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.A.BST.BACT 

The discussion is divided into three parts. Part I describes a pro­

cedure for determining the mining rate that gives the minimi.nn amortization 

tonnage required of an ore body, and the a.mount of that tonnage. The basic 

idea 'is that amortization tonllage is equivalent to the estimated capital 

costs, including interest, ~vided "by the estimated operating profit per 

ton • .Both capital costs a.nd operating profit per ton can be expressed as 

functions of mining ra.te. by making use of empirical equations. T'nerefore, 

amortization tonnage can be expressed as a function of mining rate. The 

amortization tonnage is caJ.culated for a series of mizµng rates, one of 

which will indicate a minimum tonnage.-

Part II describes a procedure for calculating the optimura mining 

rate to obtain maximum present value of an ore body, '",hen mining rate is 

the only variable. An expression is derived l-rhich gives present vaJ.ue 

in terms of mining rate, and this expression is solved using various rates. 

The results are plotted, and the resulting graph will reveal a maximum 

present value at one mining rate. 

Part III shorrs how optimum operating conditions .for m?,Xiznum pre­

sent value can be detennined when mining method, mining sequence, milling 

method, cut-off, and mining rate are variable. The procedure consists 

essentially of calculating the present vaJ.ue for all practicaJ. corabinations 

of the above variable·s, and_ selecting the combination that gives the high.­

est present value. If desired, cut-off can be eliminated as one of the 

variables by making it equivalent to the operating and capital cost of 

mining a ton of ore. 
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INTRODUCTION 

STATEi{ElfT OF THE PROBL:EM. 

The problem is to outline two procedures. T'ne first is a pro-

cedure for calculating the mini.mun amortization tonnage required of an 

ore body. An amortization tonnage is the amount of ore of a certain 

grade that an ore body must contain to rep~ the capital cost of mining 

it. Tb.is tonnage is not constant for a;n.y given ore body but rather is a. 

function of the mining rate. As the mining rate increases, the operating 

cost usually decreases, owing to im1roved efficiencies at higher out:puts. 

If the grade remains constant, this results in an increase in opera.ting 

profits. However, capital costs also increase with mining rate, because 

the required plant capacity increases, and the combined effect is to give 

a definite minimum amortization tonnage at a certain mining rate.· T'ne 

procedure outlined allows the determination of this rate and tonnage, 

under conditions most likely to be found in practice. 

The second procedure is one for calculating the maximum present 

value possible for an ore body. The factors that affect the present 

value of an ore body are complex, and can be divided into two groups: 

l. Those beyond tho control _ of the engineer. 

a. Marketing factors. 

b. Nature of the ore body, and other :physical 
factors (i.e., location) that apply. 
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2. Those under the control of the engineer. 

a. Mining and milling methods. 

b. Mining rate. 

c. Cut-offs, or blending ratios. 

d. Mining sequence. 

To get an idea of the complexity of the subject, consider an assay wall 

type deposit. The cut-off determines the reserves, the reserves deter­

mine .the mining rate, and the mining rate determines the cost, which in 

turn determines the cut-off. When it is also realized that several. 

mining methods may be equally applicable ( each with different recoveries 

and costs) and that the absolute maximum mining rate for each method is 

not necessarily the best, then the complexity of the problem becomes 

apparent. This is without even considering the first group of factors. 

UiPORWfCE OF THE Su.BJECT. 

A knowledge of the amortization to~ge, and present value, is 

essential in the developnent of mineral properties. Amortization tonnage 

is most important in the exploratory stage.. It gives a goal to be proven 

or disproven by exploratory development as rapidly a.nd as cheaply as 

possible, keeps exploration expenditures within reasonable limits, and 

gives assurance that ·capital investment is in line with Qre reserves. 

Naturally, the minimum amortization tonnage is of the most interest to 

the engineer at this stage. 

Present value is importallt when proven ore reserves exist. It is 

the best measure of the weal th of the rese.rves, ( 1) , ( 2) , ( 3) , ( 4) and 

operating conditions must b.e chosen to give the maximum possible present 

value for the ore bo~. 
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As these two items are so important, and as the factors that affect. 

:fuem are so complex (especially for present value), it is desirable that 

they be calculated by systematic and logical procedures, such as outlined 

here. This will reduce the possibility of errors, and greatly speed_the 

work. 

BEA.SONS FOR ITS SELECTION. 

The importance of knowing amortization tonnage is well known, and 

the rie~essity of planning for .maximum present value is often mentioned in 

the literature, yet the writer knows of no published work that shows how 

to calculate a minimum amortization tonnage, or gives a system for calcula­

ting maximum :present value. As the writer's speciaJ. interest is in 

mineral property development, it was not long before this lack became 

awarent, so it was decided to do something about it, .the result being 

this thesis. 

The procedure for calculating minimum amortization t·onnage makes 

use of rudimentary empirical equations. While no claim is made that these 

equations hold true in practice, they serve to illustrate the method. 

More refined equations could be obtained by means of a.nalyticaJ. geometry, 

(5), a.nd while their use is not absolutely necessary, there is always the 

interesting possibility that a general expression linking two variables 

(i.e., mining rate, and operating cost per ton) may be .found, under more 

or less defined conditions. This would be of great assistanc·e in later 

work~ 
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RillVI],W OF LITEPATU"il 

An article by H. M. Calla\orccy- ( 6) is interesting as it introduces 

a raa.thematical expression to show the inverse proportionality between 

operating cost per ton, and.mining rate. This is also done in the proce­

dure.outlined here for calculat~ng minimum amortization tonnage, . but in 

this case the expression is different, as is its purpose, a,LLd its sphere 

of application. 

Ur. Callawa;r is concerned with the ef!ect on cut-off grade of 

reductions in mining rate, whicb. often occur during periods of reduced 

metal prices when operators try to mine high.er grade ore. He ~ows that 

a reduction of mining rate on an established ~roperty will increase 

mining co.sts, and hence will increase· cut off grade, due to the eleaent 

of fixed costs. He gives a method whereby the increase in grade necessary 

to balance a given reduction in tonnage can be calculated. The expression 

for cost per ton in terms of mining rate is: 

c = ~ f b. 
m 

Where O = cost per ton. 
a= fixed costs for the ~eriod of one month. 
m = tons mined and millea per month. 
b ~ variab~e cost per ton.· 

. In order to break even, the revenue from a ton of ore must exactly equal 

the cost of Llining and milling that ton, which leads to the expression: 
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~rnere 

R = recoverJ grade. 

SP = market price. · 

From this, Mr. Callaway gets the expression: 
!!:. f b 

R=m 
-s""'"p-

which is used to calcula. te the increase in grade necessary to of!set a 

given decrease in tonnage. 

In the :pa.rt of the present discussion dealing with amortization 

tonnage, the purpose is to pick the mining and milling rate tha.t gives · 

the least amortization tonnage required of an ore body, as yet tmdevel-

oped. In this case, Mr. Callaway• s formula for cost per ton in. terms 

of mining rate is not applicable. It employs fixed costs, such as de-

precia.tion, which suggests a fixed plant capacity, the variations in 

mining rate occurring by operating at various levels under full capacity. 

What is required in the present case is a formula linking cost 

to rate on a series of possible plants, each operating at full ca:pa.city. 

The expression used is: 

Where 

C • total operating cost, mining and milling, over the :period 
of one year. Includes taxes. 

