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ABSTRACT

This paper discusses the design and implementation of 
Lily, a language for generating LL(1) language parsers, 
originally designed by Dr. Thomas J. Sager of the University 
of Missouri-Rolla. A method for the automatic generation of 
parser tables is described which creates small, highly 
optimized tables, suitable for conversion to minimal perfect 
hash functions.

An implementation of Lily is discussed with attention 
to design goals, implementation of parser table generation, 
and table optimization techniques. Proposals are made 
detailing possibilities for further augmentation of the 
system. Examples of Lily programs are given as well as a 
manual for the system.



Ill

ACKNOWLEDGEMENT

The author wishes to thank his advisor, Dr. Thomas J. 
Sager, whose original design of the Lily source language 
figured heavily in the final design discussed here and whose 
encouragement was indispensible to the author's morale. 
Thanks are also due to committee members, Dr. John R.
Metzner and Mr. Darrow F. Dawson for their advice, time and 
support. Finally, the author wishes to extend his gratitude 
to Ms. Theresa Fitzsimmons, Mr. Ryan Fitzsimmons, Ms. Trisha 
Fitzsimmons, Mr. YiLi Sung, Ms. Catherine Chan, and, the 
author's parents, Mr. Ronald G. Taylor and Mrs. Sharon L.
McCaw.



IV

ABSTRACT................................................  ii
ACKNOWLEDGEMENT..........................................  H i

LIST OF ILLUSTRATIONS.......................  vii
LIST OF TABLES...........................  viii

I. INTRODUCTION........................  1
A. REVIEW OF EXISTING COMPILER-COMPILERS....  2

1. Scanner and Parser Generation
in Lex and YACC................... 3

2. Attribute Grammars.................... 4
3. Semantic Analysis in Linguist-86.....  6
4. Code Generator Generation...........   8
5. Code Optimizer Generation in MUG2.....  9

B. OBJECTIVES FOR LILY.......................  10
C. REALIZATION OF LILY OBJECTIVES............ 13

II. METHODOLOGY.................................... 19
A. STRUCTURE OF THE PARSER GENERATOR.............  2 0

1. Parser..................................  2 0
2. Table and Function Constructors......  21

B. REGULAR RIGHT PART GRAMMARS..................  2 4
C. CONVERTING LILY GRAMMARS TO PARSING

FUNCTIONS...............................  2 6
1. Determining Director Symbols...........  2 6
2. Transition Networks..................... 3 0
3. Parser Construction..................... 3 4
4. Optimizing Tables....................... 3 7

TABLE OF CONTENTS
Page



V

III. CONCLUSION AND SUGGESTIONS FOR FURTHER WORK... 48
A. ADDING ATTRIBUTE TRANSLATION.............. 4 8
B. IMPROVEMENTS TO PRODUCTION EXPRESSIONS____ 50
C. AUTOMATIC DISAMBIGUATION............. 51

BIBLIOGRAPHY............................................  54
VITA....................................................  56
APPENDICES..............................................  57

A. SYNTAX FOR LILY PARSER GENERATION LANGUAGE. . . . 57
B. A MANUAL FOR LILY........................  60

INTRODUCTION.............................  60
I. THE LILY LANGUAGE....................  60

A. GLOBAL PART.......................  69
B. PARSER HEADING.................... 69
C. RECEIVES PART.....................  74
D. LOCAL PART........................  78
E. GOALS PART........................  78
F. KEYWORDS PART.....................  81
G. SETS PART.........................  86
H. FORE PART.........................  91
I. PRODUCTIONS PART..................  91
J. NULL PART.........................  96
K. AFT PART..........................  97
L. ACTIONS PART......................  98
M. DISAMBIG PART.....................  99

TABLE OF CONTENTS (continued)
Page



II. USING THE LILY SYSTEM................. 102
A. RUNNING THE SYSTEM PROGRAMS....... 102

1. The Lily Program..............  103
2. The Parhash Program........... 105
3. The Keyhash Program........... 106

B. WRITING LILY PROGRAMS.............  110
1. Compiler Implementation

Strategies................. 110
2. Error Messages From Lily.....  113
3. Resolving Ambiguities........  116
4. Driving Lily-Generated Parser

Functions.................. 125

vi

TABLE OF CONTENTS (continued)
Page



LIST OF ILLUSTRATIONS

1. Example of an attribute grammar in Linguist-86....  7
2. Diagram of constant-folding AT-rule................ 11
3a. A sample grammar in Lily notation.................. 3 2
3b. A recursive transition network for sample grammar.. 32
4. An RTN for the example grammar....................  38
5a. Recursive RTN for structure inside "(" and ")+"... 42
5b. Iterative RTN for same structure...............  4 2
6a. Recursive RTN for structure inside "(" and ',)*M... 43
6b. Iterative RTN for same structure............... 4 3
7a. NFA for example grammar............................  53
7b. Equivalent DFA.....................................  53
8. Diagram of a Lily source module................... 61
9. Fragment of Lily code showing use of key words.... 84
10. Hashing fragment in SEARCH.PAS file............... 109
11. Example of productions in the Lily information

file...........................................  117
12a. Example of set-set ambiguity....................... 120
12b. Example of set-token ambiguity....................  12 0
13. Warnings after making deletions to the disambig

parts of NOTHING.LIL..........................  122
14. Production information for states in warnings

of figure 13...................................  123
15. Lily code for the language Nothing................  127
16. Lily code for the language Lily.................... 131
17. Lily code for graftal plant language...............  13 6

vii

Figures Page



V l l l

LIST OF TABLES

I. INFORMATION IN A SYMBOL TABLE ENTRY.............  22
Ila. MAIN PARSING TABLE FOR EXAMPLE GRAMMAR.......... 3 9
lib. DEFAULT TABLE FOR EXAMPLE GRAMMAR...............  39

Ilia. MAIN PARSING TABLE BEFORE OPTIMIZATION.......... 4 6
Illb. DEFAULT TABLE BEFORE OPTIMIZATION...............  4 6
IVa. MAIN PARSING TABLE AFTER OPTIMIZATION........... 4 7
IVb. DEFAULT TABLE AFTER OPTIMIZATION................  4 7
V. TERMINAL SYMBOLS OF LILY LANGUAGE...............  6 3

VI. KEY WORDS OF LILY LANGUAGE......................  64
VII. STANDARD IDENTIFIERS IN LILY PARSERS............  6 6

VIII. EXAMPLES OF SET ELEMENTS........................  8 8
IX. EXPLANATION OF SET OPERATORS....................  8 9
X. EXAMPLES OF OPERANDS IN LILY PRODUCTIONS........ 93

XI. EXPLANATION OF OPERATORS IN LILY PRODUCTIONS---- 94
XII. FATAL ERRORS IN A LILY PROGRAM..................  114

XIII. WARNINGS.........................................  115
XIV. LEGEND FOR PRODUCTIONS IN THE LILY

Tables Page

INFORMATION FILE 118



1

I. INTRODUCTION

Lily is a system which assists in the automatic 
generation of compiler front ends. It was originally 
designed by Dr. Thomas J. Sager [1] to provide both a test 
application for his mincycle algorithm as well as a simple, 
effective parser generator for use in his compiler classes. 
Although the author has made substantial modifications to 
the original design, the system, in its final implementa
tion, retains a great deal of the flavor of Dr. Sager's 
initial concept. Appropriately then, the name Lily has been 
retained, after Dr. Sager's daughter.

Lily is a relatively simple, readable parser generation 
tool that operates well when used in conjunction with 
Borland International's Turbo Pascal environment. This is 
desirable since Turbo Pascal enjoys a wide base of popu
larity and is, for all its faults, a fast, inexpensive, and 
easily understood programming facility. These factors make 
it an excellent choice for university students. Lily, which 
writes parsing functions in Turbo Pascal can serve as a 
teaching aid in a compiler course.

Lily comprises a prototype for what is hoped will 
become a larger-scale compiler-compiler project. Such a 
project, if the author's experience with Lily is any 
yardstick, would certainly be worthwhile for the partici
pants. Moreover, the process of writing augmentations to 
Lily can be facilitated with the aid of Lily itself. Thus,
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the system can furnish the first link in a series of self
improvements .

In this chapter some of the background behind the 
creation of the Lily parser generation language is consi
dered. The first section examines other compiler generating 
systems which have been implemented and gives a brief 
history of such systems. This should help to form the basis 
for a subsequent section reviewing the objectives used in 
the design of Lily. The last section of the chapter is 
devoted to a discussion of those objectives which have been 
realized in the current implementation.

A. REVIEW OF EXISTING COMPILER-COMPILERS
A compiler-compiler, or metacompiler, is a programming 

tool for automatically constructing compilers. Ideally, it 
is a program that, given a description of a language and a 
target machine, produces a fully functioning compiler.
While the full realization of this ideal has proven elusive, 
significant strides have been made since metacompilers first 
began to emerge in the sixties.

Early work in the field, enduringly popular programs 
such as YACC and LEX, concentrated only on automating the 
development of the compiler's front end, the lexical and 
syntactic analysis phases. Later, more ambitious compiler- 
compilers began to appear to tackle the problems posed by 
context-sensitive semantic analysis and code generation, the 
compiler's back end. As of this writing, programs like



LINGUIST-86 and MUG2 have succeeded in automating the 
majority of the compiler writing process.

3

The first compiler generation programs focused on 
automating the development of compiler front ends. Most of 
these precursory systems, many still in use, accepted input 
in the form of a metalanguage such as the Backus-Naur Form 
(BNF) and produced tables for driving a standard parsing 
algorithm. Those parts of a compiler not easily amenable to 
formal specification, e.g. semantic analysis or code 
generation, were left to be programmed by the compiler 
implementor.

More modern systems use extended formal language 
descriptions such as attribute grammars to allow the 
automatic implementation of compiler back ends. These 
systems attempt to automate the creation of the more 
complicated aspects of a compiler such as semantic analysis, 
code generation, and code optimization.

1. Scanner and Parser Generation in Lex and YACC; LEX [2] 
is a generator for lexical analyzers (scanners). A LEX 
scanner is defined using a variation on regular expression 
notation to describe the token structure or low-level syntax 
of a language. Given a file of appropriate source code, Lex 
generates C language functions composed of a table and a 
standard, table-driven scanning algorithm.

Facilities called "hooks" are provided to allow the
user to define c language routines to be executed at
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strategic points in a scanner's operation. For instance, a 
user who wished to verify that a sequence of digits, 
recognized by a Lex-fashioned scanner, represent a value 
within a given range could use appropriate C language 
routines to accomplish this.

The concept of hooks is shared by YACC [3], usually 
considered a companion program to Lex. While Lex is used 
for writing lexical analyzers, YACC (Yet Another Compiler- 
Compiler) is used for writing parsers. Like Lex, YACC 
produces C subprograms based on a combination of tables and 
a standard, table-driven algorithm.

YACC, an implementation of LALR(l) parser theory, takes 
input in a form similar to BNF. In another resemblance to 
Lex, YACC provides hooks, interfacing the operation of the 
generated parser to C language routines which the user may 
wish to employ. These routines may effect the operation of 
the parser, for example, to resolve non-LALR(1) ambiguities. 
Another important use of hooks in YACC is the creation of an 
intermediate language representation of the source code 
supplied to the generated parser. Thus, a YACC-generated 
function might check for correct context-free syntax and 
then, using hooks to hand-coded actions, build and consult a 
symbol table or assemble an abstract syntax tree.

2. Attribute Grammars: A perusal of the literature on 
newer compiler generation systems quickly underscores the 
importance of attribute grammars (AG's) in the modern
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metacompiler. Some of the more recent systems include:
LILA [4] (Language Implementation Laboratory), PQCC (Produc
tion-Quality Compiler-Compiler), Linguist-86, GAG [5] 
(Generator based on Attribute Grammars), and MUG2. All of 
these systems use attribute grammars, in one form or 
another, to specify compiler characteristics. Attribute 
grammars, like BNF, constitute a formalism which can 
effectively form the basis of a metacompiler.

An attribute grammar, described by Knuth [6], consists 
of three parts: a context-free grammar (CFG), a set of 
attributes, and a set of functions over the attributes. 
Productions are written in standard BNF or some suitable 
extension. Then, with each symbol of the grammar, attri
butes, constituting semantic information, are associated. 
Each attribute may take on a possibly infinite set of values 
comprising a range of attribute instances. For example a 
CFG symbol for a variable might include attributes for a 
type, a scope, and an address descriptor.

The set of attributes in an attribute grammar is 
partitioned into two subsets: the synthesized attributes and 
the inherited attributes. Synthesized attributes take on 
values which are to be passed up the parse tree toward the 
root. Inherited attributes, on the other hand, take on 
values passed down the parse tree or between siblings.

The functions of an attribute grammar serve to define 
the synthesized attributes of language symbols in terms of 
other attributes. One problem that can occur in the
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functional definition of a synthesized attribute is the 
introduction of oriented cycles; i.e. an attribute is 
defined in terms of itself through some series of functional 
dependencies. An attribute grammar is termed well-ordered 
if no such cyclic dependencies exist.

3. Semantic Analysis in Lincruist-86: Linguist-86 [7], 
mentioned above, is a good example of a metacompiler system 
which employs attribute grammars. This translator writing 
system has been used to develop a production compiler for 
Intel's Pascal-86. Figure 1 shows an example of the coding 
of an attribute grammar in the Linguist-86 system. Note in 
the example, a representation of Ada based numbers, the 
juxtaposition of attributes (the identifiers following the 
periods) and attribute-evaluating assignment functions on a 
skeletal context-free grammar.

A program called the Semanticist uses this attribute 
grammar description to construct an alternating-pass 
attribute evaluator for the compiler being implemented. At 
compile time this evaluator constructs an intermediate-level 
form of the source language called an attributed parse tree 
(APT), essentially a parse tree in which the symbol nodes 
contain fields for attribute instances.

The actual computation of attribute instances is 
accomplished by making alternating, left and right, depth- 
first traversals of the APT. As each instance is evaluated 
it becomes available as a parameter to functions evaluating
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1 number : digitsl digits2
2 number.VAL = digits2.VAL
3 digits2.RADIX = digitsl.VAL
4 digitsl. RADIX = 10
5 digitsl.POWER - 1
6 digits2.POWER = 1
7 digits ::= digit
8 digits.VAL = digit.VAL
9 digit.POWER = digits.POWER
10 digitsO digitsl digit
11 digitsO.VAL = digitsl.VAL + i
12 digitsl.RADIX = digitsO.RADIX
13 digitsl.POWER - digitsO.POWER
14 digit.POWER = digitsO.POWER
15 digit ::= 101
16 digit.VAL = 0
17 digit ::= * 1 *
18 digit.VAL = 1 * digit.POWER
19 digit : ' 2 1
20 digit.VAL = 2 * digit.POWER

45 digit 'F' | 'f'
46 digit.VAL « 15 * digit.POWER

Figure 1. Example of an attribute grammar in Linguist-86
[V]

Typographical errors corrected by the author
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other instances in the tree. The number cf passes necessary 
to evaluate all attribute instances in the APT depends on 
the functional dependencies of the attributes in the AG.

4. Code Generator Generation: A number of different 
approaches have been made to the problem of automatic code 
generator generation. Ganapathi et al. [8] divide these 
methods into three categories: interpretative, pattern- 
matched, and table-driven. One of the most successful 
methods has been the table-driven code generation system 
introduced by Graham and Glanville.

The Graham-Glanville system is designed to generate 
code generators capable of producing efficient code on a 
wide variety of machines and architectures. This system 
focuses on the compiler back end and leaves the front end to 
the responsibility of the compiler implementor. Before 
attempting to generate a code generator, such compiler 
issues as syntax, semantic analysis, and variable binding 
must be resolved.

The front end of the compiler creates a prefix instruc
tion, intermediate representation (IR) which is passed to 
the automatically generated code generator. The code 
generator has been created by associating target machine 
language sequences with IR structures. This association is 
made using context-free language definitions specifying an 
IR structure suffixed by the target machine code equivalent. 
The code generator attempts to parse strings of IR emitting
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appropriate code in the process. Whenever a string of IR 
matches more then one production structure, heuristic 
methods based on, for example, code efficiency and size, 
resolve the ambiguity.

A variation on the Graham-Glanville approach has been 
applied in the Production-Quality Compiler-compiler System 
(PQCC) [9]. PQCC uses a different form of IR, a tree-based 
structure called TCOL. Instead of matching prefix IR 
instructions by using context-free language tools, PQCC 
associates patterns of tree templates (sub-trees) with 
target machine code sequences. This method attempts to 
generate code by recursively matching templates to all of 
the sub-trees of the TCOL program representation. Such a 
"tiled" template fully represents the code to be generated. 5

5. Code Optimizer Generation in MUG2: The translator 
writing system MUG2, described by Ganzinger et al. [10], 
uses a language called OPTRAN to define code optimizer 
modules. An OPTRAN program consists of a series of AT-rules 
(attribute translation rules) to specify mappings from less 
efficient structures to more efficient structures. While 
OPTRAN makes it difficult to specify, for instance, opti
mizations based on register allocation or preferred machine 
code instructions, it does support structural optimizations 
such as constant folding and loop optimization.

An AT-rule consists of four parts: an input template, a 
predicate over the attributes of the intermediate language
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representation of a program, a set of attribute functions, 
and an output template. If the predicate is true then the 
generated optimizer replaces the intermediate structure 
matched by the input template to the intermediate structure 
matched by the output template. The attribute functions map 
attributes from the old to the new structure.

In MUG2, the intermediate language is a tree-like 
structure similar to the TCOL of PQCC and the attributed 
parse tree of Linguist-86. It is composed of operator 
nodes, operand leaves, and attribute fields. The input and 
output templates of an AT-rule are language representations 
of sub-trees in the intermediate language. Thus, an AT-rule 
for a constant-folding optimization has an input template 
consisting of an operator node and two constant leaves while 
the output template consists merely of a single leaf. This 
leaf will carry a single attribute which is the result of 
applying the operator to the attributes of the input 
template leaves. Figure 2, adapted from Ganzinger et al., 
shows a diagram of the AT-rule for a constant-folding 
optimization.

