.51 79.87 1219.21 2933.26 1321.04 3107.25

Another important issue is that the secure comparison and set intersection

algorithms are implemented with C language because the approach integrates a C/C++

package, GMP into the developed algorithms for large integer computation, but the

detection and correction algorithms are written with Java. Then, it will cost more time to

call C routines in a Java program. Next step, all codes will be rewritten with C language

and be integrated together, thus the algorithm will be much efficient than the current one.

Moreover, in the future’s work, it is possible to divide private data into different security

levels and only encrypt data in high levels, then the algorithms’ performance will be

significantly improved and its expected running time might be reduced to the same

magnitude as the original one.

38

7. CONCLUSION AND FUTURE WORK

This paper analyzes privacy issues in design defect detection and correction and

then models TTP models in both defect detection and correction processes. In addition, it

designs new secure protocols to allow a third party to perform such detection and

corrections without leaking any private information. The main contribution is that the

thesis propose a practical approach to replace TTPs and make it possible for a Consultant

to offer detection and correction services while preserving both parties’ privacy.

Moreover, the secure comparison is a time-consuming part in detection process,

and the thesis analyzes its performance and compares running time of the approach with

that of the original one. Experimental results prove the effectiveness of this approach. In

the future, more defect detection and correction algorithms will be investigated and

design common secure protocols may be designed, which are suitable to most popular

detection and correction algorithms.

Finally, the proposed secure protocols may leak some private information

compared to ideal models. In the following work, more effective and efficient SDDC

protocols would be developed, which might be as secure as the ideal TTP models.

39

APPENDIX

A SIMPLE EXAMPLE OF SOURCE MODELS

40

Attribute(GanttCSVExport,prjInfos,PrjInfos,N,private);

Attribute(GanttProject,prjInfos,PrjInfos,N,public);

Attribute(GanttXFIGSaver,prjInfos,PrjInfos,N,private);

Attribute(PrjInfos,sDescription,String,N,public);

Attribute(PrjInfos,sOrganization,String,N,public);

Attribute(PrjInfos,sProjectName,String,N,public);

Attribute(PrjInfos,sWebLink,String,N,public);

Class(PrjInfos,N,N,public);

Method(NewProjectWizard,createNewProject,PrjInfos,

Y,N,N,public);

Method(PrjInfos,PrjInfos,N,N,N,N,public);

Method(PrjInfos,PrjInfos,N,Y,N,N,public);

Method(PrjInfos,getDescription,String,N,N,N,public);

Method(PrjInfos,getName,String,N,N,N,public);

Method(PrjInfos,getOrganization,String,N,N,N,public);

Method(PrjInfos,getWebLink,String,N,N,N,public);

Parameter(GanttCSVExport,GanttCSVExport,prjInfos,

PrjInfos,declaration);

Parameter(GanttHTMLExport,save,prjInfos,PrjInfos,declaration);

Parameter(GanttXFIGSaver,GanttXFIGSaver,prjInfos,

PrjInfos,declaration);

Parameter(PrjInfos,PrjInfos,sDescription,String,declaration);

Parameter(PrjInfos,PrjInfos,sOrganization,String,declaration);

Parameter(PrjInfos,PrjInfos,sProjectName,String,declaration);

Parameter(PrjInfos,PrjInfos,sWebLink,String,declaration);

Relation(GanttHTMLExport;save;getDescription,PrjInfos,N);

Relation(GanttHTMLExport;save;getName,PrjInfos,N);

Relation(GanttHTMLExport;save;getOrganization,PrjInfos,N);

Relation(GanttHTMLExport;save;getWebLink,PrjInfos,N);

Relation(GanttProject;getDescription;getDescription,PrjInfos,N);

Relation(GanttProject;getOrganization;getOrganization,PrjInfos,N);

41

Relation(GanttProject;getWebLink;getWebLink,PrjInfos,N);

Attribute(GanttApplet,button,JButton,N,private);

Attribute(GanttApplet,fileLocation,String,N,private);

Class(GanttApplet,N,N,public);

Generalisation(GanttApplet,JApplet);

Method(GanttApplet,GanttApplet,N,N,N,N,public);

Method(GanttApplet,actionPerformed,void,Y,N,N,public);

Method(GanttApplet,createContainer,Container,N,N,N,private);

Method(GanttApplet,init,void,N,N,N,public);

Method(GanttApplet,main,void,Y,N,static,public);

Parameter(GanttApplet,actionPerformed,e,ActionEvent,declaration);

Parameter(GanttApplet,actionPerformed,ganttFrameGanttProject,local);