T = tons mined and milled per annum. 

k & n = constants. 
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k & n are evaluated in a particular case by estimating the cost per ton 

at two different filining rates, substituting in the general expression to 

get two equations that are solved fork & n. 

With regards to blending high and low grade ores, an article PY 

E. T. Wood ( 7) is interesting. Hr. Wood gives a fomula which can be 

used to calculate the ad.di tiona.l dollars to be gained per ton of high grade 

uranium ore by blending with low grade. The formula is: 

Where: 

95A13 ( lf R) - 95AH - R( !L'MC - £ f 3 .oo) = $/Ton H 
T 

AB= assaJ" of blended mix. 

A.ii = ass~ of high grade ore. 

R = ratio of low grade tons blended with each ton of high grade. 

'IMC = total mining cost for high grade tons only. 

C = total fL~ed dollar investment. 

Ta tons of high grade ore. 

This formula only applies to ores sold under the AEC Circular 5, and when 

AH & A:s lie between O .20 and O .5°'; u3o8 • Tl1.e article states that it can 

be shown by the equation that wittl specific grades of ore available for 

blending, the maximUil additional dollars to be gained by blending is 

realized at a blended grade of O .20,J. Using a. blended grade of O .20r; 

u
3
o8 , the formula is equated to zero, and blending curves plotted to 

show the break even point at different mining costs for various assays 

of high grade, AH, in terms of either "R0 , or the assay of the low 

grade, "AL •11 '°'H, A_t, and R are related in a. nomogra.ph, so that if the 

value of any two are known, _the value of the third can be found. 
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Figures land 2 illustrate the blending curves, and Figure 3 re­

lates "R", 11A1
11 and 11.Air"· The following example illustrates the use of 

figu.res l to 3. Assume the available high grade to ~ssay O .4o5~ U30g, · 

and the mining cost to be $S.OO per ton, including administrative costs. 

The break even value of 11 R11 is determined to be 2.37 from Figu.re 1, and 

consequently "AL" to be 0.115% u3o8 from Figure 3., or using Figure 2., 

this cut-off value of 11~ 11 is determined directly to be O .115,; U30g·, and 

the 1:atio 11 R11 , 2.37 is obtained°_ from Figure 3. In other words, if 2.37 

tons of 0.115% u3og were mined and blended with one ton of o.l!D';·u3og, 

the same dollar income would be realized as mining only the one ton of 

o.~ u3o8 • If, however, low grade material.assaying more than 0.115% · 

U30g is available, blending will return a greater profit than mining the 

high grade alone. 

l,!r. Wood also includes in his article a nomograph showing the 

additional dollars to be gained by blending one ton of ore _of 0.20 to 

0.50 percent with ore below 0.20 percent in grade. Blend ass~ 0.20 

percent. The total dollars to be gained by blending any specific ore 

bo~ is obtained by multiplying the dollars read from the graph by the 

tons of high grade ore in the ore bo(cy'. 



0.30 o.40 o.so o.eo 0.10 0.80 0 .90 
VALUES AH •/• U30a 

Fit. I-Blending is profitable only for values of "R" to left 
of DMC or direct mining cost line. Assay of blend is 0.20 
pct U.08• Note that equation changes for values of high 
grade ore above 0.50 pct (see text). 

Figu.re !-Blending curve, showing break even point in terms of R. 

(after Wood) 
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As· with Mr. Ca.llawl\Y°• s article, Mr. Wood• s article refers to an 
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established mining 09eration, with a specific total fixed dollar invest-

ment. It is this fact that under certain conditions raa.lces blending pro-

fitable, the decrease in average grade being offset by decrease in costs 

at the higher tonnage, due to the elenent of fixed costs. Hr. Wood's 

treatment is rather limited when it comes to considering blending in 

relation to present value, which is the im1)ortant criteria ir;i. these 

discussions. Being based on totaJ. fixed dollar invest:aent as it is, his 

treatment is effectively limited to one rate of production. :Blending 

results in l~rge increases in ore reserves, which must be accompanied by 
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increases in profit per ~on and mining rate, if present value is to be 

a}_)preciably increased. Using 1:ir. Wood Is method, the engineer is denied 

the possibility of increasing present value through an increase ·in uining 

rate. In the present disc::ussion, this is not the case. 

A talk given by J. A. Patterson ( S) at the 195g meeting of the 

A.I.I-I.E. in liew York, gives an interesting account of the manner in which 

U30g cut-off grade is determined for the ore bodies in the .Ambrosia 

Lake, .Hew l-iexico uranium district. Statistical methods are used for 

analyzing ti.le variations in ore reserves; mining costs and profits, with 

variations in cut-o:ff grade, to enable the mine operator to select the 

cut-off that will return the m2.ximum l)rofi t. 

The first · step is to construct a tons of ore vs. cut-off grade 

curve for the ore body under consideration. An e:tample of this curve 

is shown in· Figure 4. 

. T.ona Va Cut off Grade 
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0 0 10 0.10 O.IO 0 .40 0 .50 O.~ 0 . TO O.CO 0.CO 
Cut off Grado, "Y. 

Figure 4-Tons of ore vs. cut-off grade. 

(after Patterson) 
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The nature of the ore bodies, a.nd the sampling methods at Ambrosia 

Lake allow the use of statistical data handling techniques, based on 

sample lengths, which greatly simplify the drawing of this curve. The 

curve shows that ore reserves increase rapidly·with decreasing cut-o~f. 

The tons vs. cut-off curve is then used to draw a.n average grade 

vs. cut-off curve, as illustrated in Figu.re 5. This curve shows that 

average grade decreased with decreasing cut-off. 
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0 0.10 0.20 O.JO O 40 0.50 
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Figure 5-Average grade vs. cut-off grade. 

(after Patterson) 
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A graph is then constructed showing the total cost .of mining the ore 

~oey at various values of cut-off. The total cost is equivalent to the 

cost per ton times the tonnage at the a:ppropriate cut-off. ~ne ·cost per 

ton is estimated separately for each cut-off, b~cause changing cut-of! 

changes the reserves and with them the scale of operation and the cost. 

The gross value of the ore boey at different cut-off values is 

then plotted. The difference between the gross value and the total ·cost 

of mi~ng at each cut-off gives .the profit at that cut-off. Profits are 

plotted against cut-off, and the cut-off t11at gives the maximum profit 

is accepted as optimum. Figure 6 illustrates the variation of total 

mining cost, total gross value, and total profit with cut-off. 

~ 400.000 ______ ..__...,., 'r-+----+---+--~--4----1--...1 

~ 
0 

O IOO,OOO ...._--A---E31,,ll 

0 0.10 O..ZO o..JO OAO Q.IO 

Cut off atade, ~ 

Figure 6-Variation of total mining cost, total gross value, 
and total profits, with cut-off. 

(after Patterson) 



The drawback to the method outlined by t1r. Patterson is that 1 t 

employs total net profits rather than present value, as the basis for 

fixing optimum cut-off, contrary to the statements of most writers who 

sa;r that planning for maximum present value is ·of prime importance. 
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A talk presented by W. 0. Hotchkiss and R. D. Parks at the 1936 

meeting of the A.I .l-1 .:E. meeting in New York ( 9) sets forth in a general 

way some items that can be of use to a mine operator in calculating 

which of several :methods of mining applicable to his own ore body will 

produce the greatest total present value of profits, as a result of its 

individual relative cost, recovery, rate of production, and profit. In 

their talk, they stated that recovery and profits in the mining business 

do not go hand in hand because usually sone part of an ore .body can be 

recovered at a lower cost :-9er ton than a hieher proportion of it, and 

because present value is a better measure of the value of a property 

than total net profits, especially for purposes of cooparison. 