B. OBJECTIVES FOR LILY
Lily, in its current stage of development, has objec

tives similar to those of YACC and LEX. The implementation 
that is the subject of this paper has been provided with a 
variety of features some of which were foreseen at the 
outset while others came to light only in the course of
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Input Template

P
F

Output Template

Figure 2. Diagram of constant-folding AT-rule*
* The input template shows a sum of two constants. The 
output template shows a single constant which can be 
replaced for the sum. The predicate P, in this case would 
be equivalent to T, i.e. always true. Thus, two constants 
may always be folded when added as shown. The function F 
would serve to add the value attributes of the two con
stants, cl and c2 to arrive at the value attribute of 
constant c3.
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development. Quite a number of these features were due to 
Dr. Sager's original conception of the system. A list of 
the design objectives for Lily, both original and acquired, 
includes the following:

1. Simplicity—  Compiler specifications written 
in Lily should be easy to write, comprehend, and 
maintain.
2. Expressive Power—  The Lily program should be 
able to generate parsers for languages with 
grammars of reasonable size. In the event that a 
grammar is ambiguous, methods for disambiguation, 
possibly interactive, should be provided.
3. Space and time efficiency—  Lily should 
operate quickly to allow for quick reprocessing of 
input once error corrections have been made. The 
parser functions generated by Lily should be fast 
and compact.
4. Generality—  Like YACC and LEX, Lily should 
generate subprograms applicable to tasks other 
than compiler generation.
5. Convenience-- The user should need to know as 
little as possible about the internal functioning 
of Lily and its generated subprograms. The lan
guage itself should provide for terse definitions 
while maintaining clarity, standard features 
should be included where they are of sufficient
usefulness.
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6. Formality of language definitions—  Lily 
should provide attribute translation as a method 
of specifying context-sensitive syntactic struc
ture (program semantics) as well as less formal 
methods such as the use of action symbols.
7. Correctness of operation—  Most important was 
that the Lily program should operate correctly 
under every conceivable condition as should the 
subprograms generated.

These and other less significant goals such as read
able, informative screen displays, and convenient run-time 
interaction with the user were at the foundation of the 
project.

C. REALIZATION OF LILY OBJECTIVES
Most of the design objectives in the previous section 

were achieved to a reasonable extent. Invariably, some of 
the goals for the system were at odds either with one 
another or with the finite nature of the proposed time-frame 
for implementation. The largest sacrifice was the abandon
ment of support for formal attribute evaluation. The 
magnitude of such an implementation was quickly recognized 
and the scope of the project was narrowed to a less ambi
tious dimension. This permitted the author to concentrate 
more fully on the other, more tractable portions of the 
proj ect.
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As a result, the semantic analysis and code generation 
phases of a Lily-generated compiler must be carried out, as 
in YACC, by hand-coded procedures (actions) provided by the 
user. Substantial opportunity for research and development 
in the area of attribute evaluation for Lily remains for any 
who might care to carry the project farther. The author of 
this paper will confine himself merely to suggestions on 
this score in the pages that follow.

Apart from the early exclusion of attributed nonter
minals, the other goals were largely achieved, starting with 
simplicity. The Lily parser specification language is very 
compact containing only thirty-eight different tokens in its 
token set and fifteen key words. Each parser specification 
contains only a few distinct parts in a standard order. 
Several of these parts are optional and are included to give 
the user more expressive power.

With regard to expressive power, Lily may be used to 
generate LL(1) language parsers of a reasonable size, up to 
four hundred and ninety (490) distinct grammatic symbols. 
Languages which are LL(k), i.e. containing production 
alternatives with finite-length prefixes, may also be 
generated subject to the requirement that the user provide 
code for ambiguity resolution. This process is facilitated 
in Lily by allowing the user to request look-ahead buffering 
for any generated parser.

One of the most important factors in Lily, reasonable 
space-time efficiency in both the metacompiler and the
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generated parsers, has been substantially achieved in this 
implementation. While the metacompiler does employ space- 
wasting bit maps (Pascal sets) it also makes use of auto
matic overlaying to achieve efficiency in the code segment. 
Further, the metacompiler code assigns a high priority to 
execution speed. In most cases this will allow the user to 
re-metacompile quickly after correcting errors.

The subprograms generated by Lily, while large, are 
designed to facilitate the use of overlays; all important 
variables are maintained at the global level. In addition, 
execution speed was enhanced by encoding tables directly as 
Turbo Pascal "typed constants." This eliminates the 
necessity of initializing tables by reading them from disk 
files. In-line machine code is used to facilitate the 
selection of actions. Used in place of the less efficient 
case structure, this code simulates a compiled version of 
the "computed goto" of BASIC.

Generality was achieved by not limiting the types of 
data which may be processed using a Lily-generated sub
program. The standard low-level parsers supplied with Lily 
read data from files on a byte-by-byte basis. This means 
that Lily could possibly be used to generate such programs 
as unassemblers and, by redirecting input, screen drivers. 
These applications are in addition to the standard use of 
Lily, generating compiler front ends. An unusual use of 
Lily to generate "graftal" tree [11] graphics has been 
implemented by the author; the code for this is shown in
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Appendix B, figure 17. A more usual implementation is shown
in Appendix B, figure 15, a Lily-coded parser for the
language Nothing, a language created by Dr. Sager for a
compiler structure course.

The source language of the Lily metacompiler is
designed to allow multiple parsers to be defined while
providing, in addition, a means for automatic interfacing
between parsers. The structure of the language is given in
the grammar of Appendix A. Appendix B consists of a manual
describing the meaning and use of the language. It is
recommended that the reader browse through this manual to
gain a better understanding of the system.

Productions are encoded using a form of regular right
part grammar (RPPG). This method allows for a more readable
grammar specification since recursion need not be used to
specify certain kinds of repetitive structures. At the same
time, the elimination of unnecessary recursion from grammar
definitions removes a run-time burden from the generated
parser; stack operations are significantly curtailed. A
final reason for using this method is that it permits a
somewhat uniform way of representing both parsers and their
lexical analyzers. In Lily, a lexical analyzer is just
another parser with multiple goal symbols for tokens. To
quote LaLonde [12] on the advantages of RRPG's:

"...when restricted to [conventional] CF grammars, 
we are forced to use a recursive definition [for 
structures not intuitively recursive]. Anyone 
learning the language via a CF grammar must 
therefore be able to distinguish between recursion 
which is an inherent property of the language and
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recursion which is introduced as a consequence of 
an inadequate descriptive mechanism.
It is...clear that regular languages can be 
described more easily with RRPGs than with CFGs.
RRPG descriptions, however, (unlike that of CFGs), 
can be used directly for constructing scanners.
Thus scanners and parsers can be described and 
constructed in a uniform way; i.e. scanners can be 
thought of as restricted types of parsers."

Representing a lexical analyzer in the same way as a 
parser is, however, not without a drawback in Lily. Tokens 
of a Lily lexical analyzer must have unique prefixes in 
order to be LL(1). This means that, for instance, the token 
structures representing a colon and an assignment operator 
in Pascal and " are ambiguous and require ambigu
ity-resolving actions. A method for automatically resolving 
finite-length prefix ambiguities of this type is feasible 
but does not form a part of the current implementation.
This method is discussed in the last chapter of this thesis 
where conclusions are drawn and further research possibili
ties are suggested.

Extensive validation of the metacompiler and the two 
hash function generation programs was done in order to help 
assure correct operation. Front ends for three complete 
test languages were written and debugged using the system.
In addition, numerous error conditions were checked by 
supplying the programs with various erroneous data. This 
method uncovered many bugs which were systematically 
removed. Nevertheless, programs the size of those currently 
making up the Lily system are likely to have unexpected
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bugs. It is hoped that information provided by the programs 
themselves will be of assistance in diagnosing and tracking 
down errors.



19

II. METHODOLOGY
This chapter discusses the methodology used in imple

menting the author's parser generator. The two other 
programs which complete the system are due to Dr. Sager and 
were modified by the author to conform to the standards of 
the parser generator. These two programs are used to 
convert tables generated by the parser generator to minimal 
perfect hash functions. For an explanation of the theory 
behind minimal perfect hash functions the reader is referred 
to Dr. Sager's paper on the subject [13].

The Lily parser generator was constructed in three 
overlapping phases. First, a recursive descent parser was 
written. This was followed by code for computing relations 
over parser grammar symbols. Finally, procedures were added 
to generate the required tables and Pascal functions.

The design of the parser generator language began with 
an uncertain modification of the original Lily design by Dr. 
Sager. Most of the desired features were known ahead of 
time but others only became apparent in the course of the 
implementation. For instance, the idea of a language 
allowing multiple parser definitions was clear from the 
start. A convenient method of interfacing the defined 
parsers with one another was, however, an unsettled matter. 
At the outset of the project, not even the form of the 
output was fully known.

Gradually, as the project progressed, necessity forced 
the develepment of a concise program structure. Earlier



20

ideas (a now-extinct wild-card character for instance) were 
seen to be either unnecessary or intractable given the scope 
of the project. At the same time, a clearer view of the 
problem gave way to solutions for old difficulties and 
helped to suggest unanticipated improvements. In this way 
the parser generator program grew by increments from a 
trepid thousand-line Turbo Pascal program to a much more 
capable program of some forty-seven hundred lines.

This chapter explains some of the methodology used in 
writing the parser generator of Lily. While it does not 
purport to be a comprehensive log of the project, it does 
provide an overall examination of the techniques that were 
applied and which now operate in the finished program.

A. STRUCTURE OF THE PARSER GENERATOR
1. Parser: The parser of the Lily parser generator is a 
conventional recursive descent parser of the type recom
mended by Wirth [14]. Source program semantics are checked 
by ad hoc routines embedded in the parser code using a 
syntax-directed approach. Warning-level and fatal error 
messages are written both to the screen and to a disk file. 
Tables XII and XIII in appendix B list the possible messages 
and their respective meanings.

In addition to detecting errors, the parser is respon
sible for constructing a symbol table to represent the 
parser specifications in the source code. This table 
contains information relevant to the table-construction
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phase of the parser generator. The grammar of each parser 
is represented by a list of trees, each tree embodying a 
production. Table I shows the contents of parser specifi
cation records in the symbol table.

2. Table and Function Constructors: The process of table 
and function construction is accomplished working strictly 
with the symbol table generated by the parser; Lily creates 
this table in a single pass over the source. Code for the 
table construction phase overlays the code for the parser. 
Table and function processing, then, proceeds one parser 
specification at a time.

The first step in constructing a parsing function table 
for a parser is to enumerate the symbols in the grammar 
structure. This permits the manipulation of symbols using 
sets and relations instead of exclusively referencing the 
list structure in the symbol table. Enumerating the symbols 
in this way yields a grammar representation suited to the 
application of well-known, set-based algorithms for compu
ting relations over the grammatic symbols.

The next step involves the isolation of nullable 
nonterminals, those nonterminals of the grammar capable of 
generating the empty string. A relatively simple recursive 
function isolates the nullable nonterminals by repeatedly 
checking the grammar for null right sides. Parenthetic 
enclosures are treated, as will be explained, like nontermi
nals, with the zero-or-more-repetitions enclosure being



22

TABLE I
INFORMATION IN A SYMBOL TABLE ENTRY

Field Meaning
name name of parser
local_decl user local definitions
fore user fore definitions
aft user aft definitions
receives_name name of parser received by current

reattribs
parser
attributes of received parser

regoals goals of received parser
rekeywords key words of received parser
renum_tokens number of tokens of received parser
look amount of look-ahead in current 

parser
goals goals of current parser
keywords key words of current parser
key_type type of key words of current parser
sets list of sets in current parser
sets_begin ordinal assigned to first set
grammar list of trees containing grammar of 

current parser
actions list of actions of current parser
disambig list of disambiguations of current 

parser
null nonterms set of nullable nonterminals
num_tokens number of tokens output by the 

current parser
next pointer to next parser record
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inherently nullable. Action symbols and the empty string 
symbol are considered syntactically equivalent. In order to 
determine the nullable nonterminals a function traverses the 
grammar tree searching all paths to determine which ones 
generate the null string.

After finding the nullable nonterminals, well-known 
methods are used to determine director symbols, those 
terminal symbols which may occur first in deriving a given 
nonterminal. Knowlege of the director symbols for all 
nonterminals makes it possible to check a grammar for 
correctness as well as construct the needed parser. 
Extensions to the common methods were required because 
Lily's grammar notation is not linear.

Armed with the director symbols, the process of table 
construction concludes by writing a Pascal function and 
parsing function table for the current parser specification. 
Each Pascal function generated consists of a single basic 
structure with tables, named entities and certain code 
fragments varying slightly from parser to parser.

Various forms of error checking take place during 
function and table generation: the grammar is checked for 
the existence of left recursion; nonterminal symbols are 
checked for usefulness; the size of the grammar is checked; 
and, finally, nondeterminism is detected whenever language 
constructs are not LL(1). If the process concludes without 
error messages or warnings, then a correct parser table and 
driving function should result.
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B. REGULAR RIGHT PART GRAMMARS
Lily productions are defined using a form of regular 

right part grammar (RRPG) similar to common so-called 
extensions of BNF. RRPG's are desirable because they permit 
a more compact, readable production definition than conven
tional linear grammars. Grammar constructs which are 
repetitive but not inherently recursive may be described 
succinctly and conveniently using RRPG's whereas linear 
grammars often require the use of more cumbersome recursive 
expressions. Consider, for example, the productions below.

1. ConstPart::® const ConstDecl {ConstDecl}
ConstDecl::= ident = number ;

2. [const_part]: const, (ident, equal, number,
semicolon)+;

3. ConstPart::= const ConstDeclList 
ConstDeclList::= ConstDecl ConstDeclList 
ConstDeclList: :== empty
ConstDecl::® identifier = number ;

All three sets of productions define the same struc
ture, a Pascal-like constant declaration part. (Assume the 
terminal symbols in all three are provided by some lexical 
analyzer.) The first set is expressed in a common RRPG 
extension of BNF allowing braces to specify zero or more 
repetitions of an enclosed structure. This familiar 
extension is used (somewhat carelessly) to describe the 
syntax of Turbo Pascal in the compiler manual.

The second set of productions conveys the same constant 
part construct using Lily RRPG notation. Lily notation



provides enclosures signifying: zero or more repetitions 
("(" and ")*"), one or more repetitions ("(" and ")+"), and 
exactly one repetition ("(" and Notice that the use
of the enclosures "(" and ")+H, indicating one or more 
repetitions, reduces the number of symbols needed for the 
production set in the example.

In the third set of productions the original form of 
BNF is used. It can be seen that this representation is the 
least adequate of the three; the number of productions is 
larger, the number of symbols is larger, and, confusingly to 
the eye, the use of recursion is necessary.

Lily productions contain two operators, the comma 
and the sheffer stroke ("I")* The comma symbolizes 

the operation of concatenation while the sheffer stroke 
represents alternation. In other extensions of BNF, 
concatenation is assumed when two symbols are separated by a 
space. However, because Lily productions may contain a 
large and varied character set, concatenation has been made 
explicit for the sake of clarity.

In the remainder of this thesis, most productions are 
defined using the Lily RRPG style. This seems far less 
clumsy than attempting to provide extended BNF descriptions 
side-by-side with Lily equivalents. Most of the productions 
used are self-explanatory. The reader experiencing diffi
culty is referred to Appendix B for a complete description 
of Lily production notation.

25
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C. CONVERTING LILY GRAMMARS TO PARSING FUNCTIONS 
1. Determining Director Symbols: In order to determine 
various facts about a grammar, Lily employs relations based 
on Knuth [15] and Tremblay-Sorenson [16]. With these rela
tions in hand it is possible to derive sets useful for 
determining whether or not a grammar is LL(1). Instances of 
nondeterminism, as well as left-recursion can be isolated 
with moderate computational effort.

In this discussion a CFG is represented by a quadruple 
(V, T, S, P) where: V is a set of variables (nonterminals); 
T is a set of terminal symbols; S, in V, is the start 
symbol; and P is a set of productions.

FIRST and FOLLOW sets are of importance in developing 
an LL(1) parsing table for a CFG. Each symbol X in (V + T) 
is associated with two sets, FIRST(X) and FOLLOW(X).
FIRST(X) contains all terminal symbols which may be encoun
tered first in a derivation of X while FOLLOW(X) contains 
all terminal symbols which may properly follow a derivation 
of X. These two sets comprise what Griffiths [17] refers to 
as director symbols. They are applied in Lily-generated 
parsers to decide when nonterminal transitions are made.

The computation of the FIRST sets is effected using an 
intermediate relation F. This relation can be thought of as 
an "immediate" first relation. Consider the CFG production 
where N is a nonterminal and Xj_ is any terminal or nonter
minal grammar symbol: H: :* X2 ... Xn.

Then, N F X]_ and, if X^ is a nullable symbol then



N F X2• If X2 is also nullable then N F X3 and so on. 
Trivially, for each terminal symbol X^, including action 
symbols and the empty string, Xj_ F X^, for all i from 1 to
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n.
Thus the F relation defines all first-derivation paths 

between nonterminal symbols in left sides and symbols in 
their corresponding right sides. Using Warshall's Algorithm 
to form F+ , the transitive closure of F, identifies all 
first-derivation paths between grammar symbols.

This transitive closure may be used to isolate left- 
recursion in the grammar. A grammar is left-recursive in a 
nonterminal N if and only if N::=+ N X]_ X2 ... Xn; that 
left-recursion is implied whenever a nonterminal produces, 
in one or more steps, a string of which the nonterminal is a 
prefix. Thus if N F+ N for any nonterminal N, then the 
grammar is left-recursive in N.

Lily uses this condition to determine whether or not a 
grammar is left-recursive. Both Griffiths and Knuth note 
that the LL(1) condition, that director symbols of alterna
tive derivations be disjoint, encompasses the prohibition 
against left-recursion. Since Lily checks for the LL(1) 
condition, the use of F+ to detect left-recursion is 
somewhat redundant. However, as Griffiths points out, the 
use of the transitive closure does allow for more meaningful 
diagnostic messages.

