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ABSTRACT

Radiant interchange between non-isothermal, gray diffuse surfaces
with non-uniform radiosity has been determined for a rectangular
cavity. Temperature distribution and heat flux as thermal specifica-
tions for the parallel surfaces of the cavity have been considered
separately. Ambarzumian's method has been used for the first time to
solve a radiant interchange problem. According to the method, the
integral equation for the radiosity is first transformed into an
integro-differential eauation and then into a system of ordinary
differential equations. Initial conditions reauired to solve the
differential equations are the H-functions. The H-functions represent
the radiosity at the edge of the cavity for various temperature pro-
files. Applying Ambarzumian's method a closed-form expression for
radiosity and heat transfer are obtained in terms of universal func-
tions. Heat transfer from the cavity can be determined without know-
ing the radiosity inside the cavity. The numerical results for the
H-functions, radiosity, local heat flux, overall heat transfer, local
and overall apparent emittance for the cavity have been presented in

the form of tables and graphs.
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NOMENCLATURE

Significance
Area of a surface j of the cavity
Dimensionless radiosity defined by eauation (3-8)
Laplace transform of dimensionless radiosity defined
by equation (3-30)
Radiosity defined by equation (3-1)
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Kernel for the integral equation (4-1)
Irradiation
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Temperature distribution parameter
Number of quadrature points
Heat transfer of the cavity defined by equation
(3-16)
Overall heat transfer of the cavity defined by
equation (3-15)
Hleat transfer of the cavity defined by equation
(3-17)

Local heat flux defined by equation (3-12)



Local heat flux defined bv equation (3-10)

Local heat flux defined by equation (3-13)
Specified heat flux in section E.

Roots of Bessel Function of first order
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(4-16)

Variable used in Laplace-transform
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Reference temperature

Temperature of the black surface
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(4-7)

Depth into cavity

Dimensionless depth into the cavity

Co-ordinate axis perpendicular to the plane of the
paper

Axis in vertical direction

Greek Symbols
Zeroth moment of H-function
First moment of H-function
Emittance of the surface
Stefan-Boltzmann Constant
Dimensionless radiosity defined by equation (3-9)
Reflectance of the surface

Apparent emittance of the cavity

Overall apparent emittance of the cavity



I. INTRODUCTION

New interest in radiative heat transfer has been stimulated in
the past few years by the applications in new technologies. Specific
examples of the applications include space-vehicle environmental con-
trol, solar energy conversion devices, power plants for space explora-
tion, propulsion systems, furnaces, cavities, etc. Radiant inter-
change between surfaces is an important consideration in the examples
mentioned above. In space, convection is absent and radiation is the
only means by which waste heat from power plants, electronic equipment
and other sources can be removed. Cavities are often used for thermal
sources. Radiative interchange within the cavities is the fundamental
criterion of their performance.

Many investigators have attempted to solve problems concerning
radiant interchange between surfaces with different confiqurations and
thermal specifications. Reviewing the investigations made in the past
reveals that most of the work done involves gray diffuse isothermal
surfaces with uniform radiosity. The investigators who considered the
realistic case of non-uniform radiosity had to overcome the hurdle of
solving an integral equation for the radiosity. Only for two special
cases [(i) Spherical cavities and (ii) Circular arc cavity] have the
integral equations been solved in closed form. For the other cases
investigated, the integral equations were solved either by an approxi-
mate analytical method or by a numerical technique.

The present investigation deals with a subject which has received
little attention in the past. It concerns the radiant interchange

between gray, diffuse, non-isothermal surfaces with non-uniform



radiosity. As compared with the work done on isothermal surfaces, the
non-isothermal analysis seems more realistic. In the present study
the temperature is assumed to decay exponentially with the depth into
the cavity. The temperature distribution is varied by changing the
damping co-efficient, and for each temperature distribution, there is
an integral equation to be solved.

The approach taken to tackle the present problem has been used in
gaseous radiation studies and is known as Ambarzumian's method. The
method is applied for the first time to determine radiant interchange
between surfaces. According to the method the inteqral equation for
the radiosity is transformed into integro-differential equation which
is then represented by a system of differential equations. The H-
function defined as the radiosity at the edge of the cavity represents
the initial conditions for solving the system of the differential
equations. The H-function is determined by numerically solving a
nonlinear Fredholm integral equation of second kind.

Applying Ambarzumian's method an analysis for the determination
of radiant interchange between the non-isothermal surfaces of the
rectangular cavity is presented in Chapter III. C(losed-form expres-
sions for the radiosity and heat transfer for various temperature pro-
files are achieved from the analysis in terms of universal functions.
Utilizing the closed-form relations, the heat transfer from the cavity
can be computed without knowing the radiosity inside the cavity. A
digital computer is employed to obtain the numerical results for the
H-functions and radiosity. Humerical techniques and results are pre-
sented in Chapter IV. Conclusions of the present investigation along

with recommendations for further study are given in Chapter V.



I[T. REVIEW OF LITERATURE

Radiant interchange between surfaces is one of the fundamental
and important problems in the field of radiative heat transfer. A lot
of work has been done involving various configurations with different
physical and thermal conditions. The present review is restricted to
the literature concerning radiant interchange between gray diffuse
surfaces with non-uniform radiosity. The space between the surfaces
is filled with a non-participating media.

Past studies are presented in chronological order in Table 2.1.
Geometry, physical and thermal conditions specified and the method
used to solve the problem have been listed in this table. The geome-
tries considered in past investigations are shown in Figure 2.1. By
reviewing the literature presented in the table, one finds that most
of the work concerns geometries 1 and 3. The investigations dealing
with these geometries are in references [6,8,12,13,15,16,17,19,20] and
(8,16,18,19] respectively. The study of the cylindrical cavities are
mentioned in references [1,2,7] for geometry 4 and in references [3,5,
14] for geometry 5. Few investigators have worked on the problems
involving finite, non-parallel surfaces, tapered tubes and conical
cavities as mentioned in the Table 2.1. Geometry 4 with heat flux
specification to the surfaces has been considered in reference [7]. A
problem involving non-isothermal surfaces for geometry 11 without any
opening has been investigated in reference (4]. The rest of the
research has been conducted for isothermal surfaces.

Every problem presented in the Table 2.1 involves an integral

equation for the non-uniform radiosity. Exact solutions have not yet



been achieved except for radiant transfer in (a) Spherical cavities
(geometry 11), reference (10] and (b) Cylindrical arc cavity (geometry
12), reference {21]. Besides the two closed-form solutions, the
methods used in rest of the work to solve the radiosity equations are
listed as follows:

A. Approximate Kernel Method [1,2,7]

B. Asymptotic Behavior {18]

C. Least Square Method {20]

D. Sokolv's Method [15,16]

E. Successive Iteration Method [5,7,8,9,19]

F. Variational Method (6,7,12]

G. Zonal Method (11,14]

The approximate methods used by the investigators involve simple
mathematics. The survey made may be incomplete, but it seems that
little interest has been shown to radiant interchange between non-
isothermal surfaces. The present study refers to non-isothermal sur-
faces with non-uniform radiosity. Geometry 10 is selected as the
configuration of interest. In this work, the emphasis is placed upon
getting a closed-form solution for the radiosity and the heat transfer
in terms of standard universal functions. Application of Ambarzumian's

method is employed to achieve this goal.



Year

1927
1928

1935

1936

1960

1960

1960

1961

1961

1962

1964

1965

1966

1967

Reference

Buckley
[1,2]

Eckert [3]

Moon [4]
Sparrow and
Albers [5]
Sparrow [6]

Usisken and
Seigel [7]

Sparrow,
Gregg, Szel,
Manos [8]

Sparrow and
Gregg [9]

Sparrow and
Jonsson [10]

Sparrow and
Jonsson [11]

Sparrow and
Sheikh [12]

Love and
Gilbert [13]

Campanaro and
Ricolf{ [14]

Table 2.1

Review of Literature Table

Description of the problem

Geometry Physical situation

4

11

1,3

11

2,6

5,8

Isothermal surfaces

Isothermal surfaces

Hon=isothermal
surfaces

Isothermal walls

Isothermal surfaces

Specified wall heat
flux. Black and
gray radiation
analyses.

Gray, isothermal
surfaces

Isothermal surfaces
Isothermal surfaces
Isothermal and

adiabatic surfaces

Isothermal surfaces

Isothermal surfaces

Isothermal surfaces

Method of solution

Approximate Kernel
Method

Approximate Radio-
sity By Straight
Lines Segments

Closed-Form
Solution

Iterative
Technique

Variational
Method

Approximate Kernel

Method, Iterative,
Variational Method

Iterative
Technique

Iterative
Technique

Closed-Form
Solution

Zonal Method (Angle
Factor Algebra)

Generalized Varia-
tional Method

Experimental

Zonal Method



Year

1967

1968

1969

1970

1370

1970

1970

Reference

Crosbie and
Viskanta
[15]

Love and
Turner [16]

Toor,
Viskanta,
and Winter
[17]

Rasmussen
and Jischke
[18]

Look and
Love [19]

Sparrow and
Sheikh [20]

Sparrow and
Cess [21]

Table 2.1 (continued)

Geometry Physical situation

1

1,3

1,9

1,3

11,12

Isothermal surfaces

Isothermal surfaces

Specular and
diffuse isothermal
surfaces

Isothermal surfaces

Isothermal surfaces

Isothermal surfaces

Isothermal surfaces

Method of solution

Sokolv's Hethod

Sokolv's Method

Monte Carlo HMethod
and Experimental

Asymptotic Behavior

Iterative Technique

Least Squares
Method

Closed-Form
Solution



v LA T

8

07777 A
——l ]

Geometry 1

///

T4
e L -

Geometry 2

Geometry 3

d

1

o L ——

Finite Cylindrical
Cavity

Geametry 4

D e e

!

