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ABSTRACT

The problem of radiative heat transfer from a spherical layer of
absorbing-emitting gas has been studied. First, the medium is assumed
to be gray and then nongray. A thorough survey of literature from
fields other than heat transfer, such as astrophysics and neutron
transport has been made to stimulate further interest in this
important area. To gain some insight into the effect of various
parameters on the heat transfer, simple physical situations involving
isothermal medium are considered. Comparison of the results obtained
for the flux from the spherical and planar layers reveal that the
curvature becomes increasingly important as the inner to outer optical
radii ratio decreases. The study of a particular nonisothermal case
shows that the temperature variations are important and cannot be
neglected.

In the study of the nongray problem, a simplified rectangular
model for the spectral absorption coefficient is first considered.

The expressions developed for the simplified rectangular model turns
out to be similar to the expressions for the gray analysis. With a
small amount of additional computational time one can obtain the
results for the simplified rectangular model. Carbon monoxide example
is studied in order to illustrate how the rectangular model can be
used to analyze radiative heat transfer in a nongray gas. The results
of this example reveals that the influence of the 'windows' is quite
profound, thus exposing the limitations of the gray analysis.

In order to determine the effect of line or band shape on the

radiative transfer, five different models for the absorption



coefficient representing the rectangular, triangular, Doppler,
exponential and Lorentz profiles are considered. The results obtained
for the dimensionless flux reveal that the rectangular profile has the
smallest numerical value of all the profiles. The effect of the
"wings" of the Doppler, exponential and Lorentz profiles is evident
only for large values of optical thickness.

The 1imiting cases of the functions on which the expressions for
the local radiative flux (both from gray and nongray medium) depends
are also studied. A1l the results (except for carbon monoxide
example) reported graphically as well as in tabular form in this study

are obtained using double precision.
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NOMENCLATURE

Symbol Significance
E Function defined by equation (4.25)
Ery Planck's function defined by equation (4.69)
F Incident flux that interact with the medium
F* Incident flux that do not interact with the medium
ok Local radiative flux
g * Dimensionless radiative flux
9, Function defined by equation (4.45)
9, Function defined by equation (4.46)
?? 1 Function defined by equation (5.42)
4 5 Function defined by equation (5.43)
h Planck's constant
h1 Function defined by equation (3.3)
h2 Function defined by equation (3.4)
4{1 Function defined by equation (5.15)
412 Function defined by equation (5.16)
H Function defined by equation (3.5)
# Function defined by equation (5.17)
k Boltzmann's constant
K Function defined by equation (4.47)
K Function defined by equation (5.44)
L Thickness of the planar layer
Q Function defined by equation (4.51)

r Radial distance of the spherical layer



Symbol

T*

XV

Significance
Absolute temperature

Reference temperature

Greek Symbols
Dimensionless function, Kv/K
Quantity defined by equation (5.12)
Dimensionless function defined by equation (3.40)
Volumetric absorption coefficient
Spectral absorption coefficient
Planck mean absorption coefficient
Frequency
Dimensionless frequency, hv/kT

Stefan-Boltzmann constant

Optical radial distance (for the spherical layer);
optical thickness (for the planar layer)

Function defined by equation (4.48)
Function defined by equation (5.21)

Wave number

Subscripts

Conditions at inner boundary (for the spherical layer);
conditions at left-hand boundary (for the planar layer)

Conditions at outer boundary (for the spherical layer);
conditions at right-hand boundary (for the planar
layer)

Isothermal quantity

Refers to planar layer

Frequency dependent quantity



I. INTRODUCTION

The chief contributors to the mainstream of transfer research
have been astrophysicists., During the past seventy years, they have
given considerable attention to problems connected with radiation
transfer in planetary atmospheres, the sun, nebulae, and galaxies.
Research in the field of radiation heat transfer has increased due to
recent developments in aerospace engineering. In particular, gaseous
radiative heat transfer has received increased attention from engineers
concerned with modern high-temperature power plants and reentry
vehicles. Recent technological developments have emphasized the need
for a better quantitative understanding of radiant heat transfer
through absorbing, emitting and scattering media.

Mathematically, the introduction of radiation into heat transfer
problems results in changing the energy equation from a differential
equation to an integro-differential equation. Such an equation is
quite difficult to solve and practically all engineering calculations
are based on simplifying assumptions. Another factor which makes
radiative heat transfer more complicated than conductive or even con-
vective heat transfer, is connected with the fact that the radiative
properties of the various substances encountered in engineering are
more difficult to describe than, for instance, the thermal conduc-
tivity, knowledge of which is required for calculation of a heat-
conduction process.

The transfer of radiative energy in plane-parallel atmospheres
has been studied in great detail and reported in the astrophysical

and heat transfer literature. In particular, the problem of radiative



transfer between two infinite parallel plates kept at two different
but uniform temperatures and separated by an absorbing and emitting
gas has received much attention. Studies of radiative transfer have
been largely limited to the treatment of the planar problem because of
its simple geometry. While various analytical techniques have been
developed to study the planar problem, the extension of these
techniques to non-planar media is not so clear, Radiation in non-
planar media is of current interest, e.g. in plasmas, and shock layers
surrounding reentry bodies.

The primary motivation for undertaking this work is to present a
systematic study of radiative transfer in nonplanar media (spherical
geometry) by considering first the medium to be gray and then nongray.
Because of the time and effort involved in carrying out a detailed
study, only certain aspects of the radiative transfer problem are
considered. Moreover, to help future researchers in this area, a
review of literature is presented in chapter two which throws light on
the work done on the spherical geometry problem.

Chapter three deals with the gray analysis and is divided into
six sections. The first section is devoted to the description of
physical model and governing equations. The isothermal analysis is
considered in the next three sections. To gain a better insight into
the isothermal problem, simple physical situations are considered. A
conduction temperature profile is assumed to carry out numerical cal-
culations for the nonisothermal case which is studied in the fifth
section,

Nongray analysis is considered in chapters four and five. The

rectangular model (also known as box model) is considered in chapter



four, while the effect of band or line shape on radiative transfer is
considered in chapter five. Chapters four and five are written on the
same lines as chapter three except that in addition the case of
radiative equilibrium is investigated. 1In order to make a comparative
study, the planar layer is also considered in chapters three, four and
five and the equations compared with those arising in the spherical
layer problem.

It is hoped that this study will contribute to some extent toward
better understanding of the effect of curvature on radiative heat

transfer in an absorbing-emitting, gray and nongray medium.