The FIRST sets for the grammar symbols are taken 
directly from the F+ relation. Lily implements a relation
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as an array of sets indexed by the ordinals corresponding to 
grammar symbols. By removing nonterminal elements from each 
set in the F+ array, an array of FIRST sets is formed in 
place, constituting a FIRST relation. This method saves on 
space since it is unnecessary to maintain the FIRST and
FOLLOW sets as distinct entities from the relations used to
compute them.

The FOLLOW sets are calculated using the FIRST relation 
in addition to two other intermediate relations, L and B.
For a production N::= X^ X2 ... Xn, as above, let Xn L 
Further, if Xn is nullable, then let Xn_2_ L N, and if Xn_]_
is nullable then let Xn_2 L N and so on. The L relation may
be considered a "last of" relation. L* is computed using 
Warshall's algorithm to form L+ and then effectively setting 
all bits along the main diagonal.

The B relation, mnemonically the "before" relation, can 
be computed by letting X^ B *i+l for all i from 1 to n-1. 
Further, if Xj_+1 is nullable, then let Xj_ L Xj_+2. If Xj_+2 
is nullable let Xj_ L Xj_+3, and so on.

FOLLOW sets are then calculated by forming the compo
site relation (L*)(B)(FIRST). This relation is composed of 
an array of FOLLOW sets. This method differs slightly from 
Tremblay and Sorenson who form the composite (L*)(B)(F*). 
However, since nonterminal references are removed from this 
composite, the effect is identical.

It should be noted that the RRPG notation of Lily and
the addition of action symbols and sets requires the



extension of the method given above. Such an extension is 
straightforward since all Lily grammars are implicitly 
rewritten in a form corresponding to the form used above.
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Action symbols are defined to be syntactically equiva
lent to the null string. That is, an action symbol in a 
production alternative has the same effect on the parser as 
the null string. The difference lies in the fact that an 
action symbol causes the parser to perform some specified 
user action after the parser has executed the corresponding 
transition.

An alternative list inside the metabrackets "(" 
and ")M causes lily to insert an additional symbol treated 
as a nonterminal. This symbol takes a definition which can 
be written in standard form. Formally,

(a! | a2 I . •• | an) ; is equivalent to [A], where
[A] is defined by the production 

[A]: ax | a2 | ... | an ?
Here, as below, aj_ stands for the ith alternative in a list 
of alternative phrases.

An alternative list inside the metabrackets "(" and 
")+'■ is similarly treated by introducing a new symbol which 
is defined right recursively in standard form. Formally,

(a^ | a2 | . .. | an) + ; is equivalent to [A], where
[A] is defined by the productions:

[A]: alf [A'] | a2, [A*] | ... | an, [A'];
[A1]: [A] | #;

Note that this requires that no alternative, aj_, be nullable 
since this would introduce left-recursion. This is intui
tively consistent with the meaning of these metabrackets; in 
a repeated nullable nonterminal, the repetitive recognition
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of the empty string results in an endless loop.
In addition, it should be noted that two symbols have 

been added instead of one. Lily maintains the first new 
symbol (in this case A) and discards the second. The second 
symbol is not necessary and its removal constitutes an 
optimization which is discussed later in this paper.

The last pair of metabrackets, "(" and '•)*", are 
defined in much the same way as the preceding pair.
Formally,

(a^ | a2 | ... | an)*; is equivalent to [A], where
[A] is defined by the production

[A]: ai» [A] | a2' [A] I ••• 1 an> [A] I $>
Once again, no alternative, a^, may be nullable as this
would imply left-recursion.

Finally, set symbols, which represent groups of tokens,
may be expanded to equivalent alternative lists. Formally,

[A]: a_set; can be rewritten as:
(A]: (tl | t2 I ... | tn);

Here, tl, t2, . .., tn constitute all of the token elements 
of the set. 2

2. Transition Networks: The description of parsers 
generated by Lily can be facilitated by depicting the Lily
generated push-down automaton as its equivalent recursive 
transition network (see Woods [18]). RTN's have often been 
applied in parsing natural languages. They are useful 
because they are equivalent to context-free grammars in 
power while maintaining the convenience and perspicuity of 
finite automata graphs. An RTN is an ordered digraph having
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arcs labeled with grammar symbols and nodes corresponding to 
parser states.

Consider figure 3 which shows a sample grammar and its 
representation as an RTN. The action of the parser consists 
of shifts, goto's, and push-goto combinations. When the
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[Expr]: [Term], [Term])*; 
[Term]: [Fact], (•*', [Fact])*; 
[Fact]: '(*, [Expr], ')' | 'i';

(b)

Figure 3. (a) A sample grammar in Lily notation
(b) A recursive transition network for sample 

grammar
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parser is in a given state it attempts to change states by- 
recognizing the language symbol on an outwardly directed 
arc. If the language symbol is a terminal symbol, then the 
parser changes states and shifts the input string. If the 
language symbol is a nonterminal symbol, then, on seeing a 
director symbol of the nonterminal, the parser pushes the 
state at the end of the arc and goes to the state named for 
the nonterminal. Finally, not shown in the figure, if the 
language symbol on an outgoing arc is an action symbol or 
null string symbol, the parser simply goes to the state at 
the end of the arc, executing any action symbol action prior 
to doing so.

The named states in the figure (Expr, Term, and Fact) 
are states assumed by the parser before seeing a string 
structure corresponding to the name. When the parser is in 
one of these states, it expects to see a string defined by a 
nonterminal. Under normal circumstances the parser will go 
to one of these states if a director symbol of the repre
sented nonterminal is currently being scanned. At other 
times, default transitions may be made to these states when 
the parser is employing a Lily optimization. This optimiza
tion by defaults is discussed in chapter III.

Other states (those given numbers in the figure) are 
entered by the parser after it has recognized a structure. 
When the parser is in one of these states, the syntactic 
structure of the arc which lead to the state has already 
been processed. For this reason, care must be taken in the
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ordering of action symbols which require the use of the 
current token under scan. A good rule of thumb is: When an 
action requires the use of the current token, that action 
should be prefixed to the symbol for the token, as opposed 
to suffixed. This assures that the parser will execute the 
action prior to shifting past the needed token.

Doubly circled states (states 1, 3, 7, and 8 in the 
figure) are final states. If the parser is in a final state 
and no transition is possible, it pops the new state from 
the top of the stack. Whenever an empty stack is popped, 
the parser accepts the input string. On the other hand, if 
the parser is not in a final state and no transitions are 
possible, then the parser rejects the input string.

Woods notes that an RTN graph is a model of a push-down 
automaton which accepts on empty stack. The graph resembles 
the graphs depicting finite automata. Indeed, when produc
tions of the corresponding grammar contain no nonterminal 
symbols, the RTN stack becomes unnecessary and the parser, 
as a result, becomes equivalent to a finite automaton. 3

3. Parser Construction: Lily constructs parsers according 
to the method above. Once the director symbols of grammar 
nonterminals have been isolated they may be used to make 
transition decisions between states. These transition 
decisions will comprise RTN arcs. If, from any state, all 
outward arcs are labeled with distinct director symbols, 
then the RTN is deterministic and the grammar is consistent
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with the LL(1) condition; i.e. the director symbol sets for 
grammar alternatives are disjoint, (see Griffiths [17]).

Lily parsers are driven by two distinct tables: a table 
of transitions based on state-token pairs; and a table of 
default transitions based only on the parser state. The 
first table, called the main parsing table, encompasses 
transitions which are made only when the parser is in a 
given state, scanning a given token. The tokens which 
should be seen from a state consist of the director symbols 
of alternatives (outward arcs) of that state. The second 
table, called the default table, corresponds to transitions 
which are made if the current state-token pair fails to 
match an entry of the main parsing table.

The default table contains an entry for every state in 
the RTN. Final states have an entry which signals the 
parser to execute a pop. Other states have entries which 
either cause the parser to signal an error or make a 
transition on the empty string.

Representing the RTN with two tables instead of one is 
necessary only because small table size is of key importance 
to the effective generation of minimal perfect hash func
tions. These functions constitute a very efficient method 
of table look-up in generated parsers. The main parsing 
table is converted to such a function by the Lily system 
minimal perfect hash function generators. While the 
mincycle algorithm used in the generators is considered 
sound for creating tables of up to 512 entries, in Lily the
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method can become very time consuming for far fewer entries.
This is because the method relies on the relationship 

between keys as much as on the number of keys. Pseudo- 
randomness in the keys is necessary to minimize the amount 
of work done by the mincycle algorithm. Unfortunately, 
state-token pairs for a parser table are obviously not 
pseudo-random? a given state or token may occur many times 
in a parser table. Thus, a single, monolithic table can 
easily overtax the mincycle programs.

The two-table method resolves this difficulties as well 
as generating useful side effects. For instance, since the 
default table consists primarily of error entries, it is 
effectively quite sparse. However, it is possible to 
contravene these error entries, using Lily, to associate 
them with actions for error diagnostics or recovery. In 
addition, optimization techniques can be applied yielding 
two tables which, together, consume space comparable to that 
of a single monolithic table.

Construction of the tables is accomplished by referring 
to the grammar to determine the states and arcs of an RTN. 
Lily supports two types of grammars, single and multiple 
goal, which are intuitively different but effectively 
identical. The start state of an RTN for a single goal 
grammar corresponds directly to the goal symbol of that 
grammar. In slight contrast, the start state of a grammar 
with multiple goals corresponds to a start symbol inserted 
by Lily. This symbol has, as an alternative list, each goal



specified in the parser specification of the multiple goal 
grammar. Thus interpreted, the single and multiple goal 
grammars may be treated homogeneously.
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From a given state of the RTN, outward arcs are 
specified according to the director symbols of alternative 
derivations possible from the state. For terminal alterna
tives, an outward arc is labelled with a terminal symbol.
For nonterminal symbols, action symbols, and the empty- 
string symbol, outward arcs are labelled with director 
symbols. In the case of nonterminal symbols, stack-pushing 
actions are included in the specification. Action symbols 
require the execution of user defined actions. For example, 
consider the following grammar:

[goal]: tl, t2 | §action, t3 | [nl] | 4;
[nl]: t4 | t5 | t6;

This grammar will generate a parser conforming to an 
RTN like that shown in figure 4. Tables Ila and lib show a 
representation of the two tables encoding the RTN. Note in 
the example that: tl...t6 are terminal symbols; §action is 
an action symbol; [goal], implicitly the grammar goal 
symbol, and [nl] are nonterminal symbols; and the empty 
string is represented by a pound sign. 4

4 . Optimizing Tables: The Lily parser generator attempts 
to optimize parser function tables to decrease table size 
and improve parser speed. Small tables are desirable 
because they take up less space in the generated parser and
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Figure 4. An RTN for the example grammar



TABLE II (a)
MAIN PARSING TABLE FOR EXAMPLE GRAMMAR

State Token Next Action
goal (start) tl 1 shift
goal t3 3 user
goal t4 nl push 5
goal t5 nl push 5
goal t6 nl push 5

1 t2 2 shift
3 t3 4 shift

DEFAULT
State

TABLE II (b) 
TABLE FOR EXAMPLE 

Next
GRAMMAR
Action

goal 6
1 - error
2 - pop next
3 - error
4 - pop next
5 - pop next
6 - pop next

nl - error
7 - pop next
8 - pop next
9 - pop next
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because they require less effort on the part of the hash 
table generator programs. Execution speed in the generated 
parser is also important, computer time and user time being 
valuable resources.

Earlier in this paper it is mentioned that the repeti
tive enclosures in an RRPG, as opposed to their recursive 
counterparts, may be implemented in such a way as to reduce 
the stack-handling burden placed on the parser. Recursive 
specifications in linear grammars require the parser to 
execute stack pushes and pops for each instantiation of a 
recursive symbol. While this is necessary when a grammar 
contains structures which are inherently recursive (e.g. 
mathematical expression structures), the practice becomes 
wasteful when it is applied to structures which are itera
tive in nature (e.g. lists of identifiers for function 
parameters).

For this reason, Lily replaces the implicit recursive 
structures of repetitive closures with equivalent iterative 
structures. This is done by recognizing that stack pushes 
and pops in the recursive RTN occur at the beginning and 
ends of repetitive structures and serve to cancel one 
another out. Also, unnecessary intermediate states may 
sometimes be removed by suitable reconfigurations.

The method of reconfiguring a group of alternatives 
under transitive closure (i.e. between " (" and M)+M) is 
illustrated by example. Consider the following Lily RRPG 
production using iteration and its recursive, linear
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counterpart:
[A]: | a2 | ... | an) + ; is equivalent to thefollowing:
[A]: [A*]?
[A']: ax, [A"] | a2, [A*'] | ... [ an, [A"];
[A"]: [A'] I # ;

Here, as before, aj_ represents the ith alternative in a list 
of alternatives. Figure 5 shows the RTN for both the 
iterative and recursive versions. Note that state 1, 
corresponding to the recognition of an A' still remains in 
the iterative version while A'' is no longer necessary. The 
RTN, in the iterative case, resembles the finite automaton 
for a transitive closure.

Reconfiguring a set of alternatives enclosed between 
"(" and ")*" is accomplished in a similar manner. Consider 
the following iterative production and its recursive 
counterpart:

[A]: (aL i a2 | ... | an)*; is equivalent to thefollowing:
[A]: [A1] | #;
[A1]: A 1 | a2, A 1 | ... | a^, A ’ ;

Figure 6 depicts the respective recursive and iterative 
RTN's.

The most effective optimization, however, involves the 
selection of default alternatives. This is done by consi
dering all of the possible arcs from a given state. Arcs 
labelled with nonterminals actually constitute more than one 
entry in the main parsing table; one entry is included for 
every director symbol of the nonterminal. A substantial 
amount of table space can be saved by simply making some 
nonterminal transitions by default.
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This is accomplished by analyzing the possible alterna
tive structures which may occur after a grammar symbol. In 
the Lily parser generator, an alternative may be chosen by 
default under three conditions:

1. No other alternative is nullable.
2. The structure is LL(1) (i.e. the director symbols

of all alternatives are disjoint).
3. The alternative begins with a nonterminal.

Rule 1 applies because if a nullable alternative exists 
then that alternative will require the default transition 
from the current state. Rule 2 simply states that the 
parser must be deterministic. If this is not the case, then 
eliminating defaults allows the parser generator to deter
mine the location of the ambiguity. Rule 3 is necessary 
because only nonterminals have corresponding states where 
the parser is "expecting to see” a given structure. Recall 
that states corresponding to all other symbols are entered 
only after seeing the symbol. If more than one nonterminal 
conforms to all three conditions, then the one with the 
largest set of director symbols is chosen. This has the 
effect of reducing the main parsing table size by the 
greatest possible amount.

An example serves to show how optimization is achieved 
using defaults. Consider the grammar given below:

[S]: [A] | [B] | tl;
[A] : t2 | t3 | t4;
[B] : t5 j t6 ;
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Here, as above, tl, t2, . .., t6 represent arbitrary termi
nals .

In the alternative list comprising the right side of 
[S], both nonterminals, [A] and [B], meet the three criteria 
given above. However, the director symbols of [A] (t2, t3,
and t4) outnumber the director symbols of [B] (t5 and t6).
In this case [A] will be chosen as the default nonterminal. 
The result of this is that whenever the parser is in the 
state corresponding to [S], a token other than tl, t5 or t6 
will result in a transition to a state where the parser will 
expect to see an [A]. Tables Ilia and Illb show the parser 
tables before applying the default-selection optimization 
while tables IVa and IVb show the tables after application.

In practice, nonterminals will often be the only 
alternative which may occur after a given symbol. These 
nonterminals will be chosen as the defaults automatically. 
For example, consider the following production:

[A]: tl, [B];
Here, after seeing a tl token, the parser will automatically 
expect to see a [B], regardless of the token currently being
scanned.
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TABLE III (a)
MAIN PARSING TABLE BEFORE OPTIMIZATION

State Token Next Action
S tl 1 shift
S t2 A push 2
S t3 A push 2
S t4 A push 2
S t5 B push 3
S t6 B push 3
A t2 4 shift
A t3 5 shift
A t4 6 shift
B t5 7 shift
B t6 8 shift

TABLE III (b)
DEFAULT TABLE BEFORE OPTIMIZATION

State Next Action
S — error
A - error
B - error
1 - pop next
2
• •

pop next 
•

•
•
8

•
•
•

pop next
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TABLE IV (a)
MAIN PARSING TABLE AFTER OPTIMIZATION

State Token Next Action
S tl 1 shift
S t5 B push 3
S t6 B push 3
A t2 4 shift
A t3 5 shift
A t4 6 shift
B t5 7 shift
B t6 8 shift

TABLE IV (b)
DEFAULT TABLE AFTER OPTIMIZATION

State
S
A
B
1
2

Next
A

Action 
push 2 
error 
error 
pop next 
pop next

8 pop next
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III. CONCLUSION AND SUGGESTIONS FOR FURTHER WORK
The Lily parser generation system should provide a 

useful tool for generating compiler front ends. Much effort 
has gone into the design and implementation of the system in 
order to make it both easy to use and relatively powerful. 
Although extensive validation of the system has been carried 
out, further use of the system will lend assurance to the 
system's correctness and practicality.

Many opportunities exist for expansion. These range 
from trivial extensions of convenience to large-scale 
improvements in power. In this chapter suggestions are 
offered pertaining to future augmentations of the system.
It is hoped that these suggestions will prove helpful to 
anyone considering such a project.

A. ADDING ATTRIBUTE TRANSLATION
Retooling Lily to allow for the formal translation of 

attributes would undoubtedly be a very difficult task. 
Indeed, the effort required for such an undertaking would, 
in all probability, considerably exceed the total effort 
invested in creating the current prototype. Notwithstanding 
this, formal attribute evaluation would significantly 
improve Lily, possibly making it a market-viable software 
product.

A good model for an attribute-processing compiler- 
compiler exists in the Visible Attribute Translation System 
(VATS) (in Tremblay and Sorenson, cited in chapter II).
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Lily already resembles VATS in a number of ways, particu
larly in the way semantic actions are handled; i.e., both 
systems use action symbols. In VATS the user may specify 
attributes to be associated with grammar symbols. It is 
then the user’s responsibility to see that, through actions, 
the attributes are evaluated in the correct order.