Infinite Cylindrical
Cavity

-

Geometry 5

Tapered Tube

Geometry 6

D
>

Parallel Disks

Geometry 7

— ()

Conical Cavity

Geometry 8

%// Ll /JT

) h

/,I/f// Yz,
- L -
Finite Rectangular
Cavity

Geometry 9

ISP I IIP4|

2 —

Yol )

Infinite Rectangular
Cavity

Geometry 10

Spherical Cavity

Geometry 11

Qo
’<\6=a
6
Cylindrical ch Cavity
Geometry 12

Figure 2.1 - Figures {1lustrating different geometries



ITI. AHNALYSIS

A. PHYSICAL MODEL AND GOVERNING EQUATIONS

The present study deals with the configuration shown in Figure

3.1. Surfaces one and two extend indefinitely into and out of the

plane of the paper. Assumptions made for the analysis are given as

follows:

(i)

(i1)

(ii1)
(iv)

Surfaces one and two are gray and diffuse with non-uniform
radiosity.

Surfaces one and two have the same properties, i.e.,

€1=€2=€;p1=02=p.

There is no participating medium between the surfaces.

Surface three is black and isothermal at a temperature Tb’

1

Figure 3.1 - Rectanqular cavity



The temperature distributions for surfaces one and two (TO(Xl)
and TO(XZ)) are identical to each other. Because of the symmetry of
the configuration only one surface is considered in the analysis. The

radiosity of surface one can be expressed in general as
BY(X,) = eoT H(X,) + 0G(X,) 3-1
1 0 1 1 *

The first term on the right side of equation (3-1) represents the
radiant flux being emitted by surface one from location Xl’ and G(Xl)
is the irradiation at location X1 from the other surfaces to surface

one. The radiosity equation (3-1) can be re-written as follows [22]

cosB,*cosH
BY(X.) = eoT.3(x,) + ol| 8¥(2) 1 3 da
1 0 %y 7 3
A, 13
co0s9,+cosb
+ o]f 8% (X,) ——ty—t dn, 3-2
A, ™12

where

. . 2 iy oy )2 V2, n2
cose, = cos6, = h/R12 » Rip = (X1 X2) + (Y1 Y2) + h® ;

2 _ 2 2 2
cosbz = Xi/Ry3 5, Ryz = X7+ (YI'Y3) + 75 .
Now equation (3-2) can be written as
hoo

+ 4 3
B (x.) = eoT 2(X,) + pf J
1 R U e AR LY

8* (2)h%dzdY

© + 2
B (Xz)h dXZdY2 303
2}?

+ p]
D =1, 5 (v -Y,) %

where Yl’ Y2, Y3 represent the coordinate axes perpendicular to the

plane of the paper for the surfaces one, two and three, respectively.
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After integrating, equation (3-3) becomes

+ 2
B (XZ)h dX2

4
. 3-4
1 ZanZ 372

p 1
Xl) + '2'0Tb 1 - ‘—"‘"—'——E—- + %J (X X
+h o [Xy=%5

5% (X)) = eoT 4

0

Introducing x = Xl/h and y = X2/h, and assuming the temperature
decays exponentially, i.e., TO(x) = Tr exp(-mx/4), the integral equa-
tion for the radiosity (3-4) takes the form

o

4 - ) ’ g
B*(x,m) = eoT “e™™ + & oTb4 1 - X +5 Jb*(y.m)i\(lx-yi)dy 3-5

X +1 ]

where the kernel is defined as

1
[(X-y)?*fl]

K(IX'YI) = K(XQ.Y) = ’3/2 . 3-6

The emissive power decays much faster than the temperature. Since
integral equation (3-5) is linear, B*(x,m) can be expressed as the

superposition of two functions
4. 4
B*(x,m) = soTr B(x,m) +poTb d(x) 3-7

where B(x,m) and ¢(x) satisfy the following two integral equations

s0um) = €™ + & [ Bly,m)K(|x-y])dy 3-8
0
and P
¢(x) = 21- l- + % j¢(y)K(iX-yl)dy . 3-9
X"+1 0

Physically, B(x,m) is the dimensionless radiosity for the case when
the temperature of black surface three is zero. And ¢(x) represents
the dimensionless radiosity (B*/pdTba) for the case when the tempera-

ture of surfaces one and two is zero,



The local heat flux can be written as

q*(x,m) = £ ﬁﬂ'q e”™ B*(Xﬁﬂﬂ .
o r
Using expression (3-8), the local heat flux can be expressed as
a*(x,m) = eoT 4q(x m) - eoT 4 (x)
] r ] bQ¢

where

g(x,m) = %-[e'mx - eB(x,m)]

and
q¢(X) = ¢(x) .

The overall heat transfer per unit length of cavity is

Q* = Zth*(x,m)dx
0

or
Q* = 2heaT_*Q(m) - 2heoT, %q
r b ¢
where
Q(m) = fQ(X,m)dx =-% J [%-mx - cB(x,mﬂ dx
0 0
and

[e =]

Q = £q¢(X)dx = Z¢(X)dx

Q(m) is the heat transfer from the cavity when the surface three i

11

3-10

3-11

3-12

3-13

3-14

3-15

3-16

3-17

S

held at 0°R. Q(m) depends on the temperature distribution parameter

m and the reflectance p. QqD

the black surface three when surfaces one and two are held at 0°R.

is the heat transfer to the cavity from
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The analysis of B(x,m), ¢(x), Q(m) and Q¢ are carried out in detail in

this chapter.
B. DIMENSIONLESS RADIOSITY, B(x,m).

The equation (3-8) for the dimensionless radjosity B(x,m) is
classified as a linear Fredholm integral equation of second kind.
8(x,m) depends on the depth into the cavity x, the reflectance p and
the temperature distribution m, In this section Ambarzumian's method [23]
transforms the integral equation into an integro-differential equation.
The dimensionless radiosity B(o,m) at the edge of the cavity, the H-
function, is the initial condition for the integro-differential equa-
tion. A nonlinear Fredholm integral equation for the H-function is

developed.
1. INTEGRO-DIFFERENTIAL EQUATION.

The equation (3-8) for dimensionless radiosity B(x,m) can be

re-written as follows

x [ee)
B0xym) = ™ + & [ Bly,mK(xy)dy + § [ BlymKk(y-x)ey . 3-18
0 X

Substituting z = x-y in the first integral and z = y-x in the second

integral of the right hand side of equation (3-18) yields
X o
B(x,m) = e”™ 4 %-f B(x-z,m)K(z)dz + %-I B(x+z,m)K(z)dz . 3-19
0 0

Differentiating equation (3-19) with respect to x gives
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X
3B£X!m! = _me'mx + P B(O,m)K(X) + % aB(X-Z,m) K(Z)dZ
X 2 9X
0
+ %-j EEL%%Eﬂﬂl K(z)dz . 3-20
0

X=-z in the first integral and y = x+z in the

(]

Now substituting y
second integral of the right hand side of equation (3-20) yields the

following integral equation for the derivative of B(x,m)

(>

99-(-’3‘-'—"‘l = - me™™ + £ B(o,mK(x) + £ J 3BLYM)  (x-y|)dy 3-21
X 2 2 X
0
or
§§é§ﬂﬂl-= - me™™ 4+ %-B(o,m) J te'Xtdl(t)dt
0
+ %J _x_L_ang M) K(|x-y|)dy 3-22
0
where
K(x) = j te’Xtdl(t)dt . 3-23
0

represents the Laplace's transform of tJl(t).

The solution of equation (3-21) is determined by method of super-

position. Multiplying equation (3-8) by

%-mdl(m)dm

and then integrating from 0 to « yields
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e o] (e [e<]

%JmB(x,m)Jl(m)dm = S K(x) + 8 [m 2 fs(y,m)K(gx-yndy o (m)am . 3-24
0 0 0

Multiplying equation (3-8) by -m and equation (3-24) by B(o,m) and

adding gives

o]

- mB(x,m) + %-B(o,m) fva(x,m)Jl(m)dm
0

= - me ™ 4 %-B(o,m)K(x)

+ %—f - mB(y,m) + % B(o,m) J mJl(m)B(y,m)dm K(|x=y|)dy . 3-25
0

Comparing equations (3-21) and (3-25), the solution to equation (3-21)
is

aB(gx!m! T - MB(Xom) + % B(o,m) J nB(x’n)Jl(n)dn . 3-26
0

Notice the radiosity equation (3-26) is an integro-differential
equation instead of a linear Fredholm integral equation. The boundary

condition B(o,m) is needed before this equation can be solved.
2. H=-FUNCTION.

