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Abstract 

The desire to teach a computer how to algorithmically compose music has been a 
topic in the world of computer science since the 1950’s, with roots of computer-less 
algorithmic composition dating back to Mozart himself. One limitation of algorithmically 
composing music has been the difficulty of eliminating the human intervention required 
to achieve a musically homogeneous composition. We attempt to remedy this issue by 
teaching a computer how the rules of composition differ between the six distinct eras of 
classical music by having it examine a dataset of musical scores, rather than explicitly 
telling the computer the formal rules of composition. To pursue this automated 
composition process, we examined the intersectionality of algorithmic composition 
with the machine learning concept of classification. Using a Naïve Bayes classifier, 
the computer classifies pieces of classical music into their respective era based upon 
a number of attributes. It then attempts to recreate each of the six classical styles using a 
technique inspired by cellular automata. The success of this process is twofold 
determined by feeding composition samples into a number of classifiers, as well as 
analysis by studied musicians. We concluded that there is potential for further 
hybridization of classification and composition techniques. 



Table of Contents 

1. Introduction ……………………………………………………………………   1 
1.1 Early Explorations …………………………………………………….   1 
1.2 The Data-Driven Intelligence Age …………………………………….   2 
1.3 Study Overview ……………………………………………………….   3 

2. Data …………………………………………………………………………….   4 
2.1 Musical Representations ……………………………………………....   4 
2.2 Digital Formats ………………………………………………………..   5 

2.2.1 MIDI …………………………………………………………   6 
2.2.2 **kern ……………………………………………………….   6 

3. Data Mining ……………………………………………………………………   7 
3.1 Data Extraction ………………………………………………………..   8 

3.1.1 Classes ………………………………………………………   8 
3.1.2 Attributes …………………………………………………… 10 
3.1.3 Pre-Process …………………………………………………. 12 

3.2 Classification …………………………………………………………. 13 
3.3 Results ………………………………………………………………… 15 

4. Generation …………………………………………………………………….. 16 
4.1 Methods ………………………………………………………………. 17 

4.1.1 Cellular Automata …………………………………………... 17 
4.1.2 Adapted Musical Model …………………………………….. 18 

4.2 Results Analysis ……………………………….……………………… 21 
4.2.1 Machine Analysis …………………….…..…………………. 22 
4.2.2 Expert Analysis ……………………………………………… 22 

5. Discussion ……………………………………………………………………… 23 
5.1 Conclusion ……………………………..……………………………… 24 
5.2 Applications …………………………………………………………… 24 
5.3 Future Works ………………………………………………………….. 25 

6. Appendix ...…………………………………………………………………….. 26 
7. References ……………………………………………………………………... 46 



List of Figures 

Figure 1 - Timeline of musical eras ………………………………………………   9 
Figure 2 - List of Attributes ……………………………………………………… 10 
Figure 3 - Chromatic Circle ……………………………………………………… 11 
Figure 4 - Image of intervals ……………………………………………………... 12 
Figure 5 - Data set and distribution chart ………………………………………… 13 
Figure 6 - Chart of classification results ………….……………………………… 15 
Figure 7 - Image of Wolfram Algorithm and a rule set ………………………….. 18 
Figure 8 - Mapping of binary sequences to notes ………………………………… 19 
Figure 9 - Sample extraction of Naïve Bayes ……………………..………………  20 
Figure 10 - Example of transitionary rule mapping ………………………………. 20 
Figure 11 - Chart of generation results ………………………………….………. 22 



1. Introduction

Of all major art forms, music has historically relied most upon scientific and mathematical 

devices in its creation. While many other forms of art are lauded for breaking the rules, and 

these avant-garde approaches often find themselves at the forefront of popularity, the most 

praised and well-respected pieces of music always seem to find themselves firmly 

grounded in the formal rules of composition that have been widely accepted for centuries. 

The reason behind this can be easily attributed to the notion that music is well 

founded in the world of mathematics, and the rules of music theory are indeed built upon 

it. Both the relations between pitches and durations are best defined by numbers and ratios. 

In fact, because of its reliance on precise measurement, music was considered until fairly 

recently its own branch of science [1]. This fact makes it tempting to both analyze and 

create music through a scientific approach, and it is indeed a venture that has been 

attempted many times over the course of human history, making great strides since the 

beginning of the digital age. 

1.1 Early Exploration 

The intersection of mathematics and music predates the computing age quite considerably. 

The topic of algorithmically composing music saw its initial explorations as early as 500 

B.C. in the times of Pythagoras [2], when he developed the concept of “music of the

spheres,” in which he drew some of the first significant connections between the world of

music and mathematics. Of course, Pythagoras could not have known what he was

pioneering would one day spawn the algorithmic composition of music, as the term

‘algorithm’ wasn’t even invented until 1120 [3]. From this point on, the world of music

was situated comfortably in the middle of the mathematical spectrum, and a millennium

later, Flavius Cassiodorus (ca. 485-575) described mathematics as a union of the four

disciplines: arithmetic, music, geometry and astronomy [4].
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At the dawn of the medieval era, composers began to formulate rules by which 

pitch relations and combinations were governed, laying the groundwork for music theory 

as a practice that would be followed and expanded upon for centuries [5]. It was in the 

1700’s with a game called Musikalische Würfelspiel [6], which translates from German to 

‘musical dice game,’ that the rules were put to use in an algorithmic fashion. The game’s 

most popular iteration, allegedly devised by Mozart himself, saw the user roll a pair of 

dice, and their composition would proceed based on the outcome being mapped to a ruleset 

Mozart outlined. These early experiments laid the ground work for algorithmic music to 

come.  

1.2 The Data-Driven Intelligence Age 

With the framework of algorithmic music already set centuries before, it was only natural 

that the concepts were brought into the world of computing as early as the 1950’s, at the 

genesis of the information age. The most famous example from this time is Hiller and 

Isaacson’s Illiac Suite [7], which used rule systems and Markov chains, a stochastic 

predictive system with no memory, to predict the next successive note based solely on the 

current note. As the work was expanded upon by colleagues and interested parties, the 

chains were designed to implement an nth-order technique, which allows the process to 

consider the last n notes, rather than only the most recent [6]. This initial work with Markov 

chains became the springboard of computerized algorithmic compositions. 

Since this advent, the topic’s exploration has increased drastically, and has 

branched into many different realms, with new techniques and structures being used as the 

basic building block of the composition process. In his book “Algorithmic Composition: 

Paradigms of Automated Music Generation,” Gerhard Nierhaus split the topic into several 

distinct categories, including generative grammars, transition networks, genetic 

algorithms, cellular automata, artificial neural networks (ANNs) and artificial intelligence 

[3]. As these fields grow further apart, greater strides and achievements are being made 

within each.  
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The intersection of music and computing becomes even more pronounced when 

you approach the topic of data mining. Many have explored the potential of classifying 

music of all varieties, and results have been quite successful. Researchers Lebar, Chang & 

Yu [8] used classifiers to distinguish between the works of various classical composers 

using stylistic features as attributes. Basili, Serafini and Stellato [9] tackled the topic of 

popular music when they classified a dataset of music into six distinct genres based on 

features such as intervals, instruments used and meter changes. The basic structure of this 

study has been conducted by many, receiving respectable results overall.  

It is important to note that this is not the first experiment that attempts to use 

classification techniques to create algorithmic compositions. One particular avenue in this 

field that has oft been explored is the use of artificial neural networks (ANNs). The basic 

structure of an ANN has allowed for a variety of approaches to music composition. Some 

experiments have used the structure to encourage the refinement of musically random 

melodic phrases, or to predict the melodic phrase based upon a number of starting notes. 

Others attempt to merge the predictive powers of the classifier to build upon another 

method of composition [6], much like our proposition. To our knowledge there are no 

experiments which attempt to use this classification technique, or any other, to inspire 

algorithmic composition through Cellular Automata.  