Since Lily uses RRPG's, traditional attribute grammar 
schemes will prove insufficient. This results from the 
implementation of repetitive closures to express iterative 
structures. The problem is: what should be done with the 
attributes of nonterminals within these closures? It is, 
for instance, clear that an iterated nonterminal should be 
able to inherit attributes from previous iterations (sib
lings in the parse tree). However, linear attribute 
grammars, by nature, cannot provide a solution to this 
problem.

Jullig and DeRemer [19] propose methods for dealing 
with Regular Right Part Attribute Grammars (RRPAGS). These 
include: list creation, in which iterations of nonterminals 
create a list of corresponding attributes; list distribu
tion, in which attributes of iterated nonterminals are 
inherited from a corresponding list element; and a "bucket 
brigade," where attributes are passed from iteration to 
iteration.

Apart from these methods, most attributes can be 
handled in one of two ways. First, a Lily generated parser 
could be made to create and support an attributed parse tree
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as in LINGUIST-86. Table-driven methods could still be used 
in this case. A second method would be much easier from the 
standpoint of run-time attribute support. This involves the 
abandonment of the table-driven approach and switching to 
recursive descent in the generated parsers. Most attributes 
could then be passed as parameters between the implied 
mutually recursive functions.

B. IMPROVEMENTS TO PRODUCTION EXPRESSIONS
Less ambitious than formal attribute translation would 

be the augmentation of Lily production expressions. Changes 
can be made which would make grammar definition more 
convenient, powerful, and conservative of space.

One possibility is the addition of hexadecimal integer 
constants. These would be useful since some Lily parser 
functions receive input corresponding to bytes. The current 
implementation forces the user to describe these bytes 
either as ASCII characters or as decimal integer constants. 
Hexadecimal integers are sometimes more natural for the 
expression of byte integers. This would be particularly 
clear if a user, for example, wished to use Lily to generate 
a small unassembler.

Another good possibility is the inclusion of further 
regular right part constructs. LaLonde (cited in chapter 
II) mentions two alternatives which, incorporated into Lily, 
might take the following forms:

1. (p)? - # I (P)



51

2. (p) %list (q) - (p), ((q), (p))*
where p and q are Lily production expressions.

The first extension specifies that p is an optional 
structure in the grammar. The second, somewhat more 
complicated, defines a list structure, in this case a list 
of p's separated by q's. Such an expression could be used, 
for instance, to describe a list of identifiers separated by 
commas.

C. AUTOMATIC DISAMBIGUATION
Certain non-LL(l) grammatic structures should be 

susceptible to automatic disambiguation. Improving Lily to 
perform this task would greatly increase the system's 
convenience to the user. Lexical analyzer tokens, for 
example, might be able to have common prefixes without 
necessitating disambiguation by the user.

A method worth considering is the application of 
standard algorithms for the conversion of nondeterministic 
finite automata (NFA) to equivalent deterministic finite 
automata (DFA). One such algorithm, which may be found in 
Hopcroft and Ullman [20], converts NFA's to equivalent DFA's 
by creating compound states whenever nondeterminism occurs. 
This algorithm could be modified to attempt disambiguation 
of an RTN. Since nonterminals, action symbols, and sets are 
not included in NFA's, the algorithm could be constructed to 
give up if one of these symbols is encountered.

An example of a grammar which might be automatically
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disambiguated is:
[colon]: *: ' ;
[assign]: ':', '=';
[produces]: *:',

Here it is assumed that the three left-side nonterminals are
goals of a multiple goal grammar. Thus, they are implicitly 
the alternatives of a single, Lily-supplied goal symbol. 
Figure 7 shows an NFA for this grammar followed by the 
corresponding DFA.
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Figure 7. (a) NFA for example grammar
(b) Equivalent DFA
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APPENDIX A
SYNTAX FOR THE LILY PARSER GENERATION LANGUAGE

The following grammar uses an extension of BNF (Backus- 
Naur Form). Braces, M{'• and indicate that the enclosed
structure is to be repeated zero or more times. Brackets,
'* [" and "] ", indicate an optional structure. The pound 
sign, indicates the empty_string. The sheffer stroke,
"|" indicates alternation while concatenation is symbolized 
by the null operator. Concatenation takes precedence over 
alternation. Underlined items indicate tokens while 
identifiers without underlining indicate nonterminals.

front-end::=
global-part {parser-part} %end ±

global-part::=
r%global pascal-code]

pascal-code::»
$$ (a block of Pascal text)

parser-part::=
%parser standard-name [%look integer1 2 I 
%parser identifier [att-decl] [%look integer! j_ 
parser-tail

standard-name::= 
identifier

att-decl::=X att-list-decl {2 att-list-decl} 1
att-list-decl::=att-ident-list 2 type-ident
att-ident-list: :=*

attribute attribute}
attribute::*inh-att-ident | syn-att-ident
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type-ident::=
identifier

parser-tail::=
receives-part [%local pascal-stuff] goals-part 
[keywords-part] [sets-part] [%fore pascal-code] 
productions-part [null-stmt] f%aft pascal-code] 
[actions-part] [disambig-part]

receives-part::=
%receives parser-name [rec-att-list] j_

parser-name::=
identifier

rec-att-list]::=
X identifier identifier) 1

goals-part: :*=
%qoals goal-ident {j_ goal-ident} ± 

goal-ident::*
identifier | X identifier 1 

keywords-part::=
%kewords i type-ident = keyword-list ±

type-ident::=
identifier

keyword-list::=
identifier identifier)

sets-part::=
%sets set-definition ± {set-definition ±}

set-definition::=
identifier = set-expression

set-expression::=
set-term {addop set-term}

addop::=
± I -

set-term::=
set-factor {*. set-factor}

set-factor::=ordinal-range | - set-factor | identifier | X set 
expression 1

ordinal-range:: =
ordinal ordinal]
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ordinal::=
character | integer

productions-part::=
%productions production j_ {production j_}

production::=
nonterm-ident : automaton

automaton::=
auto-term (1 auto-term}

auto-term::=
auto-factor {j. auto-factor} 

auto-factor::=
character | integer | identifier | nonterm-ident | 
£ | X automaton closure

closure::=
1 I 1± I 1*

null-stmt::=
%null ± automaton ±

actions-part::=
%actions identifier pascal-code (identifier pascal-code}

disambig-part::=
%disambig triple pascal-code {triple pascal-code}

triple::=
integer integer j_ integer | integer j. ± j_ 
integer
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APPENDIX B 
A MANUAL FOR LILY

INTRODUCTION
This manual is divided into two chapters. The first 

chapter deals with the Lily language and discusses the 
structure and meaning of the various parts in a Lily 
program. Following this is a tutorial-style chapter on 
using the Lily system programs and writing Lily source code. 
Tested examples of Lily source code are given along with 
advice which might be of use to those who wish to utilize 
the system.

Both this manual and the Lily system (object code only) 
are released to the public domain and may be freely copied 
and distributed provided that such actions are not underta
ken for purposes of financial gain. Lily originates at the 
University of Missouri-Rolla Department of Computer Science 
and further information about the system may be obtained 
from Dr. Thomas J. Sager of that department. I.

I. THE LILY LANGUAGE
A Lily program, diagrammed in figure 8, consists of an 

optional global part and a series of zero or more parser 
specifications, followed by the key word %END. From this 
source program the parser generator (metacompiler hereafter) 
produces parsers for LL(1) languages, a reasonably powerful 
subset of the deterministic context-free languages. In
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%global (optional)
$$•
. (Pascal code)
$$
%parser . . .  +

%receives ... I
%local (optional) |
$$ |• {
. (Pascal code) |
$$ |
%goals ... j
%keywords ... (optional) |

.1%sets ... (optional)
(zero or more of)%fore (optional)

$$ j• J
. (Pascal code) j
• |
$$ |
%productions ... j
%null ... (optional) i
%aft (optional)
$$ |
• |

. (Pascal code) |
• {
$$ |

I%actions ... (optional) j
%disambig ... (optional) ---------------------- +

%end

Figure 8. Diagram of a Lily source module
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addition, using features for reconciling prefix ambiguities 
of finite length, parsers for LL(k) languages may be 
generated. This chapter defines the structure and meaning 
of each of Lily's component parts as they occur in order 
within a Lily source file. It may be helpful to refer to 
figure 8 throughout this chapter.

The terminal symbols (tokens) of the language are 
depicted in table V. They consist of key words (listed in 
table VI) , synthesized and inherited attribute identifiers, 
terminal symbol identifiers, nonterminal symbol identifiers, 
action symbol identifiers, and various operators and 
separators. Identifiers which are equivalent to terminal 
symbol identifiers are also used for defining parser names, 
set names and various other source language particulars.
When an identifier is used in one of these latter contexts 
it is simply referred to as an identifier. Comments, 
enclosed between braces, may be included anywhere in the 
source code that a token may occur and are ignored by the 
parser generator (i.e. (This is a Lily comment.)).

Letter cases in identifiers and key words are insigni
ficant and are converted to uppercase in the course of 
metacompilation. Thus the key word identifiers "%GloBaL" 
and "%global" are equivalent as are identifiers "ParserX" 
and "parserx".

Blocks of Turbo Pascal text, used in the global, local, 
fore, aft, actions, and disambig parts of a Lily program, 
are placed between pairs of dollar signs ("$$") and will be
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TABLE V
TERMINAL SYMBOLS OF LILY LANGUAGE

Token Meaning
identifier 
[identifier] 
cidentifier 
>identifier 
§identifier 
%identifier 
number 
(
)*
) +
)

* c '*
+

#
$$

Terminal symbols and all-purpose
Nonterminal
Synthesized attribute
Inherited attribute
Action symbol
Key wordInteger constants from 0 to 32767 
Begins parenthetic enclosure 
Ends parenthetic enclosure (Kleene 

closure)
Ends parenthetic enclosure (transitive 

closure)
Ends parenthetic enclosure (simple 

operator override)
Colon (separator)
Semicolon (separator)
Sheffer stroke (alternative operator) 
Comma (separator and concatenative 
operator)

Two periods (separator in subranges) 
Equal sign (separator and set assignment 

operator)
ASCII character (c arbitrary)
Asterisk (set intersection operator)
Plus sign (set union operator)
Minus sign (Unary absolute complement, 

relative set complement operator)
Pound sign (null string constant)
Dollar sign pair (enclosure for Pascal 
code blocks)
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TABLE VI
KEY WORDS OF LILY LANGUAGE 

Key word Meaning
global
parser
look
goals
actions
receives
keywords
setsproductions
null
end
disambig
local
fore
aft

Precedes global definitions and declarations
Begins a parser specification 
Used to request look-ahead 
Precedes a list of goal symbols 
Precedes action definitions 
Precedes specification of received 

parser
Precedes a list of key words 
Precedes set definitions 
Signals beginning of productions 
Used to specify a right side to be 

ignored
Signals the end of Lily source 
Begins a list of parser overriding 

actions
Precedes local declarations
Precedes an action done prior to parsing
Precedes an action done after parsing
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referred to as Pascal code blocks. These blocks are copied 
verbatim by the metacompiler and are not checked for proper 
Pascal syntax or semantics. Naturally, the use of dollar 
sign pairs as delimiters implies that any Pascal code block 
used in a Lily source program must not contain a pair of 
dollar signs. Furthermore, a comment which begins outside a 
Pascal code block may be terminated by a right brace inside 
the block with a syntax error the probable result. For this 
reason comments within Pascal code blocks are best enclosed 
within the Turbo Pascal comment delimiters "(*” and

Certain standard identifiers are used in the parsing 
functions generated by Lily and these may be accessed in 
Pascal code blocks to affect the parsing sequence. An 
alphabetical list containing each standard identifier along 
with its class (i.e. constant,variable, or procedure) is 
given in table VII. Note that all standard constants and 
variables are of type integer.

The constant "accept^' is meant to be used in an 
action. Making the assignment ”state__:- accept_" in an 
action causes the parser to exit.

The variable f,action_M contains the number of the 
current action to be executed by the parser. This variable 
can be used to cause the parser to shift by assigning 
”action_:= shift_” in a Pascal code block. Most often the 
variable will be used in ambiguity-resolving actions.

The constant "error_" can be used in an action to 
indicate that the return value of the parser is an error.



TABLE VII
STANDARD IDENTIFIERS IN LILY PARSERS

Identifier Class
accept_
action_
error_
no action
pop_
push_
return_
shift_
start_state_
state_
token

constant
variable
constant
constant
procedure
procedure
variable
constant
constant
variable
variable
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This is done using the ,,return_" variable discussed below.
The action constant ,,no_action_,, is a value which can 

be taken on by the variable "action_" and designates to the 
parser that no action is to be taken.

Procedures Hpop_" and "push_" are available only in 
parsers which require the use of a stack (namely, those 
parsers containing nonterminal references in production 
right sides). Under normal circumstances the Lily system 
user need not worry about using these procedures as Lily 
handles all stack operations automatically. However, when a 
parser specification contains ambiguities it is sometimes 
necessary to override the operation of the generated parser 
and take control of the stack in an ambiguity-resolving 
action.

The "pop_" procedure sets the current state of the 
parser, held in the variable "state_" to the value on the 
top of the stack. Then the top of the stack is discarded 
and replaced with the next element down in the stack. If 
the stack is empty when it is popped, the state of the 
parser is set to the constant "accept_."

The "push_M procedure is the logical complement of the 
"pop_" procedure and is used to push its single parameter, 
an integer state value, onto the stack. If the stack is 
full (one hundred elements is the current default value 
allowed), then an error message is output while the parser 
is permitted to continue operating.

The "return " variable holds the integer value to be
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returned by the parser. It is set, either automatically or 
in a user action, prior to exiting the parser function.

The ”shift_" constant can be assigned to the action 
variable "action_H causing the parser to execute a shift.
This is normally done for purposes of ambiguity resolution.

The "start_state_" contains the value for the state in 
which the parser is to start. At the beginning of each 
parser call the state variable "state_" of the parser is set 
to the constant "start_state_." The user may also make such 
an assignment in his actions part. Note however, that the 
starting token value is not reset.

The variable "state_" contains the integer state of the 
current parser. Assignments made to this variable in user 
actions cause the parser to change states.

The variable "token_" contains the value of the current 
token being processed by the parser. However, it is merely 
a copy of the parsers working token. As such it is intended 
only to be examined by user actions and not modified. 
Modifying this variable will have no effect on the parse se
quence .

Finally, the working token of the parser, unlike 
"token_" affects the action of the parser. The variable is 
global so that it will remain unchanged from the end of one 
parser call to the beginning of the next. The name of the 
working token variable for a given parser is formed by 
prefixing the first eight characters of the parser's name to 
the string "_token_''. Thus for the parser "lex_anal" the
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working token may be referenced as ,'lex_anal_token_''. The 
practice of altering the working token is not recommended 
although the possibility has been mentioned here for the 
sake of completeness.

A. GLOBAL PART
The optional global part, which consists of the key

word %GLOBAL followed by a Pascal code block, is used to
declare variables and to define types, functions, and
procedures that are to be considered global to the generated
parser functions. For example consider the following:

%global
$$type buffer_type = string[20]; 
var buffer: buf fer__type; 
procedure x;

begin
{ • • • }end;

$$

In this example the user has defined a type, declared a 
variable, and defined a procedure as global to the parsers 
that will follow. Access to these definitions and declara
tions will be available to any Pascal code block in any 
subsequent parser specification.

B. PARSER HEADING
The key word %PARSER begins a Lily parser specifica

tion. The definition of a parser in this specification
continues until the next %PARSER key word or the %END key 
word is reached. Within a parser specification the parser
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being defined is referred to as the current parser.
Following the key word %PARSER is an identifier naming 

the parser, then an optional parenthesized declaration of 
attributes, and finally an optional request for look-ahead 
buffering. This sequence is terminated by a semicolon. The 
name of the parser is an identifier which is significant 
only in the first eight character positions. This situation 
arises from the fact that DOS (Disk Operating System) files 
are created by the Lily system and these are given names 
which correspond to parser names.

Attribute declarations take a form similar to the 
formal parameter declarations of Pascal procedures and 
functions. Indeed, this resemblance is directly attribu
table to the fact that in the final phase of metacompila
tion, the attributes of a particular parser are used to 
define the formal parameters in the generated parsing 
function. At metacompile time synthesized attributes of a 
parser are declared to be pass-by-reference (Pascal VAR) and 
are therefore available to and modifiable by statements in 
that parser's Pascal code blocks. Inherited attributes are 
declared pass-by-value and are available but are not 
modified upon returning from the parser function.

Parser attributes are declared in a list of one or more 
attribute declaration instances separated by semicolons.
Each attribute declaration instance consists of a list of 
attribute identifiers followed by a colon, and ended by an 
identifier. The ending identifier should be a one-word
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Pascal type, either standard or user-defined, which is 
global to the current parser. If the identifier represents 
a user-defined type then it is preferable for reasons of 
consistency that it be defined in the Lily global part but 
it may also be defined in an available scope of the user's 
driver program.

Look-ahead buffering for the parser, if any is needed, 
is requested after the optional attribute declarations. The 
key word %LOOK is used followed by an integer constant 
representing the maximum amount of look-ahead required.
This is useful when the parser receiving its tokens from the 
current parser needs to see more than one token ahead in 
order, perhaps, to resolve ambiguities.

When look-ahead buffering is specified the user is 
given access to an automatically generated look-ahead 
function. This function will have a name formed by prefix
ing the string 'look_' to the current parser's name. The 
look-ahead function has all of the attributes of the current 
parser as well as one more to indicate how far look-ahead is 
to be carried out on a given call.

The following are examples of a parser headings:
%parser lex;
%parser lex(>inbuffer, coutbuffer: buffer_type; 

<buffer_length: integer);
%parser lex(>insomething: some_type; 

cvalue: integer) %look 2;

In the first example a parser to be named "lex” is
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specified. It has no attributes and no look-ahead function 
will be generated for it. The second example shows a parser 
with three attributes, one inherited and two synthesized.
The first two attributes have type "buffer_type" while the 
last attribute has type integer. In the third example a 
parser requires two attributes, the first inherited and the 
other synthesized. Further, the generation of a look-ahead 
function capable of scanning ahead a maximum of two tokens 
is requested. Since the name of the parser, as in the first 
two examples, is "lex," the user could access the generated 
Pascal look-ahead function by, for instance, assigning

x:= look_lex(dist, val_to_send, val_to_receive);
This means that we want to assign "x" the integer value 

of the token which is "dist" tokens beyond the current token 
in the input. Also we want the inherited attribute called 
"val_to_send" to be used while determining the look-ahead 
token value and we want to receive "val_to_receive" after it 
has been synthesized.