In physical sense, H-function is the radiosity at the edge of the
cavity B(o,m)., The aim of this section is to achieve a nonlinear
integral equation for H-function which is convenient for numerical

solution. Evaluating equation (3-8) at x = 0 yijelds

o0

soum) = 1+ % [ Bly,mK(y)ey 3-27



or
B(o,m) = 1 + %—J B(y,m) f te'ytdl(t)dt dy 3-28
0 0
where again
, N -yt
K(y) = f te™Vt, (t)at .
0

By changing the order of integration, equation (3-28) can be written

as
B(o,m) = 1 + %-J nJl(n)EKn,m)dn 3-29
0
where
B(n,m) = Ln{B(y,m)} = j B(y,m)e”Vdy . 3-30
0

Thus B(o,m) may be expressed in terms of Laplace transform of the
dimensionless radiosity B(y,m) and Bessel function of the first kind.
B(n,m) can be expressed in terms of B(o,m) by applying a Laplace

transform to equation (3-26)

sB(s,m) - B(o,m) = - mB(s,m) + %-B(o,m) f Els,n)ndl(n)dn 3-31
0
or
(s+m)G(s,m) = B(o,m) |1 + %-f nﬁ]s,n)dl(n)dn . 3-32
0

Compare equation (3-29) with the right hand side of equation

(3-32). In order to replace the term of equation (3-32) in brackets
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by B(0o,s), B(s,n) must be symmetric.
The first step in showing B(s,n) symmetric is to rewrite equation

(3-8) as

B(x,s) = e"S% + lej B(yss)K( [x-y | )dy 3-33

0

and oo
B(x,n) = ™™ + %-jB(y,n)K(lx-yl)dy . 3-34

0
Multiplying equation (3-33) and (3-34) respectively by B(x,n) and

B(x,s) and integrating both with respect to x over the interval (0,x)

gives
J B(x,s) B(x,n)dn = [ B(x,n) %-J B(y,s)K(|x-y]|)dy | dx
0 0 0
+ f e”3*B(x,n)dx 3-35
0
and

B(x,n) B(x,s)dx =

O §
Cr—— 8

B{x,s) %-] B(y,n)K(|x=y|)dy| dx
0

+ ] e”™B(x,s)dx . 3-36
0

The left sides of the equations (3-35) and (3-36) are identical.
Since the kernel K(x,y) is symmetric, the first terms on the right
side of the equations are identical. The last terms of (3-35) and

(3-36) must therefore be equal
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e >*5(x,n)dx = J " (x,s)dx . 3-37
0

w O\ 8

Equation (3-37) can be rephrased as
B(s,n) = B(n,s) . 3-38
Therefore B(s,n) is symmetric.

Using equation (3-38), equation (3-29) can be written as
B(o,m) = 1 + %-I nJl(n)EKm,n)dn . 3-39
0

Replacing n with s in equation (3-39) and substituting this equation

into equation (3-32) vields

(s+m)B(s,m) = B(o,m)B(0,s) 3-40
or
B(s,m) = B(Q)mifé9’§l 3-41

Substitution of equation (3-41) into equation (3-3Y) gives

! nJl(n)B(o,n)

B(o,m) = 1 + 5 B(o,m) J e dn . 3-42
0
Utilizing the definition of the H-function, i.e., H(m) = B(o,n),
equation (3-42) becomes
< nJl(n)H(n)
H(m) = 1 + % H(m) J——-m]—— dn . 3-43

0
Since equation (3-43) would converge very slowly on application
of an iterative technique, another form of the equation is needed.

Using
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equation (3-43) becomes

<o

7 md (n)if
H(m) = 1 + %-H(m) J Jl(n)H(n)dn - %-H(m) J T—lizl—izl dn . 3-44

n+ni
0 0

Dividing the equation (3-44) by H(m) yields

1 o 0 < mJl(n)H(n)
H'('m_;'=1"?a0+?‘4{——-—n-+—m—————dn 3-45
0
where % is the zeroth moment of the l-function
g = [ H(n)Jl(n)dn . 3-46

0
oy can be determined by multiplying equation (3-43) by Jl(m)dm and

integrating over the interval (0,«~), thus

“ % (M) J ., (m)H(n)J, (
ay = j H(m)Jl(m)dm = Jdl(m)dm + %.ffn (m 1 zzm(n 1 ") dn dm . 3-47
0 00

Since m and n are dummy variables, in the second integral of the
extreme right hand side of equation (3-47) these variables may be

interchanged yielding

dm dn . 3-48

¢ °° T 7 mi(n)d (n)H(m)J L (m)
H(m)J,(m)dm = |{J,(m)dm + &
1 1 2
0 0 00
The expression obtained by adding equations (3-47) and (3-48) is

2 £ H(m)J(m)dm = 2 i J(m)dm + g-i jH(m)Jl(m) H(n)d (n) dm dn . 3-49

Using the definition of aj, equation (3-49) can be reduced to a

quadratic equation of the form
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paoz ~day +4=0. 3-50

The solutions of equation (3-50) are

+ _ 2
OLO —-5[1"‘/1-:6]
3-51
- _ 2
G.O —-p_[l-/r:?;]
Only the substitution ofcb' into equation (3-45) gives meaningful
expression for the H-function
1 < mJl(n)H(n) 4
W—Jr:b—"‘%j-———n;—r—— n. 3"52
0
For m = 0, equation (3-52) yields
H(0) = B(0,0) = —m— = —1_ | 3-53
v1-p Ve

From the above equation, the equation the dimensionless radiosity at
the edge of an isothermal cavity is equal to the inverse of the square
root of the emittance.

Thus equations (3-52) and (3-26) can be solved for the H-function
and radiosity respectively. Numerical solution techniques for these

equations are presented in the next chapter.
C. DIMENSIONLESS RADIOSITY, ¢(x).

Equation (3-9) for the dimensionless radiosity, ¢(x), falls into
the category of a linear Fredholm integral equation of the second kind.
¢(x) depends upon the depth in the cavity x and the reflectance p. An
expression for ¢(x) in terms of the dimensionless radiosity B(x,m)
along with the development of a differential equation for ¢(x) is

presented in this section.
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The Laplace transform of Jl(m) can be expressed as

j e'xmdl(m)dm S — 3 3-54
0 x +1

Using equation (3-54), equation (3-9) becomes

o0

o(x) =% | e™ g (m)dm + & | o(y)K(|x-y|)dy . 3-55
2 1
0 0

Multiplying equation (3-8) by
Ly (m)dm
21

and integrating over the interval (0,~) yields

-% J Jl(m)B(x,m)dm = %-J e‘mxdl(m)dm
0 0

o0

f [ Jl(m B(y,m)K([x-y])dydm . 3-56

0

Comparing equations (3-55) and (3-56) gives

o(x) = %f 3,(m)B(x,m)dn . 3-57
0

Since a differential equation is easier to solve than an integral
equation, equation (3-9) is transformed into a differential equation
for ¢(x). Multiplying equation (3-26) by Jl(m)dm and integrating over
the interval (0,») yields

dm = -

mJl(m)B(x,m)dm

" Jl(m)aB(x,m)
[ 2=
0]

Or~—— §

+ %-[ Jl(m)B(O.m) f nB(x,n)Jl(n)dndm 3-58
0 0
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or

%j 3, (m)B(x,m)dm = - j md; (m)B(x,m)dm
0 0

co

+ %-Idl(m)H(m)dm f nB(x,n)Jd;(n)dn . 3-59
0

Using equations (3-46) and (3-57), the above eguation can be written

as
28X = Jo(x) + & age(x) 3-60
where
o(x) = j mB(x,m)Jl(m)dm . 3-61
0

The initial condition for equation (3-60) is
$(0) = 5 o -
Differential equation (3-60) is solved in manner similar to equation

(3-26). The details of the solution are given in the next chapter.
D. OVERALL DIMENSIONLESS HEAT TRAKSFER, Q*.

The heat transfer from the rectangular cavity can be found from
equation (3-15). The overall heat transfer from the cavity, Q*, is
presented in terms of two dimensionless functions Q(m) and Q@ in terms

of the H-function and the moments of the H-function.
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1. DIMENSIONLESS HEAT TRANSFER, Q(m).

Physically Q(m) is the overall dimensionless heat transfer from
the cavity for the case when the temperature of the black surface
three is zero. Referring back to the definition of Q(m), equation

(3-16)

Q(m) = %-J [e”™ .- eB(x,m)] dx .
0

Using the expression for the radiosity, B(x,m), from equation (3-8),

with the kernel

. 1
K(X’Y) = N
[(x-y)?+113/%
equation (3-16) yields
1 -mx -mX B(y,m)dy
Q(m)=-J e”* -cle +RJ 2 dx . 3-62
° 2 Lty B %2

After simplification the above equation becomes

- dx
Q(m) = J e ™ dx - -E-] B(y,m) J dy . 3-63

Evaluating the integral in parentheses in the last term of equation

(3-63) gives

dx _ _
f 377 © 1+ -5 . 3-64
0 !

This relation can be expressed in terms of the Laplace transform of

Jl(t) as
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[eo]

1+ —%- =2 - J e'ytdl(t)dt . 3-65
y+1 0

Substituting equation (3-65) into equation (3-62) yields
Q(m) = J e ™ dx - %-[ B(y,m)| 2 =~ J e'ytdl(t)dt dv 3-66
0] 0 0
or
Q(m) = J [%-mx - cB(x,m{] dx + %-J Jl(t) j e°yt8(y,m)dy dt . 3-67
0 0

The first term of right side of equation (3-67) is pQ(m). Using
equation (3-41) with the definition of the H-function, equation (3-67)

can be expressed as

(e o]

atm) = pa(m) + 5 [ 9 (c) HEICED g

e : 3-68
0

After simplification equation (3-68) may be reduced to

oo

| 3, (E)H(t)
q(m) = Hin) J L at. 3-69

0

Equation (3-52) can be rephrased as

[e o)

J.(t)H(t)
m 1 1
%-[ w4t T ey - F - 3-70

0
Using equation (3-70), equation (3-69) becomes

1 - H(m)/VE

o 3-71

Q(m) =

When surfaces one and two of the cavity are isothermal, m = U, the

dimensionless heat transfer from equation (3-69) can be expressed as
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o
Qo) = L 3-72

2/

where a4 is the first moment of the H-function

[e.0]

J.(t)H(t)
a1=f-l-——t———dt. 3-73

0
2. DIMENSIONLESS HEAT TRANSFER, Q¢.