Tb.ey give au e..--car.iple of an ore body, 25; of whici1 is cheaper to 

mine than the remainder and show tha.t even though mining the easy 25i; 

alone results in lower total net profits, it actua.lly gives a greater 

present value than .:ni.ning the two parts of the ore body together. An~ 

other raore general e:x:c.-:i.r.iple brings out this ~oint that tlle total of 

future income does not in any wa:y represent present value, and taat 

present value is largely dependent on the time period during which the 

income is received. E:x:am:ples are given that show that :planning for 

maximum present value rather than maximum total net profits is also of 

advantage to fee interests as well as shareholders, even in the case of 

flat rate royalties. 
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Other variable factors that must be considered by an operator when 

pla..~ning for production are wentioned in the article. For instance, if 

a decline in prices over a series of years is expected it will be an 

incentive to speed production to the extent that there is a demand fo~ 

the product. On the other hand, tlle prospect of an increasing price 

curve may be sufficient to offset the increased present value of a larger 

immediate :production. Of course, the increase in :>resent value broudit 

about. by prompt realization is offset by present expenditures for in­

creased plant capacity, etc. ilot so obvious is the adverse affect on 

present value of the longer deferment period required to build the larger 

plant. 

Under conditions of fluctuating demand there is alweys the :_:>ossi­

bility that added plant capacity, once provided, may be useful during 

only pa.rt of the operating l"ife. Also·, a:r:cy- plant constructed for present 

industrial or metallurgical processes~ be made obsolete by technical 

advancaients. If su~-i advancements can be anticipated, it may well 

affect the policy of operations. For exam:.)le, assume a metal mine is 

operating on a relatively low scale of metallurgical recovery. Tl1.e 

operators expect that over a period of years they will be able to devise 

means of greatly improving the metallurgical work. These :probablo 

improvements may well be so important as to offset other inducements for 

larger present production. The present vaJ.ue of the deferred increase 

in production at the im:?roved recovery r:1ight easily be greater than the 

additional present worth of ~rompt realization at low recovery. 

Other intangible factors that must be considered when planning 

for production are community responsibility, possible future need for 

minerals left in unrecoverable state, and others. 



DISOUSSIOli 

DETERHNilIG MilUHG ?.ATE THAT GIVES HL.UMli'1 
AMORTIZATIOlii TONliAGE, .Alm T'.dE AUOUNT OF 
THAT TOlfNAGE. 

USE OF :EMPIRICAL EQ,UATIONS 

In the example given in this section use is made of elementar.r 

empirical equations to eA-press the relationship between raining rate 
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and various other quantities, such as operating cost per tqn, plant and 

equipment costs, and others. No claim is made that the equations used 

actually apply in practice, their purpose is merely to ·illustrate the 

method of use. On an actual job, equations could be derived that were 

closer to fact by making estimates, to give a.n example, of cost per ton 

at various mining rates, plotting the results and using methods of 

analytical geometry to get the equations linking them. ( 5) 

Actually, the job could be done without the use of empirical 

equations, but it is felt that by employing them in a number of cases 

some general relationship migb.t become apparent which could be very 

useful and time saving in later work. 

Operating cost per ton in terms of mining rate. 

Based on the idea that costs are inversely proportional to mining 

rate, cost per ton is expressed in terms of mining rate by the 



following equation. 

Where 

c = ~.,, 
T 

C = total operating cost, m1.m.ng and milling, over a period 
of one year. Includes norual taxes. 

T = tons nined an~ milled per annum. 

k and n = constants. 
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T"ne consta.."1ts, k and n are evaluated in a;n:y- particular case by estimating 

the 02erati~g cost per ton {Q) at two different uining rates, and substi­
T 

tuting in the general er9ression to get two equations that are solved 

for 1-: & n. To show how this is done, consider the following example. 

The cost of production is estimated at two possible mining rates. They 

are: 

Small :production 

Large production 

nining rate 

797, 953 

Dollars/Ton 

.9 .18 

7.22 

T:1e cost of production includes truces. To estimate the taxes it is first 

necessary to estimate the cost excl'U.sive of taxes. Then in conjunction 

with the value of the ore it is possible to arrive at profits before 

taxes. Knowing the profits and tax regulations, it is possible to 

arrive at total taxes, and taxes :9er ton, ,1hich is added to the origil1c1.l 

operatinG cost per ton. 

A:9plying these figures to the valuation of k and n in t..'1.e general 

expression: 

C • kTn 
T 



9 ~18 • k(l46,184)n (1
2

). 
7 .22 :a k( 797, 953)n ( ) 

log 9.1s • log kf(n log 146,184) (3) 
log 7.22 = log kf(n log 797,953) (4) 

Subtracting ( 4) from ( 3) gives 

log 9.16-log 7.22 = n(log 146,184) - n(log 797,953) 

0.96284 - o.s5s54 = n(log 146,184 - log 797,953) 

0.10430 = n(5.16495 - 5.90195) 

0.10430 • - n(o.73700) 

n = - 0.10430 
0.73700 

ll II - 0.1415 

Substitute n • - 0 .1415 in ( 1) and solve for k. 

9.1s • k(l46,1s4)-0 •1415 

k: 9.18 (146,184) 0 ·14l5 

k :a 49 .39 

Therefore, the equation relating operating cost per ton to mining rate 

in this oaseis 
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The· relationship -between cost per t'on and mining rate is shown diagra-

$aticly in Figui~e 7. 

l . . -·----··----------·-·--------~----------·----------·----------------------------------· 
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Fig. T - OPERATING. JCST PER -TOl\. VS •. 1GNING RATE. 
__ .... . . . . .- -· ···-- ..... - ._ __ ... __ -

According to the la~r of diminishing ~eturns, this curve is not 

strictly correct, but should comm~nc.e an upward swing at _higher :pro-. 

duct ion rates, as shown in Figure 7_. The commencement of the. u:-pward _ 

swing in _unit costs corresponds to the· :point where all available work-

. i 
.. ~ 
~--. 
\.r • 

irig faces are being worked at full effici~ncy. If ~xtra men _a~e.employed 

in the existing working f~ces ~ the ra._t~ . of production will b_e increase~, 

but· at the cost· of efficien~y, resuJ.ting in high.er 'Wlit co~t~~ 
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In tne case of aanu.f'acturing industries which operate non-"..lasting 

assets, a certain amount of inefficiency and higher unit costs ca!l. be 

tolerated if the increased ~roduction results in an over all increase 

in annual profits. In the case of a mine, which operates a wasting asset 

(i.e.. an ore body), t;.lis situation would seen undesirable oecause there 

is only a lillited nuaoer of units of ore available, and anything that 

would tend to reduce the ::_:>rofi t per unit wo'1.la. reduce the total return. 

However, from a :present value :point of view, increased unit costs 

nay be desirable, if they are accom:?anied by increased J;>roduction wll.ich 

would tend to reduce the time required to eri)loi t the ore body, and 

hence increase tJ:1.e :9resent value. T'nerefore, a:ny expression linking 

unit costs and production rates should reflect this upward swing, although 

for l)"~oses of illustratio~. the exnression O = lcTn will be used in 
- T 

this discussion. 

Plant and egui-cment costs in terms of mining rate. 