1.3 Study Overview 

While it is clear that the topic of music’s intersection with computer science has been 

explored in many facets, there is still a gap when it comes to what a computer is capable 

of producing, and some of the most recent studies in the field of algorithmic composition 

are still labeled as composition inspiration software [6]. The idea of hybridizing multiple 

of the above concepts has therefore become attractive, in an effort to achieve the best 

generative characteristics from multiple approaches. For this reason, we find it worthwhile 

to explore new avenues, and see what kind of new directions we can bring to the topic of 

algorithmic composition.  
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It became evident during the course of our research that one such hybridization 

comes from the potential of using the field of data mining to inform the decisions made 

during certain algorithmic composition techniques. Intersecting these two concepts has the 

potential of creating a smarter generative process, capable of replicating nuanced 

differences between several different categories of music, adapting to new forms of music 

being introduced, and minimizing the amount of human intervention required for some 

techniques. One such intersection that we saw potential in was using data classification to 

inform a cellular automata composition system. It is under the guide of this general 

framework that we began our work.  

2. Data

With any venture into the world of data mining, it is critical to choose the right data with 

which to proceed with your experiment. The topic of music presents a particular challenge 

in this respect, as the data at hand is not nearly as friendly for computer use as something 

purely numeric such as stock numbers or attendance projections may be. For this reason, a 

substantial amount of time needed to be dedicated to understanding the data of music, 

discovering what kind of characteristics are desirable to use from the data, and what kind 

of computer-friendly representations we have as options moving forward.  

2.1 Musical Representation 

In order to properly understand the data, it is important to first have a firm background in 

the formalities of music. For the sake of this experiment, we will be narrowing the scope 

of our focus entirely upon classical music, which we define as traditional Western music 

ranging from the Medieval era to the Modern era (not to be mistaken with the Classical 

era, which is a distinction within the realm of classical music). The main reason for this 

decision is classical music’s written consistency across history [5]. Music has evolved and 

expanded greatly since the days of Mozart and Bach and as a result, much of what is being 

created today in popular music has abandoned the concept of formally creating a written 

representation of the music. Recent years have seen the greatest decline in non-educational 
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production of sheet music [10]. Luckily, classical music, by virtue of its creation for 

performances by individuals other than those composing, as well as its educational value, 

has a rich history of written representation. It is still most widely recorded in this manner 

today, and thus provides us with a much more stable and wide backlog for analyzation.  

This backlog of written classical musical literature is comprised almost entirely 

within the medium of musical scores, or sheet music. Sheet music is a visual representation 

of music made up of symbols and words which convey all the information a performer 

must know to play the piece. Among other information, these symbols are capable of 

portraying which notes must be played at what time, the volume at which they are to be 

played, and in what rhythm. This manner of recording music started as early as the ancient 

Greek and Middle Eastern civilizations where they began using basic music symbols as 

written reminders. It wasn’t until the 9th century that Christian Monks began recording 

music on sheets. From this point on, the practice exploded in popularity, and has 

maintained the same basic structure [10].  

2.2 Digital Formats 

For hundreds of years, Western music has been represented by means of these musical 

scores. This has been relatively unchanged because it is an ideal notation for a musician to 

read and perform [10]. With the advent of the digital age, the necessity for a new 

representation of written music was realized. This was due to the complex nature of musical 

scores. It is quite difficult to teach a computer to parse through the various symbols and 

notations of music, making the task of retrieving the data necessary for processing 

challenging. As a result, the computer science community was met with the challenge of 

creating a new representation of music that could be more easily processed for the studies 

to come. Though many were proposed, two have risen above the others in the world of 

research, MIDI and **kern musical files. Both have their own unique advantages and 

disadvantages. 
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2.2.1 MIDI 

First seeing its start in 1981 [11], the Musical Instrument Digital Interface (MIDI) format 

is one of the most widely used digital musical formats that exist. By virtue of its creation 

for use with electronic synthesizers, MIDI files contain representations of the musical score 

that are often recorded via humans playing the score with a synthesizer, though you can 

also find hand compiled MIDI representations.  

Over time, this format has been adapted for use in scholarly research, with many 

toolkits being developed, such as jSymbolic [9], to extract data from the MIDI files. 

Because of its widespread use for a variety of functions, the backlog of MIDI scores to be 

used for potential research is vast, but also unreliable. This is due to the fact that anyone 

with an electronic keyboard can plug it into a computer and create these files, regardless of 

their accuracy level. Despite this, we found throughout our survey of previous studies that 

MIDI is the most widely used file type in academic research concerning computer music.  

2.2.2 **kern 

While the MIDI format was created for a wide variety of computer music purposes, a 

format known as **kern was created with a much narrower intention. **kern files are 

musical representation files which fit within a broader syntax known as ‘Humdrum.’ 

Described by its creator David Huron as a “general-purpose software system intended to 

assist musical research” [12], the software was quite literally designed for use in projects 

like this. Researchers Lebar, Chang & Yu [8] used this format in similar research when 

attempting to classify musical scores by composer. 

The Humdrum software can be split up into two separate entities: The Humdrum 

Syntax and the Humdrum Toolkit [12]. Humdrum Syntax is a grammar by which any file 

that falls under its guise must adhere to. **kern is a single file type under this syntax, and 

indeed the most widely used of them, designed to represent the core information for 

common Western Music. The format is capable of representing nearly every nuance found 
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within a musical score, down to the direction the stem of a note is facing on the page. The 

other half of the equation, the Humdrum Toolkit, is described by Huron as a toolbox of 

‘utilities,’ with over 70 inter-related software tools, which can be used to manipulate any 

data that conforms to the Humdrum syntax [12]. These tools, combined with the vast 

number of features that can be represented using the Humdrum Syntax, make it an 

attractive option in the realm of data mining.  

While this format offers many advantages, there are certainly drawbacks to it as 

well. Because of its rather limited usage (being designed specifically for research 

purposes), the amount of data available in this file type is sparse. There have been a number 

of people who have contributed a substantial number of scores encoded in **kern format, 

however the encoding process, which must be done entirely by hand, is a tedious one 

(though perhaps lends itself to a greater attention to detail), and there will never be a rich 

well of files to choose from.  

Despite this deficiency, we found the format of **kern to be most compatible with 

the task at hand. The Humdrum toolkit offers us an effective way to extract any and all 

information about the score we may find useful, and the textual representation is also much 

friendlier to interpret on a visual level. With this decision, we began our work in data 

mining. 

3. Data Mining

Data mining itself is a broad term, and is truly a confluence of many disciplines, including 

mathematics, computer science and statistics. The applications of this intellectually 

stimulating field are plentiful, diverse, and exciting for those focusing on the topic. In the 

scope of our study, data mining provides us with a tool to discover the defining features of 

music composition and preserve this information for the computer to use in its future 

music generation. The phrase ‘data mining’ defines a rather vague idea, simply described 

as “the process of discovering useful information in large data repositories” [13]. In 
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the pursuit of achieving this goal, data mining has been approached using several other 

distinct methodologies, such as classification, clustering and association, among others 

[13].  

While each of these data mining methods have merit, and some may indeed 

be useful in future works while attempting to improve the algorithmic music 

composition challenge, this study has chosen to focus its attention on the topic of 

classification. Classification is defined as “the task of assigning objects to one of 

several pre-defined categories” [13]. This objective may be achieved through the use of a 

learning scheme that generates a set of rules or patterns by which data instances are 

classified into these pre-defined classes. The trained classifier is then able to predict the 

classes or categories based on the generated rules [14]. The predictive power of this form 

of data mining is one of the driving forces behind our decision to focus on 

classification, as a predictive rule-based system provides us a nice backbone upon which 

to build a music generator.  

3.1 Data Extraction 

In order to get the most out of the data mining process, there is a large amount 

of preparatory work that must be done to ensure that the information received as 

consequence of our work is valuable and significant. Our results are only as valuable as 

the system from which they were derived, so it is important to ensure we make the correct 

decisions leading up to the actual data mining taking place. Some of these decisions 

include dictating which pre-defined classes to supply our classifier, which features we 

would like our classifier to look at in making its categorizations, and the pre-processing 

and data extraction required to make the data accessible for the actual data mining 

process. 