Apart from user-defined parsers, Lily also provides 
standard parsers. These give the system user a convenient, 
automatic way of implementing low-level input to the parsers 
he or she defines. Two versions with slightly differing 
capabilities are provided named "GETCHAR" and "GETCHAR_L" 
respectively. Both parsers read characters one-by-one from 
a standard file and return corresponding ASCII codes as 
integers. The difference between the two standard parsers 
is that "GETCHAR L" automatically outputs a line-numbered
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listing to a standard listing file.
The standard file read by the standard parsers is 

called Minput_file" while the standard file used for 
listings is called "list_file." Whenever a standard parser 
is used in a Lily program one or both of these files must be 
assigned to user-declared file variables according to the 
conventions of Turbo Pascal. In addition, the file used for 
input must be reset while the file used for listing output 
must be rewritten.

These two files are to be distinguished from the 
standard input and output files of Pascal. A user wishing 
to utilize the standard files (perhaps to allow his program 
to serve as a filter in a pipe) must explicitly assign the 
Lily standard names to these files. Other considerations, 
such as defining the buffer size for the Pascal standard 
files, are also left up to the user.

The standard parsers differ from user-defined parsers 
in the way they are included in the Lily source. Instead of 
defining a full parser specification for standard parsers 
the user includes only the parser heading in his definition. 
In addition, while the inclusion of a look-ahead request is 
allowed for standard parsers, there must be no attribute 
declaration list present. For example consider the follow
ing parser headings:
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%parser getchar;
%parser getchar_l;
Sparser getchar_l %look 2;

In the first example the parser GETCHAR is made 
available. No listing file will be generated at compile 
time (as differentiated from metacompile time). In the 
second example parser GETCHAR_L is made available. It 
functions in exactly the same way as GETCHAR but a listing 
will be generated to a standard listing file at compile 
time. The last example shows a standard parser that 
generates a listing and also allows look-ahead under the 
same terms as the look-ahead described for user-defined 
parsers.

C. RECEIVES PART
The receives part of a parser specification is used to 

give Lily information about the current parser's source for 
tokens. The key word %RECEIVES is followed by an identi
fier, an optional parenthesized list of identifiers separa
ted by commas, and a terminating semicolon. The identifier 
gives the name of a lower level parser which will be called 
upon to supply tokens during the operation of the current 
parser. This received parser can be either a previously 
specified Lily parser (standard or user-defined) or, less 
conveniently but legally, the function name of a subprogram 
which the user supplies.
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The optional parenthesized identifier list contains the 
names of the actual parameters to be used when calling the 
received parser function. Such a call is made whenever the 
current parser executes a shift action. If the actual 
parameter list facility is used it should be used with care 
and only with a complete understanding of the functioning of 
Lily-generated parsers. The parameter names in the list are 
not declared by Lily in the generated Pascal function and 
must be declared by the user in the local part of the 
current parser, in the global part of the Lily source, or in 
the user's driver program. If the current parser receives a 
non-Lily, user-supplied parser, then the omission of the 
parameter list indicates that the received parser has no 
attributes.

On the other hand, if the current parser receives from 
a parser previously defined in the Lily source, then the 
user need not consider the parameter list at all. Lily will 
copy the names from the attribute list of the received 
parser and make sure that copies local to the current parser 
are available to the current parser's Pascal code blocks.
For example, assume parser X with attributes >al, <a2, <a3 
is received by parser Y. Then leaving off the parameter 
list in the receives part of parser Y tells Lily to make Y- 
local copies of the attributes of X. Thus, the Pascal code 
blocks of parser Y may make use of variables al, a2, and a3. 
Whenever the received parser, X, is called for a token by Y, 
the attributes of X will initially be set to the values
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assigned to them in the Pascal code blocks of Y. Such an 
assignment will be necessary only for the inherited attri 
butes of X.

Nevertheless a parameter list in the receives part can 
still be specified if the user wishes to call the local 
copies of the received parser's attributes by names which 
differ from those of the attributes in the received parser. 
As above, all parameter names used in the parameter list 
will have to be declared by the user.

In most cases it will be best for the current parser 
always to receive Lily-defined parsers since this allows for 
easy, automatic interfacing of parser functions. While 
support for receiving non-Lily parsers exists, the use of 
that support introduces minor complexities as well as 
certain necessities of detail which the user may find 
tedious. Since the purpose of the language is to provide 
convenience, the support for non-Lily received parsers 
constitutes a slight digression from the design philosophy 
of the language. The inclusion of these facilities is 
motivated by a desire for generality and versatility.

Notwithstanding this disclaimer, the use of a non-Lily 
received parser has two effects on the current parser.
First, identifier names of the received parser (such as its 
goals and key words) will be unavailable for use in the 
current parser1s productions and sets. This means that the 
sets and productions of the current parser must use either 
integer or character ordinals to refer to the tokens of the
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received parser. Second, the set universe of the current 
parser is assumed to be {x | x is an integer element of [0, 
255]}. In other words, Lily assumes that the tokens coming 
from a non-Lily received parser will range from 0 to 255.

The following are examples of the receives part: 
%receives getchar_l;
%receives Lily_lex;
%receives NonLily_lex( a, b, c);

In the first example the current parser will receive 
its tokens from the standard parser getchar__l which was 
presumably defined in a preceding parser heading. The 
second example shows the current parser receiving its tokens 
from Lily_lex, a user-defined parser supposed defined in an 
earlier parser specification. Pascal code blocks of the 
current parser can in this case make use of local variables 
whose names are identical to the attribute names used in 
Lily_lex.

The final example shows a current parser being defined 
as receiving its tokens from a source function which is 
assumed not to have been defined in a preceding parser 
specification. In this case the user will supply a function 
in his driver program to supply the correct integer tokens. 
Lily will use the parameters "a, b, and c" when it needs to 
call the user's function to execute a shift. These three 
parameters should be declared or defined by the user in the 
global part, in the current parsers local part or in the
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driving program.

D. LOCAL PART
The local part in a parser specification is used like 

the global part of a full Lily program. Its purpose is to 
supply the system user with the ability to declare Pascal 
variables as well as to define types and subprograms. These 
definitions and declarations are made local to the function 
generated by the metacompiler as it implements the current 
parser. Consequently, they are accessible only to those 
Pascal code blocks which are within the current parser.

The local part, which is optional, consists of the key
word %LOCAL followed by a Pascal code block containing
definitions and declarations. For example, consider the
following local part.

%local
$$type byte_array = array [0..10] of byte; 
var byte_table: byte_array; 
procedure x; 

begin 
{ ... } 
end;

$$
In this example, the user defines a type, declares a 

variable of that type, and then defines a procedure. These 
declarations and definitions will be local to the function 
generated for the current parser.

E. GOALS PART
The goals part, required in each user-defined parser
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specification, consists of the key word %GOALS followed by a 
list of one or more identifiers any of which can be enclosed 
in parentheses. Identifiers, parenthesized or not, are 
separated by commas while the list of identifiers is 
terminated by a semicolon.

In the goals part of a parser specification the system 
user lists identifiers corresponding to nonterminal symbol 
identifiers in the left sides of productions within the 
current parser specification. These productions are then 
considered to define goal symbols for the current parser.
If more than one goal is specified in the goal list, the 
current parser is referred to as a multi-goal parser 
hereafter in this manual and its grammar is called a multi
goal grammar. If the goal list contains only one goal, then 
the current parser is referred to as a single-goal parser 
while its grammar is called a single-goal grammar.

Each goal can be defined as being in one of two modes 
depending on whether or not the corresponding identifier is 
parenthesized in the goal list. If the identifier is not 
parenthesized, then the goal is in default mode. A paren
thesized identifier indicates that the goal is in non
default mode.

A goal in default mode causes the current parser to 
return a unique integer on recognition of the goal1s right 
side. In contrast, a goal in non-default mode can be 
recognized by the current parser but no provision is made 
for returning a corresponding integer and the return value
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defaults to an error signal. This means that the system 
user must provide an action at the end of the non-default 
goal's right side in order to designate a value to be 
returned.

For convenience Lily does in fact assign a unique token 
value to a non-default goal but provides no automatic way 
for the current parser to return that value. Instead, Lily 
will declare the name of the non-default goal as an integer 
constant in the function generated for the current parser. 
This constant is assigned the goal's token value and is 
available to the Pascal code blocks of the current parser. 
This can prove useful in the Lily code for equipping a 
parser with the ability to recognize key words.

The purpose of non-default goals is to facilitate the 
recognition of user-language key words (reserved words of 
the language for which a Lily front end is being specified). 
To allow the current parser to recognize key words a goal 
for recognizing identifiers is listed as non-default in the 
goal list and defined in a production. The production 
specifies the structure of an identifier and includes 
actions for creating a buffer of the identifier recognized. 
Then in an action at the end of the production, a return 
value for the goal is designated by calling the Lily
generated "search_key" function. This function checks the 
buffer against a list of key words specified by the user in 
the key words part of the current parser specification. A 
description of the use of the key word searching function
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will follow in the next section's discussion of the key 
words part. There, the Lily implementation of key words is 
considered in more detail.

Examples of the goals part follow:
%goals

left_paren, right_paren, asterisk, (ident);
%goals 
program;

In the first example the current parser is defined to 
be a multi-goal parser, perhaps a lexical analyzer. Each of 
the goals in the list must be defined in the productions 
part of the current parser. Unique token values will be 
returned automatically by the parser function for all of the 
listed goals except "(ident)" the return value for which 
must be stipulated in a user action. A constant containing 
a token number for "ident" will be included in the current 
parsers Lily-generated Pascal function. This constant can 
be used or discarded as need be.

The second example shows the current parser being 
defined as a single-goal parser. This goal must be defined 
in the productions part of the current parser. If the 
parser function succeeds in recognizing a structure cor
responding to this goal then it will return an integer zero. 
Otherwise, an error value is returned.

F. KEYWORDS PART
The keywords part consists of the key word %KEYWORDS, a
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colon, an identifier, an equals sign, and a list of identi
fiers terminated by a semicolon. The identifier following 
the colon is the type to be used for all of the current 
parser's reserved words. This type is a one-word identifier 
which should be defined in the local part of the current 
parser, the global part of the current Lily program, or in 
the user's driver program. For compatibility, the type must 
be a string of some arbitrary length.

Following the equals sign is a list of identifiers 
defining the key words of the user's language. The identi
fiers in the list, which must be at least one in number, are 
separated by commas. Since Lily is not sensitive to the 
cases of letters in the identifiers it cannot support case 
sensitivity in the key words of user defined parsers. All 
of the key words listed in the current parser's key word 
list are converted to uppercase just like other identifiers 
in the source. Thus, all keywords in the language being 
defined using Lily must be either uppercase or caseless as 
in Pascal.

Examples of the keywords part follow. Note that both 
examples are equivalent since all of the identifiers are 
converted to uppercase by Lily.

%keywords: some_type= if, then, for, do, while;
%keywords: some_type = If, Then, For, Do, While;

When the keywords part is used, the metacompiler 
generates a standard word searching integer function called
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"search_key" which is made local to the function for the 
current parser. The search_key function, available to all 
of the Pascal code blocks in the current parser, is called 
from an action at the end of a non-default goal production 
(See "GOALS PART" above). The purpose of the search_key 
function is to determine if a buffer, supplied in a para
meter of the function matches any of the key words defined 
for the current parser. If a match is found, the token 
value corresponding to the matched key word is returned. 
Otherwise a default value specified by the user is returned.

The search_key function takes two actual parameters.
The first parameter is a buffer which must be of the type 
given after the colon in the key words part. This buffer 
should be declared by the user either in the local part or 
as an attribute of the current parser. The second parameter 
is an integer indicating the default value to be returned by 
the search_key function if the search fails. Ordinarily 
this parameter will be a constant but if it is not then it 
should be declared as in the case of the first parameter.

Please refer to figure 9 for an example fragment of 
Lily code showing the implementation of key words in a 
current parser. The figure shows the definition of a parser 
("example_parser") which receives its tokens from the 
standard parser GETCHAR. A conjunction of Lily parts in the 
example parser's parser specification serves to allow the 
parser to recognize key words and return unique integer
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%global
$$type buffer_type * string[20]; 
$$

. {other parser specifications}
•

%parser example_parser(<buf; buffer_type); 
%receives getchar;
%goals goall, goal2, (ident), goal4 { ... } ; 
%keywords: buffer_type =  if, then, else;
%sets

letter = 'a'.-'z' + 1A'.-'Z'; 
let_digit = letter + 'O'..'9*;

%foreSS
buf;= " ;
$$%productions

. {other productions}
[ident]: §intobuf, letter, (@intobuf, let_digit)*, 

@search;
m
. {other productions}

%actions
. {other actions}

intobuf
$$buf:= buf + upcase(chr(token_));
$$
search
$$return_:= search_key(buf, ident); 
$$

. {other actions}
%end

Figure 9. Fragment of Lily code showing use of key words
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values appropriately.
In the global part a type is declared which is later 

used in two other parts. First this type is used to declare 
the synthesized attribute of the example parser. Because of 
this declaration a buffer containing the actual string value 
for a key word or identifer will be returned by the parser 
as well as made available to the Pascal code blocks for 
synthesis. Second, the type defined in the global part is 
used to define the type of all key words in the key words 
part.

A non-default goal, "(ident),” is declared in the goals 
part of the parser. Corresponding to this an identifier 
structure is defined in the productions part defining an 
identifier as a letter followed by zero or more letters or 
numbers. In the course of parsing this structure an action 
called "iintobuf" is executed which constructs the buffer. 
Prior to each parse an action in the fore part initializes 
the value of buffer to the empty string.

The actual assignment of key word token values is done 
in the action at the end of the "(ident)" production. Here 
an action called "@search" is used to assign a return token 
value for the production. (Recall that non-default goals do 
not automatically assign such a value). The definition of 
the action in the actions part specifies that the standard 
variable "return_" is to be assigned the value returned from 
the Lily-generated search_key function. The buffer in 
parameter one of the function call is simply the buffer
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which the user has built to be compared against the key word 
list. In the second parameter the name of the non-default 
goal has been used as the value that the search_key function 
should return if the buffer fails to match a key word.
(Recall that Lily automatically makes such constants 
available for non-default goals). This signifies that if 
the buffer does not contain a key word then the token is a 
simple identifier.

It should be noted that in creating the buffer, the 
standard Turbo Pascal "upcase" function has been used. This 
means that the buffer will always consist of uppercase 
letters and, consequently, the parser is case-insensitive. 
Had the "upcase" function been excluded the key words of the 
user-defined language would all have to be in uppercase 
since the search_key function only recognizes uppercase 
strings.

G. SETS PART
The sets part of a Lily parser specification is used to 

associate identifiers with sets of tokens. The part 
consists of the key word %SETS followed by one or more set 
definitions. A set definition consists of an identifier, an 
equals sign, and a set expression defining the contents of 
the set, terminated by a semicolon.

Lily set expressions are similar to those of Turbo 
Pascal although there are some extensions and simplifica
tions. A set is composed of one or more set elements acted
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upon by zero or more operators. Set elements, exemplified 
in table VIII, can be goals or key words from the received 
parser, ordinals or ordinal ranges, or sets previously 
defined in the current parser. Expressions are evaluated 
from left to right according to operator precedence which 
may be overridden using parentheses. Set operators, 
together with their precedences and respective meanings are 
shown in table IX.
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TABLE VIII
EXAMPLES OF SET ELEMENTS

Element Meaning
•a' ordinal = ASCII "a"
55 ordinal = 55
a_keyword (identifier) ordinal of key word

(from received parser)
a_goal (identifier) ordinal of goal

(from received parser)
a_set (identifier) contents of token set

(from current parser)
' a' . . ' z ' Range of ASCII ordinals 

from "a" to "z”
55..75 Range of ordinals from 55 

to 75
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TABLE IX
EXPLANATION OF SET OPERATORS *

Operator Precedence Meaning
- (unary) 1 Absolute complement
* 2 Intersection
+ 3 Union
- 3 Relative complement

* This is equivalent to relative complement with the 
universal set, U. Universal sets vary according to the 
cardinality of the token set in the received parser. For 
non-Lily and standard received parsers U = {x | x is an 
integer element of [0, 255]}. For Lily user-defined 
received parsers U = {x | x is an integer element of [0, c] , 
where c = (number of goals of received parser + number of 
key words of received parser) - 1}.
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Figure 5. (a) Recursive RTN for structure inside "(" and ")+"
(b) Iterative RTN for same structure

K>



(b)

Figure 6. (a) Recursive RTN for structure inside "(" and ")*"
(b) Iterative RTN for same structure ŵ
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Below are examples of the sets part:
%sets
letter = 'a'.-'z' + 'A'.-'Z';
consonant = letter - ('a' + * e' + * i' + 'o' + 'u' + 'A' 

+ 'E' + ' 1 1 + 'O' + ' u ') 7 digit = '0 • . . ' 9 ' ;
let_or_dig_or_under * letter + digit + ;
uppercase = letter - 'a'..'z'? first_50 = 0. . 49 ? 
twenty_to_60 = 2 0..60;
twenty_to_49 = first_50 * twenty_to_60;
%sets
relop = less + greater + equal + less_or_greater + 

less_or_equal + greater_or_equal;
{assuming the above identifiers are defined 
as goals or keywords in the received parser}

Once a set has been defined it is available for use in 
subsequent set expressions as well as in production defini
tions. In such a definition the set name is considered a 
terminal symbol representing all terminal tokens contained 
in the set. Considering the set "digit" to be defined as 
above, the following two productions are equivalent: 

[number]: (digit)+;
[number]: ('O' | 'l» | »2' | ' 3’ | '4' | '5' | '6' |

'7' | '8' | '9')+;

Each production defines a string of digits such as might be 
used in the definition of an integer number.