Aver., simple relationship is used. expressing plant and equi:rnent 

costs as so much :per ton of daily capacity. 

i.e.: 

CpE = total plant and equiprueut costs. 

FpE factor for cost per ton of daily ca.1laci ty. 

T = tons mined and railled per annum.. 

m - wo rkilll; days, :per aruium. -

Cost per foot of hoisting shaft in terms of mining rate. 

Cost per foot is assumed to oe directly proportional to the 

mining rate, because as the mining rate increases, so must the size of 



the shaft a.nd ~ience t.~e cost per :foot. T1ue general expression used is: 

lib.ere c/ f = cost :per foot. 

T = tons m.~ed and milled :;_)er annum. 

k1 & k 2 = constants, evaluated by estimating the cost per foot 
at two rates of production, and suostitutinb these 
values in ti1e general expression to give two 
equations that are solved for k1 & k 2 • 

For example, sup:9ose the cost per foot for a shaft large enough to handle 

100,000 tons per annum is 349 dollars. T"ne same shaft, if it was made 

l2rge enough to hand.le 200,000 tons per a.nnu.ra, could cost 574 dollars 

per foot • T'nen: 

349 = k1· 100,000 f k2 
574 = lq_. 200,000 f k2 

(1) 
( 2) 

Subtracting (1) from (2) gives 

225: k.100,000 

k1 = 0 .00225 

Substituting k1 = 0.00225 in (1) gives 

349 : 225 f k2 

Deferi:1ent period in terms of .mining rate. 

Deferment period is assumed to oe directly proportional to mining 

rate, because generally speaking the greater the raining rate, the oigger 

the 11lant that oust be built, and the longer th.e period required to build 

it. Tue general expression used is: 

Where 

d = years of deferment. 

Ta tons mined and milled per annum. 
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k:3 & ~ = consta.;its, evaluated the same wa;r as k:i a.n.4 k2 • 

C.ALOlJLATI01i O:h1 MI.tiil·illM .AMO?i.TIZATION TONNAGE 

A knowledge of minimum amortization to!Ul;ag~ is very im_portant when 

contemplating the develo:Pine~t of a mineral property because if exploration 

development proves this minimum tonnage not to exist, then work on the 

property should cease. 

Amortization tonnage is obtained by dividing the total estimated 

capital costs (including interest) by the expected ~perating profits per 

ton. Both capital costs and operating profits are functions of mining 

rate, so an expression can be ob~ained for amortization tonnage in terms 

of mining rate • .. Various values of mining· rate are then taken, and the · 

corresponding values for amortization tonnage calcuJ.ated. This ~rocedure 

will discl~se a mining rate ~hat gives an amortization'tonnage that is 

lower . than a:rry other, and this is the one required • . 

Capital requirement's. 

Excl.usive of int ere st. 

Capital will be required for. two purposes, plant and equipment, 

and pre-production development. 

Plant and equipment. As mentioned in the section headed "Em­

pirical. eq_uations, II plant and equipment Will be e'xpressed in terms Of 

tons of daily capacity. ~ne general ·eA']?ress~on used.is: 

the symbols having been defined previously. 

Development. Development includes all shaft sinking, cross: 

cutting, drifting, raising and winzing'necessa.ry to develop enough work-
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ing pla.ces for :full production. For purposes o:f this discussion, it will 

9e assumed that all pre-production development is completed at the seme 

t_ime as the plant is completed, at the end of the def'erment period, so· 

that :full production commences more or less immediately at the end o~ 

this period. 

To estimate the cost of pre-production development, proceed as 

follows: 

Where 

1. Estimate the ma..··dmum _level interval, as determined by· 
ph.ysicaJ. considerations. 

2. Plan on developing one level at a depth which will give 
backs equivalent to the ma...~imum level interval. 

3 •. Estimate the cost of hoisting and ventilation shaf'ts to 
this depth. The cost of ventilation shafts (Cvs) is 
assumed to be constant here, but the cost of the hoisting 
shaft will be a function of' the m;tning rate: 

~s = D (c/f) 

: D ( k1 • T f k2) 

Orts= total cost of hoisting shaft. 

D. = depth. 

( k1 .T f k2) = cost per foot of' hoisting shaft in terms 
of mining rate. 

4. Estin1?,te the cost of' all other pre-production develo:p:raent 
work. 

a. Work, the cost of' which is ~ included in the expression 
for operating cost per ton in terms of mining rate. 
This includes stations and main haulage cross .cuts. 
(symbol, Cxc) . 

b. Work, the cost of which is included in the eXPression 
for operatin~ cost per ton in terms of mining- rate 
(symbol, c1m) • Allowance must be made for the fact 
that this wo~k- is both capitalized and charged as an 
operating expense. Do this by dividing its. cost by 
the amortizat~on tonnage Symbol, At and sub'tracting 
the result from the expression for cost :p_er ton. 
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Total. The total capital cost; exclusive of tnterest, is 

_D(k1.T f k2) f Cvs f Cxc f Cyn f FpE x T 
m 

Interest on canita.l. 

The interest on the _capital invested must be considered as an 

expense. Suppose for simplicity sake the total capital to be invested · 

in the property to bring it into production is II C •11 Suppose also that this 

capital is invested over a deferment period of 11 d11 years, with an equal 

amount being invested each year. Let the nroductive life of the·mine 
. .... . 

equal 11 n 11 years. 

At the end of the deferment period, the capital invested has 

amounted to 
C(lfr)d f C(lfr)d-l ______________________________ f C(lf~) 

d d d 

or: 

~ [<1fr)d. f (lfr)d-l ___________ f (lfj 

T'ne sum of the terms in the square brackets is: 

; Elfr)dfl _ (lf1] 

and the to{al capital cost at jje 

~. ! [<ifr)dfl - (lf~J· 

end of the deferment period 

This is the amount that must be considered as bei:ng invested in tne 

property at the commencement of operations • . For convenience, call it 

QI • 

The interest on C • over the productive life of the ~ine is aJ.so 

an expense, and raust be considered as adding to the invested capital. 



·33 

·To return the principle~ 0 1 , the investor must get back~ ~t the end of 
n 

the first year, and so on down to the last year. In the meantime ·he 

has had: 

QI - . 
n invested for l yee:r. 

c• n invested for 2 years. 

c• 
n inyested for n years •. 

. . . 
There£ore, the value of the investment, with interest is: 

f [<ifr) f (J.fr) 2 ---------~----ci,ir)~ 

Th.a sum .of. the terms in the square brackets is: 

(lfr) 
r 

and the total value of the investment is: 

~
1 

. I(J.fr) • ~J.fr)n-iJ 1 

Gifr)dfJ. - (J.frB] { (J.fr) 

or: 

0 
d.n 

In this expression, .(k
3

T t k4) can be substituted for 11 d 11 .as pointed out 

previously in the section on empi~ical equations, and At can be sub-
T 

sti tuted .for 11n11 where 

n ~ years of productive life. 

At= amortization tonnage. 

T = tons mined and milled per annum. 

Profit per ton. 

The profit per ton is·equivalent to the value of the ore per ton 

minus the cost per ton. 



Where 

p = V-

P = profit per ton. 

V = value of ore per ton. 

kT11 = operating cost per ton in terms of mining rate. 

CND • cost per ton of develoJ;111ent work included both as a 
At capital cost, and as a.n operating cost in the 

expression C = ~. (See page 31) ¥ . 

r"Iethod of calculating minimum a.morti za.tion toAAPl)e. 

