
College of Saint Benedict and Saint John's University College of Saint Benedict and Saint John's University

DigitalCommons@CSB/SJU DigitalCommons@CSB/SJU

All College Thesis Program, 2016-present Honors Program

4-2018

The Algorithmic Composition of Classical Music through Data The Algorithmic Composition of Classical Music through Data

Mining Mining

Tom Donald Richmond
College of Saint Benedict/Saint John's University, tdrichmond@csbsju.edu

Imad Rahal
College of Saint Benedict/Saint John's University, irahal@csbsju.edu

Follow this and additional works at: https://digitalcommons.csbsju.edu/honors_thesis

 Part of the Artificial Intelligence and Robotics Commons, and the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Richmond, Tom Donald and Rahal, Imad, "The Algorithmic Composition of Classical Music through Data
Mining" (2018). All College Thesis Program, 2016-present. 52.
https://digitalcommons.csbsju.edu/honors_thesis/52

This Thesis is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for
inclusion in All College Thesis Program, 2016-present by an authorized administrator of DigitalCommons@CSB/SJU.
For more information, please contact digitalcommons@csbsju.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/229044594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.csbsju.edu/
https://digitalcommons.csbsju.edu/honors_thesis
https://digitalcommons.csbsju.edu/honors
https://digitalcommons.csbsju.edu/honors_thesis?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.csbsju.edu/honors_thesis/52?utm_source=digitalcommons.csbsju.edu%2Fhonors_thesis%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@csbsju.edu

Algorithmic Composition of Classical Music through Data Mining

An All College Thesis

College of Saint Benedict and Saint John’s University

by

Tom Donald Richmond

April, 2018

Algorithmic Composition of Classical Music through Data Mining

By Tom Donald Richmond

Approved By:

Dr. Imad Rahal, Professor of Computer Science

Dr. Mike Heroux, Scientist-in-Residence of Computer Science

Dr. Jeremy Iverson, Assistant Professor of Computer Science

Dr. Imad Rahal, Chair, Computer Science Department

Molly Ewing, Director, All-College Thesis Program

Jim Parsons, Director, All-College Thesis Program

Abstract

The desire to teach a computer how to algorithmically compose music has been a
topic in the world of computer science since the 1950’s, with roots of computer-less
algorithmic composition dating back to Mozart himself. One limitation of algorithmically
composing music has been the difficulty of eliminating the human intervention required
to achieve a musically homogeneous composition. We attempt to remedy this issue by
teaching a computer how the rules of composition differ between the six distinct eras of
classical music by having it examine a dataset of musical scores, rather than explicitly
telling the computer the formal rules of composition. To pursue this automated
composition process, we examined the intersectionality of algorithmic composition
with the machine learning concept of classification. Using a Naïve Bayes classifier,
the computer classifies pieces of classical music into their respective era based upon
a number of attributes. It then attempts to recreate each of the six classical styles using a
technique inspired by cellular automata. The success of this process is twofold
determined by feeding composition samples into a number of classifiers, as well as
analysis by studied musicians. We concluded that there is potential for further
hybridization of classification and composition techniques.

Table of Contents

1. Introduction …………………………………………………………………… 1
1.1 Early Explorations ……………………………………………………. 1
1.2 The Data-Driven Intelligence Age ……………………………………. 2
1.3 Study Overview ………………………………………………………. 3

2. Data ……………………………………………………………………………. 4
2.1 Musical Representations …………………………………………….... 4
2.2 Digital Formats ……………………………………………………….. 5

2.2.1 MIDI ………………………………………………………… 6
2.2.2 **kern ………………………………………………………. 6

3. Data Mining …………………………………………………………………… 7
3.1 Data Extraction ……………………………………………………….. 8

3.1.1 Classes ……………………………………………………… 8
3.1.2 Attributes …………………………………………………… 10
3.1.3 Pre-Process …………………………………………………. 12

3.2 Classification …………………………………………………………. 13
3.3 Results ………………………………………………………………… 15

4. Generation …………………………………………………………………….. 16
4.1 Methods ………………………………………………………………. 17

4.1.1 Cellular Automata …………………………………………... 17
4.1.2 Adapted Musical Model …………………………………….. 18

4.2 Results Analysis ……………………………….……………………… 21
4.2.1 Machine Analysis …………………….…..…………………. 22
4.2.2 Expert Analysis ……………………………………………… 22

5. Discussion ……………………………………………………………………… 23
5.1 Conclusion ……………………………..……………………………… 24
5.2 Applications …………………………………………………………… 24
5.3 Future Works ………………………………………………………….. 25

6. Appendix ...…………………………………………………………………….. 26
7. References ……………………………………………………………………... 46

List of Figures

Figure 1 - Timeline of musical eras ……………………………………………… 9
Figure 2 - List of Attributes ……………………………………………………… 10
Figure 3 - Chromatic Circle ……………………………………………………… 11
Figure 4 - Image of intervals ……………………………………………………... 12
Figure 5 - Data set and distribution chart ………………………………………… 13
Figure 6 - Chart of classification results ………….……………………………… 15
Figure 7 - Image of Wolfram Algorithm and a rule set ………………………….. 18
Figure 8 - Mapping of binary sequences to notes ………………………………… 19
Figure 9 - Sample extraction of Naïve Bayes ……………………..……………… 20
Figure 10 - Example of transitionary rule mapping ………………………………. 20
Figure 11 - Chart of generation results ………………………………….………. 22

1. Introduction

Of all major art forms, music has historically relied most upon scientific and mathematical

devices in its creation. While many other forms of art are lauded for breaking the rules, and

these avant-garde approaches often find themselves at the forefront of popularity, the most

praised and well-respected pieces of music always seem to find themselves firmly

grounded in the formal rules of composition that have been widely accepted for centuries.

The reason behind this can be easily attributed to the notion that music is well

founded in the world of mathematics, and the rules of music theory are indeed built upon

it. Both the relations between pitches and durations are best defined by numbers and ratios.

In fact, because of its reliance on precise measurement, music was considered until fairly

recently its own branch of science [1]. This fact makes it tempting to both analyze and

create music through a scientific approach, and it is indeed a venture that has been

attempted many times over the course of human history, making great strides since the

beginning of the digital age.

1.1 Early Exploration

The intersection of mathematics and music predates the computing age quite considerably.

The topic of algorithmically composing music saw its initial explorations as early as 500

B.C. in the times of Pythagoras [2], when he developed the concept of “music of the

spheres,” in which he drew some of the first significant connections between the world of

music and mathematics. Of course, Pythagoras could not have known what he was

pioneering would one day spawn the algorithmic composition of music, as the term

‘algorithm’ wasn’t even invented until 1120 [3]. From this point on, the world of music

was situated comfortably in the middle of the mathematical spectrum, and a millennium

later, Flavius Cassiodorus (ca. 485-575) described mathematics as a union of the four

disciplines: arithmetic, music, geometry and astronomy [4].

1

At the dawn of the medieval era, composers began to formulate rules by which

pitch relations and combinations were governed, laying the groundwork for music theory

as a practice that would be followed and expanded upon for centuries [5]. It was in the

1700’s with a game called Musikalische Würfelspiel [6], which translates from German to

‘musical dice game,’ that the rules were put to use in an algorithmic fashion. The game’s

most popular iteration, allegedly devised by Mozart himself, saw the user roll a pair of

dice, and their composition would proceed based on the outcome being mapped to a ruleset

Mozart outlined. These early experiments laid the ground work for algorithmic music to

come.

1.2 The Data-Driven Intelligence Age

With the framework of algorithmic music already set centuries before, it was only natural

that the concepts were brought into the world of computing as early as the 1950’s, at the

genesis of the information age. The most famous example from this time is Hiller and

Isaacson’s Illiac Suite [7], which used rule systems and Markov chains, a stochastic

predictive system with no memory, to predict the next successive note based solely on the

current note. As the work was expanded upon by colleagues and interested parties, the

chains were designed to implement an nth-order technique, which allows the process to

consider the last n notes, rather than only the most recent [6]. This initial work with Markov

chains became the springboard of computerized algorithmic compositions.

Since this advent, the topic’s exploration has increased drastically, and has

branched into many different realms, with new techniques and structures being used as the

basic building block of the composition process. In his book “Algorithmic Composition:

Paradigms of Automated Music Generation,” Gerhard Nierhaus split the topic into several

distinct categories, including generative grammars, transition networks, genetic

algorithms, cellular automata, artificial neural networks (ANNs) and artificial intelligence

[3]. As these fields grow further apart, greater strides and achievements are being made

within each.