Although the two productions given above are logically 
equivalent, nevertheless the two will result in different
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performances in the generated parsers. In general, a parser 
specification using sets will be more convenient to write 
and its generated parsing function will be somewhat smaller 
(roughly sixteen times the cardinality of the set in bytes 
is saved). On the other hand, a parser that uses the method 
in the second sample above will have a somewhat better time 
performance. The choice between the two alternatives is 
left to the discretion of the user.

H. FORE PART
The fore part is used to designate actions for the 

current parser to perform prior to beginning the parse. It 
is here that synthesized attributes and variables may be 
initialized.

The part consists of the key word %FORE followed by a
Pascal code block containing a list of statements to be
executed at the outset of the parse. Below is an example of
a fore part:

%fore
$$buffer:= 
token_count:= 0;
$$ I.

I. PRODUCTIONS PART
The productions part begins with the key word %PR0DUC- 

TIONS followed by a list of one or more production defini
tions. Each production definition is composed of: a 
nonterminal symbol identifier called the left side of the



production; a colon separator; an expression called the 
right side of the production; and a terminating semicolon.
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Production definitions, which may occur in any order, 
use an extended version of the Backus-Naur Form (BNF) to 
define the structure of the language recognized by the 
current parser. In each definition the nonterminal on the 
left side of the production is defined to have the structure 
represented by the expression in the right side. This 
expression consists of one or more symbols together with 
zero or more operators and parenthetic enclosures. Table X 
shows a table of grammatic symbols allowed in the right side 
of a production definition while table XI denotes the 
precedence of the two grammatic operators.

Three different forms of parenthetic enclosure are 
supported, each carrying a different meaning. Structures 
enclosed within "(" and ")*" are to be repeated zero or more 
times. This represents the Kleene closure of the structure. 
Structures enclosed within "(" and ")+" are to be repeated 
one or more times and this represents the transitive closure 
of the structure. Ordinary parentheses, "(" and ")" 
surround alternative lists from which exactly one alterna
tive is to be selected. All of the parenthetic enclosures 
override the precedence of grammatic operators.

Identifier symbols in the right sides of productions 
consist of nonterminals (enclosed in brackets), terminal 
symbols, and action symbols (prefixed with "@"). The
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TABLE X
EXAMPLES OF OPERANDS IN LILY PRODUCTIONS
Symbol Meaning
»a ' character = ASCII "a"
55 ordinal = 55
a_keyword (identifier) key word terminal symbol 

(from received parser)
a_goal (identifier) goal terminal symbol 

(from received parser)
a_set (identifier) set terminal symbol 

(from current parser)
fnterm] ([identifier]) nonterminal symbol

(from current parser)
@act (identifier) action symbol defined in

current parser
# null string constant
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TABLE XI
EXPLANATION OF OPERATORS IN LILY PRODUCTIONS

Operator Precedence Meaning
, (comma) 1 Concatenation
| (sheffer) 2 Alternation
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terminal symbols may be goals or keywords from the received 
parser or sets from the current parser. All nonterminals 
must be defined in the current productions part.

Characters and integer ordinals used in a right side 
are terminal symbols. Characters are intended to be used 
when the received parser (e.g. a Lily standard parser) 
supplies the current parser with tokens which are ASCII 
ordinal values. Integer ordinals should be used when an 
ASCII character value cannot be entered from the user's 
editor or when receiving non-Lily parsers.

The null string constant ("#") is used to signify the 
empty string. It may occur anywhere in the right side of a 
production. Action symbols are equivalent to the null 
string constant except that when they are encountered in the 
course of parsing a structure they perform some user 
specified-action. If this action requires the use of the 
current token then the action symbol should be written 
immediately before the terminal symbol of the token. All 
action symbols occurring in a productions part must be 
defined in the actions part of the parser specification.



96

Below are examples of the productions part. 
%productions
[ident]: letter, (letter | digit)*;[period]:
[end_of_file]: 26;
[end_of_line]: 13, 10;
%productions
[expression]: [term], (addop, [term])*;
[term]: [factor], (mulop, [factor])*;
[factor]: left_paren, [expression], right_paren 

| minus_sign, [factor] 
j identj digit_seguence;

The first example shows a productions part which might 
be used in the definition of a lexical analyzer. In this 
case each of the left side nonterminals would be declared as 
goals in the goals part of the parser.

The second productions part is typical of a parser for 
the higher-level syntax of a language. Here, an expression 
is defined in terms of tokens from the received parser, in 
this case a previously defined lexical analyzer. In 
addition, other nonterminals are used in the definition to 
break the language down into intelligible parts. At least 
one (perhaps the first) production is designated as a goal 
in the current parser's goals part.

J. NULL PART
The null part is optional and is used to define a 

structure which the current parser is to ignore. It is 
useful for defining the structure of comments as well as for 
designating the insignificance of other structures such as
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line-ending symbols or groups of blanks.
A null part is similar in structure to a production 

except that the left side is the key word %NULL. Following 
the key word is a colon, a grammatic expression, and a 
terminating semicolon. The following is an example of a 
null part:

%null: ‘{', (comment_char)*, *}'
I (' ') +I 13, 10;

In this example three types of structures are defined 
as being insignificant and are to be discarded by the 
current parser. The first alternative defines anything 
enclosed within braces to be a comment. In the second 
alternative groups of blanks are to be ignored. And, 
finally, the third alternative specifies that the two-byte 
sequence of a carriage return and a line feed (used to 
denote the end of a line in ASCII text files) are insigni
ficant in the current parser.

K. AFT PART
The aft part is optional and is used to encode actions 

to be taken just before exiting from the function generated 
for the current parser. This part can be used for, among 
other things, diagnosing errors.

The part consists of the key word %AFT followed by a 
Pascal code block. This block should contain a list of 
Pascal statements to be executed just prior to returning
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%aft
$$
if return * error then writeln('Error.');
$$

L. ACTIONS PART
The actions part is optional but must be used if any 

action symbols are present in the productions of the current 
parser. This part allows the user to associate Pascal code 
blocks with action symbols. Each time the parser enters a 
state characterized by an action symbol the corresponding 
Pascal code block will be executed.

An actions part consists of the key word %ACTIONS 
followed by a list of action definitions. Each definition 
consists of an identifier, associated with an action symbol 
in the productions part, followed by a Pascal code block 
defining the action to be taken. All action symbols used in 
the productions part must be resolved in this way or Lily 
will flag an error.

Suppose that two action symbols "@intobuf" and "Gcheck" 
have been used in the productions part of the current 
parser. These two actions might be resolved in the actions 
part according to the example below.
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%actions
intobuf
$$buffer:* buffer + chr(token);
$$
check
$$if length(buffer) > max_length then 
begin
writeln('Buffer ', buffer,' exceeds max length.'); return_:= error_; 
state_:= accept; 
end;

$$

M. DISAMBIG PART
The disambig part is used to override the operation of 

the parser. It can be used for resolving ambiguities in the 
user's language structure as well as for adding error 
recovery and diagnostic capabilities to the current parser.

A disambig part consists of the key word %DISAMBIG 
followed by a list of overriding state-token transitions, 
each with an associated Pascal code block. The state token 
transitions consist of an integer constant for a state, then 
an integer constant or null string constant ("#") represen
ting, respectively, a token number or "any token," and, 
finally, an integer constant representing the next state. 
Each of these three fields in a state-token transition are 
separated by commas. Following each state-token transition 
is a Pascal code block defining an action to be carried out 
whenever the state-token pair is encountered in the course
of a parse.

Transitions specified in the disambig part have a
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higher priority than transitions automatically generated by 
Lily. This means that as Lily constructs a parsing function 
for the current parser, state-token transitions entered in 
the disambig part will override the corresponding transi
tions generated by Lily.

It is important to note the relationship between the 
productions part and the disambig part. Lily numbers 
production symbols beginning with the production of the null 
part and ending with the last symbol of the productions 
part. The disambig part uses these numbers in specifying 
state-token transitions. Because of this any change to the 
productions part prior to a production which has been 
disambiguated will result in the necessity of changing the 
disambig part. While this is sometimes inconvenient, a good 
rule of thumb can minimize the necessity for making such 
changes. Whenever a production is known to contain ambigu
ities that production should be moved to the top of the 
production list.

Examples of a syntactically correct disambig parts
follow.
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%disambig 
0, 58, 14
$$if look_getchar_l(1) = 61 then state_:= 11; 
action_:= shift_;
$$

%disambig 
0, 0, 3 
$$if look_nothlex(l, buffer, lngth, subtoken) = 6 then 
begin
state_:= 5; 
push_(4); 
end

else push_(2);
$$

In the first example, whenever the parser is in state 0 
and looking at token 58, it will assume a transition to 
state 14. Then an action is executed which uses look-ahead. 
If the next token to be seen is a 61, then the state of the 
parser is changed from 14 to 11. Finally, the parser is 
told to execute a shift.

The second example is similar except that after using 
look-ahead to decide which state is next, separate "push_" 
actions are done. In practice, the part of the action 
exemplified by the calls to the push_ procedure is copied 
from the action procedures of the generated parser. This 
process is explained in more detail in the next chapter, 
section B, subsection 3.
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II. USING THE LILY SYSTEM
The current chapter contains information about actually 

running the Lily metacompiler and using the two supplemental 
minimal perfect hash table generators by Dr. Thomas J.
Sager. In addition, this chapter provides information on 
the creation, disposition, and interpretation of the various 
files produced by the two systems.

A. RUNNING THE SYSTEM PROGRAMS
The current version of Lily is set up to run on the IBM 

PC under the Personal Computer Disk Operating System (PC- 
DOS). On this architecture Lily will normally require 256 
kilobytes of memory and at least one disk drive. Some 
augmentation to the DOS system configuration may be neces
sary on some runs as Lily works with a considerable number 
of files and may require more than the default number of 
buffers (two) or files (eight). Increasing the available 
buffers or file handles can be accomplished by modifying the 
CONFIG.SYS file as described in the DOS manual. Both the 
BUFFERS and FILES specifications should be changed to fine 
tune the system to its optimal speed.

The following files make up the Lily system:
1. LILY.COM
2. LILY.000
3. PARHASH.COM
4. KEYHASH.COM
5. SEARCH.PAS

(the parser generator)
(an overlay for LILY.COM) 
(hash program for tables) 
(hash program for key words) 
(code for hashing key words)

Once a Lily system user has written a file of Lily
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source code the next step will be to process the file using 
the parser generator, LILY.COM. Next, any parser table 
files generated by the metacompiler will be processed by the 
table-to-hashing function program PARHASH.COM. Finally, any 
key word files will be processed by KEYHASH.COM, the key 
word hashing function generator.

The above process is best illustrated using an example. 
For the subsections that follow consider the source code of 
figure 15 (back of appendix) to be in a DOS file called 
NOTHING.LIL. The source file is a file of text containing 
no special characters such as tab characters, etc..

1. The Lily Program: In the first step of processing a 
Lily program the user will run LILY.COM, the parser genera
tor. This can be done by simply typing LILY at the DOS 
prompt. The program will be loaded and the user will be 
prompted for the following items:

1. The source file name: The user enters NOTHING.LIL 
or simply NOTHING.

2. The target file name: A name is entered for the 
destination of the Pascal code generated by LILY.
If a simple carriage return is entered, the default 
name is NOTHING.PAS.

3. The information file name: A name is entered for 
the destination of the Lily information file. A 
carriage return accepts the default NOTHING.INF.

4. The listing file name: A name is entered for the 
destination of the listing file. A carriage return 
accepts the default NOTHING.LST. 5

5. The drive destination for tables: A letter is 
entered for the drive to which .TBL, .RST, .KWD, 
and .PRC files will be sent. These files will be 
placed on the current directory of the selected
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drive. A carriage return accepts the logged drive as a default.
If the system user wishes to accept all of the default 

destinations, then a simpler procedure for the above may be 
used. Lily accepts a single parameter at the command line. 
To accept all of the default destinations the user may type 
either LILY NOTHING. LIL or simply LILY NOTHING.

Lily will proceed to process the source code in 
NOTHING.LIL and will report its progress on the screen. If 
at any point the user wishes to interrupt the processing, he 
may do so by striking any key.

After Lily finishes operating, a number of new files 
will have been created. The names of the created files 
along with their associated meanings may be found in the 
Lily information file, a file of text given the name 
NOTHING.INF in our example run. Assuming that the user 
chose to accept the default names the new files will be as 
follows:

1. NOTHING.PAS
2. NOTHING.INF
3. NOTHING.LST
4. NOTHING.RST
5. NOTHLEX.TBL
6. NOTHLEX.PRC
7. NOTHLEX.KWD
8. NOTHPARS.TBL
9. NOTHPARS.PRC

The .TBL, .PRC, and .KWD files are named by appending 
the appropriate extension to the first eight characters of 
the names given in the parser headings of the source. Thus, 
NOTHLEX.TBL contains the parsing table for the parser
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"nothlex" in the source code. NOTHLEX.PRC contains the 
action procedures for the same parser while NOTHLEX.KWD 
contains that parser's key words. The parser "nothpars" in 
the source has, in like manner, a .TBL file and a .PRC file 
but, since the parser has no key words, no .KWD file.

The file NOTHING.RST contains a reset procedure written 
in Pascal. This procedure is used to return the generated 
parsing functions to their initial state. This file can be 
included by the user in his driver program or discarded.

The file NOTHING.PAS contains the Pascal code implemen
ting the parsers in the source file. It contains code for 
the functions "nothlex" and "nothpars" in addition to code 
for the standard low-level parser "getchar_l." Also 
included are the two look-ahead functions requested in the 
source code. These two functions will be called, respec
tively, "look_getchar_l" and "look_nothlex". The two .PRC 
files discussed above are parts of the code of NOTHING.PAS 
through Turbo Pascal file inclusion (using the $1 directive) 
as are two files yet to be generated: the hashing function 
tables NOTHLEX.HSH and NOTHPARS.HSH.

The two .HSH files are generated using the minimal 
perfect hash function generation programs PARHASH.COM and 
KEYHASH.COM. To accomplish this the user will first process 
the .TBL files. This is done using PARHASH.COM. 2

2. The Parhash Program: The user executes the program by 
typing PARHASH at the DOS command line. When prompted for a
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source file the user responds with NOTHLEX.TBL. The program 
will then ask if the user wishes progress information sent 
to the screen or the printer. After a response is entered 
the program will proceed to calculate the hashing function 
for the parsing table in NOTHLEX.TBL. Finally, if every
thing goes well, the user is prompted for the name of the 
output file. Entering a carriage return accepts the default 
of NOTHLEX.HSH.

Upon completing the above operation the user will 
repeat the process for NOTHPARS.TBL and, in general use, for 
all Lily-generated .TBL files. As in the LILY program, the 
PARHASH program can accept a source file name as a command 
line parameter. This means that a more convenient method 
for accomplishing the above is to simply type PARHASH 
NOTHLEX.TBL. If this is done, then screen (as opposed to 
printed) progress reports and output file NOTHLEX.HSH are 
chosen by default. 3

3. The Kevhash Program: The final phase of processing 
involves the use of the KEYHASH program to generate a 
minimal perfect hash table for keywords. This is a process 
similar to using the PARHASH program but entailing addi
tional considerations about the structure of the key words. 
The reason for this difference is explained below.

The user enters the name KEYHASH at the command line 
and is prompted for the following:

1. The source file name: Here the user enters 
NOTHLEX.KWD.
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2. Screen as opposed to printed progress reports: The user enters an 'S'.
3. Whether to accept the default number of 

vertices: The user enters a 'Y' to accept the 
default. An 'N' causes the program to prompt 
the user for a number to use. This is ex
plained below.

4. The name of the target file (at end of 
processing): The user enters a name or a 
carriage return to accept the default name 
NOTHLEX.HSH.

5. Whether to append to an existing file, choose 
a new name or overwrite the existing file:
The user chooses "append" since part of the 
file NOTHLEX.HSH was created previously by the 
PARHASH program. The new hashing table is 
properly appended to the old.

As with the PARHASH program the KEYHASH program accepts 
a single parameter at the command line. This means that for 
our example, the user could run the KEYHASH program by 
simply typing KEYHASH NOTHLEX.KWD. Unlike the PARHASH 
program, however, the KEYHASH program still prompts the 
user for additional information, even if the command line 
parameter is used.

The processing of key words involves elements in both 
the LILY program and the KEYHASH program. A file, called 
SEARCH.PAS, on the Lily system disk contains a fragment of 
Pascal code which defines a pseudo-random function over the 
letters of key words. This function is intended to provided 
a series of three values for each key word which must be 
distinct from the corresponding series in any other key 
word. If the function computes the same series for two
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different key words, then a hashing collision occurs and the 
KEYHASH program will fail to create a hash table. For this 
reason it may be necessary to alter the function.

The function defined in the SEARCH.PAS file supplied 
with the Lily system (see figure 10) will generate a series 
of three values for each key word. This will be unique 
provided that no two key words have the same first, the same 
last, and the same middle letter (i.e. the letter in 
position number = length(word) div 2). If these conditions 
are met then the KEYHASH program should function correctly 
and produce the required hash table once a suitable number 
of vertices has been determined.

The number of vertices used by the KEYHASH program is 
given a default value which the user may alter. Such 
alteration can be done for two reasons: to reduce the 
number of vertices used in order to conserve space, or to 
provide a substitute for a default value which fails to work 
successfully in the operation of the program.

When the KEYHASH function fails to generate a hashing 
table the user should first examine his key words. If the 
function fragment in SEARCH.PAS does not provide a unique 
series of three numbers for each key word, then it will be 
necessary to modify the function fragment. Once this is 
done it will be necessary to recompile the KEYHASH program 
and start at the beginning of the metacompilation process by 
running the LILY program again.
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var len: integer? 
begin
len:= length(inword);
hOval:= ord(inword[len shr 1]) mod vert_mod_;
hlval:= ord(inword[l]) mod vert_mod_?
h2val:= ord(inword[len]) mod vert_mod_ + vert_mod_;

Figure 10. Hashing fragment in SEARCH.PAS file*

*This fragment forms part of the Lily system. Should 
it be necessary to modify this fragment the new fragment 
must be similar in structure to the old. I.e. variables may 
be declared, followed by a "begin”, and ending with code for 
making assignments to hOval, hlval, and h2val. Assignments 
to hOval and hlval should made using the standard modulus 
vert_mod_ as above. Assignments to h2val should be done, 
correspondingly, using vert__mod_ as a modulus and then 
adding vert_mod_. No "end" occurs at the end.
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generating three unique values for each key word but the
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KEYHASH program still fails on the first attempt, the system 
user should simply rerun the KEYHASH program, using dif
ferent numbers of vertices until success is achieved.