IT. REVIEW OF LITERATURE

Radiative transfer in a spherically symmetric medium has recently
received considerable attention. Different techniques have been
developed which provide both rigorous and approximate solutions to the
spherical geometry problem. The aim of this chapter is to present a
review of the literature on radiative transfer in spherical media.

The pertinent literature in the engineering field have been
tabulated in chronological order in Table 2.1 for quick reference.
Unless otherwise specified, the following assumptions are applicable
to the radiative transfer problems discussed in Table 2.1:

(1) Steady state;

(2) Gray medium;

(3) Absorbing-emitting medium; no scattering;

(4) No convection or conduction;

(5) Index of refraction of unity.

The physical situations corresponding to geometries 1, 2, 3 and 4 in

the table stand for the following radiative transfer problems:

Geometry 1 - The medium is confined in the space between two concentric
black spheres.

Geometry 2 - The medium is a sphere of finite radius.

Geometry 3 - A gmall black sphere situated in an infinite medium.

Geometry 4 - A spherical region of constant heat generation imbedded

in an infinite gray medium,
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Figure 2.1 - Figures illustrating different geometries




Table 2.1
Review of literature table

Description of the Problem

Year Reference Geometry Physical situation Method of solution
1951 Kuznetsov 2 Radiative equilibrium; Formulates the
[(11* Variable absorption integral equation
coefficient
1961 Kennet and 1 Isothermal shock Closed form expression
Strack [2] layer for flux at the inner
sphere
1961 Sparrow, 1 Uniform heat Method of successive
Usiskin and generation approximation
Hubbard [3]
1962 Strack (4] 1 Nonisothermal shock Numerical integration
layer
1962 Koh [5] 1 Isothermal, noniso- Numerical integration
thermal shock layer
1963 Kuznetsov 2 Nongray medium; Formulates the
(6] Gray walls; Heat integral equation
generation
1963 Cuperman, 2 Noncoherent Successive approxi-
1964 Engelmann scattering by a mation; Eddington
and Oxenius spectral line; approximation;
[7,8] Rectangular and Modified Eddington
Doppler profiles approximation
1964 Giuffre and 2 Noncoherent Large optical
En?elmann scattering by a thickness
(9 spectral line;
Generalized Lorentz
profile
1965 Heaslet and 2 Uniform heat gener- Invariance principles
Warming [10] ation; isotropic
scattering
1965 Koh [11] 2 Isothermal Closed form expression
1965 Viskanta and 2 Transient cooling Method of moments

Lall [12]



Table 2.1 - (continued)
Review of literature table

Description of the Problem

Year Reference Geometry Physical situation Method of solution
1966 Heaslet and 2 Uniform heat genera- Green's formula;
Warming [13] ation; isotropic Chandrasekhar-
scattering; isotropic Ambartsumian functions
flux
1966 Ryhming 1 Radiative equilibrium Method of undetermined
[14] parameters
1966 Viskanta and 2 Transient heating Method of moments;
Lall [15] and cooling Finite difference and
least-squares
1967 Lall and 2 Transient cooling Finite difference and

1967

1968

1968

1968

1968

1968

1968

Viskanta [16]

Viskanta and 1,2
Crosbie [17]

Chisnell 1
[18]

Chou and 1
Tien [19]
Emanuel [20] 1

Hunt [21] 1
01fe [22] 1
Viskanta and 1

Merriam [23]

including convective
effects

Radiative equilibrium
and uniform heat
generation; gray
walls

Specified emissive
power variation:
constant; linear;
quadratic

Uniform heat gener-
ation

Radiative
equilibrium

Uniform heat
generation

Radiative
equilibrium

Simul taneous conduc-
tion and radiation;
absorbing, emitting
and scattering medium
with uniform heat
generation; gray walls

least-squares

Method of successive
approximation; Taylor
expansion

Exact; Differential
approximation

Modified moment
method

Method of matched
asymptotic expansions

Method of regional
averaging

Modified differential
approximation

Method of successive
approximation



Table 2.1 - (continued)
Review of literature table

Description of the Problem

Year Reference Geometry Physical situation Method of solution
1968 Voinov, 3 Radiative and conduc- Linearization;
Golovin and tive equilibrium; Fourier and Laplace
Petrov [24] Radiative equilib- Transforms;
rium; Kr0<<1; qray Approximation
sphere solutions
1969 Voinov, 3 Unsteady radiative Linearization;
Golovin and and conductive heat Fourier and Laplace
Petrov (25] transfer; aray Transforms; Green's
sphere; Kr0<<1 Functions
1969 Dennar and 1 Uniform heat genera- Differential approx-
Sibulkin tion; gray walls imation based upon
[26] hal f-range moments
1969 Emanuel 3 Radiative equilib-~ Method of matched
(27] rium asymptotic
expansions
1969 Lee and 2,4 Heat generation Iteration of the
O1fe [28] differential
approximation
1969 Shahrokhi 1 Nonisothermal Finite difference
and Wolf scattering medium iteration method
[29,30]
1969 Traugott 1 Radiative equilib- Improved differen-
{31] rium tial approximation
1970 Emanuel 2 Super-radiant Closed form
(32] emission; Uniform expression
temperature and
composition
1970 Gritton and 2 Uniform heat Singular integral
Leonard (33] generation equation theory
1970 Loyalka [34] 1 Radiative equilib- Variational method
rium
1971 Finkleman 1 (a) Radiative Generalized differ-

(36]
2,4

equilibrium
(b) Heat generation

ential approximation



Table 2,1 - (continued)
Review of literature table

Description of the Problem

Year Reference Geometry Physical situation Method of solution

1971 Chien [35] 1 Radiative equilib=- Sn method
rium; Uniform heat
generation; Linear
temperature distribu-

tion
1971 Saad (37] 1 Radiative equilib- Experimental and
rium analytical; Matching

jump boundary con-
ditions with an
assumed temperature
profile

*Numbers in brackets designate references in Bibliography.
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Going through the preceding table, one observes that geometries
one and two are considered by most of the investigators who have
pursued the study of radiative transfer in spherical geometry.
Radiative transfer in a spherical layer (geometry one) and in the
interior of a sphere (geometry two) is investigated in References
[(2-5, 14, 17-23, 26, 29-31, 34-37) and in References (1, 6-13, 15-17,
28, 32, 33, 36], respectively. The limiting case of a small sphere
(geometry three) is considered in References [24, 25, 27]), while the
problem of a spherical region of constant heat generation imbedded in
an infinite, gray medium (geometry four) is dealt with in References
(28, 36].