2

The intersection of music and computing becomes even more pronounced when

you approach the topic of data mining. Many have explored the potential of classifying

music of all varieties, and results have been quite successful. Researchers Lebar, Chang &

Yu [8] used classifiers to distinguish between the works of various classical composers

using stylistic features as attributes. Basili, Serafini and Stellato [9] tackled the topic of

popular music when they classified a dataset of music into six distinct genres based on

features such as intervals, instruments used and meter changes. The basic structure of this

study has been conducted by many, receiving respectable results overall.

It is important to note that this is not the first experiment that attempts to use

classification techniques to create algorithmic compositions. One particular avenue in this

field that has oft been explored is the use of artificial neural networks (ANNs). The basic

structure of an ANN has allowed for a variety of approaches to music composition. Some

experiments have used the structure to encourage the refinement of musically random

melodic phrases, or to predict the melodic phrase based upon a number of starting notes.

Others attempt to merge the predictive powers of the classifier to build upon another

method of composition [6], much like our proposition. To our knowledge there are no

experiments which attempt to use this classification technique, or any other, to inspire

algorithmic composition through Cellular Automata.

1.3 Study Overview

While it is clear that the topic of music’s intersection with computer science has been

explored in many facets, there is still a gap when it comes to what a computer is capable

of producing, and some of the most recent studies in the field of algorithmic composition

are still labeled as composition inspiration software [6]. The idea of hybridizing multiple

of the above concepts has therefore become attractive, in an effort to achieve the best

generative characteristics from multiple approaches. For this reason, we find it worthwhile

to explore new avenues, and see what kind of new directions we can bring to the topic of

algorithmic composition.

3

It became evident during the course of our research that one such hybridization

comes from the potential of using the field of data mining to inform the decisions made

during certain algorithmic composition techniques. Intersecting these two concepts has the

potential of creating a smarter generative process, capable of replicating nuanced

differences between several different categories of music, adapting to new forms of music

being introduced, and minimizing the amount of human intervention required for some

techniques. One such intersection that we saw potential in was using data classification to

inform a cellular automata composition system. It is under the guide of this general

framework that we began our work.

2. Data

With any venture into the world of data mining, it is critical to choose the right data with

which to proceed with your experiment. The topic of music presents a particular challenge

in this respect, as the data at hand is not nearly as friendly for computer use as something

purely numeric such as stock numbers or attendance projections may be. For this reason, a

substantial amount of time needed to be dedicated to understanding the data of music,

discovering what kind of characteristics are desirable to use from the data, and what kind

of computer-friendly representations we have as options moving forward.

2.1 Musical Representation

In order to properly understand the data, it is important to first have a firm background in

the formalities of music. For the sake of this experiment, we will be narrowing the scope

of our focus entirely upon classical music, which we define as traditional Western music

ranging from the Medieval era to the Modern era (not to be mistaken with the Classical

era, which is a distinction within the realm of classical music). The main reason for this

decision is classical music’s written consistency across history [5]. Music has evolved and

expanded greatly since the days of Mozart and Bach and as a result, much of what is being

created today in popular music has abandoned the concept of formally creating a written

representation of the music. Recent years have seen the greatest decline in non-educational

4

production of sheet music [10]. Luckily, classical music, by virtue of its creation for

performances by individuals other than those composing, as well as its educational value,

has a rich history of written representation. It is still most widely recorded in this manner

today, and thus provides us with a much more stable and wide backlog for analyzation.

This backlog of written classical musical literature is comprised almost entirely

within the medium of musical scores, or sheet music. Sheet music is a visual representation

of music made up of symbols and words which convey all the information a performer

must know to play the piece. Among other information, these symbols are capable of

portraying which notes must be played at what time, the volume at which they are to be

played, and in what rhythm. This manner of recording music started as early as the ancient

Greek and Middle Eastern civilizations where they began using basic music symbols as

written reminders. It wasn’t until the 9th century that Christian Monks began recording

music on sheets. From this point on, the practice exploded in popularity, and has

maintained the same basic structure [10].

2.2 Digital Formats

For hundreds of years, Western music has been represented by means of these musical

scores. This has been relatively unchanged because it is an ideal notation for a musician to

read and perform [10]. With the advent of the digital age, the necessity for a new

representation of written music was realized. This was due to the complex nature of musical

scores. It is quite difficult to teach a computer to parse through the various symbols and

notations of music, making the task of retrieving the data necessary for processing

challenging. As a result, the computer science community was met with the challenge of

creating a new representation of music that could be more easily processed for the studies

to come. Though many were proposed, two have risen above the others in the world of

research, MIDI and **kern musical files. Both have their own unique advantages and

disadvantages.

5

2.2.1 MIDI

First seeing its start in 1981 [11], the Musical Instrument Digital Interface (MIDI) format

is one of the most widely used digital musical formats that exist. By virtue of its creation

for use with electronic synthesizers, MIDI files contain representations of the musical score

that are often recorded via humans playing the score with a synthesizer, though you can

also find hand compiled MIDI representations.

Over time, this format has been adapted for use in scholarly research, with many

toolkits being developed, such as jSymbolic [9], to extract data from the MIDI files.

Because of its widespread use for a variety of functions, the backlog of MIDI scores to be

used for potential research is vast, but also unreliable. This is due to the fact that anyone

with an electronic keyboard can plug it into a computer and create these files, regardless of

their accuracy level. Despite this, we found throughout our survey of previous studies that

MIDI is the most widely used file type in academic research concerning computer music.

2.2.2 **kern

While the MIDI format was created for a wide variety of computer music purposes, a

format known as **kern was created with a much narrower intention. **kern files are

musical representation files which fit within a broader syntax known as ‘Humdrum.’

Described by its creator David Huron as a “general-purpose software system intended to

assist musical research” [12], the software was quite literally designed for use in projects

like this. Researchers Lebar, Chang & Yu [8] used this format in similar research when

attempting to classify musical scores by composer.

The Humdrum software can be split up into two separate entities: The Humdrum

Syntax and the Humdrum Toolkit [12]. Humdrum Syntax is a grammar by which any file

that falls under its guise must adhere to. **kern is a single file type under this syntax, and

indeed the most widely used of them, designed to represent the core information for

common Western Music. The format is capable of representing nearly every nuance found

6

within a musical score, down to the direction the stem of a note is facing on the page. The

other half of the equation, the Humdrum Toolkit, is described by Huron as a toolbox of

‘utilities,’ with over 70 inter-related software tools, which can be used to manipulate any

data that conforms to the Humdrum syntax [12]. These tools, combined with the vast

number of features that can be represented using the Humdrum Syntax, make it an

attractive option in the realm of data mining.

While this format offers many advantages, there are certainly drawbacks to it as

well. Because of its rather limited usage (being designed specifically for research

purposes), the amount of data available in this file type is sparse. There have been a number

of people who have contributed a substantial number of scores encoded in **kern format,

however the encoding process, which must be done entirely by hand, is a tedious one

(though perhaps lends itself to a greater attention to detail), and there will never be a rich

well of files to choose from.

Despite this deficiency, we found the format of **kern to be most compatible with

the task at hand. The Humdrum toolkit offers us an effective way to extract any and all

information about the score we may find useful, and the textual representation is also much

friendlier to interpret on a visual level. With this decision, we began our work in data

mining.

3. Data Mining

Data mining itself is a broad term, and is truly a confluence of many disciplines, including

mathematics, computer science and statistics. The applications of this intellectually

stimulating field are plentiful, diverse, and exciting for those focusing on the topic. In the

scope of our study, data mining provides us with a tool to discover the defining features of

music composition and preserve this information for the computer to use in its future

music generation. The phrase ‘data mining’ defines a rather vague idea, simply described

as “the process of discovering useful information in large data repositories” [13]. In

7

the pursuit of achieving this goal, data mining has been approached using several other

distinct methodologies, such as classification, clustering and association, among others

[13].

While each of these data mining methods have merit, and some may indeed

be useful in future works while attempting to improve the algorithmic music

composition challenge, this study has chosen to focus its attention on the topic of

classification. Classification is defined as “the task of assigning objects to one of

several pre-defined categories” [13]. This objective may be achieved through the use of a

learning scheme that generates a set of rules or patterns by which data instances are

classified into these pre-defined classes. The trained classifier is then able to predict the

classes or categories based on the generated rules [14]. The predictive power of this form

of data mining is one of the driving forces behind our decision to focus on

classification, as a predictive rule-based system provides us a nice backbone upon which

to build a music generator.