The amortization tonnage is equivalent to the estimated capital 

costs (including interest) divided by the expected profit per ton, i.e. 

At ::: f < ki Tf k2) f Ovs ,' Cxc f O,m f ?ii>!· T 

V-~-~ 

,~ [(l,'r)k3T,'k!Jl -(1.,tj , (ltr) [1fr) At/T jJ 
\. - loo 

This expression can be rewritten as 

A/~-~ ft/T . C..~= fD(k:i_ .Tfk2)fCvs f Cxc f °im fF'PE.T 
T l m 

To calculate the minimum amortization tonnage, proceed as follows: 
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l. Pick a value of T. 

2. Substitute in th~ equation to obtain an expression in the 
form 

3. 

4. 

k.• .A 2 - k" -At : kin [(~109 At/T -~ 
t . > • :l 

:By a process of i tera.tion, arrive at the value of 
At that satisfies this expression. Thi~ is the 
amortization tonnage required at that particular rate of 
mining •. 

Rep_~at for several. values of T ,- one of which will 
indicate a minimum amortization tonnage. 

Evaluation of resuJ.ts. 

If' diamond drilling, and/or exploratory underground development 

indicate that an amortization tonnage is contained in the ore body above 

the proposed first level, and if :physical conditions ai;e such as to 

permit mini~g at the aPJ?ropriate rate, then it is possible to proceed 

with develo·pment designed to ·block out .reserves. 

Diamond drilling, and exploratory underground development~ 

indicate that the minimum amortization tonnage does . not occur in the 

ore body above the :proposed :first level, ·or if it· does, that conditions 

are such that :prevent mining at the .necessary rate. There might also be 

.indications that ·if deeper levels were opened u:p, an amortization tonnage 

woul.d not be contained above them~ either •. Under these conditions it 

is clear that it is not possible to develop an amortization tonnage for 

the level interval and mining and mi.lling_ method considered. .The next 

st~p will be to repeat the calculations, using var.ious combinations of 

mining and milling method and level interval, in the hope of finding one 

whiQh will permit the development of a.n amortization tonnage. If no 

suitable combination is found, then the prospect must be-abandoned. 



Anplication. 

Find the minimum amortize.ti.on tonnage for ·the hypothetic~ ore 

body illustrated in Figure 8, given the following de_t~ils: 

V~ue of ore, V = $26.o~/ton 
(Estimated from earlier work) 

Cost per ton, kTll = :.·49 .39~-0 •1 41_5:; 

Cost · o:f normal development, ?ir.o = $141,100~00 
Made up of: 

Drifting, 94o 1 © $60/foot. = 
Sub drifting, 910 1 

@ $28.30/:foot : 
Fingers, . lOlro 1 © $12/:foot = 
Raises, 1290 1 © $20/:foot = 
Vent. drifts 730.1 

@ $28.30/foot = 
Total 

Cost of stations, crosscuts, C:l.O = 

56,6oo-

. 25, 750 
12,500 
25, 750 

20,500 · 

$141,100 

11,000 

Cost of ventilation sha.:ft, Cvs 
(Incl~ded in raise cost.) 

= Zero 

Depth of hoisting ab.a.ft, D = 330 :feet 

= 0.00225 and 124 

(From section on empiricaJ. equations) 

Factor for plant and · equipnent, 

FPE = 1500 

Interest !ate, r - 0.05 · ~ 

k3 & ~ . :: 0.00001 and· l.50 

( From section on empirical equations .• ) 

Table I and II illustrate the oalcuJ.ation of this prol;)lem, and 

Figure 9 illustrates ' the results graphically. It can be seen that the 
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minimum amortization toIµlage is 63,500 tons, ,··.a.nd occurs at ~ mining rate 

of 17,500 tons :per_annu.m. It now.remains to check these resul'f?s against 

the actual ·conditions. From Figu.re S, the tonnage ?f. ore indicated above 

the first level is 312, 000 tons. At 90 percent r~covery, there will-·iie 

280,000 tons of minable ore .with an indicated ave~e grade of $20.00 

per ton. This is·greatly in excess of the required 63,500 tons, and as 

a mining rat·e of 17,500 tons :per annum looks i:mysically feasible, it is 

alright to proceed with development designed .to block out - reserves. If 

the d~velopment showed an average ~rade ·of less than $20/ton, the.figure 

used in the original calculations, the calculations "rould have to be 

repeated to give a new minimum tonnage and ra:te. 

Use of di~ital computer. 

The expression for am?rtization tonnage . shown oil :page 34 would 

lend j ts elf very well to solution by a digital computer. A :program could 

be set ·up which would instruct the machine. to determine the amortization · 

tonnage that.would equate the left and r~gb.t hand sides of ·the expression 

for any given mining rate. Through the use.of a series .of mining 

rates, the ma.chine would supply the amortization tonnage ~or each rate. 

The mining rate ~hich gave the minimum amortization tonnage would then 

be readi~y apParent. 
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-TABLE 11, CALCULATION SHEET FOR DETERVINING r':INH'U?/: .AJl'ORTI ZATION 

TONNAGE, 

left hand side. Rifht hand side. 

At G) ® (» © ® ® 
At(k') · At(k") ©;@ lk 1 v, At/T @-1 xk : @. "' 

A2(0.000186) ~~O~?Ta (1.05)At/5x10 4 
~X1049x106 

75,000. At(2,82) . : . - . ~" .. 0.076 t 
21x104 1.-076 1 ,040,000. 83x104 u3X10 

2 
At(5.64) 

2d,OOO T/,4. 
( 1 • o 5 ) At/ 2 • 5 X 1 0 4 @ X7 ,59x106 

At ( 0 ,000 3:30) O. 1352 65,000. 
1, 4oo.ooo 37x104 · ' · 

102.2x104 
103X104 1 • 1 352 

63,500. k~(0.000435) At(8.05) 17~00T/ A (!,05)At/1,75x104 O. 1936 @ X6.582x106 

1 I 750. 000 S1X104 124X1 o4· 1 • 1 936 127X104 

Ai(0,000579) At ( 11 • 75 '. 
12,000T;i (1.05)At/1.2X10Li @ X5.85~X106 

67,COO. 
0.3143 

2,600,000 79x104 181x104 1.3J43 184X104 . 

· 2 §eOOTJ (1.05)At/o.8x104 @ X5. 3l:l~X106 
78,000. A (0.000765) i\ ( 17. 6) 0.613 

t 
J27X1 c4· 1. 613 328x104 

4.6S0.0.00 1 ~8X1 o4 

At(0.00104) At(28,4) 
5,000T/A (1.05)At/o.5x104 @x ~ .8855x1.06 

1. 927 
110, 000. 12,6oc,ooo 311x104 2,927 4 I 

949X104 94-0X 10 



CALOU.LATIOU .OF O?TIHUM MINING PATE FOR 
MAXIMUM PRESE!.'-l'T · VALUE WHEi\f MINHIG RA.TE 
IS· ·t:a:tr oNiY v.Ami13LE_. · · : · · · 

This section is included because it follows on very naturally 

from the work on amo~tization to_nna,ge, and b~cause. it · is sometimes the 

case in practice that ore reserves are constant and ·of ~i:form grad.a,. 

and that only one minfrl.g and milJ.ing method a~ ~e_q~~~~ ot; mining is_. 

a:pplica"t?le_ or worth considering. In this case, the, procedure outlined 

here can be used: to calcuJ.ate the mining rate that giv~s the -~~xir.~ 

present value. 