Inspection of the column describing the physical situation in
Table 2.1 reveals that the case of radiative equilibrium and that of
heat generation is considered in References [1, 14, 17, 20, 22, 27,
31, 34-36) and in References [3, 6, 10, 13, 17, 19, 21, 26, 28, 33,
35-37], respectively. The isothermal shock layer is studied in
References [2, 5, 11], while the nonisothermal shock layer is investi-
gated in References [4, 5]. Unsteady heating and cooling is consid-
ered in References [12, 15, 16]. The problem of unsteady energy
transfer is also considered in Reference [25]. References [23-25],
unlike other references, consider conduction besides radiation. The
problem of combined radiative and convective energy transfer between
two concentric spheres is investigated experimentally in Reference
{37). 1Isotropic scattering is assumed in References [13, 23, 29, 30],
while noncoherent scattering is assumed in References [7-9].

The solutions of integral equations which arise in the analysis

of problems involving radiative transfer have been obtained by
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numerical integration only in a 1imited number of cases. To circumvent
some of the difficulties encountered, approximate methods have been
devised to deal with this class of problems, References [7-9, 12, 15,
18-22, 24-27, 31, 34-37] deal with various approximate methods.
Numerical calculations are carried out in References [3, 14-17, 23,
28-30}, while sophisticated analytical solutions are reported in
References [10, 13, 33].

A thorough survey of literature on radiative transfer in non-
planar media (spherical geometry) was made. This survey included con-
tributions from fields other than heat transfer, such as astrophysics
and neutron transport. Although the survey is exhaustive, it may be
incomplete.

Much of the theory of radiative transfer in the field of astro-
physics is devoted to the study of transport processes in plane-
parallel atmospheres. However, in many situations, curvature cannot
be neglected. The general progress to date dealing with the spherical
geometry problem in astrophysics is recorded in References [38-77].

Although the physical phenomenon of neutron transport is quite
different from radiative transfer (photon transport), the governing
equations are mathematically similar. References [78-108] deal with
the spherical problem in the field of neutron transport,

Summarizing the review of literature on radiative transfer in a
spherical media, one may thus conclude:

(1) Very few investigators deal with problems involving geome-

tries three and four, '

(2) Though there are various approximate methods to deal with

radiative transfer problems in spherical geometry, exact



(3)

(4)

(5)

(6)
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solutions are reported in only a few limited cases.

The amount of work done considering the intervening medium
to be nongray is very 1limited.

There exists very little work dealing with problems that
include other modes of heat transfer.

Even though a mathematical analogy exists between thermal
radiation, neutron transport and astrophysics in media with
spherical symmetry, interchange of information between the
various fields is almost nonexistent.

The survey reveals that there is a lack of experimental

work,
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III. GRAY ANALYSIS
A. Physical Model and Governing Equations
1. Spherical Layer

The spherical system considered (similar to Geometry 1) is shown
schematically in Figure 3.1. It illustrates a spherical gas layer
of outer radius rs and inner radius ry- The layer contains an
absorbing and emitting gray gas with a volumetric absorption coeffi-
cient ¥, The following assumptions are made:

(a) The energy transfer is steady and one-dimensional.

(b) The medium is non-scattering and is in local thermodynamic

equilibrium,

(c) The index of refraction of the medium is considered to be

unity.

(d) The volumetric absorption coefficient « is independent of

frequency, i.e. the medium is gray.
Although the gray medium approximation is rarely a physically realistic
approximation, it serves at least as an initial stepping stone toward
nongray analysis. These assumptions are introduced in order to
simplify the mathematics without losing any essential physical
features.

Under the above assumptions the local radiative flux can be
expressed as [17])

T2
2 (1) = 2F hy (t31q) = 2F 0 (T3t aT,) + zf H(t,tst,)oT? (t)dt (3.1)
1"1Y 1 22 1*°2 |
‘1
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Figure 3.1 - Schematic diagram for a spherical geometry

where the optical radial distance 1 is defined as
r
T = f kdr = kr
0

and the inner and outer optical radii as

T = Kry and T, =

(3.2)

In equation (3.1) the quantity qu is the black body emissive power,

where o i1s the Stefan-Boltzmann constant and T is

ature, The functions hl(r;rl), h2(r;rl,12) and H

the absolute temper-

(T,t;Tl) are defined
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as

hl(r;rl) = TT1E3(T-TI) - (T-TI)E4(T-T1) - Es(r-rl)

+ (12-112)6E4[(T2'T12)%] + Es[(Tz'le)%l (3.3)

hz(T;rl,rz) = T12E3(T2-T) - (T2~T)E4(T2-T) - ES(TZ-T)

+ (122-112)%(12-112)%E3[(122-1

1 1
+ [(122-112)2 + (12-112)’]E4[(122-T

+ E5[(‘r22--112)1/2 + (12-112)%] (3.4)

H(r,t;rl) = {1 sign (T-t)EZ(IT-tI) + E3(!T-tl)

- (<2

2.k 2 2
-1y ) E2[(t -7

)+ (12-112)%]

- E3[(t2'T12)l/z + (12'112)%]} t (3.5)

where the exponential integral function En(r) is defined as

o

E, (<) = f G2 gmt/e g o [ e"T% XN dx (3.6)
0 ]

The function hz(r;rl,rz) is the same as in Reference [17] except for
the change in sign. The change in sign makes equation (3.1) more
compatible with the expression for the local radiative flux in case of
a planar layer.

In equation (3.1) and in Figure 3.1 F1 and F2 represent the
radiative fluxes incident on the inside and outside of the layer
respectively. If the gas layer is confined between two black surfaces,

then F1 = 0T14 and F2 = 0T24 where T1 and T2 are the temperatures of
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the inner and outer surfaces respectively. If the layer represents
the shocked gas region in front of a blunt body, then the incident
fluxes F1 and F2 will be essentially zero. This is due to the fact
that the temperature in the shock layer will be high in comparison
to the free stream temperature and the wall temperature.

Thus, given the geometry (rl,rz) the absorption coefficient (k),
the incident fluxes (FI'FZ) and the temperature distribution (T), the

radiative heat flux can be calculated from equation (3.1).
2. Planar Layer

In order to make a comparative study of the spherical geometry
problem with that of the planar medium, the physical system shown
schematically in Figure 3.2 is considered. The fiqure illustrates a
plane gas layer of thickness L. The layer contains an absorbing and
emitting gray gas with volumetric absorption coefficient x, All the
assumptions as enunciated before for the spherical geometry, hold for
this geometry.