3.1.1 Classes 

The first thing we needed to do when prepping our data for processing was select the pre-

defined classes by which to separate the data, as the classification 

methodology necessitates. In musical classification, there have been studies that have 

done this in several manners, whether it be by composer, genre, or even decade. For the 

sake of our study, we 
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found it most appropriate to create the classes based upon musical era within the classical 

spectrum.  

Figure 1 – A timeline displaying the order and generally agreed upon 

 dates of the various eras of classical music 

There have been several eras by which the style of a classical piece can be defined, 

roughly outlined in figure 1. The years in which these eras transitioned between one another 

have been debated by experts [5], however it is generally accepted that there are six distinct 

eras, ranging from the beginnings of formally composed music in the medieval era to the 

wildly innovative and often atonal modern era of classical music. Moreover, students and 

scholars of music are able to use their training in aural skills, such as identifying the interval 

between any two successive notes, among other musical features, to identify which of these 

eras a piece of classical music belongs to. This suggests that there are quantifiable 

differences in their structure that make it so and provides us great reason to believe a 

computer will be able to identify these differences as well.  

Medieval

Renaissance

Baroque

Classical

Romantic
Modern

1150

1400

1600

1750

1830

1920
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3.1.2 Attributes 

Our next step was to decide which attributes we would be basing our classification upon. 

In data classification, these attributes – or features – are the sole factors analyzed in an 

attempt to generate patterns for separating the data into the pre-defined classes it has been 

given [13]. It is therefore important to choose features that are both indicative of the 

stylistic-era under which the piece was composed, as well as replicable for the future 

generative process. The features decided upon after consideration of a number of factors, 

presented in figure 2, are based upon the notion of a musical interval. The task of choosing 

these attributes came with two major challenges; one musical and one computational.  

Attribute Description 

X1 freqUni Ratio at which unison intervals occur (unison/total) 

X2 freqStep Ratio at which stepwise intervals occur (step/total) 

X3 freqThird Ratio at which third intervals occur (third/total) 

X4 freqFourth Ratio at which fourth intervals occur (fourth/total) 

X5 freqFifth Ratio at which fifth intervals occur (fifth/total) 

X6 freqSixth Ratio at which sixth intervals occur (sixth/total) 

X7 freqSeventh Ratio at which seventh intervals occur (seventh/total) 

X8 freqOct Ratio at which octave intervals occur (octave/total) 

Figure 2 – List and description of attributes used in classification process 

By merit of the musical data we are using, there were countless numbers of 

attributes through which we had to sift in order to choose our features. As discussed in 

section 2.1, a piece of sheet music contains a vast amount of information, and our selected 

**kern format does little to narrow down that scope, as it does such an excellent job of 

preserving all the information recorded in a traditional score. Our chosen attributes must 

be indicative of the era the piece represents, so as to allow the classifier to accurately and 

practically determine which era the piece came from.  

From a computational standpoint, we wanted to consider features that would lend 

themselves to both the classification process, as well as the generation process in the next 
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step of our research. Classification mandates that each feature within its system be flat 

rather than structural – meaning that the value can be defined by either a numeric or discrete 

value [14]. Because of music’s reliance on mathematics, this factor is not terribly 

delimiting, but it does help suggest which features may lend themselves best to the process: 

those which are finite and numerically categorized. It behooved us to focus on features 

which we could see as easily replicable in a future generative process, meaning features 

like dynamics, a feature that indicates how loud a particular section of the musical piece, 

would do little good on their own, despite being important to the construction of a musical 

piece.  

After consideration of these factors, the decision was made to focus upon the 

frequency with which certain musical intervals occur within the pieces of music. Before 

we delve into why exactly we made this decision, it is important to understand what an 

interval is.  

Figure 3 – A visual representation of the Chromatic  

Circle, the backbone on which Western music has been created 

The concept of a musical interval is built upon the very foundation of Western 

music: the chromatic circle (Figure 3), a cyclical scale of equal temperament made up of 

12 total pitches [15]. A piece of music is comprised of a finite number of these 12 pitches 

CB

A
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E

D
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D

D#
E

F#
G

G#
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A#
B
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CIRCLE
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in linear progression. A musical interval is the distance between any two successive pitches 

within the piece, typically ranging from unison to octave (Figure 4). The most basic of 

these intervals is defined as an octave, which corresponds to a 2:1 ratio. For instance, we 

perceive a pitch at 110 Hz to be an octave below a 220 Hz, both of which represent the 

note ‘A’ [15]. Human beings perceive these ratios to be the same pitch, only at a higher or 

lower frequency, allowing for the cyclical nature of the scale. We can therefore identify 

the interval between any two successive notes based upon this scale. While it is not unheard 

of to have music that utilizes other pitches not represented on the chromatic scale (this is a 

practice that is observed in many traditional forms of music in the eastern hemisphere), this 

scale is the backbone of Western music. 

Figure 4 - Visual representation of musical intervals ranging from unison to octave 

The first reason for this selection comes from the realm of aural skills, in which it 

is common to use musical intervals as a way to identify differences between eras [16]. 

Though there are a number of features which are often cited when it comes to aurally 

distinguishing between eras, intervals are almost always presented as evidence in such 

efforts, and their status as a cornerstone of music theory make them an obvious answer to 

our query. Using the musical intervals as features in isolation also provides us with the 

ability to determine how well it alone can be used to distinguish the era. Secondly, we 

found that the basis of intervals is an excellent building block upon which to build a 

generative system, which will be touched upon in greater detail later in our discussion.  

3.1.3 Pre-Processing 

Once all of these important determinations had been made, it was time to clean the data, 

and extract the features that had been decided upon. The first step was to collect the data 

to be used. Though the available pool of **kern scores are not as vast as desired, we were 

able to accumulate 262 unique pieces of classical music from a variety of eras (Figure 5) 
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through two Humdrum databases. It is worth noting that the distribution of data entries 

between these eras were not even across all classes, as there are far less pieces of pre-

baroque music that have been encoded using **kern format than that of eras such as the 

classical or romantic era, which feature much more notable composers and pieces which 

have endured the test of time.  

Class Number of Data Entries 

Medieval 10 

Renaissance 26 

Baroque 77 

Classical 50 

Romantic 70 

Modern 29 

Total 262 

Figure 5 – Distribution of **kern data between the six classes used within our classifier 

The next step was to extract the features that we desired to use in the classification 

process. This was perhaps the most tedious task, though we were able to do so in a Linux 

command line window with a combination of both the Humdrum toolkit, designed for the 

**kern file format (and other formats following the Humdrum Syntax), as well as Linux 

pattern matching. In the end, we stored the number of times each individual interval 

appeared and set it as a ratio against the total number of musical intervals encountered. 

We appended these ratios (Figure2), along with the era with which the piece is 

categorized (Figure 1), to the end of an .arff (Attribute-Related File Format) file with 

appropriate headings. Doing this in a loop, we were able to create one file with all 262 

musical scores represented. It is with this document that we begin our classification.  

3.2 Classification 

Classification is an umbrella term to define the task of separating data into distinct 

categories, and as such there are a large variety of methods that can be implemented in 

order to achieve the same goal. It became obvious that we would need to test our dataset 
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with a variety of these classification methods in order to receive the best results possible, 

and we began work on feeding the data we compiled into five different classification 

approaches of varying complexity levels. 

The two high-level algorithms we utilized in our tests were Multilayer Perceptron 

(MLP) and Logistic Regression. Based upon an artificial neural network, MLPs use layers 

of input nodes, output nodes, and two or more layers of hidden nodes to find the most likely 

path from our input data (comprised of the aforementioned musical interval attributes) to 

an output identifying whether the data falls within a given class (musical era) or not [13]. 

Logistic Regression on the other hand implements a statistical model built upon the 

probability that a certain piece of data falls within a given class or not. While both of these 

methods are dichotomous (only have one of two outcomes), they can be used to classify 

sets with more than two classes when given the dichotomous options of “within the given 

class” or “not within the given class”. 

While Naïve Bayes does not use as sophisticated an algorithm as the above outlined 

MLP and Logistic Regression models, it is a very well-respected model in the data mining 

community, and it indeed performs just as well or better than sophisticated models in some 

instances. The premise of this model is simple, based upon Bayes theorem, which provides 

a way of calculating the posterior probability of an attribute fitting a defined class [17]. 