Q¢ represents the overall dimensionless heat transfer from the
cavity for the case when the temperatures of surfaces one and two are

zero. Using expression (3-57) for ¢(x), equation (3-17) gives
1
Q¢ = §-J I Jl(m)B(x,m)dm dx 3-74
00
Equation (3-16) can be integrated, yielding
=2 |1 . -
j B(x,m)dx s | om Q(mﬂ . 3-75

Replacing Q(m) by expression (3-71), equation (3-75) reduces to

f B(x,m)dx = H{m) 3-76
O [
Substituting equation (3-76) into equation (3-74) yields
7 J,(mH(m) o
Q¢=%—J—1-—-————dm=—-—1— ) 3-77
0 mve 2Ve

£E. PRESCRIBED HEAT FLUX.

In this section the analysis is presented for surface one and

two with heat flux specified instead of the temperature. The heat
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fluxes for surfaces one and two [q(Xl) and q(Xz)] are identical to
each other as shown in Figure 3.2. Assumptions made in section A still

hold for the analysis in this section.

Jy E—

q(X;)

Figure 3.2 - Rectangular cavity with heat flux

Again because of symmetry of the configuration shown in Figure
3.2 surface one is considered for analysis for this section. The

radiosity of surface one can be expressed in general as
+ v [4
Bf(Xl) = q(Al) + G(Xl) 3-78

where q(Xl) is the specified heat flux and G(Xl) is irradiation from

other surfaces at location Xl' Equation (3-78) can be rewritten as

[22]
+ B+(Z)cose1 coso,
Bo(X.) = a(X,) + dA
f'71 1 WRZ 3
A3 13
+
B.(X,)cos8, coso
+ J} e 2 4A 3-79
mR 2
A 12

2
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= = ) 2 2 2 2 .
where cos8, = coso, h/L12 . R12 (Xl-XZ) + (Yl-Yz) + h ;
= 13 )2 = 2 2 2

cos8y = X /Ry3 RIz = X"+ (Yl-Y3) + 72 .
Now equation (3-79) becomes
) - o) 1 8% (2)h%dzdy,
Bo(Xy) = q(X;) + f f vd
fi41 R OB LIPLIY:
> BE(x,,)h2dx,dY
f 72 22
+ 2 5 3-80
5 L TLX =X, S+ (Y =Y,5) “4h ]

where Yl’ Y2 and Y3 represent the coordinate axes perpendicular to
the plane of the paper for surfaces one, two and three, respectively.
After integrating equation (3-80) yields

o

L+ 2
X B.(X,)h“dX
o+ _ 1 4 1 1 f 2 2 -
Bf(Xl) = q(X{) + 50T " 11 = ————| + 5 — )2+h213/2 . 3-81
/X1§+h2 0 1772

Again introducing x = Xl/h’ y = X2/h, and assuming the specified heat
flux decays exponentially, i.e., q(Xl) = qOeXp(-mx), the integral
equation (3-81) takes the form of

-mx 9 1 4 1 - X

*
Be(x,m) = g.€ + ,
fine 0 2 'b
/x2+1

* s
+ %-f Be(y,mK{|x-y|)dy  3-82
0

where

1
[(x-y)2+1]

K{|x=y]|) = K(x,y) = 377 -

Using superposition, the solution of equation (3-82) can be written as

% X 4 )
Bf(x,m) = qob(x,m) + oTy o(x) 3-83
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where B(x,m) and ¢(x) are evaluated for p=1 from equations (3-8) and
(3-9) respectively. Replacing ¢(y) by 1.0 using equation (3-64),

equation (3-9) for p = 1,0 becomes

X 1 X _
t s 1+ =1 3-&4

/x2+1 x2+1

Thus for p = 1, the dimensionless radiosity ¢(x) is unity. Therefore

¢(X)=%- 1 -

equation (3-83) reduces to

4 |29

*
Bf(x,m) = qOB(x,m) + oTb . 3-85

The heat flux specified for surface one can be expressed in

terms of radiosity and emissive power as

a(x) = %-[%T4(x) - B;(x.mi] . 3-86
Solving equation (3-86) for the emissive power yields

4

qu(x) = g-qoe-mx + qOB(x,m) +oT, " . 3-87

The temperature distribution T(x) can be determined from equation

(3-87). Thus, the solutions of section A and E are interrelated.
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IV, HUMERICAL RESULTS

The major portion of the problem is solved analvtically in the
previous chapter. The analysis yielded radiosity and heat flux from
the cavity in terms of universal functions. Hhumerical results for the
H-Functions, dimensionless radiosity B(x,m) and ¢(x), local heat flux
q and overall heat transfer Q*, apparent emittance ea(x) and overall
apparent emittance Eé(m) are computed and are presented in this
chapter. The H-Functions are determined from a nonlinear Fredholm
integral equation using successive approximations. The integro-
differential equation for the radiosity of the cavity is solved numer-
ically by Runge-Kutta method. IBM 360 model 50 digital computer is
employed to solve these integral and differential equations. The

details of the numerical techniques are explained in this chapter.
A, COMPUTATION OF H-FUNCTIONS.

The integral equation selected for the numerical computation of

the H=Functions is

i 7 md; (n)H(n)
H‘F’Il—)— = /I=p + % J B — dn . 4-1
0

Equation (4-1) can also be expressed as

°r nd, (n)H(n)
H(m) = 1 + 5 Hi(m) ff—-l—f——n——

0

e dn 4-2

For convenience equations (3-52) and (3-43) are rewritten as equations
(4-1) and (4-2). Experience with similar equations in gaseous

radiative transfer indicates that equation (4-1) is more suitable for
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iterative solution. Application of the method of successive approxi-

mation to equation (4-1) yields

1 < mJl(n)HK(n)
HK+1!m5 = vi-p # J n+m

dn . 4-3

njo

0

Since the minimum value of the integral term of equation (4-2) is
zero, the H-function is greater than or equal to unity. Therefore,
the initial value for the H-function is assumed to be

Hl(m) = 1.0 . 4-4

The integrand of the integral term in equation (4-3) depends on
m and H(m). Replacing the integral term by Gaussian quadrature of

order fl, equation (4-3) takes the form

1 = /15 - . .« o o -
W = -p + pf [m, HK(nl), HK(nz), HK(n3), . HK(nN)] 4-5

+
where F represents the numerical quadrature with quadrature points
Nys Moy N3y ° %y Nppe In the iterative technique used to solve
equation (4-5) the most recent values of HK+1(m) are preferred to
those of HK(m) for the use in the right side of the equation. The

iterative procedure is as follows

1 = e o o
vy oo BRI E“P Hingds Hylng )y Hyng), ' HK(nNﬂ

1 - ® L L]
MGy = V1P + eF E”z' Hiep(ng)s Hglng)s Hy(ng), ' ”K(”u)]

1 = e o o }
Mo,y - "1P *of [‘“3' Hee1(ny)s Mg (ngds tiye(ngds ' ‘K("uﬂ

1 — eoe
My (AT Y 1-P*eF E1N’HK+1(n1) i1 (ng) sy (ngdseesliy g (my_q) ’“K(nNE]
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where Mis Moy m3, ** *, M are the quadrature points.

After performing the above mentioned up~-dating procedure for the
first iteration, the same procedure is repeated for the next iteration.
The iterative process is terminated when the required accuracy of

- -6
[Hegq(m) = H(m)] < 0.5 x 10

is obtained at all the quadrature points. The number of iterations
depends upon the value of reflectance p. For instance five interations
are enough p = 0.1, while nineteen iterations are required for p = 1.0.
Using the final values of H(nl), H(n2), RN H(nN) the
H-function is computed for even values of m with the help of equation

(4-5) as follows

'm'%‘)': VI=-p + pF [m, H(nl), H(nZ)’ H(n3), . . ., H(nH)] . 4-6

The most complex and critical part in each of the iterations in
the computation of the integral term in equation (4-1). Since Jl(n)
is contained in the integrand, i.e.,

y mJl(n)H(n)
N
the function f(n) oscillates slowly about the abscissa as shown in
Fiqure 4.1. Consequently the integral term in equation (4-1) in each
half cycle is smaller in absolute magnitude than, and opposite in sign
to, that of the preceeding half cycle. Using Longman's [24] method
for computing infinite integrals of oscillatory functions with Euler's
transformation, the present integration can be expressed as slowly
convergent alternating series

o ™1

[ fmyan = | f(n)dn-EIO-V1+V2-V3+-'--+VM:| 4-7

r0=0
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f(n)

Figure 4.1 - Kernel f(n) for the integral equation

where
"2 "3 "m+2

Vo = J |f(n)|dn , Vl = J |f(n)ldn , ¢« « =, Vy = J | f(n)|dn
"1 "2 "M+l

and rg» Tq» Tps = * = are the roots of Jl(n) and hence of f(n).
Since the series, VO - V1 + V2 - V3 + = 0 e o+ VM’ is slowly

convergent alternating, then

VK >0 , VK+1 < VK , for all K
and if
= - ] ptl, _ AP _ AP
AVK VK+1 VK : A VK A VK+1 A VK .
then according to Euler's transformation,
T K, _1 1 1.2
(-'1) VK =5 VO - T AVO + T A VO - + 4-8

K=0
where the series on the right side of equation (4-8) can be shown
convergent whenever the original series is convergent. Equation (4-7)

can be written as
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} 1 1 1.2
£ F(n)dn = j £(n)dn - [é Vo - vy v Rod e ]. 4-9

rO=O
A sub=-program was written to perform the integration according to
equation (4-9). The results for I1 = 10 are accurate to sixth decimal
place.
Gaussian quadrature is used to perform the integration of each
term of right side of equation (4-9). Since the H-function decays
rapidly in the interval 0 < n < ris the first integral term on the

right side of the equation (4-7) may be broken into two terms as

ry (rl-ro)/Z ry
f £(n)dn = f £(n)dn = J £(n)dn 4-10
o0 o0 (ry-rg)/2
or
r .
1 do “1
j f(n)dn = } Af(n.) + § A.f(n.) 4-11
P 1 b L2 1 1
_ i=1 i=1
rO-O

where NO = 11 and N1

ating the first integral term on the right side of equation (4-10) to

= 5, Lleven point quadrature is used for evalu-

obtain better accuracy. VO’ Vl’ V2’ « + + in equation (4-7) are
computed using five point Gausian quadrature.