3.1 Data Extraction

In order to get the most out of the data mining process, there is a large amount

of preparatory work that must be done to ensure that the information received as

consequence of our work is valuable and significant. Our results are only as valuable as

the system from which they were derived, so it is important to ensure we make the correct

decisions leading up to the actual data mining taking place. Some of these decisions

include dictating which pre-defined classes to supply our classifier, which features we

would like our classifier to look at in making its categorizations, and the pre-processing

and data extraction required to make the data accessible for the actual data mining

process.

3.1.1 Classes

The first thing we needed to do when prepping our data for processing was select the pre-

defined classes by which to separate the data, as the classification

methodology necessitates. In musical classification, there have been studies that have

done this in several manners, whether it be by composer, genre, or even decade. For the

sake of our study, we

8

found it most appropriate to create the classes based upon musical era within the classical

spectrum.

Figure 1 – A timeline displaying the order and generally agreed upon

 dates of the various eras of classical music

There have been several eras by which the style of a classical piece can be defined,

roughly outlined in figure 1. The years in which these eras transitioned between one another

have been debated by experts [5], however it is generally accepted that there are six distinct

eras, ranging from the beginnings of formally composed music in the medieval era to the

wildly innovative and often atonal modern era of classical music. Moreover, students and

scholars of music are able to use their training in aural skills, such as identifying the interval

between any two successive notes, among other musical features, to identify which of these

eras a piece of classical music belongs to. This suggests that there are quantifiable

differences in their structure that make it so and provides us great reason to believe a

computer will be able to identify these differences as well.

Medieval

Renaissance

Baroque

Classical

Romantic
Modern

1150

1400

1600

1750

1830

1920

9

3.1.2 Attributes

Our next step was to decide which attributes we would be basing our classification upon.

In data classification, these attributes – or features – are the sole factors analyzed in an

attempt to generate patterns for separating the data into the pre-defined classes it has been

given [13]. It is therefore important to choose features that are both indicative of the

stylistic-era under which the piece was composed, as well as replicable for the future

generative process. The features decided upon after consideration of a number of factors,

presented in figure 2, are based upon the notion of a musical interval. The task of choosing

these attributes came with two major challenges; one musical and one computational.

Attribute Description

X1 freqUni Ratio at which unison intervals occur (unison/total)

X2 freqStep Ratio at which stepwise intervals occur (step/total)

X3 freqThird Ratio at which third intervals occur (third/total)

X4 freqFourth Ratio at which fourth intervals occur (fourth/total)

X5 freqFifth Ratio at which fifth intervals occur (fifth/total)

X6 freqSixth Ratio at which sixth intervals occur (sixth/total)

X7 freqSeventh Ratio at which seventh intervals occur (seventh/total)

X8 freqOct Ratio at which octave intervals occur (octave/total)

Figure 2 – List and description of attributes used in classification process

By merit of the musical data we are using, there were countless numbers of

attributes through which we had to sift in order to choose our features. As discussed in

section 2.1, a piece of sheet music contains a vast amount of information, and our selected

**kern format does little to narrow down that scope, as it does such an excellent job of

preserving all the information recorded in a traditional score. Our chosen attributes must

be indicative of the era the piece represents, so as to allow the classifier to accurately and

practically determine which era the piece came from.

From a computational standpoint, we wanted to consider features that would lend

themselves to both the classification process, as well as the generation process in the next

10

step of our research. Classification mandates that each feature within its system be flat

rather than structural – meaning that the value can be defined by either a numeric or discrete

value [14]. Because of music’s reliance on mathematics, this factor is not terribly

delimiting, but it does help suggest which features may lend themselves best to the process:

those which are finite and numerically categorized. It behooved us to focus on features

which we could see as easily replicable in a future generative process, meaning features

like dynamics, a feature that indicates how loud a particular section of the musical piece,

would do little good on their own, despite being important to the construction of a musical

piece.

After consideration of these factors, the decision was made to focus upon the

frequency with which certain musical intervals occur within the pieces of music. Before

we delve into why exactly we made this decision, it is important to understand what an

interval is.

Figure 3 – A visual representation of the Chromatic

Circle, the backbone on which Western music has been created

The concept of a musical interval is built upon the very foundation of Western

music: the chromatic circle (Figure 3), a cyclical scale of equal temperament made up of

12 total pitches [15]. A piece of music is comprised of a finite number of these 12 pitches

CB

A

G F
E

D
C#
D

D#
E

F#
G

G#
A

A#
B

CHROMATIC
CIRCLE

11

in linear progression. A musical interval is the distance between any two successive pitches

within the piece, typically ranging from unison to octave (Figure 4). The most basic of

these intervals is defined as an octave, which corresponds to a 2:1 ratio. For instance, we

perceive a pitch at 110 Hz to be an octave below a 220 Hz, both of which represent the

note ‘A’ [15]. Human beings perceive these ratios to be the same pitch, only at a higher or

lower frequency, allowing for the cyclical nature of the scale. We can therefore identify

the interval between any two successive notes based upon this scale. While it is not unheard

of to have music that utilizes other pitches not represented on the chromatic scale (this is a

practice that is observed in many traditional forms of music in the eastern hemisphere), this

scale is the backbone of Western music.

Figure 4 - Visual representation of musical intervals ranging from unison to octave

The first reason for this selection comes from the realm of aural skills, in which it

is common to use musical intervals as a way to identify differences between eras [16].

Though there are a number of features which are often cited when it comes to aurally

distinguishing between eras, intervals are almost always presented as evidence in such

efforts, and their status as a cornerstone of music theory make them an obvious answer to

our query. Using the musical intervals as features in isolation also provides us with the

ability to determine how well it alone can be used to distinguish the era. Secondly, we

found that the basis of intervals is an excellent building block upon which to build a

generative system, which will be touched upon in greater detail later in our discussion.

3.1.3 Pre-Processing

Once all of these important determinations had been made, it was time to clean the data,

and extract the features that had been decided upon. The first step was to collect the data

to be used. Though the available pool of **kern scores are not as vast as desired, we were

able to accumulate 262 unique pieces of classical music from a variety of eras (Figure 5)

12

through two Humdrum databases. It is worth noting that the distribution of data entries

between these eras were not even across all classes, as there are far less pieces of pre-

baroque music that have been encoded using **kern format than that of eras such as the

classical or romantic era, which feature much more notable composers and pieces which

have endured the test of time.

Class Number of Data Entries

Medieval 10

Renaissance 26

Baroque 77

Classical 50

Romantic 70

Modern 29

Total 262

Figure 5 – Distribution of **kern data between the six classes used within our classifier

The next step was to extract the features that we desired to use in the classification

process. This was perhaps the most tedious task, though we were able to do so in a Linux

command line window with a combination of both the Humdrum toolkit, designed for the

**kern file format (and other formats following the Humdrum Syntax), as well as Linux

pattern matching. In the end, we stored the number of times each individual interval

appeared and set it as a ratio against the total number of musical intervals encountered.

We appended these ratios (Figure2), along with the era with which the piece is

categorized (Figure 1), to the end of an .arff (Attribute-Related File Format) file with

appropriate headings. Doing this in a loop, we were able to create one file with all 262

musical scores represented. It is with this document that we begin our classification.

3.2 Classification

Classification is an umbrella term to define the task of separating data into distinct

categories, and as such there are a large variety of methods that can be implemented in

order to achieve the same goal. It became obvious that we would need to test our dataset

13

with a variety of these classification methods in order to receive the best results possible,

and we began work on feeding the data we compiled into five different classification

approaches of varying complexity levels.

The two high-level algorithms we utilized in our tests were Multilayer Perceptron

(MLP) and Logistic Regression. Based upon an artificial neural network, MLPs use layers

of input nodes, output nodes, and two or more layers of hidden nodes to find the most likely

path from our input data (comprised of the aforementioned musical interval attributes) to

an output identifying whether the data falls within a given class (musical era) or not [13].

Logistic Regression on the other hand implements a statistical model built upon the

probability that a certain piece of data falls within a given class or not. While both of these

methods are dichotomous (only have one of two outcomes), they can be used to classify

sets with more than two classes when given the dichotomous options of “within the given

class” or “not within the given class”.

While Naïve Bayes does not use as sophisticated an algorithm as the above outlined

MLP and Logistic Regression models, it is a very well-respected model in the data mining

community, and it indeed performs just as well or better than sophisticated models in some

instances. The premise of this model is simple, based upon Bayes theorem, which provides

a way of calculating the posterior probability of an attribute fitting a defined class [17].

The success of this algorithm lies in the fact that each given attribute is considered

independent of one another. As a result, the most probable class is calculated based upon

each attribute identified separately, and these probabilities are then multiplied against each

other to determine the probability that the piece of data, in this case a musical piece, falls

into a given class.