The expression for the local radiative flux is [109]

T
2
/ _ - - . - - N
;ﬁp(r) = 2F1E3(T-T1) 2F2E3(T2 T) + 2 f sign(t t)EZ(lT t])
1
4
oT ' (t)dt (3.7)
where the optical depth t is defined as
X
Y (5.8

0
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and the inner and outer optical thicknesses as

Tl = le and T, = KXZ

1 X2

Figure 3.2 - Schematic diagram for a planar geometry

3. Isothermal Layer

The governing equations (3.1) and (3.7) for the local radiative
flux can be simplified by considering the intervening gas to be iso-
thermal, Moreover, this analysis facilitates the study of many
interesting problems, e.g, thermal radiation from a shock layer.

For the isothermal case, i.e., T(t) = TO’ equation (3.1) reduces

to
ng(r) = 2h1(r;11)(F1-0TO4) - 2h2(r;11.T2)(F2-0T04) (3.9)
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To arrive at the above expression for the local radiative flux, the
following relation is used
2
f H(T,t;rl)dt = - hl(T;Tl) + hZ(T;Tl,Tz) (3.10)
"1
Now, considering the case when there is no flux incident on the inner
and outer layers, i.e. when F1 = F2 = 0, equation (3.9) further

simplifies to
126k (1) = 20T [ (1311) = holT3T20T0)] (3.11)
o M\t Ty yAREAS LAY .

With T(t) = Tgs the governing equation (3.7) for the local

radiative flux in case of a planar medium reduces to

Go(1) = 265 (-1 ) (Fy0To*) = 285 (1,m1)(FpmoTh) (3.12)
When F, = F2 = 0, equation (3.12) simplifies to
Fo () = ~20T *[Eg(t=1)) = Ey(1,m1)] (3.13)

Comparison of equations (3.11) and (3.13) reveals that the functions
hl(r;rl)/r2 and hz(r;rl.rz)/rz are analogous to the functions E3(r-11)
and E3(T2-T) respectively.

Examination of equation (3.9) reveals that the local radiative
flux depends on the functions hl(T;Tl) and hz(r;rl,rz). Therefore, to
gain some insight into the local radiative flux, it seems appropriate

to study the functions hl(r;rl) and hz(r;rl,rz).
B. Isothermal Analysis: Function hl(T;Tl)

In order to give the function hl(r;rl) a physical interpretation,

consider the case described in Figure 3.3. When the outer boundary is
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black surface

Figure 3,3 - Outer boundary isothermal with the intervening medium

a black surface at the temperature of the medium, i.e. T2=TO, then
inspection of equation (3.9) reveals that é;(r) is proportional to
hl(r;rl)/rz. From expression (3.3) one finds that the function
hl(r;rl) does not contain Toe Therefore, the variation in the outer
radius of the spherical layer does not influence the function

hl(r;rl). The following cases of the function hl(T;Tl) are studied:
1. Exact Results

Numerical results are obtained using the exact expression (3.3)
for the function hl(r;rl). The results for four different cases, i.e.
Ty % 0.01, 0.1, 1 and 5, are tabulated in Tables 3.1 and 3.2 and
presented graphically in Figures 3.4 and 3.5. The influence of radius

ratio rl/r on hl(r;rl)/r2 is shown in Figure 3.4, while the influence
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of optical thickness T-T; On hl(r;rl)/T2 is shown in Fiqure 3.5.

Figure 3.4 shows that all the four curves (displayed as unbroken
lines) start at the same value when Tl/T = 1. For the first two cases
(Tl = 0.01 and 0.1) decrease in hl(r;rl)/r2 is quite gradual as
T/t > 0, while for the next two cases (Tl = 1 and 5) decrease in
hl(r;rl)/r2 is quite rapid as rl/r -~ 0. In all the four cases
hl(T;rl)/r2 approaches zero as Tl/T tends to zero. The curves, for
each of the four cases, for the function E3(r-rl) are shown by broken
lines.

Figure 3.5 shows that all the four curves (displayed as unbroken
lines) start at the same value when T-1; = 0. For the first two cases
(11 = 0.01 and 0.1) decrease in hl(T;Tl)/T2 is quite rapid as
T=T) > = while for the next two cases (Tl = 1 and 5) decrease in
hl(r;rl)/r2 is quite gradual as t-t; * =. In all the four cases
hl(r;rl)/r2 approaches zero as T-T; tends to infinity. The curve for
the function E3(t-rl) is shown by broken lines.

In examining the results presented in Figures 3.4 and 3.5, we
note that the planar layer approximation appears to be useful only for
values of T = T and for large values of Tq- The calculations were
performed by using the series representation for the function EZ(T)
as given by equation (A.8) and the recurrence relation as given by
equation (A.2). These calculations were made by using double

precision and the method breaks down for large T.
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Values of the function hl(T;Tl)/T2 versus Tl/T

hl('r;rl)/r2

Tl/T

T1=0.01 11=O.10 T1=1.0 T1=5.0
0.01 1.8518D-5 2.4277D-9
0.02 1.2212D-4 1.4416D-6
0.03 3.2462D-4 1.7177D-5
0.04 6.2727D-4 7.0284D-5
0.05 1.0304D-3 1.8110D-4
0.06 1,5341D-3 3.6405D-4 2.3748D-10
0.07 2.1384D-3 6.2888D-4 3.1096D-09
0.08 2.8435D-3 9.82230-4 2.4273D-08
0.09 3.6492D-3 1.4287D-3 1.2347D-07
0.10 4 ,5556D-3 1.9716D-3 4.,6408D-07
0. 1,0599D-2 6.1988D-3 2.9597D-05
0 1.9162D-2 1.3035D=-2 2.8173D-04
0. 3.0245D-2 2.2538D-2 1.2103D-03
0,30 4,3849D-2 3.4737D-2 3.4343D-03 1.5280D-7
0.35 5.9977D-2 4,9651D-2 7.6152D-03 2.3392D-5
0.40 7.8628D-2 6.7298D-2 1,4389D-02 1.8978D-5
0.45 9,9804D=~-2 8.7693D-2 2.4343D-02 1.0050D-~4
0.50 1.2351D-1 1.1085D-~1 3.8017D-02 3.9404D-4
0.55 1.4974D-1 1.3679D-1 5.5910D-02 1.2400D-3
0.60 1.7850D-1 1.6552D-1 7.8500D0-02 3.3073D-3
0.65 2.0979D-1 1.9707D-1 1,0626D-01 7.7668D-3
0.70 2.4361D-1 2.3146D-1 1.3966D~-01 1.6511D-2
0.75 2.79970-1 2.6872D-1 1,7924D-01 3.2443D-2
0.80 3.1887D-1 3.0888D-1 2.2557D-01 5.9901D-2
0.85 3.6031D-1 3.5198D-1 2.7938D~01 1.0535D-1
0.90 4,0430D-1 3.98100-1 3.4163D-01 1.7875D-1
0.95 4.,5086D~-1 4.,4733D-1 4,1388D~-01 2.9696D-1
1.00 5.0000D-1 5.0000D-1 5.0000D0-01 5.0000D-1