B. WRITING LILY PROGRAMS
The best way to learn to write Lily programs is to 

begin by studying examples of other programs. Toward that 
end figures 15, 16, and 17 at the end of this chapter 
contain tested examples of Lily source code. In addition to 
studying the examples, the system user will find it helpful 
to turn to the syntactic and semantic information given in 
the previous chapter.

Lily is a program for generating parsing tables and a 
series of parsing functions driven by these tables. These 
functions, written in Turbo Pascal, all return type integer 
and take parameters as specified in the parser attributes of 
the function's Lily parser specification. A return value of 
-1 from any of these functions connotes error while any non
negative return value indicates that a corresponding 
structure in the source was recognized. 1

1. Compiler Implementation Strategies; In general, a 
system user wishing to write a Lily program should begin by 
considering the structure and size of the language to be 
implemented. Lily is designed to assist in implementing
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LL(1) language compilers and those structures in the user's 
language which are not LL(1) should be identified. Addi
tionally, the size of the user's language will play a part 
in deciding how the compiler front end is to be partitioned. 
The standard method of breaking a compiler into lexical and 
syntactic analysis phases is highly recommended and is in 
fact the only method which has been tested using Lily.

Other methods which may be used to implement larger 
front ends include the suggestions of extending the front 
end of the compiler into more than two distinct phases or 
using one lexical analyzer feeding tokens into a group of 
parsers. The first method can be called "segmenting the 
compiler vertically" while the second method can be called 
"segmenting the compiler horizontally."

In vertical segmentation the lexical analyzer will feed 
tokens to a higher-level analyzer. Then this analyzer will, 
in turn, feed tokens into a still higher-level parser and so 
on. This method forms a chain of parsers rising in complex
ity from a low-level analyzer to a single, final high-level 
parser. For example, a lexical analyzer could break source 
code into conventional tokens while a mid-level parser could 
group these tokens into structures of medium complexity, 
such as expressions, lists of identifiers, or even whole 
programs. A final parser can then group the mid-level 
structures into a single final structure constituting a 
program or group of programs.

In contrast, horizontal segmentation, is simply a way
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of dividing the parsing chores among a group of parsers, a 
single lexical analyzer provides tokens for the group. Then 
a driver program chooses a parser to use on the received 
tokens based on the first token in the list or on the 
current context. In this way an entire parser could be 
dedicated to each part of a language. For example, one 
parser might be applied to declaration structures while 
another is applied to statement lists.

Usually, however, the accepted division of a compiler 
front end into two phases will be the method of choice. The 
other two methods are only mentioned to allow the Lily 
system user to implement front ends for larger languages. 
Under these circumstances Lily might not be able to handle 
the large parsers implied by a two-phase structure.

Writing a Lily program should be a step-wise process. 
Each parser specification should be developed and tested 
before moving on to the next. In practice this will mean 
writing and testing, first, the lexical analyzer, followed 
by the parser. This allows the Lily system user to be sure 
of one phase before attempting to move on to another.

For instance, after writing and successfully metacompi
ling a Lily specification for a lexical analyzer, the user 
should test the generated function. This can be done by 
writing a short driver program around the generated function 
and supplying a file of input. Often this will allow users 
to spot errors in their productions.

Once a parser has been metacompiled and tested, the
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creation of hash files for that parser will no longer be 
necessary. Those hash files previously generated can be 
used without fear. This means that the programs for 
creating minimal perfect hash functions, described earlier, 
need only be used to create the tables for untested parsers.

2. Error Messages From Lily: In the course of running 
LILY.COM, the Lily parser generator, a number of errors in 
the user's source may be detected. Some of these are fatal 
and will terminate the operation of the parser generator. 
Warning-level messages, on the other hand, merely flag 
irregularities as they occur. Those irregularities that are 
sufficiently significant may result in a request for user 
intervention.

The fatal error messages are shown in table XII. These 
errors are primarily concerned with program syntax and 
semantics. In addition to the error message given, diag
nostic and trouble-shooting messages will sometimes be 
included detailing where the error occurred and how the it 
may be corrected.

Warning-level messages are shown in table XIII. For 
those warnings requesting user intervention the extent of 
intervention possible is either the termination or the 
continuation of the parser generator operation. Under most 
circumstances it is best to allow the program to continue 
so that the Lily information file may be completed. This
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TABLE XII
FATAL ERRORS IN A LILY PROGRAM

Error Message Meaning
Lexical error. A token of the language 

is incorrect or contains an 
illegal character.

(token) expected, (place) The token on the left was 
expected in the language 
part on the right.

Goal (name) is undefined ... 
parser (name).

A goal in the goal list is not defined in the 
production list of the 
current parser.

Action (name) is unresolved 
... parser (name).

An action is used in the 
productions part but not 
defined in the actions 
part.

Action (name) is multiply 
defined ...

An action in the actions 
part is defined more than 
once.

Terminal (name) is undefined 
« * »

A terminal identifer used 
in a production or set is
not a goal or keyword of 
the received parser or a 
set of the current parser.

Semantic error in integer 
ordinal ...

An integer ordinal was 
outside the allowed range.

Nterminal (name) is multiply 
defined.

A nonterminal occurs in 
more than one left side.

Identifier (name) is pre
viously declared ...

An identifier has been 
previously declared. Occurs 
in goal, key and set names.

Parser (name) collides in 
first 8 characters with 
parser (name)

Two parser names were 
identical in the first 
eight characters.
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TABLE XIII 
WARNINGS

Warning Meaning
Nonterminal (name) useless 
in parser (name). It has 
been discarded.

A nonterminal is not on a path from some goal. This 
means it will never be 
used.

Grammar is left-recursive in nonterminal (number). A nonterminal is left 
recursive. I.e. it can 
produce itself without an 
intervening prefix.

Grammar of parser (name) has too many automata. ... The grammar has more than 
490 symbols.

Production (name) ... cannot 
generate terminal strings. A production is useless.

Action (name) is defined but not used. An action in the actions 
part was never used in the 
productions part

Parser (name) in receives 
part of parser (name) is not 
defined in a Lily parser- 
spec.

Warning issued when the 
user specifies a non-Lily 
parser in the current 
parser's receives part.

Ambiguity.
State (number) Token 
(number or #) Next (number) 
Action (number) kept. Same 
state-token pair with Next 
(number) Action (number) 
discarded.

A state contains an 
ambiguous transition. The 
grammar will need to be 
altered or the ambiguity 
will need to be resolved in 
the disambig part.

Set-token ambiguity. ... A state contains a 
transition on a set and a 
token but the set contains 
the token.

Set-set ambiguity. ... A state contains a 
transition on two sets but 
the sets are not disjoint.

Alternative beginning with 
state (number) is nullable 
inside a repetetive closure

Such alternatives can 
result in endless looping.



116

file can then be used to help correct the error.

3. Resolving Ambiguities: Ambiguities result when a single 
token is a prefix of more than one alternative among a list 
of alternatives or of more than one goal in a list of goals. 
The result of ambiguities in a parser is the existence of 
states which, on a single token, require the parser to 
perform more than one distinct transition. Lily detects 
ambiguities and issues appropriate warnings to the user, 
both on the screen and in the Lily information file.

Ambiguities in Lily fall into three classes: token- 
token ambiguities (referred to simply as ambiguities), set- 
set ambiguities, and set-token ambiguities. Each class is 
resolved differently, in some cases automatically.

The Lily information file generated for each Lily 
source program contains data which may be of assistance in 
resolving ambiguities. A fragment from a Lily information 
file is shown in figure 11. Table XIV contains a legend 
which explains the coding method used in the fragment. 
Automaton numbers shown in the table may be considered 
"before" states in the action of the parser; the parser is 
in these states just prior to seeing the structure in the 
right side. Each state number coded in a right side may be 
considered an "after" state; the parser will be in one of 
these states just after seeing the corresponding symbol.

Set-set ambiguities occur when two non-disjoint sets 
conflict in an alternative list. This situation is shown
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Nonterminal: %NULL
is a goal returning 255 mode = Non-default 
Automaton Number: 1
... is defined as

{2,123}, ( {7} COM_CHAR{s} {8,259})*,'}' {9,125} | 
( {3} ' ' {4,32})+|
A13 {5,13},~10 {6,10}

Nonterminal: CONSTPART
is a non-goal.
Automaton Number: 24
... is defined as
C0NST{k} {33,22},( {35} [CONSTDECL] {36,37})+|# {34}

Nonterminal: CONSTDECL
is a non-goal.
Automaton Number: 37
... is defined as
IDENT{g} {38,0},@CHECKEQUAL {39},REL0P{g} {40,16}, 
[CONSTANT] {41,42}, SEMICOLON{g} {43,13}

Figure 11. Example of productions in the Lily information 
file
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TABLE XIV
LEGEND FOR PRODUCTIONS IN THE LILY INFORMATION FILE

Symbol Meaning Code suffix
identifier(g) 
identifier{k} 
identifier's} 
[identifier]
©identifier 
Anumber•c' (c arbitrary) 
#
(

goal
key word set
nonterminal
action
integer ordinal 
character ordinal 
null string 
enclosure

{state, token} 
{state, token} 
{state, token}
{after state, before 
state}

{state}
{state}{state}
{state}
{state}
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in figure 12a. When such set-set ambiguities occur Lily- 
will automatically assume that an incoming token, logically 
belonging to both sets, belongs to the first set in the
parser's set list. In our example this means that a "9" 
will be considered a "digit" before it will be considered a 
"letter_or_digit." If such a default assumption fails to 
produce a correct parser, then the user can still resolve 
the problem by excluding the conflicting elements from one 
of the sets.

Set-token ambiguities occur when a set and a token, 
contained by the set, conflict in an alternative list.
Figure 12b shows an example of a set-token ambiguity. When 
this circumstance arises Lily gives priority to the token.
In our example this means that an "a" will be considered an 
"a" before it will be considered a "letter." If this method 
of resolution fails to produce a correct parser then the 
problem can be resolved by excluding the token from the set.

Other ambiguities, caused by conflicts between tokens 
in an alternative list, may be resolved using the disambig 
part in the Lily program. To accomplish this the following 
three-step procedure is recommended:

1. Examine the Lily information file to determine 
which productions contain ambiguities. Move 
these productions to the top of their produc
tions part and run LILY.COM again to learn the 
new ambiguous state numbers.

2. Add ambiguity-resolving actions to the parser 
using some criteria for choosing between 
ambiguous transitions. Look-ahead is one 
possible criterion. 3

3. Process the new specification and test the
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(a)

•
%sets
digit = 10'..'9' ;
letter_or_digit = 'a'..'z' + 'A'..'Z' + digit;

%productions
[set_set_ambiguous]: digit | letter_or_digit | ... ;

(b)

%sets
letter = 1 a'.^z' + ,A ,..,Z';

%productions
[set_token_ambiguous]: 'a', 'b', 1 c' | letter

Figure 12. (a) Example of set-set ambiguity
(b) Example of set-token ambiguity
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generated parser function to ensure that it 
functions properly.

Step one involves observing the ambiguity warnings for 
a parser. These are given at the top of the Lily informa
tion file. Then, by matching the state numbers in the 
warnings to coded productions in the information file, the 
productions containing the ambiguities may be determined. 
Once this is accomplished, those productions should be moved 
to the top of their productions part in the Lily specifica
tion. This is done for reasons explained in the previous 
chapter under section L on the disambig part.

The second step is best explained by example. The Lily 
specification for the language Nothing (figure 15 at the end 
of this chapter) contains ambiguities of two common types: 
a conflict between alternate terminal symbols, and a 
conflict between alternate nonterminal symbols. The process 
for resolving each of these two types is slightly different.

Deleting the disambig parts of the Nothing specifica
tion and running LILY.COM will result in ambiguity warnings 
at the screen and in the Lily information file. (Note that 
only the first transition disambiguation was deleted from 
the disambig part of Nothlex.) These warnings are shown in 
figure 13. Figure 14 shows the productions part information 
corresponding to the states indicated in these warnings.
Note that these productions have already been moved to the 
top of their respective productions parts. The disambig 
parts in the parser specifications for Nothing correct these
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Warning. Ambiguity in parser»NOTHLEX 
State»0 Token»58 Next»ll Action»-2 kept.
Same state-token pair with Next»14 Action»-2 discarded.

Warning. Ambiguity in parser»NOTHPARS 
State»0 Token»0 Next»3 Action»l kept.
Same state-token pair with Next»5 Action»2 discarded.

Figure 14. Warnings after making deletions to the disambig 
parts in NOTHING.LIL (figure 15) *

* Specifically, the first half of the disambig part of 
Nothlex and the entirety of the disambig part of Nothpars 
were deleted.
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Productions as follows: 1
Nonterminal: ASSIGN
is a goal returning 10 mode = Default
Automaton Number: 10
... is defined as

{11,58},'-' {12,61}
Nonterminal: COLON
is a goal returning 14 mode = Default 
Automaton Number: 13
... is defined as 
':' {14,58}

Productions as follows: 2
Nonterminal: FACTOR
is a non-goal.
Automaton Number: 0
... is defined as
LEFT_PAREN{g } {1,6},[EXPR] {13,14},RIGHT_PAREN{g}{15,7}| [VARIABLE] {2,3}
| [FUNCTION_CALL] {4,5}|INTGR{g} {6,1} 
j CHARACTER{g} {7,2}|CRET{ k} {8,43}
| FALSE{k} {9,41}|TRUE{k} {10,42}
| NOT{k} {11,37},[FACTOR] {12,0}
Nonterminal: VARIABLE
is a non-goal.
Automaton Number: 3
... is defined as
IDENT{g} {145,0},[INDEXLIST] {146,147}

Nonterminal: FUNCTION_CALL
is a non-goal.
Automaton Number: 5
... is defined as
IDENT{g} {211,0},LEFT_PAREN{g} {212,6},[ARGLIST] {213,214}, 

RIGHT_PAREN{g } {215,7}
Nonterminal: INDEXLIST
is a non-goal.
Automaton Number: 147
... is defined as
LEFT_BRACKET{g} {216,8}, ..., RIGHT_BRACKET{g} {219,9}|#
{217}

Figure 14. Production information for states in warnings of 
figure 13

1 Taken from productions information of Nothlex
2 Taken from productions information of Nothpars
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ambiguities.
In the specification for Nothlex, the lexical analyzer, 

two goals share a common prefix, a colon. The disambig part 
for Nothlex shows the use of look-ahead to resolve these 
ambiguities. If the colon is immediately followed by an 
equals sign, the parser is instructed to make a transition 
to the state for a Nothing assignment operator. Otherwise, 
the parser makes a transition to the state for a simple 
colon.

The actions to be taken following these transitions are 
user-defined by referring to the ambiguity warnings. 
Basically, these actions simply carry out the actions which 
would have taken place were there no ambiguities in the 
parser specification. In the case of Nothlex, the warnings 
show action numbers of -2 whichever transition is made.
When action numbers are less than zero, these actions are 
specified in the disambig part by simply assigning the 
standard integer variable "action_" to the value given in 
the warning.

Ambiguity resolution in the Nothpars specification is 
only a little more complicated. In this case the parser 
needs to be told how to choose between transitions for two 
nonterminals. Specifically, an action is needed to decide 
when the parser is looking at a variable and when it is 
looking at a function call. The disambig part of Nothpars 
makes this decision using look-ahead. If an identifier is 
followed by a left parenthesis then the parser makes a
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transition corresponding to a function call. Otherwise, a 
transition corresponding to a variable is made.

Notice, however, that the action numbers shown in the 
ambiguity warning for Nothpars are both non-negative. When 
this occurs the user must ensure that these actions are 
carried out after the transition decision has been made. To 
accomplish this the user, somewhat inconveniently, looks up 
the action procedures corresponding to the action numbers. 
These procedures are found in the .PRC file (in this case, 
NOTHPARS.PRC), where they are given procedure names corre
sponding to their action numbers. The user simply copies 
the statement list found in the action procedure. General
ly, this will mean nothing more then writing a ”Push_" or 
"Pop_" depending on which transition is made. 4

4. Driving Lilv-Generated Parser Functions: The parsers 
generated by Lily are Pascal functions. In order to parse a 
string with these functions it is only necessary to set up a 
driver program to make the appropriate function calls. The 
Lily-generated functions are then incorporated into the 
driving program's source code.

Usually the lowest-level parsing function will receive 
its input from an ASCII text file as has been remarked 
earlier in this document. If this function, perhaps a 
lexical analyzer, makes use of the standard Getchar func
tions, the user will have to establish the necessary 
interface between the Getchar function and the source or



126

listing files. In practice this should mean no more than 
assigning DOS names to the standard files needed by the 
Getchar function. Then the files should be opened: for 
reading in the case of the input file; for writing in the 
case of the listing file (if such is required). In addi
tion, if the user has not declared the logical file names, 
INFILE and LISTFILE, in the global part of his Lily speci
fication, these will have to be declared in the driver 
program.

For example, suppose that a user has defined a lexical 
analyzer called Lex which receives GETCHAR_L. The user must 
make sure that his driver program contains a file declara
tion for the two files which will be used by GETCHAR_L: 
INFILE and LISTFILE. Before calling the Lex function to 
begin lexical analysis, the user must also assign DOS names 
to the files and make sure that they are opened. INFILE is 
opened for reading; LISTFILE is opened for writing.