The last two classifiers we utilized, and the simplest of them, into the category of

rule-based and decision tree induction predictors. We selected one of each such classifiers,

JRip (Rule-Based) and J48 (Decision Tree Induction). JRip uses simple if…then rule

structures to split the data into the given classes [13]. J48 uses a similar system within a

decision tree structure, where there is a leaf node associated with each of the pre-

14

determined classes, and classification rules are derived and placed within the ascending

nodes as the data is analyzed [17].

3.3 Results

Medieval Renaissance Baroque Classical Romantic Modern Average

MLP 0.964 0.958 0.854 0.988 0.836 0.996 0.933

LR 0.981 0.951 0.808 0.921 0.885 0.927 0.885

Naïve 0.938 0.931 0.73 0.889 0.853 0.871 0.838

JRip 0.705 0.841 0.73 0.874 0.704 0.836 0.773

J48 0.798 0.777 0.681 0.804 0.741 0.753 0.753

Figure 6: Results of classifiers on our .arff file, based on AUC of ROC graph.

The chart outlined in Figure 6 show a complete picture of the results received from each of

the five aforementioned methods of classification. Using an n-fold cross validation

approach, the data was partitioned to complete ten iterations of testing. During each

iteration of testing, 9/10ths of the data was assigned to act as a training set, used to educate

the classifier and build its predictive ability. The other 1/10th of the data was designated to

be the test set, used to analyze how well the classifier is able to predict the class the data

belongs to. By the end of our ten iterations, all the data has been used as part of a test set

and we have a full picture of how accurately the process was able to blindly classifier our

data.

In analyzing the results, we chose to focus on the value of the AUC (area under the

curve) of a Receiver Operating Characteristic graph as an indication of the success of our

classifiers. The reason for this decision is due to the inconsistent number of data pieces

between each class represented (Figure 5). The Receiver Operating Characteristic (ROC)

Curve maps the True Positive Rate (true positives / all positives) against the False Positive

Rate (false positives / all negatives). This produces a curve that will represent how often a

piece is mistakenly identified as other than its proper class, rather than produce a true

precision rate, which may be skewed as a result of the uneven distribution of data. A

perfectly classified set of data would have an AUC of 1.

15

As seen in the charts, our five classifier models performed at varying levels of

accuracy. The most complex algorithm used, the Multilayer Perceptron model, produced

AUC rates of .933, while our rule-based and decision tree classifiers lagged behind with

AUC rates of .773 and .753 respectively. Perhaps the biggest surprise among our classifiers

was the Naïve Bayes model, with an excellent AUC rate of .838, despite the algorithm

being quite simple and intuitive.

4. Generation

After analyzing the results of the classifiers, the first step was to determine which classifier

was most compatible with our desire to create an algorithmic composition software. On

top of providing class predictions, each classifier supplied a model, intended to inform the

reader on how it’s decision rules were devised. These models are important, as they are the

building block upon which we intend to build our music generator. Of the five classifiers,

the first two eliminated were the rule-based and decision tree models, JRip and J48. While

the classifiers provided positive features, such as easy to understand outputs that outlined

the rules used explicitly, it was clear that these approaches were simply not of the same

accuracy as their more complex counterparts.

Of our three remaining classifiers, we chose next to eliminate the complex

classifiers, Multilayer Perceptron and Logistic Regression. Despite these algorithms

statistically doing a better job of classifying the musical scores, the complex models of

MLPs and Logistic Regression, based upon mathematical algorithms instead of patterns

and rules, did not give a satisfactorily digestible answer as to why the classes were

separated the way they were. For this reason, it was difficult to conceive of a way to use

these classifiers to inform the generative process of any algorithmic composition software.

We decided to use the knowledge gained from the Naïve Bayes model because it

supplied us with a nice middle ground between the previously mentioned choices. It

provides an easy, statistical model for us to easily adapt to the generative process. On top

16

of this, the Bayes model yielded a more respectable AUC value (.838) than the other simple

algorithms of J48 (.753) and JRip (.773).

4.1 Method

In perhaps our most contributory work, we move to the generation process of the

experiment. The task laid ahead of us was to find a way to utilize the knowledge gained

from our Naïve Bayes classifier to inspire the algorithmic composition of music. After

consideration of the classifier results and output, we decided to turn our attention to an

avenue of algorithmic composition that has been less explored than some others such as

artificial neural networks and formal grammars: Cellular automata.

4.1.1 Cellular Automata

The concept of cellular automata (Singular: Automaton) was first proposed by John von

Neumann in the 1950’s and reached a peak in popularity during the 70’s due to John

Conway’s now famous “Game of Life” 3-D cellular automata model [17]. Based upon the

biological cellular replication process, a cellular automata model is represented by a grid

of cells, each of which is represented as one of a finite number of states (i.e. “ON” or

“OFF”). This grid can be of any finite number of dimensions. The grid progresses in

temporally-linear fashion, with each cell shifting states at any given step in time. This shift

of the cell states is based upon two factors: the states of the surrounding cells in a pre-

determined area defined as it’s neighborhood, and a set of transitionary rules which dictate

the outcome based on that neighborhood [17]. One of the most famous example of a cellular

automata, the Wolfram Elementary Algorithms (Figure 7), adds a new line of cells below

the previous generated line with each sequential step in time, with the states of these new

cells based upon a neighborhood of the three cells directly above it, and a selected

transitionary rule set [18]. With 256 possible rule sets, there are countless possibilities of

how the algorithm can compose the sequence of cells, and many produce interesting

patterns, such as fractals.

17

Figure 7 - Rule 250 in the Wolfram Elementary Algorithm Suite,

a popular venture into cellular automata modeling

Rule model’s such as Wolfram’s provide a unique avenue of exploration for

musical composition. The patterns found within these automata rules provide a built-in

approach to chaotic music composition. However, those preliminary cellular automata

models were only able to create music in an “uncontrolled” way and resulted in music

that was not necessarily homogeneous with any preconceived style [6]. The next

natural step was to create transitionary rules that were informed by the true tendencies of

music, so as to control the music being generated.

4.1.2 Adapted Musical Model

In an attempt to explore this avenue of musically informed cellular automata, we devised

a system inspired by the aforementioned Wolfram Algorithm. Using cells that have one of

two states – “On” and “Off” – we are able to interpret a string of these cells as a binary

sequence. We chose to map these cells as four-byte binary sequences (16 possible

combinations) to the 12 notes of the chromatic circle, with the note C doubled to ease

generation given the cyclical nature of the scale. While this system does not currently take

into account rhythm, a rest musical character was also encoded for potential future works,

as well as terminate and start. A comprehensive look at this binary-mapping is outlined in

figure 8.

18

Figure 8 – A table mapping the values of a four-bit binary sequence to

the values within the chromatic circle for use in conjunction with

cellular automata musical composition

After the groundwork of our cellular automata model was laid out, it was time to

create transitionary rules inspired by the intelligence gained through our classification

process. At the beginning of each transition, a random decimal value between 0.0 and 1.0

was generated. The Naïve Bayes classifier provided a statistical output from which we were

able to derive the average probability of any single interval occurring at a given step in

time. Figure 9 demonstrates how the probability of a single step interval is represented in

this output. We were therefore able to map our randomly generated decimal value to one

of the eight interval possibilities. Whichever interval corresponded to the randomly

generated decimal value was determined to be the distance between the previous note and

our new note. The states of each cell in the four-byte sequence would therefore transition

from the previous note’s binary representation to a new binary sequence representing our

newly found note. In essence, we are generating the interval between the notes, rather than

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

START
C

D

E
F

G

A

D
C

Rest
TERMINATE

C#/D

D#/E

F#/G

G#/A

A#/B

Binary Represenation of Notes

19

the note itself. Along with creating more aurally pleasing musical phrases, this helps ease

the challenges of representing key signatures within pieces of music.

Figure 9 – An example of the statistical output provided by the Naïve Bayes classifier

pertaining to the frequency of stepwise intervals

To help visualize this process, figure 10 provides a mock example. In this

example, we are attempting to replicate the medieval era. Thus, the mean frequency

values match those discovered by our Naïve Bayes classifier for the medieval era.

The decimal value .6197 is randomly generated and mapped within the mean frequencies

of the medieval era. It is determined that the decimal value falls within the stepwise

interval partition of our chart. Therefore, if we were ascending from the note C, or 0001,

we could arrive at D, or 0011.