Parameter(GanttApplet,actionPerformed,inSInputStream,local);

Parameter(GanttApplet,actionPerformed,urlURL,local);

Parameter(GanttApplet,createContainer,panelJPanel,local);

Parameter(GanttApplet,init,fileLocationParamString,local);

Parameter(GanttApplet,main,appletGanttApplet,local);

Parameter(GanttApplet,main,args,String[],declaration);

Parameter(GanttApplet,main,frameJFrame,local);

Relation(GanttApplet;actionPerformed;getCodeBase,Applet,N);

Relation(GanttApplet;actionPerformed;getInputStream,URLConnection,N);

Relation(GanttApplet;actionPerformed;openConnection,URL,N);

Relation(GanttApplet;actionPerformed;openXMLStream,

GanttProject,InputStream-String);

Relation(GanttApplet;actionPerformed;printStackTrace,Throwable,N);

Relation(GanttApplet;actionPerformed;setVisible,Window,boolean);

Relation(GanttApplet;actionPerformed;toString,URL,N);

Relation(GanttApplet;createContainer;add,Container,Component);

Relation(GanttApplet;createContainer;addActionListener,

AbstractButton,ActionListener);

Relation(GanttApplet;init;createContainer,GanttApplet,N);

42

Relation(GanttApplet;init;getParameter,Applet,String);

Relation(GanttApplet;init;setContentPane,JApplet,Container);

Relation(GanttApplet;main;createContainer,GanttApplet,N);

Relation(GanttApplet;main;pack,Window,N);

Relation(GanttApplet;main;setContentPane,JFrame,Container);

Relation(GanttApplet;main;setDefaultCloseOperation,JFrame,int);

Relation(GanttApplet;main;setVisible,Window,boolean);

Attribute(DeprecatedProjectExportData,myExportOptions,

GanttExportSettings,N,package);

Attribute(DeprecatedProjectExportData,myFilename,String,N,package);

Attribute(DeprecatedProjectExportData,myGanttChart,

GanttGraphicArea,N,package);

Attribute(DeprecatedProjectExportData,myProject,GanttProject,N,package);

Attribute(DeprecatedProjectExportData,myResourceChart,

ResourceLoadGraphicArea,N,package);

Attribute(DeprecatedProjectExportData,myTree,GanttTree,N,package);

Attribute(DeprecatedProjectExportData,myXslFoScript,String,N,package);

Class(DeprecatedProjectExportData,N,N,public);

Method(DeprecatedProjectExportData,DeprecatedProjectExportData,

N,Y,N,N,public);

Parameter(DeprecatedProjectExportData,DeprecatedProjectExportData,

myExportOptions,GanttExportSettings,declaration);

Parameter(DeprecatedProjectExportData,DeprecatedProjectExportData,

myFilename,String,declaration);

Parameter(DeprecatedProjectExportData,DeprecatedProjectExportData,

myGanttChart,GanttGraphicArea,declaration);

Parameter(DeprecatedProjectExportData,DeprecatedProjectExportData,

myProject,GanttProject,declaration);

Parameter(DeprecatedProjectExportData,DeprecatedProjectExportData,

myResourceChart,ResourceLoadGraphicArea,declaration);

Parameter(DeprecatedProjectExportData,DeprecatedProjectExportData,

43

myTree,GanttTree,declaration);

Parameter(DeprecatedProjectExportData,DeprecatedProjectExportData,

myXslFoScript,String,declaration);

Parameter(GanttProject,doExport,exportDataDeprecatedProjectExportData,

local);

Parameter(PDFExportProcessor,doExport,exportData,

DeprecatedProjectExportData,declaration);

Parameter(ProjectExportProcessor,doExport,exportData,

DeprecatedProjectExportData,declaration);

Relation(GanttProject;doExport;doExport,ProjectExportProcessor,

DeprecatedProjectExportData);

44

BIBLIOGRAPHY

[1] Rezgui A., Ouzzani M., Bouguettaya A. and Medjahed B, “Preserving privacy in
 web services,” In Proceedings of the the 4th international ACM workshop on
 Web information and data management, pp. 56-62, 2002

[2] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” In Proceedings

 of the 2000 ACM SIGMOD Conference on Management of Data, ACM, pp. 14-
 19, 2000

[3] J. Camenisch and R. Chaabouni, “Efficient protocols for set membership and

 range proofs,” in Proceedings of the 14th International Conference on the Theory
 and Application of Cryptology and Information Security: Advances in
 Cryptology. Springer-Verlag Berlin, Heidelberg, pp. 234-252, 2008