Finally, the calling of the Lily parsers themselves is 
done in a very natural way. They are simply Pascal func
tions returning integer type. The actual parameters 
supplied to these functions correspond in type, number, and 
order to the attributes listed in the parser headings of the 
Lily specifications.
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%global
$$const charbufsize * 20; 

var input_file, list_file: text; 
type charbuf = string[charbufsize]; 

$$ {request for standard parser} 
%parser getchar_l %look 1;

{Lexical analyzer for Nothing)
%parser nothlex(<buffer: charbuf; <lngth,

<subtoken: integer) %look 1;
%receives getchar_l;
%local

$$var i: integer;
$$%goals

(ident), intgr, character, asterisk, slash, ampersand, 
left_paren, right_paren, left_bracket, right_bracket, 
assign, ellipsis, comma, semicolon, colon, period, 
relop, plus, minus, sheffer, end_of_file;
%keywords: charbuf =
program, const, type, array, of, var, function, begin, 
end, if, then, else, while, do, read, write, not, integer, 
char, boolean, false, true, cret, return;
%sets

letter = 'a'..'z• + 'A'.
digit - ' 0 ' . . ' 9 ' ;
let_digit * letter + digit;
com_char - - (26 + •}');universe = 0..255;

{no eof (26) in comments}

%fore {initializes attributes)
$$buffer:= ''; 
lngth: ** 0 ; 
subtoken:= 0;
$$

%productions{Note that goals [assign] and [colon] share a colon as 
a common prefix. Also goals [ellipsis] and [period] 
share a period as a common prefix. These four are 
placed at the top to facilitate disambiguation.} 
[assign]: ':1, ' = ';
[colon]; ':';

Figure 15. Lily code for the language Nothing
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[ellipsis]: 
[period]:[period]* • f
[ident]: gintobuf, letter, (@intobuf, let_digit)*, @search_key;
[intgr]: (§intobuf, digit)+;
[character]: 
[asterisk]: 
[slash]: 
[ampersand]: 
[left_paren]: 
[right_paren]: 
[left_bracket]: 
[right_bracket] 
[comma]:
[semicolon]: 
[relop]:

I I • 
« * *
V'&•
' C

I •/I • I
9 I

@intobuf, universe, I I I

•>' • = I flort •
§ne
0ge

I = I
I egt)

01e | @lt)

[plus]: '+• 
[minus]: '-' 
[sheffer]: '|' 
[end_of_file]: 26

%null: '{', (com_char)*, | (' ')+ | 13, 10?
%actions 

search_key 
$$return_:= search key(buffer, ident)?
$$intobuf
$$lngth:« lngth + 1;
buffer:* buffer + upcase(chr(token ))?
$$eq $$ subtoken:= 0 $$ne $$ subtoken:* 1 $$It $$ subtoken:* 2 $$

gt $$ subtoken:= 3 $$le $$ subtoken:* 4 $$ge $$ subtoken:= 5 $$%disambig 
0, 58, 14
$$ (* disambiguate [assign], [colon] *)
if look_getchar_l(1) * 61 then state_:= 11; 
action_:= shift_?
$$

Figure 15. (continued) Lily code for the language Nothing
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0, 46, 19
$$ (* disambiguate [ellipsis], [period] *)if look_getchar_l(1) * 46 then state_:= 16? action := shift ?
$$

%parser nothpars?
%receives nothlex?%goals 
program ?

%productions
(Note that the ambiguous definition for [factor] has 
been moved to the top of the productions part. This 
facilitates disambiguation as above.)

[factor]: left_paren, [expr], right_paren | [variable] |
[function_call] | intgr | character | cret | false |true | not, [factor]?

[program]: program, ident, semicolon, [block], period? 
[block]: [constpart], [typart], [varpart], [funcpart],[execpart];
[constpart]: const, ([constdecl])+ | #;
[constdecl]: ident, @checkequal, relop, [constant], semicolon?
[constant]: [sign], intgr | character?[sign]: plus | minus | #;
[typart]: type, ([typdecl])+ | #;
[typdecl]: ident, §checkequal, relop, array, left_bracket, 

[rangelist], right_bracket, of, [simptype], semicolon? [simptype]: integer | char ( boolean?
[rangelist]: [range], (comma, [range])*;[range]: [bound], ellipsis, [bound]?
[bound]: [sign], intgr | character?
[varpart]: var, ([vardecl])+ | #?
[vardecl]: [identlist], colon, [type], semicolon?[type]: [simptype] | ident?
[identlist]: ident, (comma, ident)*?
[funcpart]: ([funcdecl])* ?
[funcdecl]: function, ident, [parmpart], colon, [simptype], semicolon, [block], semicolon?
[parmpart]: left_paren, [parmdecl], (semicolon,
[ parmdecl ]) *, right__paren ?

[parmdecl]: [identlist], colon, [type]?
[execpart]: begin, [stmtlist], end?
[stmtlist]: ([stmt])*;
[stmt]: [asstmt] | [ifstmt] | [whstmt] | [readstmt] | 

[writestmt] j [retstmt];
[asstmt]: [variable], assign, [expr], semicolon;
[variable]: ident, [indexlist];
[ifstmt]: if, [expr], then, [stmtlist], [iftail];

Figure 15. (continued) Lily code for the language Nothing
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Ciftail}: else, [stmtlist], end | end;
[whstmt]: while, [expr], do, [stmtlist], end;
[readstmt]: read, left_paren, [inlist], right_paren, semicolon;
[inlist]: [variable], (comma, [variable])*;
[writestmt]: write, left_paren, [outlist], right_paren, 
semicolon;

[retstmt]: return, left_paren, [expr], right_paren, 
semicolon?

[outlist]: [expr], (comma, [expr])*;
[expr]: [simpexpr], [exprtail]?
[exprtail]: relop, [simpexpr] | #;
[simpexpr]: [sign], [term], ((plus | minus | sheffer), 

[term])*?
[term]: [factor], ((asterisk | slash | ampersand),

[factor])*;
[function_call]: ident, left_paren, [arglist], right_paren; 
[indexlist]: left_bracket, [outlist], right_bracket | #; 
[arglist]: [outlist]?

%actions
checkequal $$ 
if subtoken <> 0 then 

begin
writeln(‘Error. Equals expected.'); 
return_:= error_; 
state_:= accept_; 
end;

$$
%disambig 

0, 0, 3$$ (* disambiguation for [factor] *)
if look_nothlex(l, buffer, lngth, subtoken) = 6 then 
begin
state_:= 5; 
push_(4)? 
end

else push_(2);
$$

%end

Figure 15. (continued) Lily code for the language Nothing
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%global
$$const
max_string = 2 0; 

type
charbuf - string[max_string]; 

var list_file, input_file; text;
$$ {request a standard parser}

%parser getchar_l %look 2;
{lexical analyzer for Lily}

%parser lil21ex(<buffer: charbuf; <lngth: integer);
%receives getchar_l;
%local

$$var i: integer;int_con too_long: boolean;
dummy: Integer;$$

%goals
term_ident, nterm_ident, syn_att_ident, inh_att_ident, 
act_sym_ident, int_con, left_paren, rt_paren_ast, 
rt_paren_plus, rt_paren, colon, semicolon, sheffer, 
comma, ellipsis, equals, character, pascal_stuff, 
asterisk, plus, minus, null_string, end__of_file, 
(keyword);

%keywords: charbuf =
parser, goals, actions, receives, sets, null, end, 
keywords, disambig, global, productions, local, fore, aft, 
look;

%sets
letter
digit
let_num_dash
comment_char
universe

= 1 a'. .'z' + 'A'..'Z‘;
= • 0 •.. ' 9' ;
= letter + digit + ;
= - ( 26 + '}') ; (no eof (2 6) in comments}
= 0..255;

%fore {initializes attributes}
$$lngth:= 0; 
buffer:*® 1 ' ;
int_con_too_long:= false;
$$

Figure 16. Lily code for the language Lily
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%productions
{Note that the top three goals 
as a prefix. They are placed 
facilitate disambiguation.}

share a right paren 
at the top to

[rt_paren_ast]
[rt_paren_plus] 
[rt_paren]
[minus][int_con] 
[term_ident] 
let_num_dash) * 

[nterm_ident]
[syn_att_ident]
[inh_att_ident]
[act_sym_ident j
[left_paren]
[colon][semicolon]
[sheffer]
[comma]
[ellipsis]
[equals]
[character]
[asterisk]
[plus][null_string] 
[end_of_file] 
[keyword] 
[pascal_stuff]

' *«') '
')';• «. I ./(@intobuf, digit)+, @check_length; 
Gintobuf, letter, (@intobuf,

I • i •• #
f • i .f t
' r?
i i • / f 
i i 

• 9 
I — I • /
I I 1

9

1 * 1 .
9

26;

[term_ident] , 
[term_ident]; 
[term_ident]; 
[term_ident];

@intobuf, universe,

[term_ident], §search_keyword; 
•$', @read stuff, •$', ;

%null; ('{'/ (comment_char)*,'}') | (' ')+ | 10 | 13;
%aft

$$if return_ = error_ then writeln(1 Lexical error!');
$$

%actions
search_keyword$$ (* define return value for non-default goal*)

return_:= search_key(buffer, error_);
$$

intobuf
$$if lngth < max_string then 
beginbuffer:= buffer + upcase(chr(token_));
lngth:= lngth + 1;
end

Figure 16. (continued) Lily code for the language Lily
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else
begin
state_:=» accept_; 
return_:= error_; 
end;

$$
read_stuff

$$while (look_getchar_l(1) <> 36) or 
(look_getchar_l(2) <> 36) do begin (* 36 is ASCII

dummy:= getchar_l;
if dummy = 26 then (* 26 is EOF mark *)
begin
writeln('EOF encountered in pascal code block'); 
exit ; 
end; 

end;action_:« shift_;$$ 
check length

$$ Tf lngth > max_string then return_:= error_; $$
%disambig 

0, 41, 18
$$ (* disambiguation for top three goals *)
case look_getchar_l(1) of 
42: state_:= 12;
43: state__:= 15; 
end;action_:= shift_ (* -2 *) ;
$$

%parser lil2pars;
%receives lil2lex;
%local

$$var current_name: charbuf;
$$%goals compiler;

%productions
[compiler]: [global_part], [parser_part], end; 
[global_part]: global, pascal_stuff j #;

Figure 16. (continued) Lily code for the language Lily
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[parser_part]: (parser, @save_name, term_ident, [att_decl], 
(look, int_con | #), semicolon, [parser_tail])*; 

[parser_tail]: §check_getchar, [receives_part], (local, 
pascal_stuff | #), [goals_part], [keywords_part], 
[sets_part], (fore, pascal_stuff | #),
[productions_part], [null_stmt], (aft, pascal_stuff |
#), [actions_part], [disambig_part] | §check_name; 
[att_decl]: @check getchar, left_paren, [att_list_decl], (semicolon, [att_lTst_decl])*, rt_paren | #; 

[att_list_decl]: [att_ident_list], colon, term_ident; 
[att_ident_list]: [attribute], (comma, [attribute])*; 
[attribute]: inh_att_ident | syn_att_ident;
[receives_part]: receives, term_ident, [rec_att_list], 
semicolon;[rec_att_list]: left_paren, term_ident, (comma, 
term_ident)*, rt_paren | #;

[goals_part]: goals, [goal_ident], (comma, [goal_ident])*, 
semicolon;

[goal_ident]: term_ident | left_paren, term_ident, rt_paren;
[keywords_part]: keywords, colon, term_ident, equals, 
term_ident, (comma, term_ident)*, semicolon | #;
[sets_part]: sets, ([set_def], semicolon)+ | #;
[set_def]: term_ident, equals, [set_expr];
[set_expr]: [set_term], ((plus | minus), [set_term])*; 
[set_termj: [set_factor], (asterisk, [set_factor])*;
[set_factor]: [ordinal_range] | minus, [set_factor] | 
term_ident | left_paren, [set_expr], rt^aren; 

[ordinal_range]: [ordinal], (ellipsis, [ordinal] | #); 
[ordinal]: character | int_con;
[productions_part]: productions, (nterm_ident, colon, 

[automaton], semicolon)+;
[automaton]: [auto_term], (sheffer, [auto_term])*; 
[auto_term]: [auto_factor], (comma, [auto_factor])*;
[auto_factor]: character | int_con | term_ident |
nterm_ident | null_string | act_sym_ident | left_paren, 
[automaton], (rt_paren | rt_paren_plus | rt_paren_ast);

[null_stmt]: null, colon, [automaton], semicolon | #;
[actions_part]: actions, (term_ident, pascal_stuff)+ | #;
[disambig_part]: disambig, (int_con, comma, (int_con | 
null_string), comma, int_con, pascal_stuff)+ | #;

Figure 16. (continued) Lily code for the language Lily
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%actions
save_name
$$current_name:* buffer;
$$
check_name
$$if (current_name <> 'GETCHAR') and (current_name <>

'GETCHAR_L') then 
begin
writeln('Semantic Error.');
writeln('User-defined parsers must have parser tails.'); 
return_:» error_; state_:= accept_; 
end;

$$
check_getchar
$$if (current_name * 'GETCHAR') or

(current_name = 'GETCHAR_L') then
begin
writeln('Semantic Error.');
writeln('GETCHAR parsers cannot have attributes or');
writeln('parser tails.');
return_:= error_;state_:= accept_;
end;

$$
%end

Figure 16. (continued) Lily code for the language Lily
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%global {Program draws graftal plants.)
$$($1 graph.p)
$$ {request standard parser)

%parser getchar_l;
{lexical analyzer)

%parser graflex;
%receives getchar_l;
%local

$$type word_type = string[20]; 
var buffer: word_type;
$$%goals (word);%keywords: word_type =
day, night, grass, bush, shoot, leaf, flower, tree, trunk, node, branch, cactus;

%sets
letter - 'a'.-'z' + 'A'.-'Z';

%fore
$$buffer:* 1 {initialize "local" buffer)
$$%productions
[word]: (@intobuf, letter)+, @search_key;

%null: (' ')+ | 13,10;%actions
intobuf

$$buffer:* buffer + upcase(token );
$$search_key
$$return_:= search_key(buffer, error_);
$$ {end of lexical analyzer)

%parser grafpars;
%receives graflex;
%local

$$const max_stack = 50;
stack_pos: integer = 0;

var cor_stack: array[0..max_stack] of record x,y: integer; 
end; i, j: integer;

Figure 17. Lily code for graftal plant language
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procedure store_loc; 
begin
stack_pos:» stack_pos + 1; 
with cor_stack[stack_pos] do begin 

x:= xcor; 
y:~ ycor; 
end;

end; {store_loc}
procedure recall_loc; 

begin
if stack__pos = 0 then 

begin
writeln('Stack underflow'); 
exit; 
end 

else
with cor_stack[stack_pos] do 

begin
setposition(x, y); 
stack_pos:= stack_pos - 1; end;

end;
function rand_sign: integer; begin

if random > 0.5 then rand_sign:= 1
else rand_sign:= -1;
end;

$$
%goals forest;
%fore

$$graphcolormode; 
palette(0); 
randomize; 
nowrap;
$$

%productions
[forest]: (day , @draw_day| night, @draw_night),[ground], [foliage];
[ground]: # | grass, @draw_grass;
[foliage]: ([bush] | [tree] | [cactus])*;
[bush]: bush, @get_root, [bush_body];

Figure 17. (continued) Lily code for graftal plant
language



138

[bush_body]: ( @store_loc, (branch, @draw_branch)+, (shoot,
§draw_shoot)+, §recall_loc )+;

[tree]: tree, @get_root, [tree_body]?
[tree_body]: ( (trunk, §draw_trunk)+, [branch_group])*;
[branch_group]: node, (@store_loc, branch, @draw_branch,
(leaf, @draw_leaf | [branch_group]), @recall_loc)+; [cactus]: cactus, @get_root, (@store_ioc, branch,
@draw_limb, (flower, @draw_flower | #), @recall_loc)+;

%aft
$$readln; 
textmode;
$$

%actions
draw_leaf
$$i:* random(10) + 5; 
setheading(random(320)) ; 
setpencolor(1); forwd(i); 
turnleft(120); 
forwd(i); 
turnleft(120); 
forwd(i); 
turnleft(150); 
penup;
forwd(i div 2) ; 
pendown;fillshape(xcor + 159, 100 - ycor, 1, 1);
$$
draw_trunk
$$setpencolor(2);
setheading(rand_sign * random(20)); 
forwd(random(20) + 20);
$$
draw_branch
$$setheading(random(180) - 90);
setpencolor(2);
forwd(random(20) + 10);
$$

Figure 17. (continued) Lily code for graftal plant
language
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draw_limb
$$setheading(random(180) - 90);
setpencolor(1);
forwd(random(30) + 10);
$$
draw_flower
$$circle(xcor + 159, 100 - ycor, random(5), 3); 
fillshape(xcor + 159, 100 - ycor, 3, 3);
$$
draw_shoot
$$store_loc; 
setpencolor(1) ; 
setheading(random(320)); forwd(10); 
recall_loc;
$$
draw_day
$$graphbackground(lightblue); 
i:= random(295)- 147; 
j:= 60 + random(30); 
setposition(i,j ) ;
circle(xcor + 159, 100 - ycor, 25, 3); 
fillshape(xcor + 159, 100 - ycor, 3, 3);
$$
draw_night
$$graphbackground(black); 
for i:= 0 to 1000 do
plot(random(320), random(200), 3); 

i:= random(295)- 157; 
j:» 60 + random(30); 
setposition(i,j); 
setheading(45);
arc(xcor + 159, 100 - ycor, 180, 25, 3); 
setposition(i,j); 
setheading(75);
arc(xcor + 159, 100 - ycor, 110, 30, 3); 
setposition(i+5, j+2);
fillshape(xcor + 159, 100- ycor, 3,3);
$$

Figure 17. (continued) Lily code for graftal plant
language
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draw_grass
$$setposition(-159, -99);
setheading(90);
setpencolor(1);
forwd(318);
turnleft(90)?
forwd(15);
turnleft(90);
forwd(318) ;
turnleft(90);
forwd(15);
fillshape(2, 195, 1, 1);
$$
get_root
$$setposition(random(310) - 150, -84) ; 
$$
store_loc
$$store_loc;
$$
recall_loc
$$recall_loc;
$$

%end

Figure 17. (continued) Lily code for graftal plant 
language
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