Figure 10 – A visual representation of how a random decimal number is

mapped to the probabilities of each musical interval

.6197

20

To further demonstrate the potentials of this system, the software gives the user the

ability to select which era of music they wish to replicate. At the click of a button, the

system is able to swap the statistics used in transitionary rule generation to those indicated

by the Naïve Bayes output to correspond with the user’s indicated era, so as to encourage

the system to follow the tendencies of the desired era. This feature helps the software stand

out and puts to use the predictive power of our classification approach to rule generation.

The last feature we implemented was a range-check system. In preliminary testing,

we found that allowing the note to change in ascending or descending fashion on a 50-50

basis, while relatively common sight within the world of music, was not controlled enough

for our experiment, as the true randomness allowed for many algorithmic compositions to

get out of hand in terms of range. We therefore found the average distance between the

highest note and lowest note within an era of music and dictated that the composition

software stays within that range when composing. This allows music that has traditionally

had more range to flourish in this sense, while static pieces from earlier eras stick within a

more contained range of notes.

4.2 Results Analysis

The result of our efforts is a composition software that is able to imitate any one of six

distinct eras of classical music. The system linearly produces a sequence of successive

notes based upon the intervals between the previous note and the newly generated note.

The pitches are outputted as they are generated using a Java MIDI import at a constant rate

that can be changed in the code (currently set to one note every 750 milliseconds).

With the system functioning in the desired fashion, our next step was to analyze

just how well our composition software was able to imitate the various classical eras. We

chose to implement two different methods of analyzation, to see how well the system was

able to reproduce the various eras in both a mathematical and an aural fashion.

21

4.2.1 Machine Analyzation

In our first of two efforts to analyze the results of our compositions, we used a machine

approach closely tied to the ways in which we created the software – classification. While

we previously described a ‘n-fold cross verification’ approach during our initial

classification process, we decided upon using a ‘test set’ approach for the following

exercise. In this approach, we feed the classifier a set of data points known as a training set

to develop its knowledge on what distinguishes the different classes, and then feed it a set

of data points known as a test set to see how accurately it is able to classify those pieces

within the given classes.

To do this, we generated sixty pieces of algorithmically composed music – ten

within each era and each piece with a length of 100 notes. We extracted from these

compositions the same features we outlined in section 2.1.2, and translated the results into

an .arff file mirroring the structure of our previously used .arff file. We then used this file

as our test set and provided the file from our initial classification exercise as a training set.

We ran these classification techniques on four of the five classifiers used in our original

exercise, excluding the Naïve Bayes classifier we used to inform the composition software,

as it would provide an unnaturally insightful look into the data, resulting in skewed results.

The classifiers’ results are displayed in the chart below (Figure 11).

Medieval Renaissance Baroque Classical Romantic Modern Average

MLP 0.942 0.9 0.858 0.918 0.754 0.986 0.893

LR 0.978 0.938 0.824 0.946 0.836 0.998 0.92

JRip 0.852 0.753 0.662 0.816 0.582 0.786 0.742

J48 0.812 0.757 0.757 0.8 0.678 0.826 0.772

Figure 11: The results of our algorithmic compositions being classified

against a training set of the original 262 **kern scores

The classifiers performed quite well in determining the era which our composition

software was attempting to replicate. In fact, the classifiers success rates were nearly

identical to the success rates they experienced with traditionally composed pieces of music,

22

with their short comings being seen in the same categories. The only classifier that saw

significant changes in performance was that of the logistic regression approach, which saw

the average ROC percentage jump from .885 to .92. These results alone are highly

encouraging.

4.2.2 Expert Analyzation

To double down on our analysis, we decided to take a human approach to the matter as

well and consulted a number of experts in music. In total, five scholars of music took part

in a survey to determine how well they could distinguish the success of our classifier. The

exercise was simple: We generated three 15 second clips of music from each era and

presented them together in a random order to the experts. We asked at the conclusion of

each triplet for the experts to indicate which era they believed the composition software

was meant to represent, and their confidence on a scale from 1-5. We also gave the experts

an opportunity to explain how they arrived at that answer, and why they gave the

confidence level they did.

The results of our expert analysis were not as encouraging as the machine

approach. Of our experts, only one was able to predict 50% of the eras correctly, and

one failed to correctly predict a single era. The confidence levels of our experts

hovered between one and three for most questions, with a distinct increase in both

confidence and accuracy with the modern era, which four of our five experts correctly

predicted.

5. Discussion

It is clear that the results of our expert analysis tell a very different story than the machine

analysis. While our classifiers were able to tell which era of music was being

replicated with our composition software to a high level of accuracy, experts in music

had a much harder time doing so, with a total success rate of 20% when presented the

option of all six eras. Compared to true randomness, which would accurately predict the

era 16.6% of the time, this is an improvement, albeit slight.

23

Because of the nature of the process, it comes as no surprise that our two methods

of analysis yielded such different results. This is likely because of the limited scope with

which we approached the problem, deciding to focus on a very select number of features,

even though the differences in musical styles between the eras is defined by many more

features, such as rhythm and harmony (A distinction many of our experts pointed out

during their survey), as well as the types of instruments being used in the pieces, which is

ignored by using a MIDI output.

5.1 Conclusion

From these results, the most evident conclusion is that there is more work to do. The gap

between our two methods of analysis show how far we are from creating a

musically homogeneous algorithmic composition system. Despite this, it is certainly

promising that the features we did choose to use in the experiment yielded such high

results in our machine evaluation. This shows that, even if the music is not very aurally

identifiable yet, trained AI has the ability to distinguish the differences. This result

indicates that the project has potential moving forward, and better results may be

achieved by integrating more defining features of classical music.

5.2 Applications

For now, it seems the application of this software lays firmly in the category of

‘composition inspiration software’ that encompasses so much of the work that has been

done in the field, though it certainly shows signs that it has the potential to be more. The

success of our classifiers in determining which era the piece was meant to replicate

indicates that there is a lot of potential in the system, when put to use in the correct fashion.

The cellular automata system also lends itself to be used with different classifiers, or

perhaps even different types of music, as it has been designed to be adapted to any kind of

transitionary rule set.

24

5.3 Future Works

At the end of the study, our thoughts on moving forward are much the same as they were

when we began. The prospect of hybridizing the various methods of algorithmic music

composition with data mining is a vast well of potential which this study has only begun

to scratch the surface of. Based on the experts’ opinions that our focus on the feature of

musical intervals was not enough to encompass all the characteristics of a classical musical

era implies that more hybridization must be done with this system to make it more aurally

accurate.

There are a number of avenues that could be explored in the pursuit of improving

the system in such a manner. This could include varying the instrumentation based on

which era it derives from, factoring into the composition rhythm and dynamics, and

creating a two-line system that generates harmonious interval sequences. Another feature

that could yield positive results would be to adapt the system to employ an nth-order

technique, much like the progression of the Illiac Suite [7], where we no longer only

consider the last note in our generative process. This would allow the music to flow with

more natural phrasing and would allow the intervals to take into account where it appears

in the musical phrase. Lastly, improvements could be made to the range-check system

implemented in this study, which would go hand-in-hand with the phrasing achieved in the

nth-order additions.

25

1 /*
2 * Algorithmic Music Composition Software
3 * @author Tom Donald Richmond
4 * @version 2.0
5 * @since 02/12/17
6 */
7
8 import java.awt.BorderLayout;
9 import java.awt.Color;

10 import java.awt.Dimension;
11 import java.awt.Graphics;
12 import java.awt.event.ActionEvent;
13 import java.awt.event.ActionListener;
14 import java.util.ConcurrentModificationException;
15
16 import javax.swing.JButton;
17 import javax.swing.JFrame;
18 import javax.swing.JPanel;
19 import javax.swing.Timer;
20 import javax.swing.JOptionPane;
21
22 import javax.sound.midi.*;
23
24 public class CellularAutomataMusic extends JFrame{
25
26 private static final Color white = Color.WHITE, black = Color.BLACK;
27
28 private Board board;
29 private JButton start_pause, medieval, renaissance, baroque,

classical, romantic, modern;
30 // variables to track total number of interval occurrences
31 int t;
32 // variables to track the occurrences of each interval for testing
33 int[] totals = new int[8];
34 // variable to hold string value representing era
35 String era;
36 // Boolean variable representing
37 Boolean analysis = false;
38
39 /*
40 * Creates blank board to feature automata, with start button to
41 * commence composition, as well as buttons to select epoch