The success of this algorithm lies in the fact that each given attribute is considered 

independent of one another. As a result, the most probable class is calculated based upon 

each attribute identified separately, and these probabilities are then multiplied against each 

other to determine the probability that the piece of data, in this case a musical piece, falls 

into a given class. 

The last two classifiers we utilized, and the simplest of them, into the category of 

rule-based and decision tree induction predictors. We selected one of each such classifiers, 

JRip (Rule-Based) and J48 (Decision Tree Induction). JRip uses simple if…then rule 

structures to split the data into the given classes [13]. J48 uses a similar system within a 

decision tree structure, where there is a leaf node associated with each of the pre-
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determined classes, and classification rules are derived and placed within the ascending 

nodes as the data is analyzed [17].   

3.3 Results 

Medieval Renaissance Baroque Classical Romantic Modern Average 

MLP 0.964 0.958 0.854 0.988 0.836 0.996 0.933 

LR 0.981 0.951 0.808 0.921 0.885 0.927 0.885 

Naïve 0.938 0.931 0.73 0.889 0.853 0.871 0.838 

JRip 0.705 0.841 0.73 0.874 0.704 0.836 0.773 

J48 0.798 0.777 0.681 0.804 0.741 0.753 0.753 

Figure 6: Results of classifiers on our .arff file, based on AUC of ROC graph.  

The chart outlined in Figure 6 show a complete picture of the results received from each of 

the five aforementioned methods of classification. Using an n-fold cross validation 

approach, the data was partitioned to complete ten iterations of testing. During each 

iteration of testing, 9/10ths of the data was assigned to act as a training set, used to educate 

the classifier and build its predictive ability. The other 1/10th of the data was designated to 

be the test set, used to analyze how well the classifier is able to predict the class the data 

belongs to. By the end of our ten iterations, all the data has been used as part of a test set 

and we have a full picture of how accurately the process was able to blindly classifier our 

data.  

In analyzing the results, we chose to focus on the value of the AUC (area under the 

curve) of a Receiver Operating Characteristic graph as an indication of the success of our 

classifiers. The reason for this decision is due to the inconsistent number of data pieces 

between each class represented (Figure 5). The Receiver Operating Characteristic (ROC) 

Curve maps the True Positive Rate (true positives / all positives) against the False Positive 

Rate (false positives / all negatives). This produces a curve that will represent how often a 

piece is mistakenly identified as other than its proper class, rather than produce a true 

precision rate, which may be skewed as a result of the uneven distribution of data. A 

perfectly classified set of data would have an AUC of 1. 
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As seen in the charts, our five classifier models performed at varying levels of 

accuracy. The most complex algorithm used, the Multilayer Perceptron model, produced 

AUC rates of .933, while our rule-based and decision tree classifiers lagged behind with 

AUC rates of .773 and .753 respectively. Perhaps the biggest surprise among our classifiers 

was the Naïve Bayes model, with an excellent AUC rate of .838, despite the algorithm 

being quite simple and intuitive.  

4. Generation

After analyzing the results of the classifiers, the first step was to determine which classifier 

was most compatible with our desire to create an algorithmic composition software. On 

top of providing class predictions, each classifier supplied a model, intended to inform the 

reader on how it’s decision rules were devised. These models are important, as they are the 

building block upon which we intend to build our music generator. Of the five classifiers, 

the first two eliminated were the rule-based and decision tree models, JRip and J48. While 

the classifiers provided positive features, such as easy to understand outputs that outlined 

the rules used explicitly, it was clear that these approaches were simply not of the same 

accuracy as their more complex counterparts.  

Of our three remaining classifiers, we chose next to eliminate the complex 

classifiers, Multilayer Perceptron and Logistic Regression. Despite these algorithms 

statistically doing a better job of classifying the musical scores, the complex models of 

MLPs and Logistic Regression, based upon mathematical algorithms instead of patterns 

and rules, did not give a satisfactorily digestible answer as to why the classes were 

separated the way they were. For this reason, it was difficult to conceive of a way to use 

these classifiers to inform the generative process of any algorithmic composition software. 

We decided to use the knowledge gained from the Naïve Bayes model because it 

supplied us with a nice middle ground between the previously mentioned choices. It 

provides an easy, statistical model for us to easily adapt to the generative process. On top 
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of this, the Bayes model yielded a more respectable AUC value (.838) than the other simple 

algorithms of J48 (.753) and JRip (.773).  

4.1 Method 

In perhaps our most contributory work, we move to the generation process of the 

experiment. The task laid ahead of us was to find a way to utilize the knowledge gained 

from our Naïve Bayes classifier to inspire the algorithmic composition of music. After 

consideration of the classifier results and output, we decided to turn our attention to an 

avenue of algorithmic composition that has been less explored than some others such as 

artificial neural networks and formal grammars: Cellular automata.  

4.1.1 Cellular Automata 

The concept of cellular automata (Singular: Automaton) was first proposed by John von 

Neumann in the 1950’s and reached a peak in popularity during the 70’s due to John 

Conway’s now famous “Game of Life” 3-D cellular automata model [17]. Based upon the 

biological cellular replication process, a cellular automata model is represented by a grid 

of cells, each of which is represented as one of a finite number of states (i.e. “ON” or 

“OFF”). This grid can be of any finite number of dimensions. The grid progresses in 

temporally-linear fashion, with each cell shifting states at any given step in time. This shift 

of the cell states is based upon two factors: the states of the surrounding cells in a pre-

determined area defined as it’s neighborhood, and a set of transitionary rules which dictate 

the outcome based on that neighborhood [17]. One of the most famous example of a cellular 

automata, the Wolfram Elementary Algorithms (Figure 7), adds a new line of cells below 

the previous generated line with each sequential step in time, with the states of these new 

cells based upon a neighborhood of the three cells directly above it, and a selected 

transitionary rule set [18]. With 256 possible rule sets, there are countless possibilities of 

how the algorithm can compose the sequence of cells, and many produce interesting 

patterns, such as fractals.  
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Figure 7 - Rule 250 in the Wolfram Elementary Algorithm Suite, 

a popular venture into cellular automata modeling 

Rule model’s such as Wolfram’s provide a unique avenue of exploration for 

musical composition. The patterns found within these automata rules provide a built-in 

approach to chaotic music composition. However, those preliminary cellular automata 

models were only able to create music in an “uncontrolled” way and resulted in music 

that was not necessarily homogeneous with any preconceived style [6]. The next 

natural step was to create transitionary rules that were informed by the true tendencies of 

music, so as to control the music being generated. 

4.1.2 Adapted Musical Model 

In an attempt to explore this avenue of musically informed cellular automata, we devised 

a system inspired by the aforementioned Wolfram Algorithm. Using cells that have one of 

two states – “On” and “Off” – we are able to interpret a string of these cells as a binary 

sequence. We chose to map these cells as four-byte binary sequences (16 possible 

combinations) to the 12 notes of the chromatic circle, with the note C doubled to ease 

generation given the cyclical nature of the scale. While this system does not currently take 

into account rhythm, a rest musical character was also encoded for potential future works, 

as well as terminate and start. A comprehensive look at this binary-mapping is outlined in 

figure 8.  
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Figure 8 – A table mapping the values of a four-bit binary sequence to 

the values within the chromatic circle for use in conjunction with  

cellular automata musical composition  

After the groundwork of our cellular automata model was laid out, it was time to 

create transitionary rules inspired by the intelligence gained through our classification 

process. At the beginning of each transition, a random decimal value between 0.0 and 1.0 

was generated. The Naïve Bayes classifier provided a statistical output from which we were 

able to derive the average probability of any single interval occurring at a given step in 

time. Figure 9 demonstrates how the probability of a single step interval is represented in 

this output. We were therefore able to map our randomly generated decimal value to one 

of the eight interval possibilities. Whichever interval corresponded to the randomly 

generated decimal value was determined to be the distance between the previous note and 

our new note. The states of each cell in the four-byte sequence would therefore transition 

from the previous note’s binary representation to a new binary sequence representing our 

newly found note. In essence, we are generating the interval between the notes, rather than 

0000
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START
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the note itself. Along with creating more aurally pleasing musical phrases, this helps ease 

the challenges of representing key signatures within pieces of music.  