The values of the H-function at the quadrature points and at even
values of m are presented in Tables 4.1 and 4.2. The H-functions are
used as initial conditions to solve the integro-differential equation
for radiosity. HMoments of the H-function % and oq are computed using

Longman's method and are presented in Table 4.3. The zeroth moment



m

0.000
J.001
0.005
0.010
0.020

0.030
0.040
0.050
0.060
0.070

0.080
0.090
0.100
0.200
0.300

0.400
0.500
0.600
0.700
0.800

0,900
1.000
2.000
3.000
4,000

5.000
6.000
7.000
8.000
9.000

10.000
15.000
20,000
25.000
30.060

35.000
40.000
45,000
50.000
100,000

200,000
300.000
400,000
500.000
1000.000

= 0.10

1.05409
1.05404
1.05381
1.05354
1.05300

1.05249
1.05199
1.05150
1.05103
1.05057

1.05012
1.04968
1.04925
1.04542
1.04221

1.03946
1.03706
1.03494
1.03305
1.03136

1.02983
1.02843
1.01926
1.01444
1.01149

1.00951
1.00809
1.00703
1.00621
1.00556

1.00503
1.00340
1.00256
1.00205
1.00171

1.00147
1,00129
1.00114
1.00103
1.00051

1.00026
1.00017
1.00013
1.00010
1.00005

Table 4.1
H-function
p = 0.50 p = 0.90
1.41421 3.47850
1.41361 3.15466
1.41126 3.12518
1.40838 3.09009
1.40285 3.02467
1.39755 2.96452
1.3924¢6 2.90879
1.38755 2.85687
1.38280 2.80829
1.37821 2.76266
1.37376 2.71968
1.36944 2.67910
1,.36525 2.64067
1.32881 2.34274
1.29972 2.14253
1.27569 1.99682
1.25538 1.88527
1.23792 1,79675
1.22272 1.72461
1,20936 1.66457
1,19749 1.61377
1.13688 1.57018
1.12090 1.33214
1,08864 1.23278
1.06962 1,17841
1.05715 1.14424
1.04837 1.12086
1.04138 1.10389
1.03690 1.09104
1.03295 1.08097
1.02976 1.07289
1.01999 1.04852
1.01503 1.03631
1.01203 1.02900
1.01003 1.02413
1.00860 1.02066
1.00752 1.01806
1.00669 1.01604
1.00602 1.01443
1.00301 1.00719
1.00150 1.00359
1.00100 1.00239
1.00075 1.00179
1.00060 1.00143
1.,00030 1.00072

p = 0.99Y

10.0000
9.88537
3.46536
9.00664
8.24719

7.63780
7.13463
6.71041
6.34692
6.03132

5.75429
5.50886
5.28967
3.92428
3.24255

2.82739
2.54575
2.34115
2.18529
2.06234

1.96273
1.88030
1.47331
1.32194
1.24300

1.19469
1.162160
1.13882
1.12127
1.10762

1.09670
1.06404
1.04781
1.03813
1.03170

1.02713
1.02370
1.02105
1.01893
1.00942

1.00470
1.00313
1.00235
1.00188
1.00094
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o = 1.00
541.951
119.173

63.7505
34.6171

24.4080

19.12878
15.37818
13.66457
12.05448

10.82757
9.85968
9.07537
5.38887
4.06720

3.37438
2.94374
2.64845
2.43267
2.26762

2.13708
2.03113
1.53341
1.35811
1.26857

1.21437
1.17813
1.15224
1.13284
1.11777

1.10575
1.06989
1.05213
1.04155
1.03454

1.02955
1.02581
1.02292
1.02061
1.01025

1.00511
1.00341
1.00255
1.00204
1.00102
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Table 4.2

H-function at quadrature points

m p = 0.10 p = 0.50 p = 0,90 p = 0.99 p = 1.00
0.00544 1,05379 1.41100 3.12200 9.42206  110.295
0.02823 1.05257 1.39847 2.97480 7.73670 25,7072
0.06746 1.05068 1.37936 2.77398 6.10744 12,4203
0,12023 1.04841 1.35711 2.56880 4,91040 7.86778
0.18261 1.04603 1.33453 2.38569 4.09130 5.75490
0.25000 1.04375 1.31352 2.2339% 3.53569 4.60444
0.31739 1.04170 1.29523 2.11403 3.15663 3.91764
0.37977 1.03999 1.28021 2.023006 2.89792 3.48696
0.43254 1.03864 1.26872 1.95744 2.72470 3.21393
0.47177 1.03771 1.26079 1.91406 2.61575 3.04806
0.49456 1,03718 1.25640 1.89067 2.55875 2.96299
0.65629 1.03385 1.22912 1.75444 2.24862 2.51946
1.26884 1,02524 1.16320 1.47862 1.71560 1.82480
2.16585 1.01826 1.11409 1.31037 1.43930 1.49360
3.06287 1.01421 1.08716 1.22844 1.31554 1,35080
3.67542 1.01231 1.07487 1.19313 1.26418 1.29240
3.98107 1.01153 1.06991 1.17921 1.24414 1.26985
4.56644 1.01028 1.00198 1,15735 1.21311 1.23500
5.42365 1.008385 1.05308 1.13334 1.17947 1.19739
6.28086 1.00776 1.04636 1.11557 1.15486 1.17002
6.86623 1.00716 1.04265 1.10588 1.14155 1.15526
7.16373 1.00688 1.04098 1.10155 1.13561 1.14869
7.74432 1.00641 1.03806 1.09402 1.12533 1.13732
8.59453 1.00581 1.03445 1.08478 1.11277 1.12345
9.44474 1.00531 1.03145 1.07717 1.10248 1.11211

10,0253 1.00502 1.02968 1.07271 1.09645 1.10548
10.3212 1.00488 1.02886 1.07062 1.09364 1.10239
10.9004 1.00463 1,02736 1.06656 1.03859 1.09683
11.7486 1.00431 1.02543 1.06202 1.08209 1.089¢9
12,5967 1.00403 1.02375 1.05783 1.07648 1.08357
13.1759 1.00386 1.02272 1.05528 1.07306 1.07978
13.4713 1.00378 1.02223 1.054006 1.07143 1.0779S
14,0499 1.00362 1.02133 1.05182 1.068644 1.07471
14,8972 1.00343 1,02013 1.04885 1.00449 1.07038
15,7444 1.00324 1.01900 1.04621 1.06090 1.06652
16.3230 1.00313 1.01839 1.04456 1.05877 1.06412
16.6182 1.00307 1.01806 1.04376 1.05770 1.06295
17.1964 1,00297 1,01746 1.04228 1.05573 1.06080
18.0432 1,00284 1.01665 1,04028 1.05308 1.05789

18.8900 1,00271 1,01591 1.03846 1.05066 1.05525
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Table 4.2 (continued)

H-function at quadrature points

m o = 0.10 p = 0.50 p = (.90 p = 0.99 p = 1,00
19,4683 1.00263 1,01544 1,03731 1,04914 1.05358
19,7634 1,00259 1.01521 1.03675 1.04839 1.05277
20.3414 1,00252 1.01478 1.03570 1.04700 1.05124
21,1880 1.00242 1.01419 1.03426 1.04509 1.04916
22.0345 1,00233 1,01365 1.03293 1,04333 1.04724
22.6126 1,00227 1.01330 1.03208 1.04221 1.04601
22.9075 1,00224 1.01313 1.03167 1.04166 1.04541
23,4855 1,00218 1,01281 1.,03088 1.04062 1.04428
24,3319 1.00211 1.01236 1.02980 1.03919 1.04271
25,1782 1,00204 1.01195 1.,02879 1,03785 1.04125
25.7562 1.00199 1.01168 1.02814 1.03699 1.04031
26,0511 1,00197 1,01155 1.02782 1.03657 1.03985
26,6290 1,001¢23 1.01130 1.02721 1.03577 1.03897
27.84752 1.00187 1.01095 1.02637 1.03465 1.03776
28.3215 1.,00181 1,01062 1,02557 1.03360 1.03661
23.8994 1.00178 1.01041 1.02506 . 1.03292 1.03587
29,1943 1.0017¢6 1.01031 1.024830 1.03259 1.03550
29,7721 1,00173 1.01011 1.02432 1.03195 1.03480
30.6132 1.00168 1.00983 1.02364 1.03105 1.03383
31.4¢644 1.00163 1.00556 1.02300 1.03021 1,03291
32.0422 1,00160 1.00939 1.02258 1.02966 1.03231
32.3371 1.00159 1.00930 1,02237 1.02938 1.03201
32.9149 1.00156 1,00914 1.02198 1.02886 1.03144
33.7610 1,00152 1.00891 1.02142 1.,02813 1,03064
34,6071 1.00149 1.00869 1.02090 1.02744 1,02988

35,1849 1.00146 1.00855 1.02055 1.02698 1.02939
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calculated in this manner agrees with the exact value which is given

by equation (3-51).

