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ABSTRACT 

Folds and fold trains of sedimentary strata are among the most common structural 

traps systems for hydrocarbon reservoirs. The existence of tensile fractures associated to 

buckle folding is associated to the distribution of extensional strain in the outer arc of the 

fold hinges. This study investigates the conditions under which tensile stresses develop 

due to buckling in a realistic in situ stress scenario. By applying a 2D finite element 

modeling approach, the influence of realistic mechanical stratigraphy (including strain 

rate, overburden depth, competence contrasts, viscosity, and permeability) on the 

development of single-layer buckle folds with Newtonian viscous rheology is studied. 

Based on the simulation results, it can be concluded that the buckling process cannot 

explain the common observation and occurrence of tensile failure. Only low permeability 

(<10
-19

 m
2
) or low overburden pressure environments are possible to generate tensile 

failure at the top of the fold crest. Tensile failures in the limb of the fold cannot be 

explained by buckling only. This study shows that for high permeability rocks the 

generation of tensile stress both at the crest and limb of the fold can be the result of 

buckling followed by erosional unloading. In summary, tensile stresses and associated 

failure in buckle folds systems are determined by material parameters and the strain 

history. 
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1. INTRODUCTION 

1.1. OVERVIEW 

Folds are the most noticeable and common geological structure that provide  

evidence of Earth’s ductile deformation. They are also viewed as natural images 

reflecting the evolution of rock bodies over geologic time scales. Folds and their 

properties have been studied for a number of reasons. Most importantly, folds represent 

structural traps for oil and gas accumulation. Anticlines and domes, parts of folded 

sedimentary layers, commonly act as collection sites for oil and gas that migrate up from 

hydrocarbon source rocks. This migration usually occurs in a permeable reservoir rock, 

such as porous sandstone. If the reservoir layer sealed by impermeable rocks is folded 

into either a dome or an anticline, further migration of both oil and gas will be prevented 

by closure of the folding structure. With the increase of soil temperature, gas is displaced 

from the oil and trapped by the impervious or nonporous folding layer (Figure 1.1).  

The relationship between folding and fracture development also plays an 

important role in the porosity–permeability changes of potential reservoirs, which is 

important to hydrocarbons exploration and recovery (Sibson, 2003). New fractures and 

reactivation of pre-existing fractures in folded layers generally open parallel to fold axes 

and develop high permeability pathways for hydrocarbon migration, followed by fluid 

motion parallel to fold axes (Sibson, 2005). Since hydrocarbon transportation is strongly 

governed by folding and the influence of fracture development on structural permeability, 

it is important to investigate the kinematics of folding deformation kinematics and 

fracture evolution within source rock and reservoirs. Of particular interest in a 

geomechanical analysis of such reservoirs is the prediction of the location, type, extent, 

and orientation of these fold related structures both for fluid flow pathway and reservoir 

stability prediction. 
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Figure 1.1 Sequential formation of oil (black) and gas (vertical lines and open circles) 

and filling an anticline. (A) Burial to the temperature of the formation of oil. (B) 

Additional burial to the temperature of the formation of thermal gas (Groshong, 1999). 

 

 

1.2. LITERATURE REVIEW ON EXISTING KNOWLEDGE 

Folded rock and their analysis have been studied extensively in the past fifty years 

to understand rock rheology, strain and deformation history from fold theory and 

modeling. 

1.2.1. Fold Theory and Modeling. The dominant wavelength theory, developed 

by Biot (1959,1961), Biot et al.(1961) and Ramberg (1960,1964) for viscous materials, 

can be viewed as the most influential outcome from an enormous number of such studies. 

This theory has been modified by others (e.g, Chapple, 1968; Sherwin and Chapple,1968; 

Hudleston,1973; Fletcher,1974,1977,1979; Smith, 1975,1977,1979). According to the 

dominate wavelength theory, a single layer with many random, small perturbations 

embedded in a weaker matrix will develop into a fold when subjected to layer parallel 

shortening. The dominant wavelength depends on both the layer thickness as well as the 

competence contrast (i.e. the viscosity or Young’s modulus contrast) between the layer 

and the surrounding material (here referred as a matrix). However, Biot’s theory can only 

predict the finite folding stages in which the limb dip angle is below 20 degrees 

(Chapple,1969). Treagus (1973,1981) suggested that this theory could also be applicable 

to cases in which the layer is under oblique shortening with increasing stress at the 

boundary.  

(A) 

(B) 
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The initial perturbation plays an important role in the development of a single 

layer fold. Based on the results from models made from paraffin waxes of known 

rheological properties, Cobbold (1975) found that the initial perturbation propagates 

along the layer and further folds will appear serially in time and distance. Műhlhaus 

(1993) confirmed this finding with analytical results from the model with an elastic layer 

in a viscous matrix. Williams et al. (1978) determined that the final fold wavelength 

relies on the initial perturbation, even when the amplitude of the perturbation is small. 

The same conclusion is verified by Abbassi and Mancktelow (1990, 1992). They also 

discovered that the symmetry of the initial perturbation maintains. Random, finite-

amplitude perturbations can exist before deformation in natural bedding layers. 

Therefore, the buckling theory, developed for a single layer with isolated, finite-

amplitude perturbations, can be used to explain some natural folds.  

In addition to analytical solutions and physical analogue models, two-dimensional 

(2D) numerical modeling of single-layer folding has been established to study the buckle 

folding process. Dieterich and Carter (1969) analyzed the two-dimensional large 

amplitude folding model of a viscous layer in a less viscous matrix. By using the finite 

element method, they show the changes of principal stress orientations during the 

different stages of the buckling process. Using a finite-difference code (FLAC), Zhang 

(1996) determined that the dominant wavelength is largely independent of the initial 

perturbation's position and shape. Mancktelow (1999), however, disagreed with this 

finding. He suggested that the initial perturbation may influence the final shape of the 

folding layers. This conflict results from using different strain rate. Zhang (2000) 

confirmed Mancktelow’ theory by using finite-element (MARC) numerical models with 

low strain rate material. 

For a linearly viscous layer and matrix, theoretically predicted initial growth rates, 

which depend on the layer’s wavelength and thickness, are consistent with numerical 

results. Mancktelow (1999) presented that initial growth rates are independent of initial 

perturbations’ waveform if a low-amplitude single waveform is initially applied. 

However, initial irregularities have influence on the geometry of the final folds 

(Mancktelow, 1999). This relation has also been verified for Newtonian materials 

(Mancktelow, 1999). 

http://www.sciencedirect.com/science/article/pii/S0191814101000736#BIB20
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Considering both viscous and elastic properties, the system’s response to buckling 

depends not only on the viscosity contrast, but also on the applied layer-parallel stress or 

strain rate. Using the Maxwell model in a numerical simulation, which contains both 

viscous and elastic properties, Schmalholz and Podladchikov (1999) confirmed that the 

developed wavelength of the viscoelastic folded layer, embedded in a viscous matrix, 

depends on the ratio of viscous dominant wavelength to elastic dominant wavelength. For 

the same system (a viscoelastic layer in viscous matrix), a transition from viscous 

properties dominate deformation to elastic properties dominate deformation with 

increasing strain rate Zhang (2000). 

Besides 2D numerical models, three dimensional (3D) numerical simulations are 

also used to study fold geometry. Kocher et al. (2006) show that the final fold shapes of 

3D folded layers are determined by the initial perturbation geometry of the layer and the 

boundary conditions. By using 3D numerical models with complex and non-cylindrical 

fold shapes, Schmalholz (2008) concludes that different fold axis orientations and curved 

fold axes can be generated from single direction shortening.  

1.2.2. Fracture Patterns Associated with Folds. Major folds are characterized 

 by associated fractures and the evolution history of these fracture sets becomes of 

interest. An early study of fractures in the Zagros buckle folds conducted by McQuillan 

(1973) focuses on the relationship between fracture spacing and folding layer thickness. 

The discussion of the possible mechanisms leading to this relationship is accomplished 

by Ladeira and Price (1981). However, the meaningful relationship between folding 

deformation and fracture orientation is neglected.  

A diagram of minor fractures and cylindrical folded structures are shown by Price 

(1966), based on field observations and previous studies (see Figure 1.2).  
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Figure 1.2.Trends of minor fractures in folded structures. R and T are shear and extension 

fractures, respectively (Price, 1966). 

 

 

Price and Cosgrove (1990) study the relations between shear fractures and the 

principal stresses in the folded layer which is inferred by the Navier-Coulomb criterion of 

failure (fracture sets 1-4 in Figure 1.3A). Various orientations of the principal stresses 

give rise to differing types of shear fractures including normal, thrust and strike-slip 

faults. Fracture sets 5 and 6 (Figure 1.3B) indicate that the major tensile fractures are 

perpendicular to the fold axes with vertical or steeply dipping features (Price and 

Cosgrove, 1990). They also emphasize that the minimum principal stress (σ3) acts 

perpendicular to the fracture plane (see Figure 1.3B). Tensile fracture can also be 

observed parallel to the fold axes if the minimum principal stress rotates ninety degrees. 

Price and Cosgrove proposed that different sets of fractures require different relations of 

the principle stress and develop at different times during fold development.  

T 
T 

R 

R 
R 

R T 
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Figure 1.3: Fold associated fractures sets.(A) Set of 4 different shear fractures commonly 

associated to fold structures. (B) 2 sets of extensional fractures associated to fold 

structures 

 

 

1.2.3. Tensile Failure within a Fold. To describe the development of  

homogeneous, isotropic layer buckling, the neutral surface concept (Ramsay, 1967) is 

used. As shown in Figure 1.4A, the outer arc of the crest reveals extension strain parallel 

to the folding layer. Conversely, the inner arc of the crest is under compression. The 

neutral surface which has no strain separates the layer-parallel extension region above the 

surface from the layer-parallel compression region below it. This strain distribution is 

referred as tangential longitudinal strain pattern, in which the maximum strain occurs at 

the crests (Johnson and Fletcher, 1994). Significant reduction of the compressive stress 

will occur above the neutral surface (Figure 1.4B).  Ramberg (1964) suggested that the 

layer-parallel tension developed at the folding layer crest commonly produce tensile 

failures, known as tension gashes. 

 

 

 

 

(A) (B) 
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Figure 1.4: Strain distribution of folding layer. (A) Tangential longitudinal strain of 

folding layer under layer-parallel compression. (B) Tangential longitudinal strain reduces 

the stress above the neutral surface (Ramberg, 1964). 

 

 

In addition to tensile strain, tensile failure can also be generated by pre-existing 

fractures, which formed during the rock geological history before buckling. Subjected to 

a variety of tectonic stress, the initial sets of fractures caused by tensile stresses are 

usually planar and parallel to each other (Harrison and Hudson, 2000). Assumed to be 

cohesion-less, pre-existing tensile fractures can be easily reactivated during folding and 

have a significant effect on the rock strength, permeability and deformability. The 

reactivation of pre-existing tensile fracture can also lead to new tensile fracture near them 

(Twiss and Moores, 2007). 

The influence of pore pressure has also been characterized and considered in the 

tensile failure generation during rock buckling. This influence can be described by 

effective stress, which is the difference of total stress and pore pressure (Hubbert and 

Rubey, 1959). Tension failures form when the minimum effective stress reaches the rock 

tensile strength.  This will happen if the minimum total stress is reduced by significant 

pore pressure (Watts, 1987). 
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1.2.4. Fold Curvature Analysis. Fold curvature analysis has been used to  

analyze the relations between the folded layer geometry and folding related fractures, 

including fracture density and fracture orientation  (Lisle, 1994; Fischer and Wilkerson, 

2000; Hennings et al., 2000). For cylindrical fold structures, curvature is expressed as the 

reciprocal of the radius of curvature which is perpendicular to the fold axis. As a 

parameter to describe the bending degree of fold surface, fold curvature has been 

recognized that may result in fracturing. Murray (1968) studied the relations between the 

radius of a competent unit’s curvature to the fracture porosity in an oilfield at North 

Dakota. Stearns and Friedman (1972) presented models of fracture orientation and 

distribution for non-cylindrical folds. Narr (1991) related the fracture density to the 

plunging fold in the Point Arguello oilfield, California. And Ericsson et al. (1988) 

discovered a relationship between the fold curvature and fracture density for the Fateh 

Field. Generally, the fractures density increases with the increment of the curvature value 

(Suo, et.al. 2011). Considering the significant influence on rock’s anisotropic 

permeability, fold curvature analysis has been applied in reservoir modeling (e.g. Stewart 

and Podolski, 1998). However, a recent fold curvature study shows that the strains 

analysis from geomechanical model may not be sufficient to interpret fracture 

characteristics such as density and orientation (Fischer and Wilkerson, 2000; Bergbauer 

and Pollard, 2004;Smart et al., 2009). 

1.2.5. Limitations of Existing Literature. While a great amount of knowledge   

has been gained on the evolution of folds and their stress and strain history, lots of 

assumptions and simplifications are made. Only few studies consider the influence of 

gravity (Schmalholz et al., 2002) and the influence of pore pressure (Stephansson, 1974; 

Schmalholz and Podladchikov, 1999; Mancktelow, 2002). While the influence of the 

physical parameters on fold deformation is well understood from a collection of studies, 

the prediction of the timing and evolution of fold related fractures has not been fully 

studied yet. The relations between stress and strain result from flexural deformation due 

to bulking and the tensile failure distribution at the hinge and in the limbs of folded layer 

needs future investigation. Frehner’s (2011) study relates the occurrence of tensile failure 

with the occurrence of extensional strains. However, the extensional stain is not 

necessary to cause tensile fractures which only develop when the minimum effective 
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principal stress exceeds the tensile strength of the rock (Jaeger and Cook, 1979). Thus, 

for tensile failure to occur at depth where stresses are compressive due to overburden 

stress, field observations from outcrops exhibiting tensile failure may not be a valid 

sample with which to confirm tensile failure at depth. The importance of overburden 

stress and pore pressure has been addressed by Frehner (2011). However, the quantitative 

description of the importance of these parameters is lacked due omission of these 

parameters in Frehner’s (2011) modeling study. Hence, a more thorough understanding 

of tensile fracture generation and evolution in folded layers under realistic in situ stress 

conditions is necessary. 

 

 

1.3. RESEARCH OBJECTIVES 

The objective of this study is to apply 2D plane strain Finite Element Analysis 

(FEA) to simulate 2D single-layer buckle folding under realistic stress magnitudes. The 

stress and strain evolution modeled is used to provide a better understanding on the 

occurrence and spatial distribution of tensile fractures associated to buckle folding. In this 

study 2D linear visco-elastic rheology including pore pressure for a visco-elastic 

consolidation analysis is used which enables to study the effect of pore pressure and 

permeability during the fold development. These parameters are only included in 

“selected” studies (e.g. Ladeira, 1978; Davis et al., 1983) and a more thorough 

understanding of their influence is necessary. 

Specific objectives to be addressed include the following:  

(1) Setup 2D finite element models to simulate single-layer buckle folding using 

realistic in situ stress magnitudes.  

(2) Perform sensitivity analysis on variety of input parameters (e.g. competence 

contrast, viscosity, strain rate, overburden pressure and hydraulic conductivity) to study 

their influence on the stress history during the folding process. 

(3) Relate state of stress during the various folding stages to the occurrence of 

folding related tensional fractures. 
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1.4. RESEARCH QUESTIONS  

The following questions related to tensile failure during the development of a 

folding structure are being addressed:  

 What are the conditions for tensile failure to occur during folding? In particular, is 

flexure due to buckling the only physical process that explains tensile failure at 

the hinge and in the limbs of buckle folds? 

 At which locations within the fold does tensile failure occur? 

 At which stages during the fold development does tensile failure occur? 

 What is the influence of material parameters (viscosity, permeability) and model 

boundary conditions (strain rate, burial depth) on the occurrence of tensile failure?  

 For specific conditions, can tensile failure at depth be expected for low amplitude, 

low permeability shale layers?  
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2. THEORETICAL BACKGROUND 

2.1. ROCK PROPERTIES  

Reservoir rocks represent a geologic material including a network of 

interconnected pores for storing the fluids (gases, liquid hydrocarbons, water and other 

solutions) and allowing for their motion within the rocks. As the material forming a 

reservoir, reservoir rock properties and their effects on fluid motion are very important to 

the petroleum industry. These properties, such as density and permeability, are influenced 

by the state of stress acting on the rock. In return, rock properties can also have impact on 

the state of stress and the relationship between stress and strain. 

2.1.1. Rock Density. Rock density is defined as mass per unit volume. Because 

the different phases are present in the material, several forms of rock densities are used in 

geotechnical research. Bulk density (ρb), is the most common one of these densities. It 

stands for the total (or wet) density calculated as total mass (Mt) divided by the total 

volume (Vt) 

 

 t

b

t

M

V
   (1) 

 

Dry density (ρd) is defined as the density of the rock at the same volume without 

either fluid or air in the material. The relationship between dry density and bulk density is 

given as (Chapman, 1983): 

 

 (1 )
b d w

       (2) 

 

where ϕ represents rock porosity and ρw represents water density. 