1 T 1

llITr

hl(T;Tl)/T

.01

lllll

I

.001

Figure 3.4 - Function hl(r;rl)/r2 versus Tl/T
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Table 3,2

Values of the function hl(T;Tl)/T2 versus T-T1;

hl(r;rl)/'r2
-1,
T1~O.01 T1—0.1 Tl—l.O 71—5.0

0 5.0000D-1 5.0000D-1 5.0000D-1 5.0000D=~1
0.001 4,1258D-1 4,8925D~1 4.,9803D-1 4.,9882D~1
0.002 3.4621D-1 4,7889D-1 4.9610D-1 4,9765D-1
0.003 2.9463D-1 4.,6886D-1 4,9419D-1 4.,9649D-1
0.004 2.5374D=-1 4,5916D-1 4,9230D-1 4,9534D-1
0.005 2.2078D-1 4,4976D-1 4,9043D-1 4.,9420D-1
0.006 1.9382D=-1 4,4065D-1 4,8857D-1 4,9307D=-1
0.007 1,7150D-1 4,3181D-1 4,8673D-1 4,9194D-1
0.008 1,5281D-~1 4,2323D-1 4,8491D-1 4,9082D~1
0.009 1.3700D-1 4,1490D-1 4,8309D-1 4,8971D-1
0.010 1.2351D-1 4.,0681D-1 4.,8130D-1 4,8860D-1
0.020 5.4320D~2 3.3728D-1 4,.6397D-1 4,7784D-1
0.030 3.0245D=-2 2.8382D-1 4.4767D=-1 4,6754D-1
0.040 1.9162D=2 2.4182D-1 4,3225D-1 4,5763D-1
0.050 1,3173D=2 2.0822D~1 4,.1762D-1 4.,4807D=-1
0.060 9,5813D-3 1.8094D-1 4,0368D=-1 4,3883D-1
0.070 7.2624D=-3 1.5851D-1 3.9040D-1 4,2988D~1
0.080 5.6809D-3 1.3984D-1 3.7771D=-1 4,2120D-1
0.090 4 ,5556D-3 1.2415D-1 3.6558D~1 4.1278D-1
0.100 3.7274D-=3 1.1085D-~1 3.5397D-1 4,0460D=-1
0.200 9,2529D-4 4,4377D=-2 2.6056D~-1 3.3366D~1
0.300 3.8419D-4 2.2538D-2 1.9622D-1 2.7784D-1
0.400 1.9873D~-4 1.3035D-2 1.5032D-1 2.3290D-~1
0,500 1.1621D-4 8.1839D-3 1.1674D-1 1.9624D-1
0.600 7.3503D=5 5.4372D0=3 9,1703D=-2 1,6603D-1
0.700 4.,9093D~-5 3.7651D~3 7.2738D=2 1.4096D=-1
0.800 3.4130D-5 2.6908D-3 5.8179D-2 1.2003D~1
0.900 2.4467D=-5 1,9716D-3 4.,6877D=-2 1.0247D-1
1,000 1.7972D=-5 1.4740D-3 3.8017D-2 8.7681D-2
2.000 1.6694D=~-6 1.4863D-4 5.9640D=-3 2.0171D=2
3.000 2.7385D-7 2.5081D~-5 1,2103D-3 5.1396D-3
4,000 5.6762D=-8 5.2739D-6 2.8173D-4 1.3930D~3
5.000 1,3378D-8 1,2538D-6 7.1436D=5 3.9404D-4
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2., Special Limiting Results
a. Optically Thin

By utilizing the asymptotic expansions for functions E3(T), E4(r)
and E5(T) as T + 0 (see Appendix A), the function hl(T;Tl) in the

optically thin approximation becomes

Tl2 (13-113) (12-112)3/2
hl(r;rl) = - - ” + 3 (3.14)
From equation (3.14) it is possible to deduce that
112
1im hl(T;Tl) = - (3.15)

T*Tl

Substitution of T = T in expression (3.3) leads to the same result

as in (3.15), i.e. h1(1=11;rl) = 112/2. It is found that for

Ty = 0.01 and for values of 1t > 0.1, the error in using equation
(3.14) instead of equation (3.3) is less than 0.5%, while for T, = 0.1
and for values of 1 2 0.4, the error is less than 7%. Equation (3.14)

is not at all useful for values of Ty 2 1.
b. Optically Thick

By utilizing the approximate expressions for large t for functions
E3(T), E4(T) and ES(T) as T > @ (see Appendix A), the function

hl(T;Tl) in the optically thick 1imit becomes
Trle'(T-Tl) (T-Tl)e-(T-Tl) We-(T-Tl)

hylrsTy) = CEc) I G ) I (T t)

2 2.\%
(TZ- 2 % '(T -Tl )2 -(TZ-T 2)%
TR (3.16)
+ 4) ((t -7 )% + 5]




Numerical results obtained show that the approximate expression
(3.16) cannot be used for small optical radii. But as T increases,
the approximation shows qood agreement. The results reveal that the
approximation cannot be used when Ty < 0.01, For the case when

Ty = 0.1, the error is less than 1% for values of T/T < 0.2. The
error is within 1,5% when T = 1 and the ratio Tl/T < 0,1, while the

same is the case when Ty < 5 and the ratio 11/1 < 0.3.
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Table 3.3 present the values of the function hl(T;Tl) as obtained

by using the exact expression (3.3) and the approximate expression

(3.16) for the case when T, = 5. For the cases when v, = 0.01, 0.1

1

and 1, the error is much worse and thus the results are not presented.

Table 3.3

Comparison of the exact and optically thick values of the
function hl(r;rl) for 1, =5

hy(tst,)
1 1 Relative
T Error
Exact Approximate (%)
T1=5.0
0.3 4.,2445Dp-5 4,1927D-5 1,22
0.4 2.9654D-3 2.8957D-3 2.35
0.5 3.9404D=-2 3.7826D-2 4,01
0.6 2.2967D-1 2.1511D-1 6.34
0.7 8.4239D-1 7.6138D-1 9.62
0.8 2.3399D+0 2.0067D+0 14,24
0.9 5.5170D+0 4.,3546D+0 21.10
1.0 1.2500D+1 8.3333D+0 33.40
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c. Small Sphere

Expansion of the function hl(r;rl) in a Taylor's series about

T < 0 yields
2 3
T 1T
1 - 1 -
hl(T;Tl) = 5 e T+ -3 e T (3.17)
From equation (3.17), we find that
1im hl(r;rl) = 0 (3.18)
11+0

On substituting T, = 0 in expression (3.3), one gets the same result
as in (3.18), i.e. hl(r;rl=0) = 0. In order to determine the
accuracy of equation (3.17) numerical results are obtained for three
different cases, i.e. T, T 0.01, 0.1 and 1. The exact results
tabulated in Table 3.4 are obtained by using expression (3.3), while
the approximate results are obtained by using equation (3.17) with
only the first term taken into account.