42 

In the amortization tonnage example gi~en it was shown th.at 17, 500 

tons p~r annum w~s the minimum mining rate, and mining sh_ouJ.d ~o~ _be. 

carried on at less than thi:s rate. If it is, ·the· amortization tonnag~ 

will rise rapidly, as ,·rill the operating costs, ~d pro:p.i:;s and prE3s~nt 

value will be greatly reduced. However, it ·is not · nece~sarily_ the _upper 

J.imi t to the min~ng rate. If the ·measured ore rese~es ar.e larger than 

the minimum amortization tonnage,· then a higher mining rat~. may be 
. '. . . . . ' . ;. 

justified, because it results in lower operat~ng c _q~i;s_ and· greater. pre­

sent value, up to the point · where ti1.e ~ain in present .·value is. offset 

by ·. the increased :present cost of the ·ext_ra plant .G~l)cl,ci ty. On looking 

~t it ,another ·wa;y, increasing the mining : ~?-te . ~bqve Il)i~~m;um te~ds to 
: ·. ·, . · :-.· ' -

increc1.se both :p~o;"it per ton ( oper~ting) and the amo.rtiz~t:ion ~o~g~. 
. . . 

At th~ beginni_ng of the increase, th~ . g~n in pro:fi t per . ton is . str.o~g~r . 

than the gain in amortization tonnage, wit~_aresuJ..ta.nt increase in pre-



.sent value. If mining rate is increased too much, the gain in amortization 

tonnage will become stronger than the gain in pro:fi.t . per ton, and the re-

sul t will be a reduction. in present va:Lue. In between these two extremes, 

there is a. mining rate that· gives a maximum present value. 

l-I.A.THE·iAT I CAL REL.AT IOl~-SHIPS 

T"ne relationship between . present value, ca:pi tal cost, o:pe~ating 

profits, mining rate, deferment, life, and interest, are illustrated in 

the follm,,ring equation. 

(FlfC) (lfr)d fa (lfr)d-l _____ f O (lfr) = T 
d d d 

.Where J?V 
c 

:: 

-
present value 
capital invested 

= D( kl Tf k2) f 0vsf 0xof 01mt F PE • T 

d = yea:rs of deferment. 
r = interest rate. 

m 

T; tons oined and milled per annum. 
V = vaJ.ue of ore, per ton. 

kTn = operating cost per ton. 
C1m == cost of normal pre-production devel.o~rm1ent. 

R = reserves. 

R 

( 1.fr) T -1 

R 

r( lfr)'E 

The sum of the terms in the left hand side of. the equation, exclusive of 

the first . tern is: 

Therefore: 



.and 

PV : T [ V-(ldll C~~ -n [ :.r~ (l.fr)d 

l·IETHQD OF C.A.LCULA.Tu:G OPTil-iUH 1-i!HL·~·G ?.A.TE. 

-.c 
d 

To obtain the mining rate that gives the maximum present value 

in any particular case, take various values for 11 T11 and calculate the 

corresponding present values. Plotting will reveal a maximUD in the 

mining rate vs. :;,resent value curve, and t:i1e o:_)timUD mining rate and 

?resent value can be read off the curve. 

APPLIC.A.TI01~· 

Suppose in the :previous example, develoµ:ient to the depth of the 

proposed first level was undertaken, and revealed recoverable ore re-

serves of 300,000 tons, with an average value of $19.00 ?er ton. Ti1ese 

are the true figures that have been arrived at by actually blocking out 

the reserves. Tue :9revious figures of 280, 000 tons at $20/ to:1. were 

merely preliminarJ esti~ates based on diamond drilling and/or exploratorJ 

underground develo:;>ment. These preliminary estimates had to be made to 

see if they exceeded the required amortization tonnage. As they did, it 

was permissible to go ab.cad with ~~e blocking out of the reserves, which 

reveals 300,000 tons at ~19/ton. Under these conditions find the nining 

rate that gives tne maximum present value. 

Table III is the caJ.cuJ.ation sheet for this problem, and Figure 10 

shows the results bral)tl.ically. It can be seen that the maximum present 



value is $1,825,000, and occurs at a mining rate of 100,000 tons per 

annum, giving a productive life of three years for this portion_of the ore 
-

body. The optimum mining rate can be established when it is 1:mysically 

possible to do so, and when there is an adequate market for the :f'ul.l pro-

duction. When estimating the opti!Inun mining rate and plant capacity, 

only the measured ore reserves are considered, as only these have an 

element of risk sufficiently small to justify the large capital expen-

ditures required. However, it is generally fairly certain that addition-

al ore exists that would warrant a larger plant. Therefore, development 

should be pushed ab.ead of production until at the end of a given :period 

of time, the measured ore reserves nave increased., and ad.di tional plant 

can be installed, and production increased. 

\~1eu considering additional plant capacity, the present value of 

the increased earnings s.houJ.d outweigh the present cost of the additional 

plant required. The effect on sales volumes and prices shouJ.d be e.x-

amined closely when contem~lating increased production, especially if 

the mine is large. 

USE OF DIGITAL COl.fPU~ER. 

As with the equation for amortization tonnage, the equation for 

present value shown on page 44 could very easily be programmed _ for 

solution by a digital computer. Sucl1. ·a program would enable present 

values for a large number of mining rates to be calculated ra:pidJ.y. 

The optiraum mining rate for maximum present value could then be de-

tenained easier and faster tll.an by oanual solution. 
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USIHG TOTAL lf.ET PRO]'ITS TO GIVE .Alr APPROXIHATIOli TO TiiE o~~Il-iUl,I HINiliG B.A.T~. 

By using an expression .for total net profits instead of present 

value, a rapid approximation to the optimum mining rate can be obtaine~. 

However, this figure is only an api)roximation ·a,nd must not be accepted 

as final, as it is based on_ total net profits, and not present value 

which is .the correct criteria. The mathematical. relationship is: 

TllP = R { V- [ IcrB c~~} ..,. { D (Y-'1. .Tfk2) fcvsfcxcfC1IDfFp!•T J. 
Where 

Tlu> = total net profits. 
V = value of ore per ton. 

kTn = operating cost ~er ton, mining and milling, 
in terms of annual ~roduction. 

Crm = normal develo1nent. 
R = reserves. 

D(k1Tfk2)fCvsfCxofC1mfFpE•T = capital cost of plant and 
m capitalized development. 

This expression can be sim~lified to: 

Ti'lP = R.V - R.ic.rn - D.ki.T - D.k2 - Cvs - Cxc -FPE.T 
m 

Differentiating with respect to T, 

d Tl'1P = n R.kT(n-l) - Dk1 - FPE 
dT m 

To find the value of 11 T11 that gives the raaxir.1~ total net pro:fit, set 

the differential eq_ual to zero, and so~ve the resulting equation for "T11 : 

· n .R.k .~r< n-l) = 



Solving this expression for T gives: 

(l-n) T= n.R.k 

Example: Work the previous example using this expression: 

n= 
D = 

k1 = 
FpE = 

fil ::: 

R= 
1c= 

T = 

-0 .1415 
330 

-0.00225 
1500 

300 
300,000 

49.39 

l. .1415 
0.1415 x 3. 105 x.49.39 

330 x O .00225 7 1500 . 
300 

T • 74,300 tons per annum.. 

According to these calculations, the mining rate that gives the maximum 

tota1 net :profits is 74,300 tons per annum. Referring to Figure 10, a 

mining rate of 74,300 tons per annum gives a present val.ue of $1,760,000. 