Table 4.3

l'oments of the H-function

o 0 S
0 1.00000 1.00000
0.10 1.02633 1.03025
g.50 1.17157 1.20488
0.90 1.51949 1.70456
0.99 1.81818 2.36345
1.00 2.00000 3.83338

8. RADIOSITY VARIATION INTO CAVITY,

B(x,m) can be determined from the integro-differential equation

(3-26)

éﬁigiml.= - mB(x,m) + %-H(m) J nB(x,n)Jl(n)dn
0
with the initial condition, B(o,m) = H(m). The integro-differential

equation (3-26) takes the form

aBx,m) _ mB(x,m) + %-H(m)@(x) 4-14

X

where from equation (3-60)
o(x) = f nB(x,n)Jl(n)dn .
0

The partial differential equation (4-14) can be expressed as a

system of ordinary differential equations:
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dBl(x)
—g— = - myB,(x) +-% Hyo(x)
dBZ(x)
- = - m282(x) + %-H2¢(x)
) ’ ) 4-15
dBN(x)
—g— = - B (%) + Sie(x)
where
o(x) = S [?1, Bys * & o B&] 4-16
and
Bi(x) = B(x, mi)
4-17
Hy = H(mi) .

The quantity S represents Longman's numerical quadrature with quadra-
ture points Mys Moy = = =y M. Thus B(x,m) and ¢(x) are coupled in
such a manner that B(x,m) must be computed at all quadrature points to
determine the value of ¢(x). In order to obtain B(x,m) at even values
of m, additional differential equations must be solved. ktvaluating
equation (4-14) at el = 0, Mo = 001, m 5= 0.005, « * +, m, =
1000.0 yields

dBjpq (X)

— = = B (%) + 5 e(0)

dB,,, ,(x)
h+2 , o
— 3 = " M () * S H,

@(x)
4-18

dBp (x)
—— = - B () 5 e .
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The dimensionless radiosity &(x) is calculated from an additional

differential equation (3-60)
400 1+ e + § ot

Thus, a system of HN+1 ordinary differential equations must be
solved.

Runga-Kutta Simpson's method (one third rule) [25] has been used
to solve the differential equations for the dimensionless radiosity
B(x,m) and ¢(x). In this method the error is of the order h4, where
h is step size. By using h = 0.05, quite accurate results are obtained
and the method seems to be economical as far as computer time is con-
cerned,

The dimensionless radiosity B(x,m) for m = 0 and m = 1 at various
depths within the cavity is presented in Tables 4.4 and 4.5. Values
of ¢(x) and ¢(x) at various depths in the cavity are listed in Tables
4.6 and 4.7.

The variation of radiosity u(x,m) with the temperature distribu-
tion parameter m is presented in Figures 4.2 through 4.3 for fixed
depths into the cavity of x = 0, 0.1, 0.5, 1.0, 2.0, 3.0 and 4.0.
Each figure has five curves corresponding to p = 0.1, 0.5, 0.9, 0.4Y9
and 1.0. The general trends of these seven plots are

1. The maximum value of the radiosity occurs when the cavity is

isothermal, m = O,
2. The radiosity increases as the reflectance p is increased.
Small changes in p from unity cause large chanqges in U when

m is small.



Table 4.4

Dimensionless radiosity B(x,m) for isothermal cavity

x

[N eN N

ocoCcooCoc coocCco
(] * L ]
NoOCesWw nN=C OO
CcCoOOoCc o

OoC
*
co
o

.90
1.00
1.50
2.00

2.50
3.00
4,00
5.00
6.00

7.00
8.00
10.00
12,00
15.00
20,00

p = 0.1

1.05409
1.05463
1.05681
1.05851
1.06478

1.06978
1.07441
1.07861
1.08235
1.08566

1.08856
1.09108
1.09327
1.10060
1.10440

1.10653
1.10781
1.10919
1.10987
1.11024

1.11047
1.11062
1.11080

p = 0.5

1.41421
1.41846
1.43550
1.45681
1.49895

1.53967
1.57820
1.61400
1.64700
1.67700

1.70416
1.72865
1.75071
1.83241
1.88253

1.91471
1,93623
1.96166

p = 0.9

3.16228
3.18499
3.27657
3.39231
3.62587

3.85864
4.,08700
4.30853
4.,52139
4,72481

4,91855
5.10275
5.27780
6.03348
6.63256

7.11756
7.51627
8.12604
8.56122
8.37916

9.11566
9.29416
9.53599
9.68311
9.80934
9.90543

o = 0.99

10.0000
10.0940
10.4742
10.9575
11,9432

12.9420
13.9409
14.9301
15.9032
16.8561

17.7871
18.6957
19.5823
23.7164
27.4493

30.8651
34.0234
39.7147
44,7318
49.2031

53.2173
56.8403
63.10C1
63.3145
74,5918
80.8500

39
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Table 4.5

Dimensionless radijosity B(x,m) for m = 1.0

X p = 0.10 p = 0,50 p = 0,90 p = 0,99 p = 1,00
0.0 1.02843 1.18688 1.57018 1.88030 2.03113
0.01 1.01873 1.17862 1.56578 1.87918 2.03160
0.05 0.98086 1.14642 1.54896 1.87558 2.03440
0.10 0.93559 1.10795 1.52947 1.87275 2.03970
0.20 0.85145 1.03617 1.49429 1.87094 2.05445
3.30 0.77507 0.97007 1.46207 1.87167 2.07187
0.40 0.70560 0.90851 1.43084 1.87224 2.08920
0.50 0.64235 0.85067 1.39929 1.87106 2.10452
0.60 0.58470 0.73602 1.36668 1.86709 2.11673
0.70 0.53212 0.74420 1.33271 1.85989 2.12533
0.80 0.48417 0.69505 1.29738 1.84946 2.13026
0.90 0.44043 0.64845 1.26092 1.83601 2.13174
1.00 0.40055 0.60434 1.22361 1.81989 2.13014
1.50 0.24842 0.41938 1.03445 1.71299 2.08999
2.00 0.15351 0.28683 0.85938 1.58888 2.02463
2.50 0.09471 0.19486 0.70916 1.46740 1.95564
3.00 0.05841 0.13217 0.58470 1.35591 1.89161
4,00 0.02229 0.06138 0.40103 1.16792 1.78662
5.00 0.00859 0.28052 1.02014 1.70955
6.00 0.00338 0.20052 0.90191 1.65250
7.00 0.00138 0.14626 0.80482 1.60892
8.00 0.00060 0.10858 0.72316 1.57438

10.00 0.00015 0.06251 0.59232 1.52235
12.00 0.03773 0.49151 1.48413
15.00 0.01901 0.37752 1.44151

20.00 0.00711 0.27101 1.35202
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Table 4.6

Dimensionless radiosity ¢(x)

p = 0,10

0.51317
0.50828
0.48873
0.46444
0.41696

0.37196
0.33031
0.29253
0.25880
0.22903

0.20298
0.18029
0.16059
0.09460
0.06041

0.04124
0.02968
0.01726
0.01118
0.00779

0.00572
0.00437
0.00279

p = 0.50

0.58579
0.58154
0.56450
0.54319
0.50105

0.46033
0.42180
0.38594
0.35299
0.32299

0.29584
0.27135
0.24929
0.16758
0.11747

0.08528
0.06377
0.03834

p = 0.90

0.75975
0.75722
0.74705
0.73419
0.70824

0.68237
0.65699
0.63238
0.60873
0.58613

0.56460
0.54414
0.52469
0.44072
0.37416

0.32027
G.27597
0.20822
0.15886
0.12454

0.09826
0.07842
0.05156
0.03521
0.02118
0.01051

p = 0.99

0.90909
0.90814
0.90430
0.89942
0.88946

0.87937
0.86928
0.85929
0.84946
0.83984

0.83043
0.82125
0.81230
0.77052
0.73283

0.69833
0.66643
0.6089%
0.55826
0.51310

0.47255
0.4359
0.37264
0.32005
0.25675
0.18056

41



>

. * o
~No o w = OO0

CoCoOoCoOo COoOOoCOoCo
L]

ccCcooc OO o=

(]
[e0]
[e]

p=0.10

1.03101
1.03112
1.02855
1.01868
0.97843

0.91585
0.83847
0.75394
0.66868
0.58725

0.51243
0.44548
0.38668
0.19426
0.10506

0.06143
0.03838
0.01749
0.00927
0.00545

0.00346
0.00232
0.00118

Table 4.7

Function ¢(x)

p = 0.50

1.20106
1.20270
1.20614
1.20341
1.17594

1,12366
1.05373
0.97368
0.88993
0.80751

0.72935
0.65719
0.59171
0.35563
0.22372

0.14696
0.10008
0.05063

p = 0.90

1.59337
1.59821
1.61788
1.63423
1.64321

1.62411
1.58320
1.52746
1.46324
1.39549

1.32762
1.26174
1.19902
0.93981
0.75393

0.61571
0.50943
0.35867
0.25946
0.19149

0.14359
0.10912
0.06517
0.04047
0.02111
0.00826

o = 0.99

1.89527
1.90401
1.93576
1.96819
2.00929

2.02165
2.01097
1,98384
1.94635
1.90332

1.85818
1.81310
1.76934
1.58181
1.43903

1.32497
1.22983
1.07638
0.95492
0.85459

0.76950
0.69604
0.57525
0.48012
0.37095
0.24740
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p = 1.00

2.04103
2.05129
2.08922
2.12950
2.18655

2.21502
2.22039
2.20909
2.18708
2.15915

2.12867
2,09783
2.0678Y
1.94381
1.35698

1.79315
1.74370
1.67082
1.61858
1.57852

1.54636
1.51969
1.47742
1.44492
1.40746
1.36267
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3. The higher the value of m, the lower is the value of the
radiosity. As m approaches infinity, the radiosity reduces
to zero except at the edqge of the cavity where radiosity
converges to 1.0,

The variations of the radiosity, B(x,m), within the cavity are
presented in Figures 4.9 through 4.13 for p = 0.1, 0.5, 0.9, 0.99 and
1.0, respectively. In each figure, the influence of the temperature
distribution on the radiosity is illustrated by presenting results for
various values of m. For given reflectance p the radiosity exhibits
three different functional variations depending on the temperature
parameter m,

1., For the isothermal case m = 0, the radiosity increases with
depth into the cavity. Starting at the edge of the cavity
with a value of 1//€, the radiosity increases to a value of
1l/¢e.