Inspection of Table 3.4 reveals that for T = 0.01 and T = 0.01,
the relative error is 1% and the error decreases as 1 increases. For
the second case, i.e. T, = 0.1, the maximum error (9.5%) occurs when
T = 0.1, while for the case when T = 1, the error is maximum (63%)

when T = 1. In all the cases the error decreases as T increases.
C. Isothermal Analysis; Function hz(T;rl,rz)

Figure 3.6 represents the situation when the inner boundary is a
black surface at the temperature of the medium, i.e. T1 = TO. For this
case from equation (3.9) one finds that 62(1) is proportional to

hz(r;rl,rz)/rz. It is for this reason that a study of the function



Table 3.4

Comparison of the exact and small sphere values of the function
hl(T;Tl) for T = 0.01, 0.1 and 1
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hl(T;Tl)
T Relative Error
Exact Approximate (%)
=0,01
0.01 5.0000D-5 4,9502D-5 1.00
0.02 4.5402D~5 4.9010D=5 0.79
0.03 4 .8888D-5 4,8522D-5 0.75
0.04 4.8391D-5 4,8039D-5 0.73
0.05 4,7903D-5 4,7561D-5 0.71
0.06 4,7423D-5 4,7088D=-5 0.71
0.07 4.6948D-5 4,6620D-5 0.70
0.08 4,6479D-5 4,6156D-5 0.70
0.09 4,6015D-5 4.,5697D-5 0.69
0.10 4 ,5556D-5 4,5242D-5 0.69
1,=0,10
0.10 5.,0000D-3 4,5242D-3 9,52
0.20 4.,4340D-3 4,0937D=-3 7.68
0.30 3.9939D-3 3.7041D=-3 7.26
0.40 3.6061D-3 3.3516D=3 7.06
0.50 3.2588D-3 3.0327D=-3 6.94
0.60 2.9462D-3 2.7441D-1 6.86
0.70 2.6642D-3 2.4829D-3 6,81
0.80 2.4096D-3 2.2466D-3 6.76
0,90 2.1796D-3 2.0328D-3 6.73
1.00 1.9716D-3 1.8394D-3 6.71
T1=1.0

1,0 5.0000D-1 1.8394D-1 63.21
2.0 1.5207D-1 6.7668D=-2 55.50
3.0 5.3676D-2 2.4894D=-2 53.62
4.0 1.9366D-2 9,1578D-3 52.71
5.0 7.0433D-3 3.3690D-3 52.17
6.0 2.5717D-3 1.2394D-3 51.81
7.0 9.4105D-4 4.,5594D-4 51.55
8.0 3.4482D-4 1.6773D-4 51.36
9.0 1.2646D-4 6.1705D=5 51.21
10,0 4,6408D=-5 2.2700D-5 51.09
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™ r

black surface

Figure 3.6 - Inner boundary isothermal with the intervening medium

hz(r;rl.rz) is undertaken in this section. The following cases of the

function hz(r;tl,rz) are considered:
1. Exact Results

Results are obtained using the exact expression (3.4) for the
function hz(r;rl.rz) for five different values of T, and four different
ratios of inner to outer optical radii. The results shown in Table
3.5 and presented graphically in Figures 3.7 through 3.10 reveal that
for any fixed value of T, < 1, the influence of radius ratio 11/12 on
the function hZ(T;Tl,Tz)/TZ is quite significant, while for any fixed

value of T, < 5, the results for different radii ratios do not vary
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much, In each of the Figures 3.7 through 3,10, the curve for the
function E3(T2-T) is shown in broken lines.

One may thus conclude that for large values of Tos the values of
the function hz(T;Tl,Tz)/Tz will depend only on the ratio T/TZ, the
effect of 7 being negligible. To put it differently, the results
reveal that as T, increases, the planar layer approximation becomes

more accurate as seen from Figure 3.10.
2. Special Limiting Results
a., Optically Thin

With the aid of the asymptotic expansions for functions E3(T),
E4(T) and Es(r) as T >~ 0, it can be shown that the function hz(r;rl,rz)
in the optically thin Timit becomes

2

2 (3 (20 )Y (1P B)3/2
hz(T;Tl,Tz) = - X + X + 3 (3.19)
From equation (3.19) one observes that
2
: !
Tim hz(T;Tl,Tz) = —— (3.20)
™71,
27

It is interesting to note that the limits of expressions for the
functions hl(r;rl) and hz(r;rl.rz) in the optically thin 1imit tend to

the same value 112/2.
b. Function hz(r;rl,rz) evaluated at 7 = 1

In order to gain some idea about the variation of the flux at the

inner boundary, this case is investigated. The following relation
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Table 3.5
Values of the function hz(T;Tl,TZ)/Tz for various ratios of inner
to outer optical radii
2
hz(T;Tl,Tz)/T
T/Tz

12=O.1 12=0.5 12=1.O 12=5.O T2=10.O

(a) Tl/T2=O
0.10 6.0333D-3 2.0243D-2 2.4599D-2 2.3257D-3 3.4063D-5
0.20 1,2075D~-2 4,0639D-2 4,9645D-2 5.1571D-3 9.5263D-5
0.30 1,8131D-2 6.1347D-2 7.5609D~2 9.1481D-3 2.3771D-4
0.40 2,4212D-2 8.2540D-2 1.0301D~1 1.5307D-2 6.0065D-4
0.50 3.0326D-2 1.0441D-1 1.3245D~1 2.5347D-2 1.5708D-3
0.60 3.6484D-2 1.2719D-1 1.6469D-1 4,2373D-2 4,2731D-3
0.70 4,2699D-2 1.5116D-1 2.0069D-1 7.2316D-2 1.2152D-2
0.80 4,8988D-2 1.7672D-1 2.,4184D-1 1.2735D-1 3.6552D=-2
0.90 5.5378D-2 2.0448D-1 2.9040D-1 2.3569D-1 1,1995D~1
0.95 5.8624D-2 2,1951D-1 3.1874D-1 3.3122D-1 2.3090D~1
1.00 6.1923D~2 2.3576D-1 3.5150D-1 4.9000D-1 4,9750D-1