Figure 9 – An example of the statistical output provided by the Naïve Bayes classifier 

pertaining to the frequency of stepwise intervals 

To help visualize this process, figure 10 provides a mock example. In this 

example, we are attempting to replicate the medieval era. Thus, the mean frequency 

values match those discovered by our Naïve Bayes classifier for the medieval era. 

The decimal value .6197 is randomly generated and mapped within the mean frequencies 

of the medieval era. It is determined that the decimal value falls within the stepwise 

interval partition of our chart. Therefore, if we were ascending from the note C, or 0001, 

we could arrive at D, or 0011. 

Figure 10 – A visual representation of how a random decimal number is  

mapped to the probabilities of each musical interval 

.6197 
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To further demonstrate the potentials of this system, the software gives the user the 

ability to select which era of music they wish to replicate. At the click of a button, the 

system is able to swap the statistics used in transitionary rule generation to those indicated 

by the Naïve Bayes output to correspond with the user’s indicated era, so as to encourage 

the system to follow the tendencies of the desired era. This feature helps the software stand 

out and puts to use the predictive power of our classification approach to rule generation.  

The last feature we implemented was a range-check system. In preliminary testing, 

we found that allowing the note to change in ascending or descending fashion on a 50-50 

basis, while relatively common sight within the world of music, was not controlled enough 

for our experiment, as the true randomness allowed for many algorithmic compositions to 

get out of hand in terms of range. We therefore found the average distance between the 

highest note and lowest note within an era of music and dictated that the composition 

software stays within that range when composing. This allows music that has traditionally 

had more range to flourish in this sense, while static pieces from earlier eras stick within a 

more contained range of notes.  

4.2 Results Analysis 

The result of our efforts is a composition software that is able to imitate any one of six 

distinct eras of classical music. The system linearly produces a sequence of successive 

notes based upon the intervals between the previous note and the newly generated note. 

The pitches are outputted as they are generated using a Java MIDI import at a constant rate 

that can be changed in the code (currently set to one note every 750 milliseconds).  

With the system functioning in the desired fashion, our next step was to analyze 

just how well our composition software was able to imitate the various classical eras. We 

chose to implement two different methods of analyzation, to see how well the system was 

able to reproduce the various eras in both a mathematical and an aural fashion. 
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4.2.1 Machine Analyzation 

In our first of two efforts to analyze the results of our compositions, we used a machine 

approach closely tied to the ways in which we created the software – classification. While 

we previously described a ‘n-fold cross verification’ approach during our initial 

classification process, we decided upon using a ‘test set’ approach for the following 

exercise. In this approach, we feed the classifier a set of data points known as a training set 

to develop its knowledge on what distinguishes the different classes, and then feed it a set 

of data points known as a test set to see how accurately it is able to classify those pieces 

within the given classes.  

To do this, we generated sixty pieces of algorithmically composed music – ten 

within each era and each piece with a length of 100 notes. We extracted from these 

compositions the same features we outlined in section 2.1.2, and translated the results into 

an .arff file mirroring the structure of our previously used .arff file. We then used this file 

as our test set and provided the file from our initial classification exercise as a training set. 

We ran these classification techniques on four of the five classifiers used in our original 

exercise, excluding the Naïve Bayes classifier we used to inform the composition software, 

as it would provide an unnaturally insightful look into the data, resulting in skewed results. 

The classifiers’ results are displayed in the chart below (Figure 11). 

Medieval Renaissance Baroque Classical Romantic Modern Average 

MLP 0.942 0.9 0.858 0.918 0.754 0.986 0.893 

LR 0.978 0.938 0.824 0.946 0.836 0.998 0.92 

JRip 0.852 0.753 0.662 0.816 0.582 0.786 0.742 

J48 0.812 0.757 0.757 0.8 0.678 0.826 0.772 

Figure 11: The results of our algorithmic compositions being classified 

against a training set of the original 262 **kern scores 

The classifiers performed quite well in determining the era which our composition 

software was attempting to replicate. In fact, the classifiers success rates were nearly 

identical to the success rates they experienced with traditionally composed pieces of music, 
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with their short comings being seen in the same categories. The only classifier that saw 

significant changes in performance was that of the logistic regression approach, which saw 

the average ROC percentage jump from .885 to .92. These results alone are highly 

encouraging.  

4.2.2 Expert Analyzation 

To double down on our analysis, we decided to take a human approach to the matter as 

well and consulted a number of experts in music. In total, five scholars of music took part 

in a survey to determine how well they could distinguish the success of our classifier. The 

exercise was simple: We generated three 15 second clips of music from each era and 

presented them together in a random order to the experts. We asked at the conclusion of 

each triplet for the experts to indicate which era they believed the composition software 

was meant to represent, and their confidence on a scale from 1-5. We also gave the experts 

an opportunity to explain how they arrived at that answer, and why they gave the 

confidence level they did. 

The results of our expert analysis were not as encouraging as the machine 

approach. Of our experts, only one was able to predict 50% of the eras correctly, and 

one failed to correctly predict a single era. The confidence levels of our experts 

hovered between one and three for most questions, with a distinct increase in both 

confidence and accuracy with the modern era, which four of our five experts correctly 

predicted.  

5. Discussion

It is clear that the results of our expert analysis tell a very different story than the machine 

analysis. While our classifiers were able to tell which era of music was being 

replicated with our composition software to a high level of accuracy, experts in music 

had a much harder time doing so, with a total success rate of 20% when presented the 

option of all six eras. Compared to true randomness, which would accurately predict the 

era 16.6% of the time, this is an improvement, albeit slight. 
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Because of the nature of the process, it comes as no surprise that our two methods 

of analysis yielded such different results. This is likely because of the limited scope with 

which we approached the problem, deciding to focus on a very select number of features, 

even though the differences in musical styles between the eras is defined by many more 

features, such as rhythm and harmony (A distinction many of our experts pointed out 

during their survey), as well as the types of instruments being used in the pieces, which is 

ignored by using a MIDI output.  

5.1 Conclusion 

From these results, the most evident conclusion is that there is more work to do. The gap 

between our two methods of analysis show how far we are from creating a 

musically homogeneous algorithmic composition system. Despite this, it is certainly 

promising that the features we did choose to use in the experiment yielded such high 

results in our machine evaluation. This shows that, even if the music is not very aurally 

identifiable yet, trained AI has the ability to distinguish the differences. This result 

indicates that the project has potential moving forward, and better results may be 

achieved by integrating more defining features of classical music. 

5.2 Applications 

For now, it seems the application of this software lays firmly in the category of 

‘composition inspiration software’ that encompasses so much of the work that has been 

done in the field, though it certainly shows signs that it has the potential to be more. The 

success of our classifiers in determining which era the piece was meant to replicate 

indicates that there is a lot of potential in the system, when put to use in the correct fashion. 

The cellular automata system also lends itself to be used with different classifiers, or 

perhaps even different types of music, as it has been designed to be adapted to any kind of 

transitionary rule set. 
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5.3 Future Works 

At the end of the study, our thoughts on moving forward are much the same as they were 

when we began. The prospect of hybridizing the various methods of algorithmic music 

composition with data mining is a vast well of potential which this study has only begun 

to scratch the surface of. Based on the experts’ opinions that our focus on the feature of 

musical intervals was not enough to encompass all the characteristics of a classical musical 

era implies that more hybridization must be done with this system to make it more aurally 

accurate.  