6. Appendix

26

CellularAutomataMusic.java

42 * */
43 public CellularAutomataMusic(){
44
45 board = new Board();
46 board.setBackground(white);
47
48 /*
49 * Create buttons for start/stop
50 * */
51 start_pause = new JButton("Compose");
52 start_pause.addActionListener(board);
53
54 /*
55 * Create buttons for epoch selection
56 * */
57 medieval = new JButton("Medieval");
58 medieval.addActionListener(board);
59 renaissance = new JButton("Renaissance");
60 renaissance.addActionListener(board);
61 baroque = new JButton("Baroque");
62 baroque.addActionListener(board);
63 classical = new JButton("Classical");
64 classical.addActionListener(board);
65 romantic = new JButton("Romantic");
66 romantic.addActionListener(board);
67 modern = new JButton("Modern");
68 modern.addActionListener(board);
69
70 /*
71 * Subpanel for epoch selection
72 * */
73 JPanel subPanel = new JPanel();
74 subPanel.setLayout(new java.awt.GridLayout(6, 1));
75 subPanel.add(medieval);
76 subPanel.add(renaissance);
77 subPanel.add(baroque);
78 subPanel.add(classical);
79 subPanel.add(romantic);
80 subPanel.add(modern);
81
82 /*
83 * Add buttons to layout

27

CellularAutomataMusic.java

84 * */
85 this.add(board, BorderLayout.CENTER);
86 this.add(start_pause, BorderLayout.SOUTH);
87 this.add(subPanel, BorderLayout.WEST);
88 //this.setLocationRelativeTo(null);
89
90 this.setDefaultCloseOperation(EXIT_ON_CLOSE);
91 this.pack();
92 this.setVisible(true);
93
94 }
95
96 public static void main(String args[]){
97 new CellularAutomataMusic();
98 }
99
100 /*
101 * Board object featuring 4x15 Automata model, black and white values
102 * */
103 private class Board extends JPanel implements ActionListener{
104
105 // Variables for board dimensions
106 private final Dimension DEFAULT_SIZE = new Dimension(15, 4);
107 private final int DEFAULT_CELL = 40, DEFAULT_INTERVAL = 100,

DEFAULT_RATIO = 50;
108 private Dimension board_size;
109 private int cell_size, interval, fill_ratio;
110
111 //boolean whether the composer is active
112 private boolean run;
113 // Timer for playing notes evenly
114 private Timer timer;
115 // variables to ensure the composer runs linearly
116 public int myOctave = 5, currentDiff = 0, range;
117 // variable to store the probability of each interval
118 double uni, step, third, fourth, fifth, sixth, seventh, octave;
119 // boolean to see if an epoch has been selected
120 boolean selected = false;
121 //grid to display automata-model
122 private Color[][] grid;
123
124

28

CellularAutomataMusic.java

125 /*
126 * Default constructor for Board object
127 */
128 public Board(){
129 board_size = DEFAULT_SIZE;
130 cell_size = DEFAULT_CELL;
131 interval = DEFAULT_INTERVAL;
132 fill_ratio = DEFAULT_RATIO;
133 run = false;
134
135
136 grid = new Color[board_size.height + 1][board_size.width + 1];
137 for (int h = 0; h < board_size.height; h++)
138 for (int w = 0; w < board_size.width; w++){
139 //int r = (int)(Math.random() * 100);
140 //if (r >= fill_ratio)
141 //grid[h][w] = black;
142 //else grid[h][w] = white;
143 grid[h][w] = white;
144 }
145 timer = new Timer(interval, this);
146 }
147
148 @Override
149 public Dimension getPreferredSize(){
150 return new Dimension(board_size.height * cell_size,

board_size.width * cell_size);
151 }
152
153 @Override
154 public void paintComponent(Graphics g){
155 super.paintComponent(g);
156 for (int h = 0; h < board_size.height; h++){
157 for (int w = 0; w < board_size.width; w++){
158 try{
159 if (grid[h][w] == black)
160 g.setColor(black);
161 else if (grid[h][w] == white)
162 g.setColor(white);
163 g.fillRect(h * cell_size, w * cell_size,

cell_size, cell_size);
164 }

29

CellularAutomataMusic.java

165 catch (ConcurrentModificationException cme){}
166 }
167 }
168 }
169
170 /*
171 * Method to re-adjust the probability values when new epoch is

selected
172 * @param String representing epoch
173 */
174 public void changeEpoch(String epoch) {
175 if(epoch=="medieval") {
176 playNote(60);
177 uni = 0.1484;
178 step = 0.4998;
179 third = 0.1178;
180 fourth = 0.0371;
181 fifth = 0.0234;
182 sixth = 0.004;
183 seventh = 0.0014;
184 octave = 0.0057;
185 range = 14;
186 era = "Medieval";
187 }
188 else if(epoch=="renaissance") {
189 playNote(62);
190 uni = 0.2571;
191 step = 0.4305;
192 third = 0.1061;
193 fourth = 0.0728;
194 fifth = 0.048;
195 sixth = 0.0048;
196 seventh = 0.0006;
197 octave = 0.0094;
198 range = 22;
199 era = "Renaissance";
200 }
201 else if(epoch=="baroque") {
202 playNote(64);
203 uni = 0.2623;
204 step = 0.3558;
205 third = 0.1114;

30

CellularAutomataMusic.java

206 fourth = 0.0728;
207 fifth = 0.0442;
208 sixth = 0.0292;
209 seventh = 0.0108;
210 octave = 0.0379;
211 range = 23;
212 era = "Baroque";
213 }
214 else if(epoch=="classical") {
215 playNote(66);
216 uni = 0.148;
217 step = 0.3964;
218 third = 0.1713;
219 fourth = 0.0818;
220 fifth = 0.0574;
221 sixth = 0.0435;
222 seventh = 0.0195;
223 octave = 0.0353;
224 range = 25;
225 era = "Classical";
226 }
227 else if(epoch=="romantic") {
228 playNote(68);
229 uni = 0.207;
230 step = 0.2791;
231 third = 0.1112;
232 fourth = 0.0649;
233 fifth = 0.0416;
234 sixth = 0.0282;
235 seventh = 0.0123;
236 octave = 0.0217;
237 range = 30;
238 era = "Romantic";
239 }
240 else if(epoch=="modern") {
241 playNote(70);
242 uni = 0.3086;
243 step = 0.2153;
244 third = 0.1011;
245 fourth = 0.1053;
246 fifth = 0.0723;
247 sixth = 0.0591;

31

CellularAutomataMusic.java

248 seventh = 0.0364;
249 octave = 0.0571;
250 range = 37;
251 era = "Modern";
252 }
253 else {
254 System.out.println("Woah, how'd you manage that bud?");
255 }
256 }
257
258 /*
259 * Method designed to generate a new musical note value based on

given previous note value
260 * @param int prevVal
261 * @returns int newVal
262 * */
263 public int ruleGenerator(int prevVal){
264 if (prevVal == 0){
265 return 1;
266 }
267
268 /* Sets ascLim and descLim to half of the average range of the
269 * given epoch. DescLim gets the ceiling arbitrarily*/
270 int ascLim = range/2;
271 int descLim= (range/2) + (range%2);
272
273 double running = 0.0;
274 double value = Math.random();
275
276 int newVal;
277 int diff = 0;
278 int direction = (int)(Math.random()*2);
279
280 /* determines before each note whether it was generated to be

ascending
281 * or descending. This process is regulated with ascLim and

descLim */
282 boolean ascending = false;
283 if(direction == 1)
284 ascending = true;
285
286 /* Resets the valFound var to false for next note generation

*/
32

CellularAutomataMusic.java
286 /* Resets the valFound var to false for next note generation

*/
287 boolean valFound = false;
288
289 /* checks which range the generated number falls in and

produces a
290 * note based on this value. Once note is found, valFound is

set to
291 * true, and no other if statements are reached. It will

access each
292 * if statement until the correct is found, increasing running

total
293 * as it goes. */
294 if (value <= uni){
295 totals[0]+=1;
296 t+=1;
297 diff = 0;
298 valFound = true;
299 System.out.println("Unison");
300 }
301 running += uni;
302 if ((value <= step + running) && valFound == false){
303 totals[1]+=1;
304 t+=1;
305 diff = 1;
306 valFound = true;
307 System.out.println("Step");
308 }
309 running += step;
310 if (value <= third + running && valFound == false){
311 totals[2]+=1;
312 t+=1;
313 diff = 2;
314 valFound = true;
315 System.out.println("Third");
316 }
317 running += third;
318 if (value <= fourth + running && valFound == false){
319 totals[3]+=1;
320 t+=1;
321 diff = 3;
322 valFound = true;
323 System.out.println("Forth");