2.1.2. Rock Porosity. Porosity (ϕ) is the magnitude of reservoir rock’s storage 

capacity of fluid. It is defined as the ratio of void space (Vvoid) to bulk volume (Vbulk) and 

can be expressed as either a percent or a fraction 
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void

bulk

V

V
                                                              (3) 

 

 The void space generated in rocks is called pore space and filled with fluid. Many 

of the pores connect to each other in reservoir rocks, whereas others are completely 

isolated. When the volume of these pore spaces are determined by the interconnected 

pore spaces, the rock porosity is called effective porosity. The effective porosity 

represents the rock material ability to allow the fluid to circulate and ranges from 5% to 

30% in petroleum reservoirs (Tiab and Donaldson, 2012). Low porosity means the 

effective porosity is lower than 5% and high porosity is above 20%.  

2.1.3. Rock Permeability. Rock permeability refers to a rock’s ability to allow 

fluid to flow through its pores. Permeability can be determined or obtained directly by 

either core analysis, well testing or well logging interpretations. Because rock 

permeability is seldom uniform throughout a petroleum reservoir, the average 

permeability of the reservoir layers must be determined. 

Isotropic permeability is uncommon in most reservoir rocks. Permeability 

typically varies significantly between the vertical and horizontal planes within a 

formation (Jaeger and Cook, 1979). It is especially important when horizontal or partially 

penetrated wells are designed in the reservoir. The permeability in one horizontal 

direction is not always close to that in another perpendicular, horizontal direction. 

Permeability in the vertical direction, however, is typically different. It is usually much 

smaller than horizontal permeability. Based on small-scale probe permeability 

measurements on differently oriented faces of highly cemented sandstones, Meyer (2002) 

obtained the ration between vertical permeability and horizontal permeability. The ratio 

ranges from 0.1 to 1.0. 

2.1.4. Reduction in Density, Porosity and Permeability with Depth. The  

reduction of density, porosity, and permeability as depth increases has been found in 

various basins and regions around the world (Twiss and Moores, 2008). This reduction 

results from mechanical compaction and the impact of post-depositional events.  

Effective stress is defined as the difference between overburden stress and 

hydrostatic pressure in normally pressured rock. Plumley (1980) suggested that the 

http://www.fekete.com/software/welltest/media/webhelp/Permeability.htm
http://www.fekete.com/software/welltest/media/webhelp/Partial_Penetration.htm
http://www.fekete.com/software/welltest/media/webhelp/Partial_Penetration.htm
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increment in effective stress usually leads to rock compaction along pore volume 

reduction and formation fluids. The rate of porosity change varies in different types of 

rock. Medina and Rupp (2011) studied both porosity versus depth and the permeability-

porosity relationship. The conclusion is based on porosity values obtained from 

geophysical loges and porosity values form core analyses in different areas in the U.S. 

They described the regional trend of decreasing porosity with depth as follows: 

 

 -0.00039
( ) 16.39

d
d e   (4) 

 

where ϕ is the porosity and d is the depth in m. 

To understand the relationship between density and porosity, we must first examine 

both the void ratio and the specific gravity of soil first. The void ratio (e) is used to 

express the void content of soil. It is expressed as the ratio of the volume of voids to the 

volume of the soil solids 

 

 voids

solids

V
e

V
   (5) 

 

The relationship between porosity and void ratio can be derived as:  
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 (6) 

 

The specific gravity of soil solids (Gs) is introduced here to express the dry density of 

soil. It is defined as the mass of a volume of material over the mass of the same volume 

of water. Once calculated, the dry density can be derived as 

 

 (1 )
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    


 (7) 
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The dry density will increase as a result of the porosity reduction when the depth 

increases. 

2.1.5. Hooke’s Law and Elastic Moduli. The material ability to resist and  

recover from deformation is called elasticity. The theory of linear elasticity is the 

simplest type of response in which the strain is a function of stress without depending on 

the stress history or stress path. For elastic materials, stress (σ) and strain (ε) are related 

to each other by Hooke's Law where stress and strain depend linearly on each other. The 

general form of Hooke's law is as: 

 

 
ij ijkl kl

C                  ( with i, j, k, l=1,2,3)           (8) 

 

where Cijkl is the stiffness tensor with 81 entries. The stiffness tensor contains the elastic 

constants of a medium and relates the medium deformation to the applied stress. 

For isotropic media in which the elastic properties at any point are independent 

from direction, the stiffness tensor can be expressed as: 
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 (9) 

 

In a uniaxial state of stress (e.g., σ11= 0, σ22 =σ33= 0), the linear relation between 

applied stress σ and corresponding strain ε in the same direction can be represented by 

the equation 

 

 
ii ii

E   (10) 

 

where E is the Young’s modulus. Young’s modulus is the rock resistance against 

compression by a uniaxial stress (Jaeger and Cook, 1979). 
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Another elastic parameter, Possion’s ratio, is defined as the negative of the ratio 

of the transverse strain (j-direction) and the axial strain (i-direction). Possion’s ratio (ν) 

can be expressed as 

 

 
jj

ii





   (11) 

 

For a liner elastic material, Possion’s ratio is a function of stress and in the range 

0 to 0.5 (Jaeger and Cook, 1979). 

2.1.6. Two-dimensional Formulation. Because of the complexity of the  

three-dimensional elasticity field equations, analytical solutions are very difficult to 

obtain. Thus, many problems are simplified and solved by plane theory of elasticity in 

two-dimension.  By removing one coordinate (e.g. the z-axis), all the dependent variables 

are independent of the z-axis and applied only in the x-y plane. The related general basic 

theories are plane strain and plane stress theory. 

2.1.6.1 Plane strain theory. Plane strain is an approximation which is applicable  

to thick plane. If the problem is described in x-y plane, plane stain theory assumes that 

the strain normal to the x-y plane, εz, and shear strains (εxz and εyz) to be zero.  From 

isotropic form of Hook’s law, the stress can be expressed as (Sadd, 2009): 

 

 
2

(1 )

1
xx xx yy

v v

E v
  

  
 

  
 (12) 

 
2

(1 )

1
yy yy xx

v v

E v
  

  
 

  
 (13) 

  zz yy xx
v      (14) 

 
2(1 )

xy xy

E

V
 


 (15) 

 

 



 

 

16 

2.1.6.2 Plane stress theory. The second type for 2D system is plane stress theory.  

If the problem is described in x-y plane, this theory assumes that the stress normal to the 

x-y plane, σzz, and shear stresses (τxz and τyz) to be zero.  From isotropic form of Hook’s 

law, the stress can be expressed as (Sadd, 2009): 
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2.1.7. Inelastic Rock Phenomenon and Properties. The assumption of the 

elastic behavior is that there is no internal and microscopic degradation developed in the 

rock. This implies that the rock will return to its initial state once the acting force is 

removed and there is no time-depend behavior. However, rock deforms irreversibly under 

most situations, which can be referred as inelastic behavior. Inelastic properties include 

plasticity and viscoelasticity. Along with inelastic behavior, there are some time-depend 

effects, including creep. Creep is the phenomenon in which rock continues to deform 

under constant applied stress (Harrison and Hudson, 2000). 

2.1.7.1 Folding and pressure solution creep. The minerals solubility in water 

is determined by pressure and temperature. In rocks saturated with water, minerals are 

dissolved at high stress grain boundaries and precipitated at the low stress grain 

boundaries. This is referred as pressure solution creep (Karato, 2008). Such mass transfer 

by pressure around various sizes of grains (from microns to decimeters) in rock allows 

major internal deformation to be performed along with folding processes in the upper 

crust. This type of deformation evidence is found in sedimentary and metamorphic rocks 

(Dick and Sinton, 1979). Observations of geological structures exhumed from depth in 

compacted fold zones indicate the ductile material behavior throughout the upper crust. 

The ductile processes controlled by pressure solution creep take place in the crust over 
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much longer time scales. Pressure solution creep is thought to be crucial for rocks to 

generate folds rather than fractures at relatively low temperatures (Turcotte and Gerald, 

2002).  

Sedimentary rocks subjected to pressure solution creep can have a Newtonian 

fluid behavior because a linear relationship between strain rate and stress is followed. 

Thus, pressure solution creep, a viscous rheology, is the mechanism that can explain the 

development of folds in crustal rocks at low temperatures and pressures and pressure 

solution creep laws are used to model the rock viscous behavior in folding processes 

(Laubshe, 1975). 

2.1.7.2 Strain rate. The rate at which a rock is either shortened or stretched  

during the deformation must also be investigated. Thus, the strain rate (  ̇ ) during 

deformational development is introduced. Strain rate is the rate of deformation change 

with respect to time. 

 

 
d

dt


   (20) 

 

Most rock deformation occurs at a very slow rate. Pfiffner and Ramsay (1982) 

concluded that based on the finite strain analysis, the strain rates should fall within a 

range form 10
-13

 and 10
-15

 s
-1

. More recently, both Passchier and Trouw (2005) as well as 

Twiss and Moores (2008) suggested that natural geological strain rates vary between 10
-

12
 and 10

-15
 s

-1
. 

2.1.7.3 Viscosity. Viscosity is used to describe the fluid resistance to load. The  

simplest fluid is Newtonian fluid, in which the strain rate is proportional to the stress. 

Thus, viscous deformation is time depended and strain accumulates over time. For a 

Newtonian fluid, the viscous deformation is irreversible since there is no participating 

elastic deformation and the material fails to recover to its original state. Relating the 

shear stress and shear strain rate, viscosity for a Newtonian fluid is expressed as:  

 

 2
d

dt


   (21) 
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Where μ is the viscosity. 

2.1.7.4 Viscoelasticity. Viscoelasticity represents the property of the materials  

that can exhibit both viscous and elastic characteristics when undergoing deformation. 

Among the rock viscoelastic models, the Maxwell model is the most widely used. In this 

model, the material is viewed as a combination of a spring (which represents the elastic 

element) and a dashpot (which signifies a Newtonian viscous element, see Figure 2.1). 

During deformation, the rapid elastic response is coupled with the viscous response. The 

total strain (εij) is the sum of the elastic strain (εij
e
) and the viscous strain (εij

v
) 

 

 
v e

ij ij ij
      (22) 

 

 

Figure 2.1 Maxwell Elastic-viscous model 

 

 

Jaeger and Cook (1979) show the relationship between the elastic strain (εij
e
) and the 

stress (σij) 
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where G is the shear modulus and K is the bulk modulus. The Kronecker delta function 

(δij) is defined as 
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 (24) 

 

The relationship between viscous strain rate ( ̇ij
e
) and stress (σij) can be expressed as: 
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where μ represents viscosity. The rock behavior described in Equations (20) and (25) 

illustrate the immediate elasticity and flow viscosity under stress over a long period of 

time. The elastic-viscous material is used to predict the unrecoverable behavior in rock 

deformation at a high temperature, a low strain rate and a high confining pressure. This 

model has been widely used in modeling of folding (e.g. Zhang et al., 1996, 2000; 

Mancktelow, 1999; Price, 1990). 

 

 

2.2. BASIC THEORY OF ROCK MECHANICS 

Rock mechanics represents the mechanics concerned with the rock response to the 

physical environment. Many basic mechanical concepts, such as force and motion, need 

to be adjusted when they are applied to deformable rocks. Reservoir stresses, rock 

deformations and failure have significant influence on the structural development of a 

geological formation. The existence of fractures in folded layers, such as sets of joints of 

limited continuity, constrains the equilibrium state of stress in the rocks. By applying 

rock mechanics, different sets of fractures can be related to the characteristics of the 

stress field in folded layers. Besides, the analysis of folding associated fractures is 

complicated by the fact that some joint sets developed pre-folding, while others 

accompanied the fold formation or were generated afterwards. Thus, the mechanical 
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behavior of folded layer rocks (and the surrounding formations) is important to assess 

geomechanical risks.  

The following theoretical concepts can be found in extensive detail in standard 

text book such as Jaeger and Cook (1979) and Twiss and Moores (2007).  

2.2.1. Traction Vector and Stress Tensor. Crustal deformations are due to the  

action of body forces and surface forces. Body forces are proportional to the volume or 

mass of the body. Surface forces act on arbitrarily oriented surfaces bounding rock units. 

The resistance against surface forces is termed stress and is expressed by the traction 

vector T. If the force acting through the plane is denoted as force vector F, the tractor 

vector T averaged on the area can be expressed as: 

 

1

A
T F  (26) 

 

where the area of a rock plane is A. The traction vector T acting on a point at the plane is 

defined by the limit:  
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T F   (27) 

 

The standard unit of stress is the Pascal (1Pa =1N/m
2
). In general, the traction 

vector T is a function of location and varies from point to point, Cauchy first introduced 

the concept of stress (Davis and Selvadurai, 1996). The totality of all traction vectors 

passing through all surfaces at a single point is termed the state of stress. If n represents a 

unit vector normal to the plane, the traction vector can be determined by： 

 

T
T σ n  (28) 

 

where the matrix σ without the transpose operator is the stress tensor. The stress tensor 

can be written as: 
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A total of nine stress components exist for a complete description of the stress 

state at a point. The subscripts i and j may be any of x, y, and z, which represent the x, y 

and z axis respectively. The first subscript (i) identifies the axis normal to the actual 

surface, while the second subscript (j) identifies the direction of the force. Thus, σxx 

represents normal stress on a surface normal to the x direction. σxy and σxz represent the 

shear stress on the same plane perpendicular to the y-direction and z-direction, 

respectively (see Figure 2.2). The stress tensor is a symmetric matrix. Thus, σxy equals to 

σyx and equation 28 can be rewritten as: 

 

T σ n  (30) 

 

 

 

 

 

Figure 2.2 Stress components in three dimensions 
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2.2.2. Principal Stresses and Effective Stress. If the selected coordinate system   

shown in Figure 2.2 is rotated in three-dimensional space, a unique orientation can be 

found in which all of the shear stress components vanish from all of the surfaces. This 

unique orientation without any shear stress on any elemental cube face is defined as the 

principal orientation. The normal stresses on these planes of zero shear stress are known 

as principal stresses. The stress tensor for three-dimensional principal stresses can be 

expressed as 
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 (31) 

 

For a rock at certain depth below the water table, the pore space in it is filled with 

fluid under pressure. The pore fluid, which may be water, oil or gas, may affect the rock 

strength due to the existence of pore fluid press or the chemical interactions between the 

fluid and the rock. Considering the mechanical effect of pore fluid, the rock failure would 

be controlled by the effective stress (σ′), which can be expressed as (Terzaghi, 1936): 

 

p
 P I                                                          (32) 

 

where PP is pore fluid pressure and I is the identity tensor. The parameter α is referred as 

the effective stress coefficient. Following Terzaghi’s effective stress principle, an 

increase in pore pressure effectively shifts the Mohr circle to the left, thus increasing the 

likelihood of failure.  

2.2.3. Rock Failure. Failure can occur when rock is subject to sufficiently 

large stresses, followed by permanent shape change. To understand this complex 

behavior, rock failure is analyzed by combining the state of stress with the rock strength. 

As a main objective of this study is to predict the occurrence of rock failure associated to 

buckle folding, it is important to understand the conditions under which rock fail. For this 

study we assume homogeneous and isotropic rocks and follow and apply the standard 

failure for tensile and shear failure.  
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The fundamental modes of rock fracture are characterized as mode I (opening), 

mode II (sliding), and mode III (scissoring) (Fjar, et al., 2008). Mode I fractures represent 

pure extension opened by tensile stresses which are perpendicular to the fracture plane. 

There is no shear traction component in this fracture model (see Figure 2.3 A). Mode II is 

in plane shear fracture with shear traction parallel to both the fracture surface and the 

fracture propagation direction (see Figure 2.3 B). Mode III is lateral shear model with 

shear traction parallel to the fracture surface. Mode III fracture is characterized as a 

scissors-like movement perpendicular to the fracture propagation direction (see Figure 

2.3 C). In reality, mixed mode failure, which refers to the combination of mode I and 

mode II, or mode I and mode III occurs during geological time scales (Fjar, et al., 2008). 
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Figure 2.3 The three fundamental fracture modes: (A) Mode I opening perpendicular to 

the the fracture surface. (B) Mode II sliding parallel to the fracture surface (C) Mode III 

scissoring parallel to the fracture surface (Fjar, et al., 2008). 