2. For small values of m, the radiosity starts rising first at
x = 0, then upon reaching a maximum, starts to decrease with
depth into the cavity.

3. For large values of m, the radiosity starts decaying right
from the edge of the cavity and continues to decrease with
depth. The decay of the radiosity is the steepest near the
edge of the cavity.

The variation in the dimensionless radiosity ¢(x) with the depth

in the cavity has been plotted in Figure 4.14 for p = 0.1, 0.5, 0.9,
0.99 and 1.0. At p = 1.0, the radiosity ¢(x) is constant at a value

of unity. Figure 4.14 also shows that the larger the value of p, the
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Figure 4.9 - Dimensionless radiosity B(x,m) variation within the

cavity for p = 0.1



Figure 4.10 ~ Dimensionless radiosity B(x,m) variation within
the cavity for o = 0.5
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Figure 4.11 - Dimensionless radiosity B(x,m) variation within the
cavity for p = 0.9
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larger is the magnitude of the radiosity ¢(x). The maximum dimension-
less radiosity occurs at the edge of the cavity and is equal to %ao.
At o = 0.1, 0.5, 0.9 and 0.99, ¢(x) decreases with depth into the
cavity. The trend of all the curves in Figure 4.14 is that for large
x the radiosity ¢(x) approaches zero.

For a uniform temperature distribution m = 0, values of the local
apparent emittance [ea = eB(x,0)} for € = 0.9, 0.5, 0.1 and 0.01 are
listed in Table 4.8. Also the local apparent emittance is presented
graphically in Figure 4.15. Regardless the value of p, the local
apparent emittance approaches the value of unity deep within the
cavity. An apparent emittance of unity means that the surface pears
to be a black body. Obviously, from the curves in Figure 4.15, the
larger the value of emittance, £, the faster the apparent emittance

€a approaches unity.
C. LOCAL HEAT FLUX.

The values of local heat flux are calculated using equation (3-12)

q(x,m) =-;— e”™ - eB(x,m)

For m = 0 and 1,0, the values of local heat flux are listed in Tables
4.9 and 4.10 and presented graphically in Figures 4.16 and 4.17,
respectively. In the case represented in Figure 4.16 the surfaces of
the cavity are held at a uniform temperature. As seen, the larger the
value of p the larger, the magnitude of the heat flux at the edge of
the cavity. The magnitude of the local heat flux at the edge of the

cavity for all p is larger for the m = 1.0 case. The curves in Figure



Table 4.8

Apparent emittance €4 for isothermal cavity

X p = 0,10 p = 0,50 p = 0.90 p = 0.99
0.0 0.94868 0.70710 0.31623 0.10000
0.01 0.94917 0.70923 0.31850 0.106094
0.05 0.95113 0.71775 0.32766 0.10474
0.10 0.95356 0.72840 0.33923 0.10957
0.20 0.95830 0.74947 0.36259 0.11943
0.30 0.96280 0.76983 0.38586 0.12942
0.40 0.96697 0.78910 0.40871 0.13941
0.50 0.97075 0.80703 0.43085 0.14930
0.60 0.97411 0.82350 0.45214 0.15933
0.70 0.97709 0.83850 0.47248 0.16856
0.80 0.97970 0.85208 0.49185 0.17787
0.90 0.98197 0.86432 0.51027 0.18696
1.00 0.98394 0.87535 0.52778 0.19582
1.50 0.93054 0.91620 0.60335 0.23718
2.00 0.99396 0.94126 0.66320 0.27449
2.50 0.99588 0.95735 0.71176 0.30865
3.00 0.99703 0.96611 0.75163 0.34023
4,00 0.99827 0.98083 0.81260 0.39715
5.00 0.99888 0.85612 0.44732
6.00 0.99922 0.88792 0.49203
7.00 0.99942 0.91157 0.53217
8.00 0.99956 0.92942 0.56840

10.00 0.99972 0.95360 0.63108
12,00 0.96331 0.66314
15,00 0.98093 0.74592

20.00 0.99054 0.80850
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Figure 4.15 - Apparent emittance versus depth into the cavity
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Table 4.9

Local heat flux q(x,m) for isothermal cavity

X p = 0.10 p = 0.50 p = 0.90 n = 0.99
0.0 0.51317 0.58579 0.75975 0.90909
0.01 0.50828 0.58154 0.75722 0.90814
0.05 0.48873 0.56450 0.74705 0.90430
0.10 0.46444 0.54319 0.73419 0.89942
0.20 0.41696 0.50105 0.70824 0.88946
0.30 0.37196 0.46033 0.68237 0.87937
0.40 0.33031 0.42180 0.65699 0.86928
0.50 0.26253 0.38594 0.63238 0.85929
0.60 0.25880 0.35299 0.60873 0.84946
0.70 0.22903 0.32299 0.580613 0.83984
0.80 0.20298 0.29584 0.56460 0.83043
0.90 0.18029 0.27135 0.54414 0.82125
1.00 0.16059 0.24929 0.52469 0.81230
1.50 0.09460 0.16758 0.44072 0.77052
2.00 0.06041 0.11747 0.37416 0.73283
2.50 0.04125 0.08528" 0.32027 0.69833
3.00 0.02968 0.06377 0.27597 0.66643
4.00 0.01726 0.03834 0.20822 0.6089%4
5.00 0.01118 0.15986 0.55826
6.00 0.00779 0.12454 0.51310
7.00 0.00572 0.09326 0.47255
8.00 0.00438 0.07843 0.43596

10.00 0.00279 0.05156 0.37264
12.00 0.03521 0.32005
15.00 0.02118 0.25665

20.00 0.01051 0.18056



Table 4,10

Local heat flux q(x,m) for m = 1.0

X p =0.10 o = 0.50 n = 0.90 p = 0.99
0.0 0.74410 0.81312 0.93665 0.99111
0.01 0.73195 0.80148 0.92608 0.98107
0.05 0.68456 0.75604 0.88481 0.94139
0.10 0.62805 0.70172 (0.83543 0.89506
0.20 0.52422 0.60129 0.74367 0.80810
0.30 0.43258 0.51157 0.66068 0.72940
0.40 0.35277 0.43213 0.58582 0.65818
0.50 0.28415 0.36239 0.51844 0.59376
0.60 0.22582 0.30161 0.45794 0.53549
0.70 0.17673 0.24896 0.40368 0.48281
0.80 0.13575 0.20361 0.35510 0.43519
0.90 0.10179 0.16469 0.31164 0.39213
1.00 0.073383 0.13141 0.27280 0.35321
1.50 0.00044 0.02687 0.13298 0.20808
2.00 -0.02829 -0.01616 0.05488 0.12065
2.50 -0.03155 -0.03069 0.01241 0.06809
3.00 -0.02784 -0.03260 -0.00965 0.03659
4.00 -0.01742 -0.02475 -0.02421 0.00670
5.00 -0.00997 -0.02368 -0.00350
6.00 -0.00567 -0.01953 -0.00661
7.00 -0.00331 -0.01524 -0.00721
8.00 -0.00202 -0.01169 -0.00696

10.00 -0.00087 -0.00689 -0.0059%4
12.00 -0.00418 -0.00496
15.00 -0.00211 -0.00381
20,00 -0.00079 -0.00253
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Figure 4.17 - Local heat flux form = 1.0
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4.17 have steeper slopes when compared with the curves in Figure 4.16.
ilotice in Figure 4.17 the curves dip below zero and then converge to
zero. The negative value means that the flux incident on the surface
is greater than the flux leaving the surface. The emission at the
location where the negative heat flux occurs is low regardless the
emittance because the temperature is low. Also if the reflectance p
of the surface is large, most of the heat flux incident on the loca-
tion would be reflected back. Consequently, the smaller the value of
p the larger the magnitude of negative heat flux.

Figure 4.18 exhibits the variance in local heat flux q(x,m) with
depth into the cavity for p = 0.9. The curves correspond to m = 0,
0.1, 1.0 and 10.0. These values are presented in Table 4.11. As the
temperature distribution parameter m increases the local heat flux at
the edge of the cavity increases and the decay of the heat flux with
depth increases. All the curves seem to converge to zero but at
various depths into the cavity and the slopes of the curves decrease

with the increase in the value of m,
D. HEAT TRANSFER.