33

CellularAutomataMusic.java

324 }
325 running += fourth;
326 if (value <= fifth + running && valFound == false){
327 totals[4]+=1;
328 t+=1;
329 diff = 4;
330 valFound = true;
331 System.out.println("Fifth");
332 }
333 running += fifth;
334 if (value <= sixth + running && valFound == false){
335 totals[5]+=1;
336 t+=1;
337 diff = 5;
338 valFound = true;
339 System.out.println("Sixth");
340 }
341 running += sixth;
342 if (value <= seventh + running && valFound == false){
343 totals[6]+=1;
344 t+=1;
345 diff = 6;
346 valFound = true;
347 System.out.println("Seventh");
348 }
349 running += seventh;
350 if (value <= octave + running && valFound == false){
351 totals[7]+=1;
352 t+=1;
353 diff = 7;
354 valFound = true;
355 System.out.println("Octave");
356 }
357
358 //System.out.println((currentDiff+diff) +": total diff");
359 if (ascending && currentDiff + diff >= ascLim) {
360 System.out.println("Switched, too high");
361 ascending = false;
362 }
363 if (!ascending && -1*(currentDiff - diff) >= descLim) {
364 System.out.println("Switched, too low");
365 ascending = true;

34

CellularAutomataMusic.java

366 }
367 System.out.println("Ascending = "+ascending);
368 if(ascending){
369 currentDiff += diff;
370 System.out.println(currentDiff);
371 newVal = prevVal;
372 for (int i = 0; i < diff; i++){
373 if (newVal == 5 || newVal == 12)
374 newVal += 1;
375 else
376 newVal += 2;
377 if (newVal > 12) {
378 myOctave++;
379 newVal -= 12;
380 }
381 }
382 }
383 else{
384 currentDiff -= diff;
385 System.out.println(currentDiff);
386 newVal = prevVal;
387 for (int i = 0; i < diff; i++){
388 if (newVal == 6 || newVal == 13 || newVal == 1)
389 newVal -= 1;
390 else
391 newVal -= 2;
392 if (newVal < 1) {
393 newVal += 12;
394 myOctave--;
395 }
396 }
397 }
398 System.out.println(newVal + " " + ascending);
399 int noteVal = toNote(newVal, ascending);
400
401 //System.out.println(prevVal);
402 //newVal = 1+((int)(Math.random()*12));
403 return noteVal;
404 }
405
406 /*
407 * Method designed to generate a new musical note value based on

given previous note value
35

CellularAutomataMusic.java
407 * Method designed to generate a new musical note value based on

given previous note value
408 * @param int prevVal
409 * @returns int newVal
410 * */
411 public void ruleGeneratorAnalysis(){
412
413 double running = 0.0;
414 double value = Math.random();
415
416 /* Resets the valFound var to false for next note generation

*/
417 boolean valFound = false;
418
419 /* checks which range the generated number falls in and

produces a
420 * note based on this value. Once note is found, valFound is

set to
421 * true, and no other if statements are reached. It will

access each
422 * if statement until the correct is found, increasing running

total
423 * as it goes. */
424 if (value <= uni){
425 totals[0]+=1;
426 t+=1;
427 valFound = true;
428 }
429 running += uni;
430 if ((value <= step + running) && valFound == false){
431 totals[1]+=1;
432 t+=1;
433 valFound = true;
434 }
435 running += step;
436 if (value <= third + running && valFound == false){
437 totals[2]+=1;
438 t+=1;
439 valFound = true;
440 }
441 running += third;
442 if (value <= fourth + running && valFound == false){
443 totals[3]+=1;

36

CellularAutomataMusic.java

444 t+=1;
445 valFound = true;
446 }
447 running += fourth;
448 if (value <= fifth + running && valFound == false){
449 totals[4]+=1;
450 t+=1;
451 valFound = true;
452 }
453 running += fifth;
454 if (value <= sixth + running && valFound == false){
455 totals[5]+=1;
456 t+=1;
457 valFound = true;
458 }
459 running += sixth;
460 if (value <= seventh + running && valFound == false){
461 totals[6]+=1;
462 t+=1;
463 valFound = true;
464 }
465 running += seventh;
466 if (value <= octave + running && valFound == false){
467 totals[7]+=1;
468 t+=1;
469 valFound = true;
470 }
471
472 /* When the composer has generated 100 notes,
473 * it automatically calculates the results and prints
474 * for analysis process */
475 if(t==100) {
476 System.out.println(kernResults());
477 //JOptionPane.showMessageDialog(null,kernResults());
478 clearStats();
479 }
480 }
481
482 /*
483 * Method that takes note value representation from binary as

integer, prints corresponding
484 * value and plays note using MIDI output

37

CellularAutomataMusic.java

485 * @param int val - Value of note (1-13) generated by the rule
system

486 * @returns String letter value equivelant to corresponding int
value

487 * */
488 public int toNote(int val, Boolean asc){
489 int noteVal;
490 int C = myOctave * 12;
491
492 if(val == 1 || val == 13){
493 noteVal = C+0;
494 System.out.println("C");
495 }
496 else if(val == 2){
497 noteVal = C+1;
498 System.out.println("C#/D-");
499 }
500 else if(val == 3){
501 noteVal = C+2;
502 System.out.println("D");
503 }
504 else if(val == 4){
505 noteVal = C+3;
506 System.out.println("D#/E-");
507 }
508 else if(val == 5){
509 noteVal = C+4;
510 System.out.println("E");
511 }
512 else if(val == 6){
513 noteVal = C+5;
514 System.out.println("F");
515 }
516 else if(val == 7){
517 noteVal = C+6;
518 System.out.println("F#/G-");
519 }
520 else if(val == 8){
521 noteVal = C+7;
522 System.out.println("G");
523 }
524 else if(val == 9){

38

CellularAutomataMusic.java

525 noteVal = C+8;
526 System.out.println("G#/A-");
527 }
528 else if(val == 10){
529 noteVal = C+9;
530 System.out.println("A");
531 }
532 else if(val == 11){
533 noteVal = C+10;
534 System.out.println("A#/B-");
535 }
536 else if(val == 12){
537 noteVal = C+11;
538 System.out.println("B");
539 }
540 else {
541 return 0;
542 }
543 //System.out.println(noteVal);
544 playNote(noteVal);
545 return val;
546 }
547
548 /*
549 * (non-Javadoc)
550 * Action Listener for all buttons, compose, terminate, medieval,
551 * renaissance, baroque, classical, romantic and modern.
552 * @see

java.awt.event.ActionListener#actionPerformed(java.awt.event.ActionEvent)
553 */
554 public void actionPerformed(ActionEvent e) {
555
556 //reads binary value of last sequence
557 int a = 0, b = 0, c = 0, d = 0, val = 0;
558
559 //counts binary from board for conversion to decimal
560 if (grid[0][board_size.width-1] == black)
561 a = 1;
562 if (grid[1][board_size.width-1] == black)
563 b = 1;
564 if (grid[2][board_size.width-1] == black)
565 c = 1;

39

CellularAutomataMusic.java

566 if (grid[3][board_size.width-1] == black)
567 d = 1;
568
569 //converts binary sequence into decimal with variable val
570 if(a==1)
571 val+=8;
572 if(b==1)
573 val+=4;
574 if(c==1)
575 val+=2;
576 if(d==1)
577 val+=1;
578
579 //shifts bottom n-1 sequences up to make room for next

sequence
580 for (int h = 0; h < board_size.height; h++){
581 for (int w = 0; w < board_size.width-1; w++){
582 grid[h][w] = grid[h][w+1];
583 }
584 }
585
586 //repaints the bottom line sequence based on rule
587 if (e.getSource().equals(timer) && analysis == false){
588 int newNote = ruleGenerator(val);
589
590 if (newNote >= 8){
591 grid[0][board_size.width-1] = black;
592 newNote = newNote-8;
593 }
594 else
595 grid[0][board_size.width-1] = white;
596 if (newNote >= 4){
597 grid[1][board_size.width-1] = black;
598 newNote = newNote-4;
599 }
600 else
601 grid[1][board_size.width-1] = white;
602 if (newNote >= 2){
603 grid[2][board_size.width-1] = black;
604 newNote = newNote-2;
605 }
606 else

40

CellularAutomataMusic.java

607 grid[2][board_size.width-1] = white;
608 if (newNote >= 1){
609 grid[3][board_size.width-1] = black;
610 newNote = newNote-1;
611 }
612 else
613 grid[3][board_size.width-1] = white;
614 repaint();
615 Color[][] newGrid = new Color[board_size.height]