 

 

2.2.3.1 Tensile failure. Tensile failure occurs when a rock is subject to an  

effective tensile stress that exceeds a critical limit. This limit, which is viewed as a 

characteristic property of the rock, is referred as the tensile strength (T0). Most rocks have 

a low tensile strength, as low as a few MPa (Kocher, et al., 2008). Tensile strength is 

sensitive to the existence of preexisting failures and the fracture planes often develop 

from preexisting failures, with right angle to the tensile stress direction. The specific 

stress condition at which tensile failure will first occur is referred to as tensile failure 

criterion and is given as (Jaeger and Cook, 1979): 

(A) 

(B) 

(C) 



 

 

25 

 

 
tensile 0

T     (33) 

 

This failure is helpful to locate the failure surface. For isotropic rocks, the tensile 

strength will always be reached first by effective minimum principal stress (σ3´), so that 

the tensile failure criterion is expressed as: 

 

 
3 0

' T     (34) 

 

In a Mohr diagram, the tensile failure criterion represents the boundary between 

an unstable area and a stable area (Figure.2.4). Once the Mohr circle touches the tensile 

failure line, tensile failure will occur in the rock. The orientation of the failure plane is 

always perpendicular to σ3´. 

 

 

 

Figure 2.4 Tensile failure criterion and Mohr circle. Dark area stands for unstable area 

which tensile failure will occur. 

 

 

2.2.3.2 Shear failure. Shear failure occurs in the rock when the shear stress on 

 a specific plane inside the rock exceeds the strength of the material. The two parts of the 

shear failure plane will move relative to each other when shear failure occurs. This 

relative movement is resisted by the frictional force on the failure plane which depends 
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on the stress state of the plane. Thus, the critical shear stress (τmax) which determines the 

occurrence of shear failure is assumed to be a function of the normal stress (σn) acting 

over the failure plane (Fjar, 2008): 

 

  m ax n
f    (35) 

 

In a Mohr stress diagram, this relationship is represented by a failure line. Shear 

failure occurs when the Mohr circle touches the failure line which indicates that the shear 

stress reaches τmax. Considering that the Mohr circle is dependent on the principal stresses 

σ1 and σ3, the shear failure is governed by the two extreme principal stresses. Various 

shear failure criteria can be acquired by choosing different forms of the function in 

equation (40). 

2.2.3.3 The Mohr-Coulomb failure criterion. The most widely used failure   

criterion to describe shear failure is the Mohr-Coulomb failure criterion (Fjar, 2008) 

which is based on rock mechanical testing under compression and the assumption that 

f(σn) is a linear function. Coulomb postulated that shear failure on a surface will occur if 

the shear stress acting on that plane exceeds the cohesive strength of the rock plus the 

frictional resistance to movement (Coulomb, 1776).  

 

0 n
S                   (36) 

tanµ                  (37) 

 

Where τ is the critical shear stress required for shear failure, σn is the normal stress, S0 

represents the rock cohesion, and µ is the coefficient of internal friction. This coefficient 

is also expressed by a constant tanφ where φ is called the angle of internal friction. Both S0 

and µ represent rock strength properties. For loose sand, these properties are related to sand 

grains and sand slope angles. For solid rocks, µ varies from 0.47 to 0.7 (Fjar, 2008) and for 

rocks in the upper crust, µ varies from 0.6 to 0.84 (Byerlee, 1978). In a Mohr stress diagram, 

the Mohr-Coulomb’s failure criterion is represented by a straight line with slope angle ϕ. 

The cohesion (S) indicates the rock’s resistance to shear fracture when the normal stress 
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becomes zero (Figure. 2.5). Based on Coulomb failure criterion, a certain plane in a rock 

can generate shear failure if the state of stress on that plan satisfies Equation (36).  

 

 

 

Figure 2.5 Shear failure criterion and Mohr circle. Failure will occur on a specific plane 

with angle θ to the maximum principal stress direction. 

  

 

The angle 2θ indicates the point where the Mohr’s circle touches the failure 

envelope and is termed the failure angle. The normal stress (σn) and shear stress (τ) of 

this point can be calculated by the maximum principal stress (σ1) and minimum principal 

stress (σ3): 

 

    1 3 1 3

1 1
cos(2 )

2 2
n
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  1 3

1
sin(2 )

2
      (39) 

 

Since θ is the angle for the orientation of the failure plane, it is related to the 

internal friction angle φ as: 
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1

2 4


                   (40) 

 

The possible range for θ is from 45° and 90° since the internal angle is between 0° 

and 90° (mostly the internal friction angle is around 30°). It is obvious that that the angle 

between the failure plane and the orientation of σ1 is smaller than 45° (Figure 2.6). Most 

rocks establish shear fractures on planes oriented approximately thirty degrees to the 

direction of maximum principal stress (Byerlee, 1978, Fjar, 2008). The two surfaces in 

Figure 2.6 are referred as the conjugate shear planes or conjugate faults, which is a pair of 

faults formed during a compression test (Twiss and Moores, 1992). The failure planes of 

conjugate faults are bisected by the direction of maximum principal stress (σ1), and have 

an acute angle of (π-2θ). The Mohr–Coulomb criterion indicates that the orientation of 

the shear failure plane is independent of the stress state of the rock if the internal angle is 

constant. 

 

 

 

Figure 2.6 Orientation of the failure plane relative to the principal stresses. The thick 

solid line shows the failure plane. 
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2.3. THEORY OF FOLDING. 

2.3.1. Single Layer Fold Theory. Single layer fold theory focuses on isolated  

layers buckling under compression. For a single layer designed with small perturbations 

of various initial wavelengths Biot’s classical theory (1961) indicates that one of the 

wavelengths will develop with a greater enlargement factor than the others during 

folding. This wavelength is referred to as the dominant wavelength (λd). This theory is 

characterized by the viscosity difference between the embedded layer and the matrix (the 

material surrounding the layer). The competence contrast (R) between the single layer 

and the matrix is an important factor to the folding. It is defined as the ratio of viscosity 

between the layer and the matrix. 

 

 
(layer)

(matrix)
R




  (41) 

 

For a viscous layer and a viscous matrix (in plane strain), the dominant 

wavelength only depends on the contrast (R) if both the gravity and the inertial effects in 

the rock are ignored. The thin-plate approximation for λd is 
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where h is the layer thickness, μL is the layer viscosity and μM is the matrix viscosity (see 

Figure 2.7). Free-slip contacts between the layer and the matrix are considered in this 

approximation. Based on the standard geometric classification, the folding layer 

geometry generated here is a parallel fold, which has constant thickness measured 

orthogonally across the layer (Price and Cosgrove, 1990). Equation (56) is accurate when 

the ratio R is bigger than 100. However, the accuracy decreases when R declines. 
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Figure 2.7 Description of terms used to determine folds development: (A) Initial state 

with h0 as the initial embedded layer thickness and λ0 as the initial embedded layer 

wavelength. μL and μM represent the embedded layer’s viscosity and matrix’s viscosity 

respectively. P is the load applied on the stiff layer; (B) After generating large amplitude 

A with shorter wavelength λ. h is the new layer thickness. 

 

 

If the embedded layer features elastic material properties and the matrix material 

is viscous, the dominant wavelength is determined by the applied load on the boundary: 
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  (43) 

 

where P represents the load applied on the stiff layer of the boundary, vL is Poisson’s 

ratio of the layer, and EL is the elastic moduli of the layer. In this instance, the dominant 

wavelength no longer relates to the matrix viscosity.  

The folding model with viscoelastic material properties of the folding layer and 

low viscous material properties of the matrix has been studied by Schmalholz and 

Podladchikov (2000). The ratio of the dominant wavelength predicted by equation (42) to 

the one predicted by equation (43) is referred as RS. The ratio (RS) is found to be 

instrumental in determining whether or not the folding is controlled by either viscous or 

elastic properties. If RS is smaller than 1, equation (42) is more accurate. If it is larger 

than 1, Equation (43) should be used to calculate the dominant wavelength.  

(A) 

(B) 
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The development of the single layer with respect to different values of R under 

the same boundary conditions has been studied by Ramberg (1960). Ramberg shows that 

the layers appear to develop different degrees of folding as the viscosity contrasts 

changes. 

When considering the effect of layer-parallel shortening, the folds with the 

greatest cumulative amplification is a function of shortening. In this instance, the 

wavelength is known as the preferred wavelength (λp) (Price and Cosgrove, 1990). The 

approximate expression for λp is 
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  (44) 

 

where h is the final thickness of the layer. Sx represents the stretch in the horizontal 

direction. The stretch is the ratio of final length to initial length on line element. If L is 

finial wavelength and L0 is initial wavelength, the horizontal stretch is given by:  
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2.3.2. Theory of Finite Amplitude Single-layer Folds. The conclusion that  

amplitude increases with time and shortening is applicable only for infinitesimal 

amplitudes. A higher waveform influences the fold shape and limits the growth rate of 

the waveform. Johnson and Fletcher have developed a simple modification of the 

previous theory for single layers (Price and Cosgrove, 1990). The modification considers 

the fact that stretching of the competent layer would occur and slow the fold growth in 

the folding development. A solution based on the strain relating the further development 

of the fold amplitude is given by (Johnson and Fletcher, 1994): 
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where A the is amplitude and A0 is the initial amplitude.    is the fold arc length 

normalized over the fold wavelength, εl is the logarithmic strain defined as ln(λ0/ λ) and, 

α0 is the initial growth rate. Schmalholz and Podladchikov (2000) compare the small 

amplitude theory (thin-plate theory) and the predictions of finite amplitude theory. With 

an initial perturbation of the dominant wavelength (λd/h =12.75) and an initial amplitude 

(A0/h =0.02), the finite amplitude theory fits closely to numerical simulations of 

buckling.  

2.3.3. Stress Distribution. The stress orientations and magnitudes vary in space 

and time during the buckling progress. Dieterich and Carter (1969) have used the finite 

element method to study a two-dimensional large amplitude fold. A viscous layer in a 

less viscous matrix is compressed to analyze the stress history of folding. Figure 2.8 

shows the orientation of maximum principal stress σ1 at different stages. During the early 

periods of buckling, the maximum principal stress within the folding layer is parallel to 

the layer having large magnitudes. As the fold grows, the orientation of σ1 rotates to a 

large angle to the folding layer with a decrease in the stress magnitude. In the fold crest 

area, the orientation of σ1 is parallel to the layer on the concave sides of folds because of 

the layer-parallel shortening, and the magnitude of σ1 decreases with buckling. On the 

convex sides, the orientation of σ1 is approximately perpendicular to the layer as a result 

of layer-parallel elongation. Their result shows that low magnitude tensile stress is 

expected to develop at the outer part of the fold crest. 
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Figure 2.8 Orientations of maximum principal stress in the layer and matrix at different 

amounts of shortening. (A) 20% shortening. (B) 60% shortening. (C) 80% shortening 

(after Dieterich and Carter, 1969). 

 

 

2.3.4. Strain Distribution. Deformation during folding leads to variable strain  

states throughout the layer. It is known that buckling of a competent layer, embedded in 

an incompetent matrix, produces parallel folds (fold layers which maintain parallel shape 

when buckled) (Price, 1966). For parallel folds, there are two classic theories to describe 

the strain distribution: flexural flow theory and tangential-longitudinal strain theory. Both 

of them are able to produce parallel folds with no change in orthogonal thickness 

(perpendicular distance between the inner and outer fold surfaces) (Ramsay, 1967). These 

two theories are described in most structural geology text book (e.g. Price and Cosgrove, 

1994; Twiss and Moores, 2007; Fossen, 2010). 

2.3.4.1 Flexural flow theory. Flexural flow theory demonstrates that   

anisotropic viscosity in rocks leads to flexural flow and the strain distribution is governed 

by homogeneous but anisotropic layers buckling with bedding-parallel slip (Johnson and 

Fletcher, 1994). There is no strain at the layer crest and the maximum layer-parallel shear 

strain is developed at the middle of the limb (see figure 2.9). For any surface parallel to 

the layer, the length remains unchanged and the shear strain is zero at the crest and 

(A) 

(B) (C) 
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increases to a maximum at the inflexion point. The central surface is parallel to the fold 

shape. 

 

 

 

Figure 2.9 Deflections of originally square gridlines and strain pattern (black ellipses) in 

parallel folds by flexural flow (after Johnson and Fletcher, 1994). 

 

 

2.3.4.2 Tangential longitudinal strain. Tangential longitudinal strain is  

characterized by tangential, layer-parallel extension at outer crest arc and tangential, 

layer-parallel compression at the inner crest arc. The folding layer thickness is constant 

and the principal strains are parallel and perpendicular to the layering (Figure 2.10). The 

surface near the center of the layer characterized by zero principal stain is termed as the 

neutral surface and it separates layer-parallel extension from layer-parallel compression 

in the hinge zone (Ramsay, 1967). Unlike the center surface in flexural flow folds, the 

neutral surface fails to divide the folding layer into two parallel fold halves. The 

migration of the neutral surface in the hinge zone indicates the neutral surface’s non-

parallelism to the outer and inner fold surfaces. The tangential longitudinal strain theory 

illustrates that the layer-perpendicular tension fractures on the convex side of the fold 

crest, i.e. on the upper side of the neutral surface, can be generated by layer-parallel 

shortening.  
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The tangential-longitudinal strain is successfully approximated in laboratory 

experiments (Hudleston, 1973) and corresponds with most strain patterns in natural folds 

(Shimamoto and Hara, 1976). Finite element analysis of stress and strain pattern shows that 

this theory is the dominant mechanism for viscous single and multilayer folds (Dieterich and 

Carter, 1969; Hudleston, 1973.). However, this theory is not perfect to explain the area 

change in the hinge regions in nature (Hudleston and Holst, 1984; Bobillo-Ares and 

Bastida., 2000). 

 

 

 

Figure 2.10 Deflections of originally square gridlines and strain pattern (black ellipses) in 

parallel folds by tangential longitudinal strain. The red line represents the neutral surface 

(after Johnson and Fletcher, 1994). 

 

 

2.4. MATHEMATICAL DESCRIPTION OF FOLDING. 

2.4.1. Differential Equation of Single Layer Folding in Elastic Medium. By  

analyzing the forces acting on a very small element, the differential equation which 

governs the deflection of a single layer folding in elastic medium can be expressed as 

(Johnson and Fletcher, 1994).: 
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L

dM dw
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Neutral Surface 
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Figure 2.11 Buckling of a single layer (after Johnson and Fletcher, 1994). 

 

 

where PL represent the axial load, Q represent shear force and M represent bending 

moments (see Figure 2.11). The deflection (w) is used to describe the mathematical 

formula of folding. Combined with the theory of elasticity, the differential equation of 

folding in elastic medium can be expressed as (Johnson and Fletcher, 1994): 
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where I is the moment of inertia, λ0 is the wavelength of the initial perturbation. E is the 

Young’s modulus and ν is the Poisson’s ratio for the folding layer. E0 is the Young’s 

modulus and ν0 is the Poisson’s ratio for the matrix. The single layer thickness is 

expressed as h. The deflection w can be expressed as  
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0 1

w w w   (50) 

 

where w1 is the deflection caused by the axial load, and w0 is the deflection of the folding 

layer in the unloaded state and can be calculated as:  
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The entire deflection equation can now be rewritten as  

 

 
 

24

1 0 01

12 4 2 2

0 0

2
0

1 1

E d w w Ed w h
I P w

dx dx



  


  

 
  (52) 

 

2.4.2. Differential Equation of Single Layer Folding in Viscous Medium. For 

a viscous medium, the stress is not only dependent on the applied strain but also on the 

strain rate. If sufficient time is allowed, even a small load can produce large folds in 

viscous material layers. The coefficient of viscosity for a viscous material is defined as  
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For a viscous material, the bending moment is (Johnson and Fletcher, 1994): 
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The differential equation for the deflection of a viscous layer bedding in a viscous matrix 

given by Johnson and Fletcher (1994) is : 
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or 
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where η is the coefficient of viscosity under the axial load, and η0 is the coefficient of 

viscosity in the unloaded state.  

 

 

2.5. CONSTITUTIVE MODEL FOR VISCOELASTIC FOLDING 

In order to solve equation 70 numerically, a constitutive model relating stress and 

strain rate need to be defined for the viscoelastic medium. 

2.5.1. Navier - Stokes  Equations  for Slow  Linear  Viscous  Flow. As many  

folds display a cylindrical form (Dick and Sinton, 1979), a two-dimensional (2D) 

numerical model under plane-strain loading is applicable to study their formation. This 

model consists of an incompressible material in an x-z coordinate system; the z axis is 

vertical and mass is conserved everywhere. The stain normal to the x-z plane, εy, and the 

shear stain εxy and εyz , are assumed to be zero. The displacements of all points in the 

model are assumed to be parallel to a give plane. 

 

 

 

Figure 2.12  Stresses and accelerations acting on a basic fluid element. 
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Considering the incompressibility of the material, the development of folding is 

assumed as a constant-volume deformation progress and the density (ρ) at any point in 

the model remains constant. In order to describe the buckling process numerically the 

conservation equations for slow, incompressible viscous flow need to be solved. The 

conservation of mass at a point in a continuum can be expressed as 
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                                            (57) 

 

where vx and vy are the velocities along the x and z axes respectively. 