11/12=0,1
0.10 4,5556D-1 3.1396D-~1 1.9716D-1 4,7896D~-3 4.,6408D-5
0.20 1,2311D-1 1,0978D-1 8.7887D-2 5.4924D-3 9.6164D-5
0.30 6.6968D-2 9.0510D0~2 9.0917D-2 9,.2364D~3 2.3785D-4
0.40 5,1404D-2 9.8126D-2 1.1078D-1 1.5336D-2 6.0068D-4
0.50 4,7553D-2 1,1389D-1 1.3695D~1 2.5359D0-2 1.5708D-3
0.60 4,8327D-2 1.3345D-1 1.6751D-1 4,2378D-2 4,2731D-3
0.70 5.1313D-2 1.5553D-1 2.0256D-1 7.2318D-2 1.2152D-2
0.80 5.5518D-2 1.7990D-1 2.4314D-1 1.2735D-1 3.6552D-2
0.90 6.0485D-2 2.0687D-1 2.9133D-~1 2.3569D-1 1.1995D-1
0.95 6,3185D-2 2.2161D-1 3.1954D-1 3.3122D-1 2.3090D~1
1.00 6.6018D-2 2.3760D-1 3.5218D-1 4,9001D-1 4.,9750D-1

11/12=0.5
0.50 4,7084D-1 3.7047D-1 2,7492D-1 2.6565D-2 1,5761D-3
0.60 3.3796D-1 2.9875D-1 2.4974D-1 4,2722D=-2 4,2736D-3
0.70 2.6150D-1 2.6967D-1 2.5588D-1 7.2449D~2 1.2152D-2
0.80 2.1459D0-1 2.6238D-1 2.7948D-1 1.2741D-1 3.6552D-2
0.90 1,8478D-1 2.6850D-1 3.1701D-1 2.3571D-1 1.1995D-1
0.95 1.7414D-1 2.7544D-1 3.4136D-1 3.3123D-1 2.3090D0-1
1.00 1.6561D-1 2.8489D~1 3.7084D-1 4.9002D-1 4,9750D-1

11/12=0.9
0.90 4,9232D-1 4,6293D-1 4,2894D~1 2.3870D-1 1.2005D-1
0.95 4,4752D-1 4,4140D-1 4,3171D-1 3.3248D-1 2.3092D~1
1.00 4,1035D-1 4,2857D-1 4.4570D-1 4.9069D-1 4,9750D-1



- 003

1/12

Figure 3.7 - Function hz('r;'rl.-rz)/-r2 versus 1/12 for T, = 0.1
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exist for the functions hl(r;rl) and h2(r;11,12)
hZ(T=T1;T1,T2) = h1(1=12;11) (3.21)
Expansion of the function h2(1=11;11,12) in a Taylor's series about
Ty = 0 yields
2 3
T -7 71 -7
h2(1=‘[1;‘l’1,’[2) = -5 e 2+ -y e 2 (3.22)

Comparison of expressions (3.17) and (3.22) reveal similarity.

c. Function hz(r;rl.rz) evaluated at 1 = T,

For the case under consideration, the expression (3.4) for the

function hz(r;rl,rz) reduces to

2 2\% 3 2 2.4
o (1=1,371,7,) = (1,021, 2)Eg 120,51, 98] + 2(x,er B) % 201,21 20
2
T
+ Egl2(t, 51, %)%+ S - 7 (3.23)
From equation (3.23), we find that
1im h2(1=T2;11,12)/122 = %- (3.24)
T+
2 1
1im hz(T=T2;T1,T2)/T22 = %- (3.25)
T A
2

Numerical results obtained for expression (3.23) are tabulated in

Table 3.6. The 1imiting cases in expressions (3.24) and (3.25) were
used to construct Figure 3.11, From Figure 3.11 one finds that for
large values of 13| (in this case, T < 5), there is not much difference

in the results for various values of 11/12.



Table 3.6

. o 2
Values of the function h2(r~T2,11.12)/12

2
h2(1=12;11,12)/12

/T

T1=0.01 11=0.10 11=1.00 11=5.00
0.001 0.497500
0.002 0.490005
0.003 0.477720 0.499873
0.004 0.461617 0.499600
0.005 0.443224 0.499375
0.006 0.423914 0.499100
0.007 0.404638 0.498775
0.008 0.385970 0.498400
0.009 0.368215 0.497975
0.010 0.351508 0.497500
0.020 0.235832 0.490005
0.030 0.175545 0.477720 0.499817
0.040 0.139669 0.461623 0.499600
0.050 0.116139 0.443247 0.499375
0.060 0.099666 0.423977 0.499100
0.070 0.087609 0.404778 0.498775
0.080 0.078509 0.386231 0.498400
0.090 0,071495 0.368651 0.497975
0.100 0.066018 0.352182 0.497500
0.200 0.050231 0.243191 0.490006 0.499600
0.300 0.063838 0.198774 0.477786 0.499100
0.350 0.076597 0.190421 0.470296 0.498775
0.400 0.092613 0.188718 0.462284 0.498400
0.450 0.111646 0.192589 0.454127 0.497975
0.500 0.133549 0.201321 0.446233 0.497500
0.550 0.158231 0.214430 0.439023 0.496975
0.600 0.185632 0.231583 0.432930 0.496400
0.650 0.215712 0.252549 0.428400 0.495775
0.700 0.248442 0.277171 0.425910 0.495102
0.750 0.283805 0.305348 0.425987 0.494383
0.800 0.321790 0.337027 0.429252 0.493630
0.850 0.362391 0.372200 0.436493 0.492881
0.900 0.405611 0.410918 0.448827 0.492273
0.950 0.451463 0.453335 0.468158 0.492421
1.000 0.500000 0.500000 0.500000 0.500000
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D. Isothermal Shock Layer

Consider the case of a hypersonic flow over a blunt body. Near
the stagnation point, we may idealize the situation by a one-
dimensional model as shown in Figure 3.12 [110]. In order to estimate
the radiative energy, the following approximations are made:

(1) The detached shock is considered as a constant temperature

gas layer of thickness L.
(2) The wall of the body is assumed to be black and its

temperature is much smaller than the gas temperature.