There are a number of avenues that could be explored in the pursuit of improving 

the system in such a manner. This could include varying the instrumentation based on 

which era it derives from, factoring into the composition rhythm and dynamics, and 

creating a two-line system that generates harmonious interval sequences. Another feature 

that could yield positive results would be to adapt the system to employ an nth-order 

technique, much like the progression of the Illiac Suite [7], where we no longer only 

consider the last note in our generative process. This would allow the music to flow with 

more natural phrasing and would allow the intervals to take into account where it appears 

in the musical phrase. Lastly, improvements could be made to the range-check system 

implemented in this study, which would go hand-in-hand with the phrasing achieved in the 

nth-order additions. 
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1 /*
2 * Algorithmic Music Composition Software
3 * @author Tom Donald Richmond
4 * @version 2.0
5 * @since 02/12/17
6  */
7
8 import java.awt.BorderLayout;
9 import java.awt.Color;

10 import java.awt.Dimension;
11 import java.awt.Graphics;
12 import java.awt.event.ActionEvent;
13 import java.awt.event.ActionListener;
14 import java.util.ConcurrentModificationException;
15
16 import javax.swing.JButton;
17 import javax.swing.JFrame;
18 import javax.swing.JPanel;
19 import javax.swing.Timer;
20 import javax.swing.JOptionPane;
21
22 import javax.sound.midi.*;
23
24 public class CellularAutomataMusic  extends JFrame{
25   
26 private static final Color white = Color.WHITE, black = Color.BLACK;
27
28 private Board board;
29 private JButton start_pause, medieval, renaissance, baroque, 

classical, romantic, modern;
30 // variables to track total number of interval occurrences
31 int t;
32     // variables to track the occurrences of each interval for testing
33     int[] totals = new int[8];
34     // variable to hold string value representing era
35     String era;
36     // Boolean variable representing
37     Boolean analysis = false;
38
39 /* 
40 * Creates blank board to feature automata, with start button to
41 * commence composition, as well as buttons to select epoch

6. Appendix
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42 * */
43 public CellularAutomataMusic(){
44
45 board = new Board();
46 board.setBackground(white);
47
48 /* 
49 * Create buttons for start/stop
50 * */
51 start_pause = new JButton("Compose");
52 start_pause.addActionListener(board);
53
54     /* 
55 * Create buttons for epoch selection
56 * */
57     medieval = new JButton("Medieval");
58     medieval.addActionListener(board);
59     renaissance = new JButton("Renaissance");
60     renaissance.addActionListener(board);
61     baroque = new JButton("Baroque");
62     baroque.addActionListener(board);
63     classical = new JButton("Classical");
64     classical.addActionListener(board);
65     romantic = new JButton("Romantic");
66     romantic.addActionListener(board);
67     modern = new JButton("Modern");
68     modern.addActionListener(board);
69
70     /* 
71 * Subpanel for epoch selection
72 * */
73     JPanel subPanel = new JPanel();
74     subPanel.setLayout(new java.awt.GridLayout(6, 1));
75     subPanel.add(medieval);
76     subPanel.add(renaissance);
77     subPanel.add(baroque);
78     subPanel.add(classical);
79     subPanel.add(romantic);
80 subPanel.add(modern);
81
82     /* 
83 * Add buttons to layout
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84 * */
85     this.add(board, BorderLayout.CENTER);
86     this.add(start_pause, BorderLayout.SOUTH);
87     this.add(subPanel, BorderLayout.WEST);
88     //this.setLocationRelativeTo(null);
89
90     this.setDefaultCloseOperation(EXIT_ON_CLOSE);
91     this.pack();
92     this.setVisible(true);
93
94 }
95
96 public static void main(String args[]){
97     new CellularAutomataMusic();
98 }
99
100 /*
101 * Board object featuring 4x15 Automata model, black and white values
102 * */
103 private class Board extends JPanel implements ActionListener{
104
105 // Variables for board dimensions
106     private final Dimension DEFAULT_SIZE = new Dimension(15, 4);
107     private final int DEFAULT_CELL = 40, DEFAULT_INTERVAL = 100, 

DEFAULT_RATIO = 50;
108     private Dimension board_size;
109     private int cell_size, interval, fill_ratio;
110
111     //boolean whether the composer is active
112     private boolean run;
113     // Timer for playing notes evenly
114     private Timer timer;
115     // variables to ensure the composer runs linearly
116     public int myOctave = 5, currentDiff = 0, range;
117     // variable to store the probability of each interval
118     double uni, step, third, fourth, fifth, sixth, seventh, octave;
119     // boolean to see if an epoch has been selected
120     boolean selected = false;
121     //grid to display automata-model
122     private Color[][] grid;
123
124
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125     /*
126 * Default constructor for Board object
127      */
128     public Board(){
129 board_size = DEFAULT_SIZE;
130 cell_size = DEFAULT_CELL;
131 interval = DEFAULT_INTERVAL;
132 fill_ratio = DEFAULT_RATIO;
133 run = false;
134
135
136 grid = new Color[board_size.height + 1][board_size.width + 1];
137 for (int h = 0; h < board_size.height; h++)
138 for (int w = 0; w < board_size.width; w++){
139 //int r = (int)(Math.random() * 100);
140 //if (r >= fill_ratio)
141 //grid[h][w] = black;
142 //else grid[h][w] = white;
143 grid[h][w] = white;
144 }
145 timer = new Timer(interval, this);
146     }
147
148     @Override
149     public Dimension getPreferredSize(){
150 return new Dimension(board_size.height * cell_size, 

board_size.width * cell_size);
151     }
152
153     @Override
154     public void paintComponent(Graphics g){
155 super.paintComponent(g);
156 for (int h = 0; h < board_size.height; h++){
157 for (int w = 0; w < board_size.width; w++){
158 try{
159 if (grid[h][w] == black)
160 g.setColor(black);
161 else if (grid[h][w] == white) 
162 g.setColor(white);
163 g.fillRect(h * cell_size, w * cell_size,

cell_size, cell_size);
164 }
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165 catch (ConcurrentModificationException cme){}
166 }
167 }
168     }
169
170     /*
171 * Method to re-adjust the probability values when new epoch is

selected
172 * @param String representing epoch
173      */
174     public void changeEpoch(String epoch) {
175     if(epoch=="medieval") {
176 playNote(60);
177 uni = 0.1484;
178 step = 0.4998;
179 third = 0.1178;
180 fourth = 0.0371;
181 fifth = 0.0234;
182 sixth = 0.004;
183 seventh = 0.0014;
184 octave = 0.0057;
185 range = 14;
186 era = "Medieval";
187     }
188     else if(epoch=="renaissance") {
189 playNote(62);
190 uni = 0.2571;
191     step = 0.4305;
192     third = 0.1061;
193     fourth = 0.0728;
194     fifth = 0.048;
195 sixth = 0.0048;
196 seventh = 0.0006;
197 octave = 0.0094;
198 range = 22;
199 era = "Renaissance";
200     }
201     else if(epoch=="baroque") {
202 playNote(64);
203 uni = 0.2623;
204     step = 0.3558;
205     third = 0.1114;
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206     fourth = 0.0728;
207     fifth = 0.0442;
208 sixth = 0.0292;
209 seventh = 0.0108;
210 octave = 0.0379;
211 range = 23;
212 era = "Baroque";
213     }
214     else if(epoch=="classical") {
215 playNote(66);
216 uni = 0.148;
217     step = 0.3964;
218     third = 0.1713;
219     fourth = 0.0818;
220     fifth = 0.0574;
221 sixth = 0.0435;
222 seventh = 0.0195;
223 octave = 0.0353;
224 range = 25;
225 era = "Classical";
226     }
227     else if(epoch=="romantic") {
228 playNote(68);
229 uni = 0.207;
230     step = 0.2791;
231     third = 0.1112;
232     fourth = 0.0649;
233     fifth = 0.0416;
234 sixth = 0.0282;
235 seventh = 0.0123;
236 octave = 0.0217;
237 range = 30;
238 era = "Romantic";
239     }
240     else if(epoch=="modern") {
241 playNote(70);
242 uni = 0.3086;
243     step = 0.2153;
244     third = 0.1011;
245     fourth = 0.1053;
246     fifth = 0.0723;
247 sixth = 0.0591;
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248 seventh = 0.0364;
249 octave = 0.0571;
250 range = 37;
251 era = "Modern";
252     }
253     else {
254 System.out.println("Woah, how'd you manage that bud?");
255     }
256     }
257
258     /*
259 * Method designed to generate a new musical note value based on

given previous note value
260 * @param int prevVal
261 * @returns int newVal
262 * */
263     public int ruleGenerator(int prevVal){
264 if (prevVal == 0){
265 return 1;
266 }
267
268     /* Sets ascLim and descLim to half of the average range of the 
269 * given epoch. DescLim gets the ceiling arbitrarily*/
270     int ascLim = range/2;
271     int descLim= (range/2) + (range%2);
272
273     double running = 0.0;
274     double value = Math.random();
275
276     int newVal;
277 int diff = 0;
278 int direction = (int)(Math.random()*2);
279
280 /* determines before each note whether it was generated to be 

ascending
281 * or descending. This process is regulated with ascLim and

descLim */
282 boolean ascending = false;
283 if(direction == 1)
284 ascending = true;
285
286 /* Resets the valFound var to false for next note generation 