Since the density is independent of space and time, the continuity equation can be 

arranged as 
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The conservation of momentum is given by Newton’s second law of motion (considering 

gravity): 
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where ax and az represent the accelerations at x and z axes respectively. Gravitational 

acceleration has been considered, where gx and gz represent the gravitational 

accelerations along the x and z axes respectively. 
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Because the strain rates of geologic progress are as slow as 10
-12

 s
-1

 (Karato, 

2008), a steady flow condition can be applied: 
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 Pore pressure within a petroleum reservoir rock is very important because the 

entire reservoir is treated as a porous, fluid-filled rock system. Considering pore pressure 

in equations (60) to (66), the equation of motion at each point of the model can be 

arranged as  
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The constitutive equations are used to describe the mechanical behavior of a 

constant-volume deformation of viscoelastic material. They can be derived from the 

relationship between stress and velocity. In general, this relationship can be expressed as: 
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where P is the static pressure or negative mean normal stress, and expressed as 
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Accounting for pore pressure, this relationship can be written as: 
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The Navier-Stokes equations are derived by combining the equation of motion 

(equation 67 and 68) and the rheological equations (equation 73, 74 and 75): 
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They can be rearranged as:  
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Substituting equation 58 into these results in: 
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These are the Navier-Stokes equations for steady, in-plane flow of an 

incompressible, linear viscous fluid. 

2.5.2. Governing Equations for Slow Linear Viscous Flow. The right hand  

sides of the conservation of momentum equations (equations 67 and 68) are assumed to 

be negligible as the natural geological deformation rates are very small. Thus these 

equations are reduced to: 
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The sum of equations (95) and (96) is zero and expressed as: 

 



 

 

43 

 
( ) ( ) ( ) ( )

0
x x p zx p z z p xz p

P P P P
g

x z z x

   


       
    

   
  (84) 

 

Substituting equation 72, 73 and 74 into equation 83, the governing equations for 

this numerical model can be expressed as:  
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Thus 
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To simplify, the governing equation 85 is rearranged as: 
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Substituting equation (58) into this result, the final differential equation is 
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This is the governing equation for steady, in-plane flow of an incompressible, 

linear viscous fluid. 
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3. MODELING METHOD 

3.1. FINITE ELEMENT METHOD 

The finite element method (FEM) is a general and powerful numerical method to 

obtain approximate solutions of complex problems that involve complicated geometry 

and boundary conditions. This method was firstly developed to study air-frame structures 

stability (Clough, 1960) and was extended to other engineering field later. 

3.1.1. Partial Differential Equations and Numerical Methods. Most of the  

governing equations can be  represented by partial differential equations. A partial 

differential equation （PDE） is defined as an equation including an unknown function 

of two or more variables and certain of its partial derivatives. The governing PDEs are 

viewed as the mathematical description of continuous physical phenomenon in which a 

dependent variable is a function of more than one independent variable. For the steady, 

in-plane flow of an incompressible, linear viscous fluid, the governing PDEs are 

presented in Chapter 2.  

Unlike the derivation of the governing equations which is not excessively difficult, 

the exact solutions are difficult to obtain due to complex geometries and complex 

boundary conditions. Thus, numerical methods are introduced to achieve approximate 

solutions. The basic idea in a typical numerical method for solving the governing PDEs is 

to discretize the given continuous problem into subdomains or elements to obtain a 

discrete system, containing equations with unknowns that can be solved by computer.  

3.1.2. Finite Element Method and ABAQUS
TM

. The finite element method 

(FEM) offers a numerical approximation method to solve for the governing PDEs in 

problems with complicated geometries, loadings and material properties where analytical 

solutions are impossible to achieve. The continuum of the object is divided into an 

equivalent system with finite small units (elements) which are interconnected at points 

(nodes) and boundary lines. The characteristic relationship between force q and 

displacements u will always be of the form (Zienkiewicz, et al., 2005): 

 

e e e e
q K u f         (89) 

 



 

 

45 

where K
e
 is the element stiffness matrix, f

e
 is the element loading, and q

e
 is the internal 

force at the element nodes. 

By inducing the shape functions, Na, prescribed in terms of independent variables, 

the displacements u at any point within the element be approximated as a column vector 

(Zienkiewicz, et al., 2005): 

 

e

a a

a

u u N u      (90) 

 

The shape functions are expressed as polynomial forms of the independent 

variables and derived to satisfy certain conditions at the nodes. Combing the equations 

for all the elements in the discrete system, a global matrix equation system of the physical 

problem is obtained if the approximating equations are in integral form. The boundary 

conditions, which are the specified field values on the boundaries, are inserted into the 

final assembled global matrix. Thus the numerical results, such as the stress history of 

folding layers in this study, can be solved from the resulting equation system. The 

theoretical concepts and methods for FEM can be found in extensive detail in standard 

text books (e.g. Zienkiewicz, et al., 2005; Bathe, 2008; Dhatt and Touzot, 2012).  

 The FE analysis (FEA) in this research is performed using the general-purpose 

finite element code, ABAQUS/Standard. ABAQUS
TM

 is a commercial program that is 

capable and suitable for analyzing and solving geotechnical problems involving two- and 

three-dimensional models (e.g., Smart, et al., 2004, 2010a, 2010b). ABAQUS
TM

 is 

efficient for simulating the complicated physical response of rocks due to nonlinear 

material behavior and complex geometry. The built-in material library consists of several 

constitutive material models that are capable to simulate different rock behavior, 

including liner elastic models to viscoelastic models. ABAQUS
TM

 also has automatic and 

adaptive choice of time incrimination which provides accurate stress evolution during 

folding development (Dassault, 2011). 
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3.2. MATERIAL PROPERTIES 

For a realistic simulation of in-situ stresses in crustal rocks appropriate material 

properties need to be introduced. For the viscoelastic simulation in ABAQUS
TM

 using a 

*SOILS, CONSOLIDATION analysis including rock creep behavior the following 

material properties need to be defined: (a) Young’s Modulus, (b) Poisson’s Ratio, (c) 

viscosity, (d) density, (e) permeability, and (f) porosity.  

In the presented model, standard values for sedimentary rocks’ Poisson’s Ratio 

(=0.25 for all rocks considered) are chosen.  

In many sedimentary basins an increase in depth is associated with a reduction in 

of porosity, and permeability and an increase in density (Chapman, 2000). This behavior 

is the result of mechanical compaction, and the duration and history of post-depositional 

events (Twiss and Moores, 2007). Plumley (1980) suggests that the increasing effective 

stress leads to rock compaction along pore volume reduction and formation fluid 

movement. The rate of porosity change varies in different types of rock. Medina and 

Rupp’s (2011) study on porosity values obtained from geophysical logs and porosity 

values form core analyses in different areas in U.S.A. gives the following porosity-depth 

and low permeability-porosity relationship: 

 

0.00039
( ) 16.39

d
z e


                     (91) 
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                       (92) 

 

where ϕ is the porosity (%), d is the depth in meters, and k is permeability in m
2
. For 

example, permeability at 1000 meters depth is 1.75×10
-15

 m
2
.   

Furthermore, isotropic permeability is uncommon in most sedimentary rocks. 

Permeability typically varies significantly between the vertical and horizontal planes 

within a formation. This variation in permeability in different directions is known as 

anisotropic permeability. Based on small-scale probe permeability measurements on 

differently oriented faces of highly cemented sandstones, the ratio between vertical 

permeability and horizontal permeability is discovered to vary between 0.1 and 1.0 



 

 

47 

(Chapman, 2000). For material in this numerical model, the ratio is assumed to be 0.2 in 

the model material. 

The specific gravity of soil/rock solids is introduced here to express the dry density of 

rock. The specific gravity of solids (Gs) is defined as the mass of a volume of material 

over the mass of the same volume of water. Dry density used in the model can be derived 

as 

 

 0.00039
(1 ) (1 0.1639 )

d

d s w s w
G G e   


      (93) 

 

where Gs is 2.75 (Turcotte and Schubert, 2002). 

 The relation between the elastic moduli and the seismic waves’ velocity enables 

the Young’s Modulus to be calculated by S-wave velocity if the rock density is known. 

For a homogeneous isotropic rock, the Young’s Modulus is estimated using the following 

equation (Fjar et al., 2008):  

 

 2
2 (1 )

S d
E V     (94) 

 

where E is the Young’s Modulus (Pa) , Vs is S-wave velocity (m/s) and ν is Possion’s 

ratio. Thus, the rock Young’s Modulus has a liner relation with dry density with a 

constant S-wave velocity and Possion’s ratio. The S-wave velocity is assigned as 400m/s 

for the rock in the matrix, which is typical for saturated sandstone (Buchmann, 2007). 

As many fold and buckling processes are the result of pressure solution creep 

during compressional loading (Dick and Sinton, 1979; Turcotte and Schubert, 2002), 

viscoelastic material response is considered in the numerical models. Pressure solution 

creep follows the linear slow viscous flow relationship derived in chapter 2.1.6. Rocks 

behave as a so-called Newtonian fluid and the stress strain relationship is given by 

equation: 

 

 2   (95) 
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where σ is stress, µ is viscosity and  ̇  is the strain rate. The modeling approach is 

utilizing geological strain rate varying between 10
-12

 and 10
-15

 s
-1

 (Watts, 1987; Kocher, 

et al., 2006).  

The visco-elastic material is used to predict the unrecoverable behavior in rock 

deformation; it has been widely used in the modeling of folding (e.g. Biot, 1959; 

Chapple, 1968; Dieterich and Carter, 1969; Williams, et al., 1978). 

As described in chapter 2.3 another important parameter is the competence 

contrast R between the folding layer and the matrix, where competence may be described 

as a measure of material strength (Chapple, 1969). For the viscoelastic materials 

simulated here, both the viscosity ratio and the elastic strength ratio define the 

competence contrast because they control the viscous part and the elastic part of 

deformation, respectively. A constant contrast R is assumed throughout the entire model 

and is defined as  

 

 
folding folding

matrix matrix

E
R

E




   (96) 

 

To produce a folding layer with constant orthogonal thickness (perpendicular 

distance between the inner and outer fold surfaces), the initial R value is chosen as 42 in 

these numerical models (Zhang, et al., 1996).  

All of the material properties of the numerical model are listed in Table 3.1. 
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Table 3.1 Material prosperities of layer and matrix 

Properties Folding Layer Matrix 

Specific Gravity 2.75 2.75 

Viscosity 10
19

 [Pa s] 19
10 / R  [Pa s] 

Young’s Modulus 0.00039
23(1 0.1639 )

z
e


 [GPa]   
0.00039

23 (1 0.1639 )
z

R e


 [GPa] 

Poisson Ratio 0.25 0.25 

Permeability (at 

1000m) 

15
1.75 10


  [m

2
] 15

1.75 10


  [m
2
] 

Strain Rate 10
-12

 [s
-1

] 10
-12

 [s
-1

] 

 

 

In order to simulate realistic effective stresses in an ABAQUS
TM

 *SOILS 

analysis, initial pore pressure and water saturation have to be defined. Water saturation is 

assumed to be 1 throughout the model domain and pore pressure is assumed to be 

hydrostatic. At depth h, the hydrostatic pressure is equal to the weight of a pure water 

column from sea level with the water density (ρw) 

 

 
0

z

P w
P g dz   (97) 

 

The pore pressure can be predicted to increase to a certain number during the fold 

development due to horizontal compression which is a kind of tectonic loading. 

 

 

3.3. REALISTIC STRESS MAGNITUDES: PRE-STRESSING APPROACH.  

The rock in nature is in equilibrium with all loads present and this state of 

equilibrium is represented by the in-situ state of stress (Twiss and Moores, 2007). For a 

numerical simulation of the kinematic behavior of a tectonic system such as folding, it is 

insufficient to only apply the boundary conditions during the shortening period without 

considering the initial equilibrium state of stress. Thus, defining an appropriate initial 

state of stress and then applying appropriate boundary conditions on the pre-stressed 
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model is necessary for a finite element model to simulate realistic stress magnitudes. For 

all the numerical models in this study, gravity is applied both before and during layer- 

parallel shortening, in order to approximate a realistic in-situ stress state in the model and 

counteract excess elastic compaction in rock layers. This is termed as pre-stressing 

(Buchmann, 2008). 

In the first step, only the gravitational acceleration load and appropriate boundary 

conditions without shortening are utilized (see Figure 3.1A). For this 2-D model, all the 

boundaries are constrained and only allow in-plane displacements except for the top 

boundary, which remains unconstrained and acts as a free surface. The pore pressure in 

the pre-stressing step is assumed to be hydrostatic. As a result, an elastic compaction in 

the vertical direction and the gravity-induced state of stress, which changes with depth, 

are obtained. The vertical compaction is a function of the model depth and rock density 

with a constant Young’s Modulus. For a numerical model with 1000 meters depth and 

rock density as described in the chapter 3.2, the vertical displacement is as much as 52 

meters. However, the vertical elastic compaction due to gravity is neither realistic nor 

necessary because of the initial state of stress is in equilibrium with the gravity load 

acting as a body force, resulting in no vertical displacement.  

In the second step, the resulting stress state from the gravitational compaction is 

applied to the model as an initial state of stress. The second step is a tectonic pre-

stressing step with gravity and layer-parallel shortening as boundary conditions to 

simulate the stress change during single-layer folding. Because of the initial state of stress 

generated during the first step, realistic stress magnitudes related to depth have been 

established and excess elastic compaction along the vertical direction has been 

counteracted before buckling. 

By combing the two steps, it is possible to simulate realistic stress history during 

the folding and correct the vertical displacements caused by the rock gravity using pre-

existing state of stress. The simulation results can not only reveal the stress evolution 

during buckling, but also be compared to geological observations. 
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Figure 3.1 Boundary conditions for 2D numerical models. A) Gravitational pre-stressing 

numerical model where only gravity is acting and the model sides are constrained such 

that only in-plane displacements are allowed (rollers). B) Numerical model with a 

constant tectonic strain εhor added after reaching gravitational equilibrium. 

 

 

3.4. MODEL GEOMETRY AND BOUNDARY CONDITIONS 

The geometry of the numerical model consists of a central folding layer with 

periodic, small perturbations embedded within the matrix. As shown in Figure 3.1, the 

length of the folding layer is 4000 meters and the thickness is 30 meters. Folding layers 

with high viscosity are separated by layers of low viscosity. Models are deformed in 

plane strain at a constant rate of 10
-12

 s
-1

. Thus, the geologic time can be obtained by the 

strain rate and the natural strain which is referred to as shortening in the following parts. 

(B) 

(A) 
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The horizontal compression is achieved by uniform displacement boundary conditions 

applied over a time period of 15855 years resulting in a strain rate of 10
-12

 s
-1

.  

 

 

3.5. MODEL SETUP AND SENSITIVITY 

3.5.1. Effect of Perturbation Geometry on Final Fold Shapes. The effect of the  

perturbation geometry (i.e. whether a horizontal section is added to the folding layer) is 

investigated in order to find a suitable geometry.. Four different perturbation geometries 

(on the left and right sides) are designed: (1) no horizontal layer, (2) short horizontal 

layer (500 m), (3) medium horizontal layer (1000 m), and (4) long horizontal layer (1500 

m). The layer thickness is constant at 30 meters.  

The geometry has both effects on the final fold shape and the amount of total 

strain (Figure.3.2 and Table 3.2.). With the horizontal layer existing on the right and left 

sides of the folding layer, stress concentrations develop during shortening, which reduces 

the deformation of the folding layer. These stress concentrations have significant 

influence on the stress distribution in the symmetric part of folding layer which is not the 

scope of this research (see Figure 3.3). Additionally, determining the length of the 

horizontal layer next to a fold structure in the field can be difficult. Therefore, for the 

following parametric studies, no horizontal layer is added to the folding layer. 

 

 

 

No horizontal layer 

500m horizontal layer 

1000m horizontal layer 

1500m horizontal layer 

Figure 3.2  Final geometry of the numerical model with 

different boundary condition under 30% shortening. 
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Figure 3.3  Stress concentration (effective minimum principle stress concentration) in the 

numerical model with 500 meters horizontal layer along the folding layer under 30% 

shortening. 

 

Table 3.2  Final strain of folding layer under 30% shortening. 

Horizontal layer length (m) Maximum εx (%) Maximum εy(%) 

0 598.9 392.4 

500 617.2 447.4 

1000 670.4 502.4 

1500 898.4 706.4 

 

 

3.5.2. Initial Perturbation Geometry. Under horizontal compression a straight  

layer with no perturbation is shortened, and buckling is not initiated. Therefore, a 

perturbation is required as an initial condition (Biot, 1961). The initial amplitude in the 

FE model is 2.5 m, and five different wavelengths are investigated as initial conditions: 

1000 m, 1500 m, 2000 m, 2500 m, and 5000 m. The same amount of horizontal 

compression is applied to all model geometries (40% shortening). The influence can be 

viewed on both the final deformation and the strain on the crest of the first “perfect” fold 

shape (see Figure.3.4 and Table 3.3). The initial perturbation wavelength significantly 

influences both the final deformation and the resulting strain. Rock compression in the 

middle of the model was offset by the large wavelength. Hence, the initial wavelength of 

the perturbation was set up as 1000 meters to ensure the shortening effect was maintained 

throughout the entire folding layer. Such geometric irregularities result in an initial dips 
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around 2.8° and approximate natural perturbations at a wavelength near the theoretically 

dominate one (see equation 55). 