[board_size.width];
616 }
617
618 //repaints the bottom line sequence based on rule
619 if (e.getSource().equals(timer) && analysis == true){
620 ruleGeneratorAnalysis();
621 }
622
623 //Start-Pause button processing
624 else if(e.getSource().equals(start_pause)){
625 if(run){
626 timer.stop();
627 //JOptionPane.showMessageDialog(null,printResults());
628 JOptionPane.showMessageDialog(null,printResults());
629 start_pause.setText("Compose");
630 }
631 else {
632 if (selected) {
633 timer.restart();
634 start_pause.setText("Terminate");
635 }
636 else {
637 JOptionPane.showMessageDialog(null, "Must first

select an epoch from which to compose");
638 run = !run;
639 }
640 }
641 run = !run;
642 }
643
644 //Medieval button processing
645 else if(e.getSource().equals(medieval)){
646 medieval.setEnabled(false);

41

CellularAutomataMusic.java

647 renaissance.setEnabled(true);
648 baroque.setEnabled(true);
649 classical.setEnabled(true);
650 romantic.setEnabled(true);
651 modern.setEnabled(true);
652 changeEpoch("medieval");
653 selected = true;
654 }
655 //Renaissance button processing
656 else if(e.getSource().equals(renaissance)){
657 medieval.setEnabled(true);
658 renaissance.setEnabled(false);
659 baroque.setEnabled(true);
660 classical.setEnabled(true);
661 romantic.setEnabled(true);
662 modern.setEnabled(true);
663 changeEpoch("renaissance");
664 selected = true;
665 }
666 //Baroque button processing
667 else if(e.getSource().equals(baroque)){
668 medieval.setEnabled(true);
669 renaissance.setEnabled(true);
670 baroque.setEnabled(false);
671 classical.setEnabled(true);
672 romantic.setEnabled(true);
673 modern.setEnabled(true);
674 changeEpoch("baroque");
675 selected = true;
676 }
677 //Classical button processing
678 else if(e.getSource().equals(classical)){
679 medieval.setEnabled(true);
680 renaissance.setEnabled(true);
681 baroque.setEnabled(true);
682 classical.setEnabled(false);
683 romantic.setEnabled(true);
684 modern.setEnabled(true);
685 changeEpoch("classical");
686 selected = true;
687 }
688 //Romantic button processing

42

CellularAutomataMusic.java

689 else if(e.getSource().equals(romantic)){
690 medieval.setEnabled(true);
691 renaissance.setEnabled(true);
692 baroque.setEnabled(true);
693 classical.setEnabled(true);
694 romantic.setEnabled(false);
695 modern.setEnabled(true);
696 changeEpoch("romantic");
697 selected = true;
698 }
699 //Modern button processing
700 else if(e.getSource().equals(modern)){
701 medieval.setEnabled(true);
702 renaissance.setEnabled(true);
703 baroque.setEnabled(true);
704 classical.setEnabled(true);
705 romantic.setEnabled(true);
706 modern.setEnabled(false);
707 changeEpoch("modern");
708 selected = true;
709 }
710 }
711 }
712
713 /*
714 * Method to play note value using MIDI synthesizer based upon input

note
715 * @param int representing the MIDI value of desired note.
716 */
717 public void playNote(int i) {
718 try{
719 /* Create a new Synthesizer and open it.
720 */
721 Synthesizer midiSynth = MidiSystem.getSynthesizer();
722 midiSynth.open();
723
724 //get and load default instrument and channel lists
725 Instrument[] instr =

midiSynth.getDefaultSoundbank().getInstruments();
726 MidiChannel[] mChannels = midiSynth.getChannels();
727
728 midiSynth.loadInstrument(instr[0]);//load an instrument

43

CellularAutomataMusic.java

729 mChannels[0].noteOff(i);//turn off the previous note
730 mChannels[0].noteOn(i, 120);//On channel 0, play note number i

with velocity 120
731 try {
732 //Following line controls duration of notes played. 1000

used for samples of 30 seconds. 750 used for samples of 15 seconds
733 Thread.sleep(750); // wait time in milliseconds to control

duration
734 }
735 catch(InterruptedException e) {}
736 }
737 catch (MidiUnavailableException e) {}
738 }
739
740 /*
741 * method that returns string that prints composition statistics for

visual analysis
742 * @returns String statistics
743 */
744 public String printResults() {
745 return "Total length of composition: "+t+"\n"
746 +"\tStatistics:\n"
747 +"\nUnison:\t "+((double)totals[0]/t)
748 +"\nStep:\t "+((double)totals[1]/t)
749 +"\nThird:\t "+((double)totals[2]/t)
750 +"\nForth:\t "+((double)totals[3]/t)
751 +"\nFifth:\t "+((double)totals[4]/t)
752 +"\nSixth:\t "+((double)totals[5]/t)
753 +"\nSeventh:\t "+((double)totals[6]/t)
754 +"\nOctave:\t "+((double)totals[7]/t);
755 }
756
757 /*
758 * method that returns string that prints composition statistics for

analysis
759 * @returns String statistics
760 */
761 public String kernResults() {
762 //variable to store percentage of most common interval
763 int max = 0;
764
765 // computes the most common interval

44

CellularAutomataMusic.java

766 for(int i = 0; i<8;i++) {
767 if(totals[i] > max){
768 max = totals[i];
769 }
770 }
771
772 //returns expected String output based on totals array and above

computation
773 return ""+((double)totals[0]/t)
774 +","+((double)totals[1]/t)
775 +","+((double)totals[2]/t)
776 +","+((double)totals[3]/t)
777 +","+((double)totals[4]/t)
778 +","+((double)totals[5]/t)
779 +","+((double)totals[6]/t)
780 +","+((double)totals[7]/t)
781 +","+((double)max/t)
782 +","+era;
783 }
784
785 /*
786 * Method to clear the statistics after terminations for next

composition
787 */
788 public void clearStats() {
789 //loops through all saved data and resets to 0 for future

processing
790 for (int i = 0; i < 8; i++) {
791 totals[i] = 0;
792 }
793 t = 0;
794 }
795 }

45

7. References
[1] P.P. Wiener, Dictionary of the History of Ideas. Studies of Selected Pivotal Ideas. III,

Chales Scribner's, 1973.

[2] A. Boethius, “Fundamentals of Music,” in Strunk’s Source Readings in Music History, ed.
O. Strun, 1998.

[3] G. Niederhaus, Algorithmic Composition: Paradigms of Automated Music Generation.
Vienna, Austria: Springer-Verlag, 2009.

[4] G. Diaz-Jerez, Algorithmic Music: Using Mathematical Models in Music Composition. The
Manhattan School of Music, 2000.

[5] V. Duckles, et al, Musicology. Grove Music Online, 2001.

[6] J.D. Fernandez and F. Vico, "AI Methods in Algorithmic Composition: A Comprehensive
Survey," Journal of Artificial Intelligence Research., vol. 48, pp. 513-582, 2013.

[7] L.A. Hiller and L.M. Isaacson, “Musical composition with a High-Speed digital computer”.
Journal of the Audio Engineering Society, 6 (3), pp. 154–160, 1958.

[8] J. Lebar, et al., ‘Classifying Musical Scores by Composer’, Stanford University, 2008.

[9] R. Basili, et al., ‘Classification of Musical Genre: A Machine Learning Approach’,
University of Rome Tor Vergata, 2004.

[10] N. Tawa, Sheet Music. Grove Music Online, 2014.

[11] C. Anderton, ‘Craig Anderton’s Brief History of MIDI’, 2014. [Online]. Available:
https://www.midi.org/articles/a-brief-history-of-midi. [Accessed: 01- Mar- 2018].

[12] D. Huron, “The Humdrum User Guide”, 1999.

[13] P. Tan, et al. An Introduction to Data Mining. Pearson Nueva Delhi (India). 2016.

[14] S.C. Suh, Practical Applications of Data Mining. Texas A&M University. Jones & Bartlett
Learning, 2012.

[15] R. Hall, ‘Intervals and Pitches’ in Sounding Number: Music and Mathematics from
Ancient to Modern Times, 2017.

[16] J. James, “Identifying and presenting eras of classical music”, from Music Teacher, 2017.

[17] T.M. Li, “Cellular Automata”, New York: Nova Science Publishers, Inc., 2011.

[18] S. Wolfram, “A New Kind of Science”, Champaign: Wolfram Media, Inc., 2002.

46

	The Algorithmic Composition of Classical Music through Data Mining
	Recommended Citation

	Thesis Front-Matter 2.0
	Back-Matter 2.0
	Thesis Main Text 2.0
	Source Code
	References