[4] I. Damgard, M. Geisler and M. Kroigard, “Homomorphic encryption and secure

 comparison,” International Journal of Applied Cryptography, 1, no. 1, pp. 22-31,
 2008

[5] K. Dhambri, H. A. Sahraoui and P. Poulin, “Visual detection of design

 Anomalies,” in CSMR. IEEE, pp. 279-283, 2008

[6] K. Erni and C. Lewerentz, “Applying design metrics to object-oriented

 frameworks,” in Proc. IEEE Symp. Software Metrics, IEEE Computer Society
 Press, 1996

[7] M. Fischlin, “A cost-effective pay-per-multiplication comparison method for

 millionaires,” Lecture Notes in Computer Science, pp. 457-471, 2001

[8] M. J. Freedman, K. Nissim and B. Pinkas, “Efficient private matching and set

 Intersection,” Lecture Notes in Computer Science, pp. 1-19, 2004

[9] M. Harman and J. A. Clark, “Metrics are fitness functions too,” in IEEE

 METRICS. IEEE Computer Society, pp. 58-69, 2004

[10] Reiko Heckel, “Algebraic graph transformations with application conditions,”

 M.S. thesis, TU Berlin, 1995

[11] Nigel Jefferies, Chris Mitchell and Michael Walker, “A proposed architecture for

 trusted third party services,” Cryptography: Policy and Algorithms 1029, pp. 98-
 104, 1996

[12] Y. Kataoka, M. D. Ernst, W. G. Griswold and D. Notkin, “Automated support for

 program refactoring using invariants,” in Proc. Intl Conf. Software Maintenance,
 pp. 736-743, 2001

45

[13] Marouane Kessentini, Wael Kessentini, Houari Sahraoui, Mounir Boukadoum

 and Ali Ouni, “Design defects detection and correction by example,” Program
 Comprehension (ICPC), 2011 IEEE 19th International Conference, pp. 81-90,
 2011

[14] Marouane Kessentini, Houari Sahraoui and Mounir Boukadoum, “Model

 transformation as an optimization problem,” vol. 5301, pp. 159-173

[15] F. Khomh, S. Vaucher, Y.-G. Gueheneuc and H. Sahraoui, “A Bayesian

 approach for the detection of code and design smells,” In Proc. of the ICQS, 2009

[16] S. C. Kothari, L. Bishop, J. Sauceda and G. Daugherty, “A pattern based

 framework for software anomaly detection,” Software Quality Journal, 12, no. 2
 June, pp. 99-120, 2004

[17] Hui Liu, Limei Yang, Zhendong Niu, Zhyi Ma and Weizhong Shao, “Facilitating

 software refactoring with appropriate resolution order of bad smells,” pp. 265-268

[18] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design

 flaws,” in Proc. of ICM04, 2004

[19] N. Moha, Y.-G. Gueheneuc, L. Duchien and A.-F. L. Meur, “A method for

 the specification and detection of code and design smells,” Transactions on
 Software Engineering (TSE), 2009

[20] A. E. Nergiz, M. E. Nergiz, T. Pedersen and C. Clifton, “Practical and secure

 integer comparison and interval check,” Social Computing (SocialCom), 2010
 IEEE Second International Conference, pp. 791-799, 2010

[21] M. O’Keeffe and M. Cinneide, “Search-based refactoring: an empirical study,”

 Journal of Software Maintenance, pp. 345-364, 2008

[22] W. F. Opdyke, “Refactoring: A program restructuring aid in designing

 objectoriented application frameworks,” Ph.D. thesis, University of Illinois at
 Urbana-Champaign, 1992

[23] Ali Ouni, Marouane Kessentini, Houari Sahraoui and Mounir Boukadoum,

 “Maintainability defects detection and correction: a multi-objective approach,”
 Automated Software Engineering vol. 20, pp. 47-79, 2012

[24] Vaidya, J. and Clifton, C., “Privacy preserving association rule mining in

 vertically partitioned data,” In Proceedings of the International Conference on
 Knowledge Discovery and Data Mining (KDD), pp. 639-644, 2002

46

VITA

Wenquan Wang was born in Heilongjiang, China which has been his home before

moving to the United States for education. He earned his Bachelor’s degree in Wireless

Communication from Jilin University and Master’s degree in Signal and Information

Processing from Tianjin University, China. He is currently working towards completion

of his Master’s degree in Computer Science from the Missouri University of Science and

Technology, Rolla in August 2013.

47

	Secure design defects detection and correction
	Recommended Citation

	Microsoft Word - 228252_supp_3C71071E-E5B8-11E2-8BEF-E1FF2D1BA5B1.docx