 

 

 

 

Figure.3.4.   

 

Table 3.3 Final vertical strain of fold crest under 40% shortening. 

Perturbation 

Wavelength (m) 
Crest εy (%) 

1000 681.3 

1500 624.5 

2000 341.7 

2500 312.9 

5000 280.2 

 

 

3.6. MODEL VERIFICATION 

3.6.1. Verification Based on Biot’s Folding Theory. In order to validate the 

modeling approach of single layer buckling a simple model was setup and the results are 

compared to Biot’s single layer folding theory (equation 56).  

 

 

λ=1000 m 

λ=2000 m 

λ=2500 m 

λ=5000 m 

λ=1500 m 

Figure 3.4  Final geometry of the numerical model with different initial wavelength 

perturbations subjected to 40% shortening. 
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Figure 3.5 Geometry of the verification numerical model 

 

 

The models’ geometry is identical to those adopted by both Zhang et al (1996, 

2000) and Mancktelow (1999). The length and width of the model were 198 m and 134 

m, respectively. The bedding layer thickness is 2 m and the initial wavelength is 12 m 

(Figure 3.4). Without either pore pressure or gravity considered, this group of models 

features the same boundary condition (layer parallel shortening with 20% shortening). 

The final wavelengths for different competence contrast R tested are listed in Table 3.4. 

 

 

Table 3.4 Comparison between the wavelength achieved and the dominant wavelength 

from the Biot-Ramberg equation (Equation 42) 

R 
Biot dominant 

wavelength (m) 

Average 

wavelength (m) 
Difference 

20 18.8 19.8 1.0 

42 24.0 22.62 1.38 

100 32.1 31.68 0.42 

200 40.4 39.6 0.8 

 

 

The geometry in Biot’s theory is a layer with a series of small initial perturbations of 

various wavelengths. However, the initial condition used here is different because the 
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perturbation only has one wavelength. This may be the reason for the slight difference 

between the simulation results and the theory.  

3.6.2. Validation Based on Strain. The strain distribution can also be examined  

to check the simulation results. As mentioned in chapter 2, parallel folds are developed 

when buckling of a competent layer, embedded in an incompetent matrix. Parallel folds 

are characterized by a constant orthogonal thickness from crest to limb and an increase in 

its axial trace thickness (measured parallel to the axial trace) from crest to limb. To 

describe this phenomenon, Ramsay defines tangential longitudinal strain (Turcotte and 

Schubert, 2002). Based on this theory, the principal strain is parallel to the folding 

layering. As described in chapter 2.3.4, the tangential longitudinal strain are found to be 

close to folds in laboratory simulations (Laubsher, 1975) and match the strain patterns 

found in field (Prisco and Imposimato, 1996). In this research, tangential longitudinal 

strain is observed throughout the folding layer in the final deformation of the numerical 

model. The orthogonal thickness distribution in the folding layer is close to 30 meters 

which is the initial thickness (see Figure 3.6). And the principal strain distributing in the 

folding layer are parallel to the folding deformation (see Figure 3.7). Hence, the folding 

layer in the numerical model is classified as a parallel fold and the simulation results are 

validated by the observation of tangential longitudinal strain. 

 

 

 

Figure 3.6  Orthogonal thickness distribution in the folding layer. 
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(A) 

(B) 

Figure 3.7 Deformation and strain of the numerical model after folding 

simulation.(A).Final geometry of the numerical model. (B). Distribution of logarithmic 

strain orientation in the folding layer. 
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4. RESULTS 

In this group of simulations, a series of numerical models are established to 

investigate the influence of different material properties and boundary conditions on the 

fold’s stress history. In the result analysis, the spatial and temporal evolution of the 

effective minimum principal stress (σ′3) is studied in detail, as tensile failure occurs when 

σ’3 reaches the tensile strength (To). Therefore, the timing of σ´3 becoming negative is 

crucial.  

For the following results analyses Figure 4.1 shows the numbering of the relevant 

elements to distinguish the results on the crest and limb of the folding layer. Since the 

stress distribution is symmetric along the fold structure, for the following results 

analyses, the stress history of the developing fold fractures at the crest of the fold and 

along a layer perpendicular cross-section in the limb (see Figure 4.2) is investigated. 

Based on the stress distribution, these locations are possible to generate tensile fracture. 

 

 

 

Figure 4.1 Elements numbering and locations. (A). Elements 1 to 6 are placed on the 

hinge zone of fold from the top to the bottom. . (B). Elements A to F are placed on the 

crest from the right to the left. 

 

 

(B) 

1 

2 

3 

4 

5 

6 

(A) 
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Figure 4.2 Effective minimum principal stress distribution over folding layer and the 

elements located on both the crest and the limb. 

 

 

 

Figure 4.3 Possible tensile fractures at the crest and limb of a major fold based on the 

stress distributions in figure 4.2. 

 

 

4.1. BASIC MODEL STRESS HISTORY 

A basic model is developed to explore the stress history through the folding layer. 

The material properties in the folding layer and matrix are listed in Table 3.1. The fold 

structure has been successfully developed during the simulation progress. Figure 4.4 

shows the effective minimum principal stress distribution history with fold development 

during 15.855 thousand years (i.e.  ̇=10
-12

 s
-1

). Because of the symmetry of the model 

geometry, the stress distribution along the fold structure is symmetric.  
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Figure 4.4 Fold/fold development in the numerical model in ~15000 years after 50% 

shortening is applied as a natural strain. 

 

 

Figure 4.5 shows how the orientations of the maximum effective principal stress 

(σ′1) changes along the folding structure and over time. In the hinge zone of the fold, σ′1 

is parallel to the layer up to 27% overall shortening. At this time, the folding layer 

undergoes layer-parallel shortening throughout. After that, the orientations of σ′1 begin to 

rotate to the direction perpendicular to the layer on the convex side of the fold crest 

where layer-parallel lengthening occurs, and it remains to be parallel to the layer on the 

concave side where layer-parallel shortening occurs. In the limbs, σ′1 rotates with model 

shortening as the folding angle increase. The orientations of σ′1 tend to be parallel to 

shortening direction before the dipping angle of the limb increases to a high value (e.g. 

50˚). 

The σ′1 orientation evolution of the crest elements are plotted in Figure 4.6. The 

effective principal stress magnitudes also vary throughout the folding layer (see Figure 

4.2).  

 

 

t=1265 years 

t=15854 years 

t=7025 years 

t=2807 years 
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Figure 4.5  Orientations of σ1΄in numerical modeling of single layer folding. (A) 27% 

overall shortening. (B) 37% overall shortening.(C) 50% overall shortening 

 

 

 

Figure 4.6 Orientations of effective maximum principle stress in crest elements (to 

horizontal). 

 

 

(A)

(B) (C) 
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The temporal development of the effective principal stresses at the fold’s crest 

and limb are plotted in Figure 4.7 and 4.8. Throughout the limb of the fold, the effective 

principal stresses are roughly uniform and the minimum effective principal stress (σ′3) 

increases at an approximate constant rate (Figure 4.8b). The most interesting result of the 

stress history is at the top of the fold. Along the hinge zone of the fold, σ′1 begins to 

decrease after 17% shortening and increase again after 31% shortening (Figure 4.7c). The 

lowest value (23.2 MPa) is reached around 31% shortening on the convex side of the 

hinge zone. σ′3 along the hinge zone of fold (Figure 4.7b) are  initially approximately 

equal (i.e. before ~27% shortening) and increase constantly. After 27% shortening, σ′3 

decreases (for element 1 at 27%, element 2 at 35%, element 3 at 40 %) and drops to a 

minimum of 18.7 MPa at 40% shortening for element 1. Figure 4.9 shows the differential 

stresses history of the fold/fold crest over time. These changes reflect that the top of the 

crest is characterized by the lowest magnitudes of ′3 and d and thus represents the 

location where tensile stresses are most likely. The bottom element of the crest is 

characterized by the highest differential stress and thus represents the region of the 

highest likelihood of shear failure. Thus, the “tensile stress” analysis in the following 

sections is based on the temporal development of the principal stresses of the element on 

the top of the crest of the folding layer (Element 1 in figure 4.7A). For comparison, the 

stress history of the element at the external limb is also investigated (Element C in figure 

4.8B).  
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Figure 4.7  Element locations and stress history. (A). Elements 1 to 6 are placed on the 

hinge zone of fold/fold from the top to the bottom. (B). A plot of the effective minimum 

principal stress magnitude development for all elements over the period of shortening. 

(C). A plot of the effective maximum principal stress magnitude development for all 

elements over the period of shortening. 
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Figure 4.8  Limb elements locations and stress history. (A). Elements A to F are placed 

on the crest from the right to the left. (B). A plot of the effective minimum principal 

stress magnitude development for all limb elements over the period of shortening. (C). A 

plot of the effective maximum principal stress magnitude development for all limb 

elements over the period of shortening. 
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Figure 4.9 Differential stresses history of crest elements over shortening. 

 

 

4.2. INFLUENCE OF COMPETENCE CONTRAST 

Models with different competence contrasts are established to investigate their 

influence on the stress history of the folding layer. The matrix material properties, as 

shown in Table 3.1, remain constant and the folding layer material properties (e.g. E and 

μ) vary as the competence contrast (R) changes. R is assumed to have the same value for 

the ratios of Young’s modulus (E) and viscosity (μ). Figure 4.10A illustrates how fold 

shape (including amplitude and thickness) changes with R when the matrix contains the 

same material. The effect performed by R on the fold geometry is consistent with the 

research of Johnson and Fletcher (1994). Because this group of single layer folds is 

assigned with the same initial geometry and boundary condition, folds with the same 

wavelengths are generated. The lowest competence contrast (R=5) shows a low 

amplification rate of folding and layer thickness increment. The highest competence 

contrast (R=168) shows a high amplification rate of folding. The amplitude of the fold 

increases significantly at an inconstant rate as the competence contrast increases (see 

figure 4.10B). High growth rate is observed before R reaches 40.  
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Figure 4.5 Numerical models of folding of a single layer embedded in a matrix with 

various properties. (A) Final fold forms for a single layer with different competence 

contrasts. The same initial perturbation is used to initiate all the folds. (B) Relationship 

between final amplitude and competence contrasts R. 

 

 

The minimum effective principal stress (σ′3) histories of the folding layer at the 

crest and limb for a series of models with different competence contrast are included in 

the following  plots (Figure 4.11 to Figure 4.15). The observations are summarized as 

follows: 

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140 160 180

A
m

p
li

tu
d

e 
(m

) 

R 

 

R=5 

R=10 

R=21 

R=42 

R=84 

R=168 

(A) 

(B) 



 

 

67 

⑴ The stress histories at different locations in both crest and limb are close to 

each other when the contrast is as low as 5 and 10 (see Figure 4.11 and 4.12). σ′3 

increases with shortening both at the folding layer crest and limb.  

⑵ The stress histories at different locations in both crest and limb are close to 

each other before 40% shortening when the contrast equals to 21 (see Figure 4.13) 

. After that, σ′3 decreases with shortening at the top of crest. For the limb, σ3΄ 

increases with time throughout the entire shortening. 

⑶ The stress development at the crest and limb are highly dependent on the 

location at high competence contrast models (e.g. R=84 and R=168). A decrease 

of σ′3 is first observed both at the top crest and limb when the contrast is as high 

as 168. Tensile stress is generated at the top of the crest in the folding layer with 

the same high contrast (see Figure 4.14 and 4.15). 
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Figure 4.6  Stress history for numerical model with R=5. (A) Effective minimum 

principal stress development at the crest of the folding layer with R=5. Elements 1 to 6 

are located as shown in Figure 4.1. (B) Effective minimum principal stress development 

at the limb of the folding layer with R=5. Elements A to E are located as shown in Figure 

4.1. 
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Figure 4.7 Stress history for numerical model with R=10. (A) Effective minimum 

principal stress development at the crest of the folding layer with R=10. Elements 1 to 6 

are located as shown in Figure 4.1. (B) Effective minimum principal stress development 

at the limb of the folding layer with R=10. Elements A to E are located as shown in 

Figure 4.1. 
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Figure 4.8 Stress history for numerical model with R=21. (A) Effective minimum 

principal stress development at the crest of the folding layer with R=21. Elements 1 to 6 

are located as shown in Figure 4.1. (B) Effective minimum principal stress development 

at the limb of the folding layer with R=21. Elements A to E are located as shown in 

Figure 4.1. 
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Figure 4.9 Stress history for numerical model with R=84. (A) Effective minimum 

principal stress development at the crest of the folding layer with R=84. Elements 1 to 6 

are located as shown in Figure 4.1. (B) Effective minimum principal stress development 

at the limb of the folding layer with R=84. Elements A to E are located as shown in 

Figure 4.1. 
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Figure 4.10 Stress history for numerical model with R=168. (A) Effective minimum 

principal stress development at the crest of the folding layer with shortening when 

R=168. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum 

principal stress development at the limb of the folding layer with R=168. Elements A to 

E are located as shown in Figure 4.1. 

 

 

The relationships between the effective minimum principal stress (σ′3) at the fold 

crest and shortening are plotted in Figure 4.8 to investigate the influence of R on the 

stress history. An increase of R has a profound effect on both the time and the degree of 

the σ’3 decline. The effect of increasing R resulting in a larger s’3 drop at a smaller 

shortening stage is illustrated in Figure 4.8. The most interesting result of the competence 

contrast analysis is the existence of tensional stress after a specific amount of shortening, 

exemplified by the model with the highest contrast (R=168). For a high contrast between 

folding layer and matrix material properties, tensile failure can be generated from the 
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pure tensional stress field on the crest. σ′3 at the fold limb increases with shortening, and 

increasing R has only a minor effect on the stress magnitude increment after  40% 

shortening.  

 

 

Figure 4.11  Effective minimum principal stress at the crest of fold development with 

shortening under different competence contrast. 

 

 

 

Figure 4.12  Effective minimum principal stress at the limb of the folding layer with 

shortening for different competence contrasts. 

 

 



 

 

74 

4.3. INFLUENCE OF VISCOSITY 

 The influence of viscosity on folding shapes is shown in Figure 4.18A. For a  

constant competence contrast (R=42), the viscosity of the folding layer (μf) varies from 

5×10
16

 Pa s to 10
21

 Pa s which is a common range of crustal rocks viscosity (Twiss  and 

Moores, 2007). The remaining material properties in these models are assigned as listed 

in Table 3.1. The inter-limb angle (the angle between the tangents to the folds at the 

inflection points, see Figure 4.18B) is used here to illustrate the viscosity impact on fold 

deformation tightness. The effect of increasing μf results in folds changing from tight to 

open (Figure 4.18). High viscosity (e.g. 10
21

 Pa s) has a profound effect on the geometry 

of folds and leads to asymmetrical deformation. Based on the fold classification, the 

folding layer geometry is close to a polyclinal fold and its investigation is beyond of the 

scope of this project. Thus, the single layer numerical model with a viscosity of 10
21

 Pa s 

is excluded in the following analysis. 
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Figure 4.13 Numerical models of folding of a single layer embedded in a matrix with 

varying viscosity. (A) Final fold forms for a single layer with different viscosity. (B) 

Interlimb angle at different viscosities. 

 

 

The history of the minimum effective principal stresses (σ′3) of the folding layer 

at the crest and limb in a series of models with different viscosities (5×10
16

 Pa s , 10
17

 Pa 

s , 10
18

 Pa s, 5×10
19

 Pa s , and 10
20

 Pa s) are included in the following  plots (Figure 4.19 

to Figure 4.23). The stress development of the folding layer with a viscosity of 10
19

 Pa s 
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can be found in Section 4.1 (Figure 4.7 and 4.8). The observations are summarized as 

follows: 

⑴ The stress histories at different locations in both crest and limb are close to 

each other when the viscosity is low (<10
19

 Pa s , see Figure 4.19 to Figure 4.21). 

σ′3 increases with shortening both at the folding layer crest and limb.  