T"nus, if 74.300 tons per annum were taken as being the mining rate that 

gave the maxinum present value. it ~ould be in error by 

(1,825,000 - 1,760,000 x 100) = 3.5~ 
l,825,000 

with regard to present value, and 

(100,000 - 74,300 x 100) ~ 25~., 
100,000 

witl1 regard to mining rate. 



DETERlU:HHIG M.AXIMUH PBESENT VALUE 
w·.dEH 1U1Ul'1G RA.TE, lUNI~G .AlID. MILLIHG 
HETHOD, CUT-OFF, .AlID MilIIHG .SEQ,UEliCE 
ABE V.~-.:u.A.:BLE. 

The met..~od ·consists essentially of calculating the present va1ue 

for all possible combinations of cut-off, mining sequence, etc., that · 

apply.in the particular case under consideration, and ado~ting the 

combination that gives tne 6reatest present value for that ore body. 

In this discussion, the various :factoi~s will oe defined, with the aid 

of examples where necessary. T"uen the genera.i method of calculating 

the present values at the various cor.ibinations will be -outlined. ~ne 

combination . that gives the greatest present value is r~dily apparent, 

and should be adopted. 

CUT-OFF. 

Cut-off can be defined t\•!O ways, a_s grade (i.e.. z.; Cu.) l-nlich 

is -the usual way, or as dollars :9er ton, which is more convenient in 

certain cases. 

Grade. 

Cut-off is best e::q:>ressed as grade when th~re is .only qn.e 

valuabl.e constituent in the ore. The_ cut-off grade is illustrated as 

lines connecting :points of equal assay, on sections through the ore 

zone. For example, in a steeply dipping tabular type of ore . zone with 

considerable width, the sections could be vertical longitudinal sections,' 

sa;,,- 50 feet ap~rt. 



Dollars·per ton. 

Cut-off is best expressed as dollars per ton when there are 

severaJ. valuable constitu.ents in the ore. As with grade, dollars :9er 

ton cut-off is best shown as a series of lines .connecting points ·of 

equal per ton dollar value, on a series of sections drawn through tl1e 

ore zone. 

To express cut-off as dollars per ton involves a consideration· 

of the pro:posed uethod of !lilling the ore, and to wh.om the ~rocluct 

will be sold, a.s ,-rell a.s the assays. It is aP.9arent therefore, that if 

several DJ.terna.tive methods for milling and disposing of the ore are 

available, then a series of cut-off sections must be drawn for each 

method. This iuvolves more work than when ex_p·ressing cut-off as grade, 

but it is the most convenient a:9Proach when tl1e ore contains sev~ral 

valuable constituents. T;1e ~allowing e~.:n::>le illustrates how dollar 

:;,:>er ton cut-off sections can be drawn. Suppose a series of sections 

through a le~d, zinc, CO!~~er ore body are available, each section show­

ing the analysis of tD.e ore at lJOints on a regule..r grid. Sup:pose also 

that one 2_:>ossible nethocl of nilling and dis:1osal is to produce a bulk 

conqentrate to be sold to a co~per smelter. Then, taking each section 

in turn; and considering the milling method, estimate the analysis 

of the concentrate that co1..tl.d be produced from the ore at each point on 

the grid. Also, estimate the la.~ of concentration (i.e.' tons of 

concentrate per ton of ore) at each l)oint. Actually, the grade o:f the 

concentrate uill probably be about the same for all :points, de:9end:hng 

more on the m:tlling method tha.n on tll.e grade of the ore, but the ratio 

of concentration will be different at each point, depending largely on 

the ore grade. 

50 
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_w;ith this information, and know1.~g the base charges, payments and 

_penalties at ·t11e smelter, and·u.sing an equitabl~ price for eacl1 consti-

tuent, it is possible to caJ.culate the doJ.J.ar value per ton of .the ore 

· at each grid point on the section. Iso.:.va.lue lines can then be d.rawn .oil 

the section, and the same p~ocess repeated for the other sections. 

Figure ll illustrates this principle diagrarnaticaJ.ly. 

MilHliG SEQ,UElJCE. 

~nis refers to the sequence ··in which the various parts : of the 

ore body a.re mined. Parts of cert?,in ·ore deposits are .of higher grade 

than other parts, just as some parts __ are more acces~ible than others. 

Generally,· the _greatest !)resent value will result when the h~@.1er grade,_ 

more accessible ore is mined first. 

In v.ein mining, there are . two basic sequences: 

1. °1-iining down dl:p, along the :full strike 
length of the ore zon~. 

2. Mining along the strike, outward~:from a shaft 
which -is sunk to' approximately the full d~p.th 
of the ore . zone·. 

All other sequences are combinations .of these two. ~e ·sequence, along 

with the <;mt-off, affects the variation of' revenue per ton. with time, and 

operating cost :per ton with time,.two factors of 1>rime importance when 

calculating present values. 

1-InrnrG 1-IETHODS. 

Mining methods affect operating qosts, and ·recoveries. -They .also 
. . 

affect capital costs, though n_ot to the same extent as milling m·ethods. 

It is quite possible that a ·mining method with a low recovery 

may result in a nigher over all present value, than one with a higher 
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recovery·, if tlie cost of the :first one is · J.ower. Therefore, all mining 

methods that ·a:ppear worthwhile oh.ould be investigated. 

The effect of mining rate on present vaJ..ue·was dealt with in a 

previous part of the discussion. 

001-IBilU:HG THE VAFiABLlDS. 

The procedure to ·oe outlined consists o:f finding the particular 

combination o:f all the above variables that gives the maximum present· 

value for the ore body under consideration. As it is likely that there 

will be many combinations, it will ·oe convenient to make a sheet similar 

to that shown in·Figure 12 for each combination of cut-off," sequence, and 

milling and disposal metb.od. The full re.nge of the other variables, min-

ing rate an.d uining method, can be shown in each sheet. The sh~et illus-

trated in Fig-..:tre 12 is set up for use with ore bodies c~nta~ning several 

vaJ.uable constituents. Care must be taken that tne right cut-off sec-

tions are usecl with the milling ~"'ld disposal method being considered. 

It will be remembered that each method has i·ts own set of sections. 

For ore containing only one valuable constituent., the sar..e set 

of cut-off sections are used for all milling -~d disposaJ. methods~ 

In. the squares lettered A, B, ·o, D, etc., in Figure 12_, the 

following information in table form·will be placed. 

1. · In tl'le case of . ore cont~ining more · than one valuable 
constituent, the average dollar va.lue :per ton or ore· 
mined and milled for each year of life of the mine. In 
the_ case 0£ single va.lU2..ble constituent ore, the average 
grade of ore mined each year, with the tol'l.nage and· grade 
of concentrate produced ·each year £rom this ore. 
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The· cut-off sec·tions i.)lay- a big !>art in su?:-plying this in£ornation, as 

does the oining sequence and rate, and to a lesser extent. the method. 

2. T'ne average operating cost per ton of ore mined and milled 
for each year of life. 

This information comes mainly frou tiie nethod, rate and sequence 

of mining. 

3. Th.e gross operating profit for each year of life o-:f the mine. 

For the multiple vaJ.-µable constituent ore, this is obtained 
by takinc the difference between average revenue and cost 
per ton for each yea:r ~ and muJ. ti:plyin.g this difference . by 
the annual ~roduction. 