*/
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286 /* Resets the valFound var to false for next note generation 

*/
287 boolean valFound = false;
288
289 /* checks which range the generated number falls in and 

produces a
290 * note based on this value. Once note is found, valFound is

set to
291 * true, and no other if statements are reached. It will

access each
292 * if statement until the correct is found, increasing running

total
293 * as it goes. */
294 if (value <= uni){
295 totals[0]+=1;
296 t+=1;
297 diff = 0;
298 valFound = true;
299 System.out.println("Unison");
300 }
301 running += uni;
302 if ((value <= step + running) && valFound == false){
303 totals[1]+=1;
304 t+=1;
305 diff =  1;
306 valFound = true;
307 System.out.println("Step");
308 }
309 running += step;
310 if (value <= third + running && valFound == false){
311 totals[2]+=1;
312 t+=1;
313 diff =  2;
314 valFound = true;
315 System.out.println("Third");
316 }
317 running += third;
318 if (value <= fourth + running && valFound == false){
319 totals[3]+=1;
320 t+=1;
321 diff =  3;
322 valFound = true;
323 System.out.println("Forth");
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324 }
325 running += fourth;
326 if (value <= fifth + running && valFound == false){
327 totals[4]+=1;
328 t+=1;
329 diff =  4;
330 valFound = true;
331 System.out.println("Fifth");
332 }
333 running += fifth;
334 if (value <= sixth + running && valFound == false){
335 totals[5]+=1;
336 t+=1;
337 diff =  5;
338 valFound = true;
339 System.out.println("Sixth");
340 }
341 running += sixth;
342 if (value <= seventh + running && valFound == false){
343 totals[6]+=1;
344 t+=1;
345 diff =  6;
346 valFound = true;
347 System.out.println("Seventh");
348 }
349 running += seventh;
350 if (value <= octave + running && valFound == false){
351 totals[7]+=1;
352 t+=1;
353 diff =  7;
354 valFound = true;
355 System.out.println("Octave");
356 }
357
358 //System.out.println((currentDiff+diff) +": total diff");
359 if (ascending && currentDiff + diff >= ascLim) {
360 System.out.println("Switched, too high");
361 ascending = false;
362 }
363 if (!ascending && -1*(currentDiff - diff) >= descLim) {
364 System.out.println("Switched, too low");
365 ascending = true;
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366 }
367 System.out.println("Ascending = "+ascending);
368 if(ascending){
369 currentDiff += diff;
370 System.out.println(currentDiff);
371 newVal = prevVal;
372 for (int i = 0; i < diff; i++){
373 if (newVal == 5 || newVal == 12)
374 newVal += 1;
375 else
376 newVal += 2;
377 if (newVal > 12) {
378 myOctave++;
379 newVal -= 12;
380 }
381 }
382 }
383 else{
384 currentDiff -= diff;
385 System.out.println(currentDiff);
386 newVal = prevVal;
387 for (int i = 0; i < diff; i++){
388 if (newVal == 6 || newVal == 13 || newVal == 1)
389 newVal -= 1;
390 else
391 newVal -= 2;
392 if (newVal < 1) {
393 newVal += 12;
394 myOctave--;
395 }
396 }
397 }
398 System.out.println(newVal + " " + ascending);
399 int noteVal = toNote(newVal, ascending);
400
401 //System.out.println(prevVal);
402 //newVal = 1+((int)(Math.random()*12));
403 return noteVal;
404     }
405
406     /*
407 * Method designed to generate a new musical note value based on

given previous note value
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407 * Method designed to generate a new musical note value based on

given previous note value
408 * @param int prevVal
409 * @returns int newVal
410 * */
411     public void ruleGeneratorAnalysis(){
412
413 double running = 0.0;
414     double value = Math.random();
415
416 /* Resets the valFound var to false for next note generation 

*/
417 boolean valFound = false;
418
419 /* checks which range the generated number falls in and 

produces a
420 * note based on this value. Once note is found, valFound is

set to
421 * true, and no other if statements are reached. It will

access each
422 * if statement until the correct is found, increasing running

total
423 * as it goes. */
424 if (value <= uni){
425 totals[0]+=1;
426 t+=1;
427 valFound = true;
428 }
429 running += uni;
430 if ((value <= step + running) && valFound == false){
431 totals[1]+=1;
432 t+=1;
433 valFound = true;
434 }
435 running += step;
436 if (value <= third + running && valFound == false){
437 totals[2]+=1;
438 t+=1;
439 valFound = true;
440 }
441 running += third;
442 if (value <= fourth + running && valFound == false){
443 totals[3]+=1;
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444 t+=1;
445 valFound = true;
446 }
447 running += fourth;
448 if (value <= fifth + running && valFound == false){
449 totals[4]+=1;
450 t+=1;
451 valFound = true;
452 }
453 running += fifth;
454 if (value <= sixth + running && valFound == false){
455 totals[5]+=1;
456 t+=1;
457 valFound = true;
458 }
459 running += sixth;
460 if (value <= seventh + running && valFound == false){
461 totals[6]+=1;
462 t+=1;
463 valFound = true;
464 }
465 running += seventh;
466 if (value <= octave + running && valFound == false){
467 totals[7]+=1;
468 t+=1;
469 valFound = true;
470 }
471
472 /* When the composer has generated 100 notes, 
473 * it automatically calculates the results and prints
474 * for analysis process */
475 if(t==100) {
476 System.out.println(kernResults());
477 //JOptionPane.showMessageDialog(null,kernResults());
478 clearStats();
479 }
480     }
481
482     /*
483 * Method that takes note value representation from binary as

integer, prints corresponding
484 * value and plays note using MIDI output
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485 * @param int val - Value of note (1-13) generated by the rule
system

486 * @returns String letter value equivelant to corresponding int
value

487 * */
488     public int toNote(int val, Boolean asc){
489 int noteVal;
490 int C = myOctave * 12;
491
492 if(val == 1 || val == 13){
493 noteVal = C+0;
494 System.out.println("C");
495 }
496 else if(val == 2){
497 noteVal = C+1;
498 System.out.println("C#/D-");
499 }
500 else if(val == 3){
501 noteVal = C+2;
502 System.out.println("D");
503 }
504 else if(val == 4){
505 noteVal = C+3;
506 System.out.println("D#/E-");
507 }
508 else if(val == 5){
509 noteVal = C+4;
510 System.out.println("E");
511 }
512 else if(val == 6){
513 noteVal = C+5;
514 System.out.println("F");
515 }
516 else if(val == 7){
517 noteVal = C+6;
518 System.out.println("F#/G-");
519 }
520 else if(val == 8){
521 noteVal = C+7;
522 System.out.println("G");
523 }
524 else if(val == 9){