⑵ The stress histories at different locations in both crest and limb are close to 

each other before 15% shortening when the applied viscosity is high ( >10
19

 Pa s, 

see Figure 4.22 and 4.23). During the following buckling period (>15% 

shortening), the stress development is highly depend on the position. A decrease 

of σ′3 can be observed at the top two to three elements of the crest and limb 

(Figures 4.21 to 4.23). While the decrease of σ′3 at the crest elements occurs as 

early as 27 % of shortening, the decrease of σ′3 in the limb occurs after 40 % of 

shortening. . Considerable tensile stress (i.e. 55.4MPa) is generated at the top of 

the crest in the folding layer for high viscosities (>10
20

 Pa s, see Figure 4.23) 

which is unrealistic and results from not including model plasticity.  
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Figure 4.19 Stress history for numerical model with μ=5×10
16

 Pa s. (A) Effective 

minimum principal stress development at the crest of the folding layer with μ=5×10
16

 Pa 

s. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum principal 

stress development at the limb of the folding layer with μ=10
17

 Pa s. Elements A to E are 

located as shown in Figure 4.1. 
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Figure 4.14 Stress history for numerical model with μ=10

17
 Pa s. (A) Effective minimum 

principal stress development at the crest of the folding layer with μ=10
17

 Pa s. Elements 1 

to 6 are located as shown in Figure 4.1. (B) Effective minimum principal stress 

development at the limb of the folding layer with μ=10
17

 Pa s. Elements A to E are 

located as shown in Figure 4.1. 
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Figure 4.15 Stress history for numerical model with μ=10
18

 Pa s. (A) Effective minimum 

principal stress development at the crest of the folding layer with μ=10
18

 Pa s. Elements 1 

to 6 are located as shown in Figure 4.1. (B) Effective minimum principal stress 

development at the limb of the folding layer with μ=10
18

 Pa s. Elements A to E are 

located as shown in Figure 4.1. 
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Figure 4.16 Stress history for numerical model with μ=5×10
19

 Pa s. (A) Effective 

minimum principal stress development at the crest of the folding layer with μ=5×10
19

 Pa 

s. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum principal 

stress development at the limb of the folding layer with μ=5×10
19

 Pa s. Elements A to E 

are located as shown in Figure 4.1. 
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Figure 4.17 Stress history for numerical model with μ=10
20

 Pa s. (A) Effective minimum 

principal stress development at the crest of the folding layer with μ=10
20

 Pa s. Elements 1 

to 6 are located as shown in Figure 4.1. (B) Effective minimum principal stress 

development at the limb of the folding layer with μ=10
20

 Pa s. Elements A to E are 

located as shown in Figure 4.1. 

 

 

 Figure 4.24 shows that there are slight difference in the stress evolutions on the 

crest of the folding layer when viscosity increases from 5×10
16

 Pa s to 10
19

 Pa s. For 

higher viscosity (>10
19

 Pa s), the effect of increasing μf results in significant differences 

in the stress evolution. It can be observed that the mechanical response to shortening 

depends on the layer viscosity. The model featuring the highest viscosity (μf=10
21

 Pa s) is 

removed from this analysis because of the asymmetrical deformation of the folding layer. 

Figure 4.25 shows that there are slight differences in the stress evolutions on the folding 
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layer limb between 7% and 32% shortening. For higher viscosities (>10
19

 Pa s), the effect 

of increasing μf causes a significant decrease of σ′3 after 32% shortening. 

 

 

 

Figure 4.18  Effective minimum principal stress at the crest of the fold with different 

viscosities. 

 

 

 

Figure 4.19 Effective minimum principal stress at the limb of the fold for different 

viscosities. 
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4.4. INFLUENCE OF STRAIN RATE 

Numerical models loaded at various strain rates with the same initial perturbation 

and material properties are established to investigate the influence of strain rate. The 

material strain rate varies between 10
-11

 sec
-1

 and 10
 -14

 sec
-1

. The remaining material 

properties in these models are assigned as listed in table 3.1.  

The temporal history of the minimum effective principal stress (σ′3) at the crest 

and limb of the folding layer in a series of models with different strain rates (10
-11

 sec
-1

, 

5×10
-12

 sec
-1

, 10
-13

 sec
-1

 and 10
 -14

 sec
-1

) are included in the following  plots (Figure 4.26 

to Figure 4.29). The stress development of the folding layer with strain rate as 10
-12

 sec
-1 

can be found in Section 4.1. The observations are summarized as: 

(1) The stress histories at different locations in both crest and limb are close to each 

other before 15% shortening when the applied strain rate is high ( >10
-12

 sec
-1

, see 

Figure 4.26 and Figure 4.27). During the following buckling period, the stress 

development at the crest and limb of the folding layer are highly depending on the 

location. A decrease of σ′3 can be observed for the top elements (1&2) at the crest 

and considerable tensile stress is generated for high stain rates (>10
-12

 sec
-1

). For 

elements on the limb, a steep decrease of σ′3 is observed after 40% shortening 

without reaching tensile magnitudes. 

(2) The stresses histories at different locations in both crest and limb are close to each 

other when the viscosity is low (<10
-12

 sec
-1 

, see Figure 4.28 and 4.29). σ′3 

increases with shortening both at the folding layer crest and limb.  
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Figure 4.20 Stress history for numerical model with ε
．
=10

-11
s

-1
. (A) Effective minimum 

principal stress development at the crest of the folding layer with ε
．
=10

-11
s

-1
. Elements 1 

to 6 are located as shown in Figure 4.1. (B) Effective minimum principal stress 

development at the limb of the folding layer with ε
．
=10

-11
s

-1
. Elements A to E are located 

as shown in Figure 4.1. 
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Figure 4.21 Stress history for numerical model with ε
．
=5×10

-12
s

-1
. (A) Effective minimum 

principal stress development at the crest of the folding layer with ε
．
=5×10

-12
s

-1
. Elements 

1 to 6 are located as shown in Figure 4.1. (B) Effective minimum principal stress 

development at the limb of the folding layer with ε
．
=5×10

-12
s

-1 
Elements A to E are 

located as shown in Figure 4.1. 
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Figure 4.22 Stress history for numerical model with ε
．
=10

-13
s

-1
. (A) Effective minimum 

principal stress development at the crest of the folding layer with ε
．
=10

-13
s

-1
. Elements 1 

to 6 are located as shown in Figure 4.1. (B) Effective minimum principal stress 

development at the limb of folding layer with ε
．
=10

-13
s

-1
. Elements A to E are located as 

shown in Figure 4.1. 
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Figure 4.29 Stress history for numerical model with ε
．
=10

-14
s

-1
. (A) Effective minimum 

principal stress development at the crest of the folding layer with ε
．
=10

-14
s

-1
. Elements 1 

to 6 are located as shown in Figure 4.1. (B) Effective minimum principal stress 

development at the limb of folding layer with ε
．
=10

-14
s

-1
. Elements A to E are located as 

shown in Figure 4.1. 

 

 

Figure 4.30 shows the stress histories for different strain rates on the same model 

and suggests that the strain rate significantly impacts the material behavior. Higher strain 

rates tend to change the response of the bedding layer within the viscous material to 

behave elastically. Tensile stress and possible development of tensile failure are found 

before 32% shortening during the progress at a strain rate of 10
-11

 s
-1

. After that the stress 

increases sharply due to the compaction. As an example, the effective minimum principal 

stress at the crest of the fold begins to drop rapidly after 27% shortening and tensile stress 
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is exhibited when the rate is decreased to 10
-11

 s
-1

. For lower strain rates (e.g. 10
-12

 s
-1

), 

the folding layer exhibits viscous behavior and tensile stress is less likely to be produced. 

In contrast to the models with higher strain rate, the difference in the development of σ′3 

becomes ambiguous with the decline of strain rate, exemplified by the models with strain 

rate as 10
-13

 s
-1

 and 10
-14

 s
-1

. The stress developments in the two layers exhibit a slight 

difference in the effective minimum principal stress. The σ′3 of the fold limb with 

different strain rates increases with shortening with an analogous rate before 40% 

shortening. After that, σ′3 decreases with shortening when the strain rate is high (> 10
-12

 

sec
-1 

). 

 

 

 

Figure 4.23  Effective minimum principal stress at the crest of the folding layer for 

different strain rates. 
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Figure 4.24 Effective minimum principal stress at the limb of the fold for different strain 

rates. 

 

 

4.5. INFLUENCE OF OVERBURDEN PRESSURE 

Numerical models for different overburden thicknesses are established to 

investigate the influence of overburden stress on fold development. The overburden 

pressure at depth z is given as (Jaeger and Cook, 1979): 
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P z P g z dz    (112) 

 

where ρ (z) is the overlying rock density, g is acceleration due to gravity, and P0 is the 

pressure at the surface which is assumed here to be zero (Jaeger and Cook, 1979). 

However, both the overburden depth and rock density are not constant when the fold 

develops. When the model is compressed horizontally, the conservation of model volume 

result in a significant increase in the overburden thickness. Thus, the overburden stress 

must be obtained from the simulation results instead of calculation. The relationship of 

the initial overburden depth fold of the folding layer and the finial overburden pressure is 

illustrated in Figure 4.32 as the initial overburden depth varies between 300 to 3000 

meters. After 50% shortening, the overburden pressure increases from 4.69 MPa to 7.82 

MPa for the lowest initial depth (300 m) and from 49.2 MPa to 97.1 MPa for the highest 
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initial depth (3000 m). The remaining material properties in these models are assigned as 

listed in Table 3.1. 

 

Figure 4.25  Overburden pressure at the crest of fold before and after shortening with 

different initial depth. 

 

 

The temporal evolution of the minimum effective principal stress (σ′3)  at the crest 

and limb of the folding layer in a series of models with different initial overburden depth 

(300 meters to 3000 meters ) are included in the following  plots (Figure 4.33 to Figure 

4.39). The stress development of the folding layer with initial overburden depth 1000 

meters
 
can be found in Section 4.1. The observations are summarized as follows: 

(1) The stress histories at different locations in both crest and limb are close to 

each other before 27% shortening. During the following buckling period, the 

stress development at the crest and limb of the folding layer are highly dependent 

on the position for low depth (< 1000 meters). A significant decrease of σ′3 can be 

observed for elements 1 and 2 at the crest of the fold for low initial depths (< 

1000 meters). Considerable tensile stress is generated at the top of the crest in the 

folding layer when the initial overburden depth is only 300 meters. 

(2) ′3 at different locations in both crest and limb become close to each other as 

initial depth increases (e.g. 3000 meters).  
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Figure 4.26 Stress history for numerical model with D=300m. (A) Effective minimum 

principal stress development at the crest of the folding layer with 300m initial overburden 

depth. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum 

principal stress development at the limb of the folding layer with 300m initial overburden 

depth. Elements A to E are located as shown in Figure 4.1. 
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Figure 4.27 Stress history for numerical model with D=600m (A) Effective minimum 

principal stress development at the crest of the folding layer with 600m initial overburden 

depth. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum 

principal stress development at the limb of the folding layer with 600m initial overburden 

depth. Elements A to E are located as shown in Figure 4.1. 
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Figure 4.28 Stress history for numerical model with D=1400m. (A) Effective minimum 

principal stress development at the crest of folding layer with 1400m initial overburden 

depth. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum 

principal stress development at the limb of the folding layer with 1400m initial 

overburden depth. Elements A to E are located as shown in Figure 4.1. 
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Figure 4.29 Stress history for numerical model with D=1800m. (A) Effective minimum 

principal stress development at the crest of folding layer with 1800m initial overburden 

depth. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum 

principal stress development at the limb of the folding layer with 1800m initial 

overburden depth. Elements A to E are located as shown in Figure 4.1. 
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Figure 4.30 Stress history for numerical model with D=2200m. (A) Effective minimum 

principal stress development at the crest of folding layer with 2200m initial overburden 

depth. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum 

principal stress development at the limb of the folding layer with 2200m initial 

overburden depth. Elements A to E are located as shown in Figure 4.1. 
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Figure 4.31 Stress history for numerical model with D=2600m.(A) Effective minimum 

principal stress development at the crest of folding layer with 2600m initial overburden 

depth. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum 

principal stress development at the limb of the folding layer with 2600m initial 

overburden depth. Elements A to E are located as shown in Figure 4.1. 
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Figure 4.32 Stress history for numerical model with D=3000m. (A) Effective minimum 

principal stress development at the crest of folding layer with 3000m initial overburden 

depth. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum 

principal stress development at the limb of the folding layer with 3000m initial 

overburden depth. Elements A to E are located as shown in Figure 4.1. 

 

 

Figure 4.40 shows the effective minimum principal stress (σ′3) development at the 

crest of the fold for different overburden pressures. The most interesting result of is that, 

the time when σ′3 reduction begins (near 30% shortening) appears to be independent 

from the overburden pressure. The existence of tensional stress after a specific amount of 

shortening is observed when the overburden pressure is limited to a certain magnitude, 

exemplified by the model with lowest overburden stress (7.82 MPa). For σ′3 in the limb, a 

significant increase is observed as the depth and shortening increase. Tensile stress is not 

generated even when the initial depth is limited to 300 meters.  
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Figure 4.33  Effective minimum principal stress at the crest of foldthe foldfor different 

overburden stresses. The initial overburden depth changes from 300m to 3000m. 

 

 

 

Figure 4.34 Effective minimum principal stress at the limb of foldthe fold for different 

overburden stresses. The initial overburden depth changes from 300m to 3000m. 

 

 

4.6. INFLUENCE OF PERMEABILITY 

Two different types of rock formations are used to assess the influence of 

permeability on fold stress history of the fold: 
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1. Homogeneous and anisotropic formations 

2. Two layer (folding layer and matrix) and anisotropic formations 

The horizontal permeability (kh) of the models ranges from high values (10
-13

 m
2
) 

characteristic for sandstone formations to low values (10
-23

 m
2
) characteristic for shales 

(Jaeger and Cook, 1979). The remaining material properties in these models are assigned 

as listed in Table 3.1 

4.6.1. Homogeneous and Anisotropic Formations. With a constant ratio (0.2) of 

 vertical kv over horizontal kh the overall horizontal permeability in the model material 

varies from 10
-13

 m
2
 to 10

-23
 m

2
. Because the effective principal stress is the difference 

between the total principal stress and the pore pressure, the relationship between 

permeability and pore pressure is examined here as well.  

The development of the minimum effective principal stress (σ3΄) the and pore 

pressure (Pp) at the crest and the limb of the folding layer in a series of models with 

different permeabilities (10
-13

 m
2 
to 10

-23
 m

2
) are included in the following  plots (Figure 

4.42 to Figure 4.51). The stress development of the folding layer with a permeability of 

10
-15

 m
2 

can be found in Section 4.1. The observations are summarized as: 

(1) The stress histories at different locations in the crest are close to each other 

before 27% shortening except for the lowest permeability (10
-23

 m
2
), where tensile stress 

is generated throughout the folding layer crest before 10% shortening. During the 

following buckling period, the stress developments at the crest of the folding layer highly 

depend on the position. A significant decrease of σ′3 can be observed at elements 1 & 2 of 

the fold crest. Considerable tensile stress is generated at the top of the crest in the folding 

layer when the permeability is low (<10
-18

 m
2
). 

(2) The stress histories at different locations in the limb are close to each other 

when the permeability is higher than 10
-21

 m
2
. A decrease of σ′3 is observed at the limb of 

the folding layer after 40% shortening when the permeability is lower than 10
-13

 m
2
. 

Tensile stress is generated throughout the folding layer limb before 20% shortening when 

the permeability is low (<10
-21

 m
2
). 

(3) Except for the lowest permeability (10
-23

 m
2
) model, the pore pressure 

histories at different locations in both crest and limb become close to each other and an 

increase of pore pressure both at the crest and limb with shortening can be observed. A 
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complex evolution of pore pressure is developed when the permeability is low (<10
-21

 

m
2
).   

 

 

  

Figure 4.35 Stress history for numerical model with k=10
-13

 m
2
. (A) Effective minimum 

principal stress development at the crest of the folding layer with permeability of 10
-13

 

m
2
. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum principal 

stress development at the limb of the folding layer with permeability of 10
-13

 m
2
. 

Elements A to E are located as shown in Figure 4.1. 
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Figure 4.36 Pore pressure history for numerical model with k=10
-13

 m
2
. (A) Pore pressure 

development at the crest of the folding layer with permeability of 10
-13

 m
2
. Elements 1 to 

6 are located as shown in Figure 4.1. (B) Pore pressure development at the limb of the 

folding layer with permeability of 10
-13

 m
2
. Elements A to E are located as shown in 

Figure 4.1. 
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Figure 4.37 Stress history for numerical model with k=10
-17

 m
2
. (A) Effective minimum 

principal stress development at the crest of the folding layer with permeability of 10
-17

 

m
2
. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum principal 

stress development at the limb of the folding layer with permeability of 10
-17

 m
2
. 

Elements A to E are located as shown in Figure 4.1. 
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Figure 4.38 Pore pressure for numerical model with k=10
-17

 m
2
. (A) Pore pressure 

development at the crest of the folding layer with permeability of 10
-17

 m
2
. Elements 1 to 

6 are located as shown in Figure 4.1. (B) Pore pressure development at the limb of the 

folding layer with permeability of 10
-17

 m
2
. Elements A to E are located as shown in 

Figure 4.1. 
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Figure 4.39 Stress history for numerical model with k=10
-19

 m
2
. (A) Effective minimum 

principal stress development at the crest of the folding layer with permeability of 10
-19

 

m
2
. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum principal 

stress development at the limb of the folding layer with permeability of 10
-19

 m
2
. 