In the other case, gross o~erating pro-:fit per year is 
arrived at from a knowledbe of the tons and grade of 
concentrate procluced each year, and the terms of tile 
schedule under wb.ich the product is sold. 

4. The estillated tax for 0c" .. ch ~-'"ear. This depends on tile 
gross operating :)rofit, and the tax schedule in force 
in the area. 

5. T'.ue net O?eratill{; :pi--ofit for each year. Tilis is the 
dif~erence between ~1e gross o~erating ~rofit, and the 
tax. 

,.. 
o. The length of the deferment period, and the capitaJ. 

invested during each ye~ of defe:n::ient. 

:-iETliOD OF CALC1JLA.Tli~G PI;ESEi:J~ VALu.rJ. · 

When the present value is calculated using the values in each 

square on each sheet. the combination of factors that gives t~e max-

irnum possible :}resent value will be apparent. An ex.ample will best 

illustrate the method of calculating present value. 

The estimated net operating profits from a mine during its 

~reductive life of' five years are: 



]. .year 
2 yea:r 
3 year 
4 year 
5 year 

$ 5,000 
$ 7,000 
$10,000 
$ S,000 
$ 6,000 

During the two years required to bring the property into oper-. 

ation, $4,000 capitaJ. :for plant and equipment will be required each 

year. \fu.at is the present value of the property using a risk rate o:f 

10 percent, and a safe rate o:f 4 percent? Table IV illustrates the 

calculation of this problem. 

.. 

TABLE IV. CALCu'"IATilm PRESEl~ VALUE ]UR ~""EQ,UAL Alm-UAL 
:RETURliS. 

IHTEREST TO SIN1C- .AMOUl'iT IN ~- PROFIT. OM L-iG FlJ1.ID Rt\TE1 (n-m) years 
(m) CAPITAL (x) (l.04)n-m 

-

1. 5,000 0 .10(:x:) 5000-0.lOx 1 .17 5850-0 .J.l 7x. · 

2. 7,000 II 7000-0 .• J.Ox ;i. .• 125 7s60-o.1125x 

..., 10,000 II 10000-0.lOx 1.109 11090-o.11.09x ;) . 
4. 8,000 Ii 6000-0.J.Ox 1.01.to g325-o .104x 

5. 6,000 II 6000-o.1ox 1.000 6000-0.100:x: 

TOTAL. 39125-0.5444:x: 

- - . - . 

1. The sum that one dollar will a.mount to in "n" years if invested 
at 4 percent compound interest. (n = 5) 



The total of the sinking fund installments. with interest. must 

~qua1 the original capital invested. 

Therefore, 

39,125 0.5444 x = x 

Solving for x: 

1.54114 x = 39125 

x = $25,300 

~is is the value at the commenc~e~t of operations_, two y.ears . hence. 

The actual present value is obtained from the expression, 

(PVf 4000) ( l .07) 2f ( 4000) ( l ._Q7) = $25, 300 

PV = 25, 300 - ( lrooo x 1 ~07) ltooo 
(1.07) ~ 

PV = $14,l.ioo. 

ELil,Ul~ATnrG .CUT-OF.Ir AS AH INDEPE1:IDEl:f~ VARIABLE. 

In the case of a.n assccy waJ.l tYl)e _deposi~, when the p:kant is 

operating a.t full capa.ci ty, it may be :pos.sible to eliminate cut-off as 

an independent variable by making it equivalent to- the operating plus 

capi·tai cost of mining a ton of ore. · 

i.e. cut-off (dollars) 
ton 

::i operating ce.s.t f t·otal capital costs and interest 
.ton . Reserves. 

However, to determine the reserves, a knowledge of cut-o~f is re-

quired, reserves being inversely proportional to cut-off as illustrated 

in figure 1+· ~o overcome this di:fficulty, ·der~ve an empirical equation 

giving reserves in term.s of cut-off under the particular conditions that 
. . 

apply. Reserves can then be replaced by a -function of cut-otf'-. 

For a:ny combination of ~ining method, milling method, and mining 

rate, the operat·ing costs. and total capital costs are known, so the re-



q~red _cut-off. can be found by a ]?roces~ ·of iteration. It should be 

noted that each proposed method or milling and marketing will give a 

dif:f erent equation. relating reserves to c_ut-off'. Also, the min:lng se­

quence will cause a variation in o:p~rating costs with time, and this __ wilJ. 

cause corresponding variatipns in cut-of':f w.ith.time,.~ll.ich however shoul.d 

not be large. 

The ~eneral procedur~ for getting optimum. operating conditions 

when cut-off is eliminated as a ·variable· is similar to the procedure 

previously outlined, except that there a~e fewer combinations to ·consi­

der. 

DIFFICUL~IES. 

Of course, the foregoing outline represents ideal conditions, 

where ali tb.e necessacy in:cormation concerning the ore.body, _etc., is 

available before mining commences. In practice, ·this would seldom be 

the case, but nevertheless, the same general procedure ,iould. have to be 

attempted with what information was available, unless it was too m~ger 

altogether. 

Relative changes in costs, product prices, and other factors can 

occur after the property has been brought into production, ~d these 

changes will aJ.ter optimum o:pe~ting condi tiori.s. If. this occurs, ·the 

operating conditions can be revie~ed and adjusted _to optimum if neces~. 

Here, as a.J.way-s, the proposed changes .shouJ.d resuJ.t in a greater present 

val~e •. 



COHCLUSIOHS 

From the foregoing ~iscussion it can be concluded that a.morti-

zation tomw.ge is a function of nining rate and that an ore body has a· 

mininum amortization tonnage which can be found by trial and error·cot1-

putations WAen amortization tonnage is expressed as a function of mining 

rate. This process can be greatly sirJ.:9lified by the use of a di°gital 

computer. 

It is also co11clu.d.ed that present val~e depends on a number of 

inter-related factors; 'cut-off, milling method, mini~g method and se-

g_uence, and mining rate. When mining rate is the only variable, present 

value can be related to it ~athematically, and the optimum mining rate 

for maximum present value can be found by trial and error computations. 

Here again, a digital computer will greatly speed the ,·rork. Total· net 

profits can be used instead of present value to give a r.apid ~9proxima-

tion to the optinum oining rate, by the use· of calculus. 

t·n1en several, or aJ.1 of the factors are variable, the optimum 

combination for maxirnUI.1 present ~lue can be :found only by trial and 

error computations, that is, caJ.c~iJ.ating the present value for aJ.l 
. . 

practical. combinations, and choosing that coubination ·which gives the 

maximum present value. For each combination,. the aiu1ual profit must 

be estimated separately for each year of life, and the present value 

calculated without oenefi t of formulas. This process appears compli-



cated _~tl1en outlined in a general manner, · but in any particular case, so~e . 

or all of the variables may be found to be quite limited in range ( i .e • 

only one mining m.ethod applicable) and this would greatly sin1yJ.ify the 

calculations. A further sim?lification may be effected. by eA--pressing 

· cut-off as a function of the o~erating and ca~ital cost of mining a 

ton of ore. 

This thesis is base~ on the idea that :present value is a better 

measure of the worth of a mineral property than the total anticipated 

net profits, and this being the case, operating conditions should be 

chosen to give maximum present value, rather tha..11. maximum total net 

profits. 

In all examples used in this thesis, the plant is considered to 

be operating at full. capacity, the varying mining rates spoken of 

being considered as the ma.xi.mum rate :possible :for each of a series of 

mills under consideration but not as yet built. 
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