38



CellularAutomataMusic.java

525 noteVal = C+8;
526 System.out.println("G#/A-");
527 }
528 else if(val == 10){
529 noteVal = C+9;
530 System.out.println("A");
531 }
532 else if(val == 11){
533 noteVal = C+10;
534 System.out.println("A#/B-");
535 }
536 else if(val == 12){
537 noteVal = C+11;
538 System.out.println("B");
539 }
540 else {
541 return 0;
542 }
543 //System.out.println(noteVal);
544 playNote(noteVal);
545 return val;
546     }
547
548     /*
549 * (non-Javadoc)
550 * Action Listener for all buttons, compose, terminate, medieval,
551 * renaissance, baroque, classical, romantic and modern.
552 * @see

java.awt.event.ActionListener#actionPerformed(java.awt.event.ActionEvent)
553      */
554     public void actionPerformed(ActionEvent e) {
555
556     //reads binary value of last sequence
557     int a = 0, b = 0, c = 0, d = 0, val = 0;
558
559     //counts binary from board for conversion to decimal
560     if (grid[0][board_size.width-1]  == black)
561 a = 1;
562     if (grid[1][board_size.width-1]  == black)
563 b = 1;
564     if (grid[2][board_size.width-1]  == black)
565 c = 1;
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566     if (grid[3][board_size.width-1]  == black)
567 d = 1;
568
569     //converts binary sequence into decimal with variable val
570     if(a==1)
571 val+=8;
572     if(b==1)
573 val+=4;
574     if(c==1)
575 val+=2;
576     if(d==1)
577 val+=1;
578
579     //shifts bottom n-1 sequences up to make room for next 

sequence
580     for (int h = 0; h < board_size.height; h++){
581 for (int w = 0; w < board_size.width-1; w++){
582 grid[h][w] = grid[h][w+1];
583 }
584     }
585
586     //repaints the bottom line sequence based on rule
587     if (e.getSource().equals(timer) && analysis == false){
588 int newNote = ruleGenerator(val);
589
590 if (newNote >= 8){
591 grid[0][board_size.width-1] = black;
592 newNote = newNote-8;
593 }
594 else
595 grid[0][board_size.width-1] = white;
596 if (newNote >= 4){
597 grid[1][board_size.width-1] = black;
598 newNote = newNote-4;
599 }
600 else
601 grid[1][board_size.width-1] = white;
602 if (newNote >= 2){
603 grid[2][board_size.width-1] = black;
604 newNote = newNote-2;
605 }
606 else
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607 grid[2][board_size.width-1] = white;
608 if (newNote >= 1){
609 grid[3][board_size.width-1] = black;
610 newNote = newNote-1;
611 }
612 else
613 grid[3][board_size.width-1] = white;
614 repaint();
615 Color[][] newGrid = new Color[board_size.height]

[board_size.width];
616     }
617
618     //repaints the bottom line sequence based on rule
619     if (e.getSource().equals(timer) && analysis == true){
620 ruleGeneratorAnalysis();
621     }
622
623 //Start-Pause button processing
624 else if(e.getSource().equals(start_pause)){
625     if(run){
626 timer.stop();
627 //JOptionPane.showMessageDialog(null,printResults());
628 JOptionPane.showMessageDialog(null,printResults());
629 start_pause.setText("Compose");
630     }
631     else {
632 if (selected) {
633 timer.restart();
634 start_pause.setText("Terminate");
635     }
636     else {
637 JOptionPane.showMessageDialog(null, "Must first 

select an epoch from which to compose");
638 run = !run;
639     }
640 }
641 run = !run;
642 }
643
644     //Medieval button processing
645 else if(e.getSource().equals(medieval)){
646 medieval.setEnabled(false);
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647     renaissance.setEnabled(true);
648     baroque.setEnabled(true);
649     classical.setEnabled(true);
650     romantic.setEnabled(true);
651     modern.setEnabled(true);
652     changeEpoch("medieval");
653     selected = true;
654 }
655     //Renaissance button processing
656 else if(e.getSource().equals(renaissance)){
657     medieval.setEnabled(true);
658     renaissance.setEnabled(false);
659     baroque.setEnabled(true);
660     classical.setEnabled(true);
661 romantic.setEnabled(true);
662 modern.setEnabled(true);
663 changeEpoch("renaissance");
664 selected = true;
665     }
666     //Baroque button processing
667     else if(e.getSource().equals(baroque)){
668 medieval.setEnabled(true);
669 renaissance.setEnabled(true);
670 baroque.setEnabled(false);
671 classical.setEnabled(true);
672 romantic.setEnabled(true);
673 modern.setEnabled(true);
674 changeEpoch("baroque");
675 selected = true;
676     }
677     //Classical button processing
678     else if(e.getSource().equals(classical)){
679 medieval.setEnabled(true);
680 renaissance.setEnabled(true);
681 baroque.setEnabled(true);
682 classical.setEnabled(false);
683 romantic.setEnabled(true);
684 modern.setEnabled(true);
685 changeEpoch("classical");
686 selected = true;
687     }
688     //Romantic button processing
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689     else if(e.getSource().equals(romantic)){
690 medieval.setEnabled(true);
691 renaissance.setEnabled(true);
692 baroque.setEnabled(true);
693 classical.setEnabled(true);
694 romantic.setEnabled(false);
695 modern.setEnabled(true);
696 changeEpoch("romantic");
697 selected = true;
698     }
699     //Modern button processing
700     else if(e.getSource().equals(modern)){
701 medieval.setEnabled(true);
702 renaissance.setEnabled(true);
703 baroque.setEnabled(true);
704 classical.setEnabled(true);
705 romantic.setEnabled(true);
706 modern.setEnabled(false);
707 changeEpoch("modern");
708 selected = true;
709     }
710     }
711 }
712
713 /*
714 * Method to play note value using MIDI synthesizer based upon input

note
715 * @param int representing the MIDI value of desired note.
716  */
717 public void playNote(int i) { 
718     try{
719     /* Create a new Synthesizer and open it. 
720  */
721     Synthesizer midiSynth = MidiSystem.getSynthesizer(); 
722     midiSynth.open();
723
724     //get and load default instrument and channel lists
725     Instrument[] instr = 

midiSynth.getDefaultSoundbank().getInstruments();
726     MidiChannel[] mChannels = midiSynth.getChannels();
727
728     midiSynth.loadInstrument(instr[0]);//load an instrument
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729     mChannels[0].noteOff(i);//turn off the previous note
730     mChannels[0].noteOn(i, 120);//On channel 0, play note number i 

with velocity 120
731     try {
732 //Following line controls duration of notes played. 1000 

used for samples of 30 seconds. 750 used for samples of 15 seconds
733 Thread.sleep(750); // wait time in milliseconds to control 

duration
734     }
735     catch( InterruptedException e ) {}
736     } 
737     catch (MidiUnavailableException e) {}
738 }
739
740 /*
741 * method that returns string that prints composition statistics for

visual analysis
742 * @returns String statistics
743  */
744 public String printResults() {
745 return "Total length of composition: "+t+"\n"
746 +"\tStatistics:\n"
747 +"\nUnison:\t "+((double)totals[0]/t)
748 +"\nStep:\t "+((double)totals[1]/t)
749 +"\nThird:\t "+((double)totals[2]/t)
750 +"\nForth:\t "+((double)totals[3]/t)
751 +"\nFifth:\t "+((double)totals[4]/t)
752 +"\nSixth:\t "+((double)totals[5]/t)
753 +"\nSeventh:\t "+((double)totals[6]/t)
754 +"\nOctave:\t "+((double)totals[7]/t);
755 }
756
757 /*
758 * method that returns string that prints composition statistics for

analysis
759 * @returns String statistics
760  */
761 public String kernResults() {
762 //variable to store percentage of most common interval
763 int max = 0;
764
765 // computes the most common interval
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766 for(int i = 0; i<8;i++) {
767 if(totals[i] > max){
768 max = totals[i];
769 }
770 }
771
772 //returns expected String output based on totals array and above 

computation
773 return ""+((double)totals[0]/t)
774 +","+((double)totals[1]/t)
775 +","+((double)totals[2]/t)
776 +","+((double)totals[3]/t)
777 +","+((double)totals[4]/t)
778 +","+((double)totals[5]/t)
779 +","+((double)totals[6]/t)
780 +","+((double)totals[7]/t)
781 +","+((double)max/t)
782 +","+era;
783 }
784
785 /*
786 * Method to clear the statistics after terminations for next

composition
787  */
788 public void clearStats() {
789 //loops through all saved data and resets to 0 for future 

processing
790 for (int i = 0; i < 8; i++) {
791 totals[i] = 0;
792 }
793 t = 0;
794 }
795 }
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