Elements A to E are located as shown in Figure 4.1. 
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Figure 4.40 Pore pressure for numerical model with k=10
-19

 m
2
. (A) Pore pressure 

development at the crest of the folding layer with permeability of 10
-19

 m
2
. Elements 1 to 

6 are located as shown in Figure 4.1. (B) Pore pressure development at the limb of the 

folding layer with permeability of 10
-19

 m
2
. Elements A to E are located as shown in 

Figure 4.1. 
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Figure 4.41 Stress history for numerical model with k=10
-21

 m
2
. (A) Effective minimum 

principal stress development at the crest of the folding layer with permeability of 10
-21

 

m
2
. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum principal 

stress development at the limb of the folding layer with permeability of 10
-21

 m
2
. 

Elements A to E are located as shown in Figure 4.1. 
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Figure 4.49 Pore pressure for numerical model with k=10
-21

 m
2
. (A) Pore pressure 

development at the crest of the folding layer with permeability of 10
-21

 m
2
. Elements 1 to 

6 are located as shown in Figure 4.1. (B) Pore pressure development at the limb of the 

folding layer with permeability of 10
-21

 m
2
. Elements A to E are located as shown in 

Figure 4.1. 
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Figure 4.420 Stress history for numerical model with k=10
-23

 m
2
. (A) Effective minimum 

principal stress development at the crest of the folding layer with permeability of 10
-23

 

m
2
. Elements 1 to 6 are located as shown in Figure 4.1. (B) Effective minimum principal 

stress development at the limb of the folding layer with permeability of 10
-23

 m
2
. 

Elements A to E are located as shown in Figure 4.1. 
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Figure 4.431 Pore pressure for numerical model with k=10
-23

 m
2
. (A) Pore pressure 

development at the crest of the folding layer with permeability of 10
-23

 m
2
. Elements 1 to 

6 are located as shown in Figure 4.1. (B) Pore pressure development at the limb of the 

folding layer with permeability of 10
-23

 m
2
. Elements A to E are located as shown in 

Figure 4.1. 

 

 

As Figures 4.42 to4.51 show, different permeabilities result in diverse pore 

pressure evolutions. The pore pressure evolution is close to the theoretical, hydrostatic 

prediction when k is high (>10
-16

 m
2
). For low k (<10

-16
 m

2
), the pore pressure becomes 

larger than hydrostatic and significant over-pressure is generated during the early stages 

of deformation (see Figure 4.52). For the same amount of shortening, low permeability 

leads to high pore pressure both at the crest and the limb. However, the pore pressure 

evolution becomes independent of the changing of permeability when the permeability is 

smaller than 10
-20

 m
2
. 

(A) 

(B) 
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Figure 4.442 Pore pressure evolution under different permeabilities. (A) Pore pressure 

evolution at the crest of fold for different k. (B) Pore pressure evolution at the limb of the 

fold for different k. 

 

 

The effective minimum principal stress drops significantly as the horizontal 

permeability (k) decreases and tensile stress can be produced at the crest, as illustrated in 

Figure 4.53A. The existence of tensional stress after ~ 37% shortening is observed when 

k is limited to certain magnitude, as exemplified by the model with k = 10
-19

 m
2
. Figure 

4.53A also suggests that the beginning of the drop of σ′3 at the crest is around 27% 

shortening is independent of k. For the limb of the folding layer tensile stresses are 

(A) 

(B) 
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observed during the early shortening periods (<30% shortening) for low permeability (10
-

23
 m

2
; see Figure 4.53B). In summary, the σ′3 magnitude evolution shows that the 

dependency on permeability is both highly nonlinear and non-uniform for low 

permeabilities (e.g. <10
-17

 m
2
), especially after 27% shortening. This observation can be 

explained by the relations between pore pressure (Pp) and effective principle stress (σ′3). 

Comparing the associated fluid velocity vectors for k of 10
-19

 m
2
 and 10

-23
 m

2
 (see Figure 

4.54A, C), it can be concluded that the pore pressure in the folding layer is hydraulically 

connected to the overburden for kh = 10
-19

 m
2
. Thus the saturated fluids are expelled at 

the top of the folding layer into the matrix due to the layer parallel compaction (see 

Figure 4.54A) and the Pp distribution is related to the depth (see Figure 4.54B). In 

contrast, only limited fluids are exchanged between the matrix and the folding layer for 

lower k of 10
-23

 m
2
, which leads to the geometry related Pp distribution (see Figure 4.54C, 

D). The Pp at the top of the crest for k = 10
-23

 m
2
 (38 MPa) is lower than the Pp at the 

same location for k = 10
-19

 m
2
 (43 MPa).  
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Figure 4.453 Stress evolution with different permabilities. (A) Effective minimum 

principal stress evolution at the crest of fold development with shortening with different 

kh. (B) Effective minimum principal stress evolution at the limb of the fold for different 

k. 
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Figure 4.46 Comparison of fluid velocity and pore pressure with different permeabilities. 

(A) Fluid velocity vectors for 10
-19

 m
2
. (b) Pore pressure magnitude for 10

-19
 m

2
 exhibits 

depth related relation. (C) Fluid velocity vectors for 10
-23

 m
2
 .(D) Pore pressure 

magnitude for 10
-23

 m
2
 exhibits is not depth related. 

 

 

4.6.2. Two Layer (folding layer and matrix) and Anisotropic Formations.  

Another way of simulating anisotropic permeability in rock can be obtained by 

establishing different permeabilities in the folding layer and the matrix. With the same 

ratio of vertical permeability (kv) over horizontal permeability (kh), the kh in the model 

material varies from 10
-13

 m
2
 to 10

-23
 m

2
 in folding layer and matrix, respectively. The 

remaining material properties in these models are assigned as listed in Table 3.1 

Figure 4.55 shows the effect of kh for the layer and the matrix’s on σ′3 evolution 

for 30% and 50% shortening. In this case, all the models have the same initial geometry 

and material parameters except for kh. The change in σ′3 (at the same amount of 

shortening) is mainly dominated by the matrix’s kh. Increasing matrix permeability from 

10
-13

 m
2
 to 10

-19
 m

2
 results in a considerable increase of σ′3. Tensile stresses are not 

occurring before 30% shortening even for the low permeability model. After 40% 

shortening, tensile stress is observed on the top of the crest with low kh (<10
-17

 m
2
). 

Another important observation form this plot is that the tensile stress on the fold crest of 

(A) (B) 

(C) (D)  
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the fold for low matrix permeability declines with the layer permeability decrease, which 

is due to the high pore pressure in folding layer.  

 

 

 

 

Figure 4.55 3D plot of effective minimum principal stress on foldthe crest of the fold for 

different  permeabilities for models subjected to a different amount of shortening. (A) 

30% shortening. (B) 40% shortening. (C) 50% shortening 
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Figure 4.47 3D plot of effective minimum principal stress on foldthe crest of the fold for 

different  permeabilities for models subjected to a different amount of shortening. (A) 

30% shortening. (B) 40% shortening. (C) 50% shortening. (cont) 
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5. DISCUSSION 

The 2D plane strain numerical modeling approach presented here is used to 

provide a better understanding of the initiation and occurrence of tensile failure observed 

in folded outcrops (e.g. Stearns, 1964; Bergbauer and Pollard, 2004) by studying the 

evolution of the state of stress during buckle fold development. It is generally assumed 

that these fractures are the results of layer parallel tensional strain above the neutral 

surface during the evolution of the bending/buckling processes (Ramberg, 1964, Ramsay, 

1967; Price and Cosgrove, 1990). Thus, considering the relations between stress and 

strain in an elastic material, the locations of tensile strain above the neutral surface are 

commonly assumed to generate tensile fracture. 

 However, some recent studies show that there is no significant correlation 

between fracture density and folded surface curvature (e.g. Smart et al., 2009; Pearce et 

al., 2010), which indicates that the strain based analysis may not be sufficient to interpret 

fracture characteristics such as density and orientation. Previous numerical modeling of 

folding applies viscoelastic material without considering gravity and pore pressure, which 

does not yield realistic stress magnitudes (e.g. Smart et al., 2009). The in-situ state of 

stress is always compressive due to the significant weight of the overburden when gravity 

is considered (Turcotte and Schubert, 2002). Tensile stress due to buckling is hard to 

develop even with considerable tensile strain in curvature based modeling approaches. 

Unlike the influence of gravity, the presence of pore fluid increases the possibility of 

tensile fractures even in regions undergoing relatively low strain (Hooker et al., 2009; 

Olson et al., 2006).  

This study applies two-dimensional numerical models which simulate the 

buckling process under realistic in-situ stress and strain conditions. As the main focus is 

concentrated on the initiation/occurrence of mode I (tensile) fractures (either bedding 

perpendicular or parallel), the 2D plane strain assumption is considered accurate. The 

comparison and general agreement to Biot’s study validates the modeling approach (see 

Section 3.6). The sensitivity analysis of the influence of different model parameters 

(competence contrast, viscosity, strain rate, overburden, and permeability) on the 

development of fold structures and resulting stress evolution has been performed. For 
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natural fold-related structures, fractures are generated when the layer-parallel stress 

becomes tensile and exceeds the tensile strength. Based on this study, the tensile failure 

associated to the physical process of buckling may only be initiated for special 

conditions. The modeling results from the show that either large differences in rock 

properties competence (i.e. Young’s modulus and viscosity) or low overburden pressures 

are required to initiate tensile failure at the crest of buckle folds during their 

development. Another condition which results in tensile stress at the top of the fold crest 

is that of fast strain rates (>5×10
-12 

s
-1

); however this is not commonly observed in field. 

Most geologic deformation processes such as folding are thought to occur at average 

strain rates between 10
-12 

s
-1

 and10
-14 

s
-1

 (Twiss and Moores, 2007). The last tested 

parameter of permeability is discovered to have a governing role on the pore pressure 

evolution. With the overpressure generated throughout the folding layer, tensile failure at 

the limb of folding layer is possible to develop during early stage of bulking and tensile 

failure at the crest of fold hinge zone is likely to develop during the later periods of 

bulking.  

These findings certify the conclusion of Lemiszki et al. (1994) about the 

importance of strain rate, overburden, pore pressures and viscosity. Based on the finite 

element model results of Dieterich and Carter (1969), Lemiszki et al. concludes that 

mode I fractures are possible to develop from certain combinations of the above 

variables. For example, the existence of overpressure and the amount of shortening are 

the key parameters for tensile failure to occur at a certain depth. Lemiszki et al.’s (1994) 

results show that the minimal ratio of the fluid pressure to the vertical pressure is 0.73 for 

a fold with 3km depth. The 2D numerical modeling study exhibited in this thesis shows 

that the evolution of overpressure during the layer-parallel shortening is highly depended 

on the rock permeability. For the example of a folding layer at a depth of 1891 meters 

with amplitude of 125.1 meters, the maximum permeability of the matrix rock that can 

cause tensile fractures on the top of the fold crest is 10
-19

 m
2
. For higher permeability 

models, overpressure is either absent or insignificant and the compression caused by the 

vertical stress overcomes the extensional stress caused by the tensional strain due to the 

buckling process.  Thus, tensile failure is unlikely to be generated even with considerable 

tensional strain developed on the top of the crest of the fold. 
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 This research also indicates that sufficient shortening (e.g. >27%) and large 

amplitudes (e.g. > 100m) are necessary for the initiation of tensile stress on the top of 

crest. The orientations of tensile failures developed under the special situations at the top 

crest are perpendicular to σ´3 and parallel to the fold axis of the hinge zone. This finding 

is in agreement with Reber et al.’s (2010) observations, which suggest that Mode I 

(tensile) fractures are parallel to the fold axes in high amplitude folds. 

The 2D numerical simulation results presented here show that the process of buckling 

under compressional region is not a major factor for the initiations of tensile failure on 

folded layers if realistic sedimentary rock parameters are applied to the models. 

Furthermore, the tensile fractures at the folds limb which is observed either perpendicular 

or parallel to the fold axis (e.g. Silliphant et al., 2002; Bergbauer and Pollard, 2004) only 

develop during the early shortening period (<10% shortening) for very low permeability 

models (10
-23

 m
2
).  

Since these conditions certainly do not represent the general development 

histories for the majority of buckle folds exhibiting tensile failure and fail to explain 

tensile failure at the folds’ limbs, this numerical modeling study raises the question that 

whether buckling under compressional stress regimes is a dominating factor for the 

initiation of tensile failure at depths. These commonly observed joint sets and tensile 

failures which occur at considerable depth (e.g. > 1km) fail to be explained by buckling 

alone. One of the possible causes to explain the joints sets is that they are caused by 

overpressure development during sedimentation and exist before folding (Price and 

Cosgrove, 1990). Another possibility is that these joints are caused by erosion and 

exhumation and defined as a post buckling phenomena (e.g. Price, 1966; Hancock and 

Engelder, 1989; Bourne, 2003). Since the simulation of tensile failure during pre-folding 

is beyond the capabilities of the numerical code applied, only the influence of erosion and 

exhumation is simulated. 

 

 

5.1. EROSION and EXHUMATION 

Numerical models to study the process of erosion and exhumation after the 

horizontal shortening have been established. Erosion and exhumation are crucial to the 
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folding layer’s state of stress as the weight of overburden decreases significantly during 

the progress. An additional load step has been applied in the numerical models to 

simulate the process of erosion and exhumation by reducing the overburden weight over 

a reasonable geological time scale. Since it is impossible to continuously remove layers 

of elements over geologic time scales in the finite element model, the erosion/exhumation 

process is simulated by a continuous decrease of the weight of the overburden. The 

constant erosion/exhumation rate is chosen as 0.1 mm/yr (Twiss and Moores, 2007) by 

linearly decreasing the gravitational acceleration magnitude of the overburden over a 

period of 37 million years. Since the erosion/exhumation is assumed as a post-fold 

deformation, only vertical in-plane displacements are enabled. Considering the 

importance of pore pressure evolution during this process, two different permeabilities 

scenarios are considered:  

(1) a high permeability model (k = 10
-15

 m
2
) with an initial overburden 

thickness of 3000 m;  

(2) a low permeability model (k = 10
-19

 m
2
) with an initial overburden 

thickness of 1000 m. 

5.1.1. High Permeability Model 

The geometry of the high permeability model is shown in Figure 5.1. For this 

two-step approach, a competent viscous layer is compressed by 50% shortening with an 

initial depth of 3000 m, followed by a steady exhumation and erosion process for 37 

million years (see Figure 5.1). After 50% shortening, the overburden depth of the folding 

layer increases to 5366.7 meters. The exhumation and erosion rates (both 0.1mm/year) 

are assumed constant and both the left and right boundaries remain fixed during this 

process (see Figure 5.1B). Hydrostatic pore pressure distributed in the overburden also 

decreases linearly with the decreasing of the gravitational acceleration magnitude. After 

37 million years, the overburden of the folding layer has decreased to 1622.7 meters (see 

Figure 5.1A). Thus, the stress in the fold structure develops under the influence of both 

the vertical extension and the linear decrease in overburden pressure. 
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Figure 5.1 Model setup for erosion/exhumation study. (A) Model setup for the high 

permeability erosion/exhumation study. The folding layer is embedded in a 1000 m thick 

high permeability matrix. The remaining overburden has the same high permeability. (B) 

Model geometry and dimensions after 50% shortening. (C) Model geometry after 

erosional load step resulting in surface topography. 
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The results for this high permeability model (Figure 5.2A) show that the 

erosion/exhumation process causes ′3 to decrease to tensile magnitudes when the initial 

′3 magnitudes at the fold crest are compressive due to buckling. Around 20.61 Ma, when 

the overburden depth is reduced to 3275 meters, tensile failure occurs at the top of the 

crest with an effective vertical stress of 60 MPa. 

 For an equivalent model which is only subjected to horizontal compression, an 

overburden pressure of 60.1MPa is developed in a model with 1800 meters initial depth 

and 3290.5 meters overburden depth (see section 4.4). By comparing the results from the 

two models, ′3 (-0.1MPa) at the top crest of the erosion/exhumation model is much 

lower than ′3 (60.1MPa) at the top crest of the folding layer with shortening only. The 

reduction of the effective minimum principle stress (Δ′3) due to the removal of 

overburden (′1/′vertical) is also larger than the result calculated from the uni-axial strain 

conditions. Under the assumption of uni-axial strain boundary condition, Δ′3 is obtained 

by (Turcotte and Schubert, 2002): 
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Eroding an equivalent overburden depth of 2366 meters, the decrease of ′3 is as 

big as 17.77 MPa in a horizontally layered model (uni-axial strain boundary condition). 