The overall heat transfer of the cavity is determined by equations

of the form
Q(m) = 1 - Hgm}fe-
om
and
o
Q(0) = —-
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Figure 4,18 - Local heat flux for p
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Table 4.11

Local heat flux q(x,m) for p = 0.9

X m= 0.00 m= 0,10 m= 1,00 m = 10,00
0.0 0.75975 0.81770 0.93665 0.99190
0.01 0.75722 0.81478 0.92608 0.89669
0.05 0.74705 0.80305 0.88481 0.59822
0.10 0.73419 0.78333 0.83543 0.35941
0.20 0.70824 0.75892 0.74367 0.12664
0.30 0.68237 0.72988 0.66068 0.04104
0.40 0.65699 0.70153 0.58582 0.00966
0.50 0.63238 0.67411 0.51844 -0.00171
J.60 0.60873 0.64775 0.45794 -0.,00568
0.70 0.58613 0.62252 0.40368 -0.00692
0.80 0.56460 0.59844 0.35510 -0.00714
0.90 0.54414 0.57548 0.31164 -0.00700
1.00 0.52469 0.55360 0.27280 -0,00673
2.00 0.37416 0.38176 0.05488 -0.00380
3.00 0.27597 0.26765 -0,00965 -0.00284
4.00 0.20822 0.18850 -0.02421 -0.00199
5.00 0.15986 0.13224 -0.02368 -0,00144
6,00 0.12454 0.09165 -0.01953 -0.00106
7.00 0.09826 0.06210 -0.01524 -0.000379
8.00 0.07843 0.04047 -0.01169 -0,00060
9,00 0.06327 0.02460 -0,00909 -0.00046

10.00 0.05156 0.01297 -0,00689 -0.00036
11.00 0.04241 0.00448 -0,00535 -0.00028
12.00 0.03521 -0.00165 -0.00418 -0.00022
13.00 0.02948 -0.,00604 -0.00330 -0.00018
14.00 0.02489 -0.00911 -0.00263 -0.00014
15.00 0.02118 -0.01118 -0,00211 -0.00011
16.00 0.01816 -0,01251 -0.00171 -0.00009
17.00 0.01568 -0.01329 -0.00139 -0,00008
18.00 0.01364 -0.01365 -0.00114 -0.00006
19.00 0.01193 -0.01370 -0,00095 -0.00005
20.00 0.01051 -0.01353 -0.00079 -0.00004
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The values of heat transfer Q(m) for various values of m have been

computed for p = 0.1, 0.5, 0.9, 0.99 and 1.0 and are presented in

Table 4.12 as well as in Figure 4.19. The general trends of the

curves are as follows:

1.

Small changes in p from unity cause large changes in Q(m)
when m is small, For large m the changes are small,

The dimensionless heat transfer Q(m) increases as the
reflectance p of the surfaces of the cavity is increased,
The larger the value of m, the lower the value of heat
transfer Q(m),

The maximum heat transfer occurs when the surfaces are held
at uniform temperature, i.e., m = 0. For very large value

of m the dimensionless heat transfer approaches zero.

The values of overall apparent emittance [Eé=2€Q(m)/oTr4] of the

cavity are listed in Table 4.13. For isothermal surfaces and p = 0.5

and 0,1 the values of Eg are in agreement with those of Sparrow (21,

p. 1671.



m

0.000
0.001
0.005
0.010
0.020

0.030
0.040
0.050
0.060
0.070

0.080
0.090
0.100
0.200
0.300

0.400
0.500
0.600
0.700
0.800

0.900
1.000
2.000
3.000
4.000

5.000
6.000
7.000
8.000
9.000

10.000
15.000
20.000
25.000
30.000

35.000
40.000
45.000
50.000
100.000

200.000
300.000
400.000
500.000
1000.000

p = 0,10

U.54299
0.53651
0.53421
0.52700
0.51729

0.50804
0.49961
0.49190
0.48455
0.47767

0.47132
0.46512
0.45931
0.41147
0.37570

0.34702
0.32313
0.30278
0.28511
0.26959

0.25579
0.24343
0.16522
0.12539
0.10105

0.08460
0.07273
0.06377
0.05677
0.05115

0.04654
0.03206
0.02444
0.01975
0.01656

0.01426
0.01252
0.01116
0.01007
0.00508

0.00255
0.00170
0.00128
0.00102
0.00051

Table 4.12

Heat transfer Q(m)
p = 0.50 p = 0.90
0.85198 2.69514
0.84791 2.67482
0.33652 2.60675
0.32428 2.53624
0.80345 2.41743
0.78543 2.31611
0.76917 2.22663
0.75424 2.14618
0.74038 2.07300
0.,72738 2.00587
0.71512 1.94389
0.70350 1.88636
0.69246 1.83274
0.60387 1.43977
0.53971 1.19434
0.48976 1.02375
0.44926 0.89739
0.41552 0.79966
0.38686 0.72164
0.36214 0.65780
0.34055 0.60454
0.32150 0.55941
0.20741 0.32152
0.15347 0.22598
0.12183 0.17426
0.10099 0.14181
0.08623 0.11955
0.07522 0.10332
0.06670 0.09096
0.05991 0.08125
0.05437 0.07341
0.03717 0.04951
0.02823 0.03735
0.02275 0.02998
0.01905 0.02504
0.01639 0.02150
0.01438 0.01883
0.01281 0.01676
0.01154 0.01509
0.00581 0.00757
0.00292 0.00379
0.00195 0.00253
0.00146 0.00190
0.00117 0.00152
0.00058 0.00076

p = 0,99

11.8172
11.5788
10.8007
10.0340
8.85257

7.95354
7.23579
6.64563
6.14997
5.72681

5.36074
5.04056
4.75790
3.06854
2.27523

1.81126
1.50591
1.28937
1.12766
1.00223

0.90205
0.82017
0.43064
0.29219
0.22114

0.17788
0.14878
0.12787
0.11210
0.09980

0.089393
0.06028
0.04521
0.03621
0.03020

0.02589
0.02267
0.02015
0.01314
0.00908

0.00454
0.00303
0.00227
0.00182
0.00090
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p = 1.0U

1000.00
200.000
100.00u

50.0000

33.0000
25.0000
20.0000
16.6667
14,2857
12.5000
11,1111
10.G6000
5.00000
3.33333

2.50000
2.00000
1.66667
1.42857
1.25000

1.11111
1.00000
0.50000
0.33333
0.25000

0.20000
0. 16666
0.14286
0.12500
0.11111

0. 10000
0.06667
0.05000
0.040600
0.03333

0.02857
0.02500
0.02222
0.02000
0.01000

0.00500
0.00333
0.00250
0.00200
0.00100
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Figure 4.19 - Heat transfer Q(m) versus m
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m

0.000
0.001
0.005
0.010
0.020

0.030
0.040
0.050
0.060
0.070

0.080
0.090
0.100
0.200
0.300

0.400
0.500
0.600
0.700
0.800

0.900
1.000
2.000
3.000
4.000

5.000
6.000
7.000
8.000
9.000

10,000
15,000
20.000
25.000
30.000

35.000
40,000
45,000
50.000
100.000

200.000
300.000
400.000
500,000
1000.000

p = 0.90

0.53903
0.53496
0.52135
0.50725
0.48349

0.46322
0.44532
0.42923
0.41460
0.40117

0.38878
0.37727
0.36655
0.28795
0.23887

0.20475
0.17948
0.15993
0.14433
0.13156

0.12091
0.11188
0.06430
0.04520
0.03485

0.02836
0.02391
0.02066
0.01819
0.01625

0.01468

0.008902
0.007469
0.005996
0.005008

0.004229
0.003767
0.003351
0.003018
0.001514

0.000758
0.000505
0.000379
0.000303

Table 4.13
Overall emittance Ea
p = 0.10 p = 0,50
0.97738 0.85198
0.96572 0.84791
0.96158 0.83652
0.95039 0.82428
0.93113 0.80345
0.91447 0.78543
0.89930 0.76917
0.88542 0.75424
0.87219 0.74038
0.85980 0.72738
0.84838 0.71512
0.83722 0.70350
0.82676 0.69246
0.74065 0.60387
0.67625 0.53971
0.62463 0.48976
0.58164 0.44926
0.54500 0.41552
0.51320 0.38686
0.48526 0.36214
0.46042 0.34055
0.43817 0.32150
0.29740 0.20741
0.22571 0.15347
0.18189 0.12183
0.15227 0.10099
0.13092 0.08623
0.11480 0.07522
0.10220 0.06670
0.09208 0.05991
0.08377 0.05437
0.05771 0.03717
0.04400 0.02823
0.03554 0.02275
0.02981 0.01905
0.02567 0.01639
0.02254 0.01438
0.02009 0.01281
0.01812 0.01154
0.00915 0.00581
0.00460 0.00292
0.00307 0.00195
0.00230 0.00146
0.00184 0.00117
0.00092 0.00058

0.000151

p = 0.99

0.23634
0.23157
0.21601
0.20068
0.17705

0.15907
0.14471
0.13291
0.12300
0.11454

0.10721
0.10081
0.09516
0.06137
0.04550

0.03622
0.03012
0.02579
0.02255
0.02004

0.01804

0.016403
0.008612
0.005843
0.004422
0.003557
0.002975
0.002557
0.002242
0.001496

0.001898
0.001203
0.000804
0.000724
0.000603

0.000517
0.000453
0.000403
0.000362
0.000181

0.000090
0.000060
0.000045
0.000036
0.000018
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V. CONCLUSIONS AND RECOMMENDATIONS

Radiant interchange in a non-isothermal rectangular cavity has
been investigated in the course of this work. The surfaces of the
cavity have been considered to be gray diffuse with non-uniform
radiosity. Application of Ambarzumian's method has yielded closed-
form relations for the radiosity, heat transfer and apparent emittance
of the cavity in terms of universal functions. This is the first time
this approach has been used to determine the radiative heat transfer
between surfaces. The investigation is made in such a way as to
include many different thermal boundary conditions.

Some specific conclusions are summarized as follows:

1. The values of radiosity at the edge of the cavity and the
overall heat transfer are found without determining the
radiosity inside the cavity. The H-function for the isother-
mal cavity has the value equal to 1/Ve,

2. Small changes in p from unity cause enormous change in the
value of the H-function for small m whereas for large m the
H-function approaches unity for all p.

3. The H-function, radiosity and heat transfer are maximum for
an isothermal cavity.

4. Deep within the cavity little heat transfer between the
surfaces takes place and the cavity appears to be a black
body.

5. When the cavity is non-isothermal, negative heat fluxes occur.
The smaller the value of p the larger the magnitude of the

negative heat flux.
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A number of radiative transfer problems have evolved during the
course of this investigation. Some worthy of further study are
listed below:

1. Radiant interchange between non-isothermal surfaces with

other one-dimensional geometries.

2. HNon-gray surfaces.

3. Surfaces with directional properties.

4, Two-dimensional geometries.



10.

11,

12,

13.

14,
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