Figure 5.2A shows that Δ′3 at the top of crest is 87.1 MPa after 20.61 million years 

erosion/exhumation. A large overburden depth remains at the onset of tensile failure, e.g. 

3277 meters for the crest and 3411 meters for the limb.  

The decrease rates of ′3 strongly depend on the elements locations, e.g. element 

1 develops tensile stress after 20.61 million years (Ma), and element 4 develops tensile 

stress after 33.32 Ma. A similar decrease of ′3 is observed at the limb the fold with little 

dependence on the element’s location (see Figure 5.2B). In summary, the reduction in 

overburden stress due to erosion/exhumation has significant influence on the decrease of 

the compressive stress in the folding layer due to buckling. 
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Figure 5.2 Stress history for erosion/exhumation study. (A) σ′3 magnitudes evolution 

during the erosion/exhumation process for the high permeability model (10
-15

 m
2
) at the 

crest of the fold. (B) σ′3 magnitudes during the erosion/exhumation process for the limb 

of the fold. (C)  σ′3 magnitudes distribution at the folding layer after 3.7 Ma of erosion. 
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The positive contours showed in Figure 5.2C represents the magnitude of the 

tensile stresses (following the engineering sign convention of tension positive). Tensile 

stresses are observed both at the top of the crest in the hinge zone and at the limbs. 

Considerable tensile stresses (e.g. >100 MPa) are generated at the limbs. The 

compressive and tensile stresses are separated by the black line in Figure 5.2C. Similar 

results are observed by Frehner (2011) where tension occurs across the limbs at an early 

shortening stages (36% shortning). It should be noted that Frehner’s modeling results are 

based on the state of strain without considering gravity. After comparing the distribution 

of tensional strain (Frehner’s study) to tensional stresses after erosion (this study), the 

similarity leads to the conclusion that the reduction in overburden stress causes the 

amplification of the buckling stresses due to the remnant tensile strain in the folded layer. 

The remnant tensile strain is developed during buckling. 

5.1.2. Low Permeability Model 

In order to investigate the influence of erosion/exhumation on the evolution of 

pore pressure, a low permeability model is established (see Figure 5.3). The folding layer 

is embedded in a 500 m thick low permeability matrix (k = 10
-23

 m
2
). The overburden is 

assigned a high permeability (10
-15

 m
2
) in order to simulate hydrostatic pore pressure 

dreop with depth during the erosion/exhumation process. The same erosion/exhumation 

rate (0.1 mm/yr) is applied. 
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Figure 5.3 Model setup for low permeability erosion/exhumation model study. (A) model 

setup for the low permeability study. b) Model geometry and dimensions after 50% 

shortening. c) Model geometry after erosional load step resulting in surface topography. 
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Compared to the stress development of the folding layer in the high permeability 

model, obvious differences of the minimum principle stress evolution during the 

erosion/exhumation process are observed (see Figure 5.4A and C). Instead of a linear 

decrease in ′3 magnitudes, a significant increase of ′3 occurs at both the crest and on 

the limb in the low permeability model. Maximum compressive ′3 are developed around 

4 Ma both at the crest and the limb. The following decrease (Figure 5.4 A and C) occurs 

at a lower rate and no tensile stresses are observed after 15 Ma of erosion/exhumation 

process with 1460 meters of overburden removed. Considering the relations of effective 

principle stress and pore pressure, the pore pressure development of the folding layer at 

the crest and limb are plotted (see Figure 5.4 B and D). Unlike the pore pressure which 

remains hydrostatic during shortening for the high permeability overburden, the pore 

pressure in the low permeability matrix develops into overpressure and increases 

significantly with shortening (see Figure 4.52). Once the erosion/exhumation process 

begins, the overpressure drops significantly compared to the red line which represents the 

hydrostatic pore pressure decrease according to the decrease in overburden pressure (see 

Figure 5.4 B and D). This significant decrease is much larger than the reduction of the 

total horizontal stress which is caused by the erosion. Thus, an increase of ′3 is observed 

in the first 4 Ma both at the hinge zone and the limb. The gradient of the significant 

decrease pore pressure declines with time. After approximately 6-7 Ma, the pore pressure 

is close to the equivalent hydrostatic decrease (calculated by depth, see equation 111). 

After that, the minimum effective stress begins to decrease. The pore pressure evolution 

in the low permeability matrix can be explained by observations from 1D consolidation 

studies (e.g. Jiao and Zheng, 1998; Ellis and Darby, 2005). 
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Figure 5.4  Stress history for low permeability erosion/exhumation model. (A) ′3 

magnitudes during the erosional unloading for the low permeability model (10
-19

 m
2
) at 

the crest of the fold. (B) Pore pressure magnitude evolution during the erosional 

unloading for the low permeability model (10
-19

 m
2
) at the crest of the fold. The red line 

represents hydrostatic decrease. (C) ′3 magnitudes during the erosional unloading for the 

limb of the fold showing the same trend as for the crest.(D) Pore pressure magnitudes 

decrease on the limb during erosion. 

 

 

5.2. Stress Orientation and Tensile Fractures 

From the previous discussion, tensile failure has been developed both at the fold’s 

crest and throughout the limbs by applying the erosional process after buckling. To fully 

understand the occurrence of folding related tensile failure, the tensile stress magnitudes 

from the numerical simulation and their orientations are combined to investigate different 

types of tensile failure during the folding history. For the low permeability rocks (e.g. 10
-

23
 m

2
, see section 4.6), tensile failure is observed to be subhorizontal and parallel to the 

folding layer during the early stage of shortening (< 5% shortening, see Figure 5.5A) for 

the top and bottom element. For the central elements bedding parallel tensile failure 

occurs for 0-20% shortening. For a later period of buckling, tensile stress is observed at 
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the top of the crest in low permeability (<10
-18

 m
2
) rocks due to the existence of 

overpressure. Fractures orientate vertically and parallel to the fold axis (Figure 5.5B). For 

high permeability (>10
-18

 m
2
) rocks, tensile failure can be observed both at the crest and 

limb of the folding layer during erosional unloading process. Based on the orientations of 

′3, tensile fractures are parallel to the fold axis and orientated vertically at the crest. For 

the limb, tensile fractures are widespread across the limb and are parallel to the fold axis 

and perpendicular to the bedding (Figure 5.5C). Thus, the existences of fracture set 6 on 

Figure 1.3 in the limb and at the top of the crest of buckle folds are explained by this 

numerical simulation. Regarding to the fracture set 5 of Figure 1.3, Reber et al. (2010) 

conclude that it forms during low fold amplitudes under layer-subparallel compression. In 

order to study the existence of this fracture set (i.e. distributed at the fold limbs and 

perpendicular to the fold axis), the out-of-plane principal stresses (′2) in the 2D 

modeling results are investigated (Figure 5.5). However, ′2 is observed to decrease to 

tensile stress at the top of the crest only for the low permeability (10
-19

 m
2
) with low 

initial overburden (500 m). Furthermore, ′2 during the early stages acts as a compressive 

stress and is incapable to promote the occurrence of subvertical tensile fractures 

perpendicular to the fold axis (Figure 5.5).  Hence the 2D numerical modeling results 

cannot explain the existence of fracture set 5 (see Figure 1.3) and does not agree with 

Reber et al.’s (2010) conclusion which is based on the history of stress orientations 

during folding.  
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Figure 5.5  Orientations of tensile failure (red lines) for different models. The darker grey 

contours show the spatial extent of tensile stress magnitudes. (A) During the early stages 

of buckling for low permeability (10
-23

 m
2
) model. (B) During the late stages of buckling 

for low permeability rocks (<10
-18

 m
2
). (C) For high permeability rocks (>10

-16
 m

2
) 

tensile failure occurs during erosional unloading. 
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Figure 5.6  Out-of-plane effective principal stress (′2) magnitude history for the crest 

(A) and limb (B) for varying permeability and low initial overburden (500 m). 

 

 

5.3. Limitations 

The application of 2D plane strain for this numerical simulation of Newtonian 

visco-elastic material buckling has some limitations.  

(1) The 2D plane strain approach limits the analysis of the out-of-plane 

principal stress due to the assumption that the out-of-plane strain is zero (εyy= εxy= εzy=0). 

Therefore, a detailed analysis of tensile stresses in the direction of the out-of-plane 

principal stress (′2) is restricted. The only case with tensile stress along the out-of-plane 

principal direction is the model with the low permeability and low overburden depth after 
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40% shortening. Considering the fact that stress magnitudes are directly dependent on the 

boundary conditions in that dimension (e.g. constrained, compressed or extended), the 

study of the initiation of tensile fracture which is perpendicular to the fold axis (fracture 

set 5 in Figure 1.3) requires a 3D modeling approach. 

(2) Another limitation of this numerical modeling approach is the omission of 

a tensile failure criterion and the associated development of plastic strain in ABAQUS
TM

. 

Once the tensile stress reaches the failure criterion, most sedimentary rocks will fail and 

stress will stop to increase. Due to this omission large tensile stress is developed (e.g. > 

20 MPa) in the model even though the tensile failure criterion is reached. However, the 

objective of this research is to analyze the spatial and temporal development of tensile 

stresses. Thus, instead of studying on the stress evolution after tensile failure, this study 

focuses on the tensile stress history, which is considered as a critical factor for the 

initiation of tensile failure. 

(3) For the influence of viscosity on the effective minimum principle stress 

evolution, an assumption that the rock’s viscosity is constant has been applied. However, 

most materials’ viscosity is considered as stress-depended. Thus, stress-depended 

viscosity is necessary for future studies.  

(4) For the erosion/exhumation simulation, rock deformation is considered as 

an isothermal processes and the thermal stresses due to temperature changing during 

exhumation/erosion are not included. Erosion is considered as a process that enables to 

result in a rapid geotherm change and temperature decrease (Twiss and Moores, 2007). 

Furthermore, the thermal stress induced by erosion/exhumation may have a significant 

influence on the pore pressure evolution if pore elasticity is considered. Since these topics 

are considered to be beyond the objective of this paper, no thermal stress is included in 

this study.  
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6. SUMMARY AND CONCLUSIONS 

6.1. SUMMARY 

This study applies a 2D plane strain numerical modeling approach to simulate 

Newtonian single layer buckle folds. This analysis, based on the effective stress evolution 

on the fold’s crest and limb, investigated the significant influence of different material 

parameters (e.g. overburden thickness, strain rate, viscosity, competence contrast, and 

most importantly permeability) on fold related tensile failure. Based on the analysis, 

tensile stress and associated tensile failure only develop at the folding layer under special 

conditions. Buckling due to layer-parallel shortening will result in extensional strain 

regions at the top of the crest and compressive strain region at the bottom of the crest. 

However, the occurrence of tensile stress and related failure cannot be explained by 

buckling only. 

Important conclusions found in this research are listed as follows: 

 The effective principle stress orientations and magnitudes vary throughout the 

folding layer during different stages of the deformation. The crest of the fold will 

be the first place to develop tensile stress, if possible.  

 The competence contrast (R) between matrix and fold layer has significant effect 

on both the folding layer deformation and the stress evolution. Higher R leads to 

high amplitude fold structures and tensile stress at the fold’s crest. Lower R 

results in lower amplitude folds and higher magnitudes of ′3 (shear stress) at the 

crest of the fold.  

 A change in viscosity changes the fold deformation from tight to open and effects 

on the decrease of ′3 at the crest of the fold. Tensile stress can be formed for 

high viscosity (10
20

 Pa s). 

 The stain rate has influence on the rock behavior during horizontalk compression 

and the decrease of ′3 at the crest of the fold. For lower strain rates (e.g. 10
-12

 

sec
-1

), the folding layer exhibits obvious viscous behavior and tensile stress is 

hard to produce on the crest.  



 

 

132 

 The initial overburden stress determines the magnitude of ′3 at the crest of the 

fold. Tensile stress is possible to be achieved at the crest when the overburden 

pressure is lower than 7.8MPa after 27% shortening. Higher overburden 

pressures reduce the possibility of tensile stresses and failure at depth. Depending 

on folding conditions tensile failure at greater depths may not occur (different as 

commonly expected).  

 Permeability acts as a crucial factor on tensile stress evolution and related failure 

because of its relations with the generation of compression associated over-

pressure. Tensile stress is observed on the top of fold after a certain amount of 

shortening (around 40%) when the permeability is smaller than 10
-18

 m
2
. Rocks 

with a low permeability (10
-23

 m
2
) develop tensile stresses in the limb of the fold 

in the early stages of shortening (<5%). 

 Matrix permeability has the most significant influence on development of tensile 

stresses. Heterogeneous hydraulic conductivity between folding layer and matrix 

has slight influence on the stress history. 

Based on the simulation results analysis, it can be concluded that tensile stresses 

at the top of the fold crest are unlikely to be generated at large depth unless a high 

competence contrast, extremely high strain rates or low permeability conditions occur. 

With the decrease of overburden pressure, tensile failure becomes more likely to develop 

at the top of fold’s crest. Tensile fractures formed at the top of the crest are oriented 

subvertically and parallel to the fold axis. No obvious relation is found between buckling 

due to layer-parallel shortening and tensile stresses observed at the limb of the fold, 

except for the model with extremely low permeabilities (10
-23

 m
2
) where tensile fractures 

form parallel to the layer during the early stage of shortening.  

The process of erosion/exhumation has been simulated and exhibits a significant 

impact on the evolution of stress within a buckle fold. For high permeability (k>10
-16

 m
2
) 

rocks, pore pressure is found to be determined by depth only and to remain hydrostatic 

during all load steps (shortening and erosion). The generation of tensile stresses is 

observed throughout the fold structure after erosion. It can be concluded that the 

generation of tensile stresses (at the crest and throughout the limb of the fold) at 

significant depths (~3km) can be explained by the erosion/exhumation process of high 
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permeability rocks. Tensile fractures at the crest are oriented perpendicular to the fold 

axis and tensile fractures in the limb are oriented parallel to the fold axis. For low 

permeability rocks erosional unloading results in an increase of ’3 magnitudes during 

the early period of erosion/exhumation process (5 Ma). During this period the pore 

pressure decreases significantly until it reaches the hydrostatic level. As a result, the 

possibility of tensile stresses generation at the top of crest and at the limb decreases. 

 

 

6.2. OUTLOOK 

The presented study shows dynamical behavior of the single layer Newtonian 

buckle fold and related stress history in two dimensional (2D) numerical models. For the 

natural fold-related structures, the rock deformation, such as layer-parallel shortening, is 

always generated in three dimensional (3D) spaces instead of 2D. For some cases, it is 

possible that a 2D model can provide a reasonable approximation to the rock mechanics 

and related stress development. However, the 2D model is characterized by the 

incapability of the full 3D effect of geometry, material properties variation, and boundary 

conditions. Therefore, a 3D modeling approach is recommended for future studies of fold 

related fractures. 

In the presented numerical simulations, the soil viscosity has only been 

considered both constant and independent of stress. However, the soil viscosity in both 

folding layer and matrix can be modified by the change of pressure because the crustal 

rocks viscosity is stress-dependent (Twiss and Moores, 2007). Such environment effects 

on rock viscosity have influence on both the shape and stress developments of fold 

structures. The application of stress-dependent viscosity has to be further investigated to 

study the complex dynamical behavior of the fold structures. 

The consideration of volume change related to fluid storage and flow may also be 

included in future numerical simulations. The assumption of constant folding layer 

thickness may be invalid when a negative volume change is generated from the collapse 

of rock porosity, followed by a reduction in bulk permeability (Price and Cosgrove, 

1990). The concern of volume change as a function of structure and mechanical 
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stratigraphy may enable the prediction of permeability to depend on the complete state of 

stress instead of overburden pressure only.  

Including thermal stresses during the erosion/exhumation is necessary for future 

study since erosion is considered to result in significant temperature decrease (Twiss and 

Moores, 2007). Considering the relations between pore pressure and effective principle 

stress, correlating the pore pressure evolution and thermal stresses during the 

erosion/exhumation may be crucial for the study of the pore pressure evolution.  

 Further, the extension of the single layer model to a more realistic multilayer 

geometry may also be considered. A typical multilayer system contains several layers 

with certain viscosities and thicknesses. The theory of multilayer folding development so 

far is based on an approach similar to those for single layers folding (e.g. Biot,1961; 

Ghosh, 1968; Ramberg and Stroumgard,1971; Kidan and Cosgrove,1996). The previous 

studies mainly focus on the influence of multiple interfaces and layers of different 

viscosities. Few, however, are concerned with either the faults or fractures created during 

the folding progress of a multilayer system. Also a realistic state of stress including pore 

pressure and gravity has not been considered (e.g. Schmalholz and Podladchikov, 2001; 

Muhlhaus et al., 2002; Schmalholz et al., 2005). Thus, the numerical simulation based on 

realistic state of stress is necessary for future investigations. 
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