OON NN NN NN NN N NN NN Y NN NN

wall shock

Tl T=‘[2

T

Figure 3.12 - Idealized model of the radiating region behind a
hypersonic normal shock

For the case under consideration, equation (3.13) corresponds to
the expression for the local radiative flux. The following two

particular expressions are obtained from equation (3.13):
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(1) The radiation flux from the shock layer to the body:
= 4 .- 1
gp(rl) = 20T, (E5(T,m1;) - 3] (3.26)
(2) The radiation flux from the shock layer into the free stream:
( = 4.1 - F -
,%b(rz) 20T (3 - E5(T, Tl)] (3.27)
In the above analysis, the shocked gas region in front of a blunt body
has been approximated by a plane layer. The validity of this
approximation has not been established.
Consider the same situation by choosing a spherical nose shape
and taking the shock shape to be concentric with the body as shown in

Figure 3.13.

Equation (3.11) represents the expression for the local radiative

flux in this case. By substituting first t = T4 and then 1 = T, in

shock

Figure 3.13 - Geometry when the shock shape is taken to be concentric
with the body
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equation (3,11), the following expressions for the radiation flux from

the shock layer to the body and into the free stream respectively are

obtained:
ng(T)=‘20T4[h (T=T 'T)-h (T=T T T)]
1 1 0 ‘"1 1’1 2 1°°1*°2
, 4
= 20Ty {-1ToE3(TpmTy) + (rpmm)Eg(pmty) + Eglrpmy)
2 2\% 2 2\5 1
'(Tz -7 )2E4[(12 -7 )?) - E5[(122-112)2] + T12/2}(3.28)
2 ¢ - 4 . .
i -)‘(Tz) - '2°To [hl(T‘Tstl) - hz(T*Tz,Tl,Tz)]

_ 4
= 20Ty (=1 1E5(1,m1q) + (1,=11)Ey(15-17) + EglTy-1;)

2__ 2y} 2 _2\% 2 _ 2\%
(Tz -11") E4[(12 T4 )¢l - E5[(T2 T4 )21

2, 1 2
/2 -gt (e

+

2.\% 2 _2\%
) E3[2(T2 ‘Tl ) ]

2

1 L 1
+ 2(122-11 )2 E4[2(T22-T12)2]+ E5[2(122-112)2]}(3.29)

Making use of the asymptotic expansions for the functions E3(r),
E4(T) and ES(T) as T > 0 (see Appendix A), one can show that for

(12-11)<<1, the foregoing equations (3.26-3.29) reduces to:

Gholty) = 20T (1,1 (3.30)
G (1)) = 20T (1,1 (3.31)
112 6;(11) = §'°T04['(T23'T13) + (T22-T12)3/2] (3.32)
122 4?(12) = %’°To4[(123'T13) ¥ (122-112)3/21 (3.33)

Numerical results obtained by using the approximate expressions

(3.30-3.33) are tabulated in Table 3.7 alongside with the results
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obtained by using the exact expressions (3.26 - 3.29). The optically
thin results are greater than the exact results for the two cases,
i.e. 1, - 1y = 0.01 and 0.1, When 1, - 1, = 0.01, the error for the
dimensionless flux at the outer boundary, increases from 0.7% to 3% as
rl/rz increases from 0 to 0.99, while for Ty =T = 0.1, the error
increases from 7% to 30%. For the dimensionless flux at the inner
boundary, the variation is from 0.5% to 0.8% for the case when
Ty =Ty = 0.01 and from 5% to 8% for the case when T, =T = 0.1.

Numerical results obtained for the several ratios of rl/rz for
equations (3.26 - 3.29) are presented graphically in Figures 3.14
through 3.17 and in Tables 3.8 through 3.11. One finds that there is
considerable difference between the results for the two geometries.
The effect of curvature increases with decreasing 11/12. Examination
of Figures 3.14 and 3.15 reveals that the non-dimensionalized
radiative fluxes at the inner and outer spherical boundaries approach
the dimensionless radiative flux for the planar medium as 11/12 +1
and T, = Tg becomes large. Moreover, the optically thick limit is
approached in all the cases as Ty = Ty >

Figures 3,16 and 3.17 presents essentially the same thing but in
a slightly different manner. Inspection of these figures show that
as the thickness of the shell decreases, i.e. as T, = T 0, one
approaches closer to the planar medium. For a small spacing
Ty = Ty = 0.1 and 11/12 = 0,99, the difference between the dimension-
less flux across a plane layer and the dimensionless flux at the outer
boundary of the spherical shell is less than 5%, while for Ty =T = 2

and 11/12 = 0.99 it is less than 1%. From Figure 3.16 one finds that
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Comparison of the exact and optically thin values of the dimensionless
radiative flux at the inner and outer boundaries

-G (x))foT, GH(ry)/aTy
rl/T2
Exact Approximate Exact Approximate
(a) 12—T1=0.01
0 9,9502D-3 1,0000D-~2 1.3234D-2 1.3333D~2
0.01 9.9832D~3 9,9837D-3 1,3366D-2 1,.3467D~2
0.10 1,0289D-2 1.0343D-2 1.4576D~2 1,4697D-2
0.20 1.0650D~2 1.0707D-2 1.5960D~2 1.6105D-2
0.30 1,1040D-2 1.1102D-2 1,7361D-2 1,.7534D-2
0.40 1.,1470D-2 1.1537D=-2 1,8749D-2 1,.8954D~2
0.50 1,1952D~2 1.2026D-2 2.0086D~-2 2.0327D=-2
0.60 1.2511D-2 1,.2593D-2 2.1317D-2 2.1600D-2
0.70 1.3187D-2 1,.3278D~2 2.2363D~2 2.2694D-2
0.80 1,4059D=-2 1.4167D-2 2.3079D-2 2.3467D-2
0.90 1.5353D=-2 1.54880-2 2.3126D-2 2.3588D-2
0.95 1.6408D-2 1.6573D-2 2.2559D-2 2.3076D~2
0.99 1.8055D-2 1.8293D-2 2.1070D-2 2.1672D-2
Planar
Layer 1.9447D-2 2.0000D=-2 1,9447D=-2 2.0000D=-2
(b) 12-11=0.10
0 9.5163D-2 1.0000D-1 1.2385D~1 1,3333D-1
0.01 9,5465D-2 1.0018D-1 1.2500D-1 1.3467D-1
0.10 9,8254D=-2 1,0343D-1 1.3550D~1 1.4696D-1
0.20 1.0153D=-1 1.0708D-1 1,4732D-1 1.6105D-1
0.30 1.0505D-1 1,1102D-1 1,5907D~1 1.7534D~1
0.40 1,0890D-1 1.1537D-1 1.7041D-1 1.8954D-1
0.50 1.1319D-1 1.2026D-1 1.8094D-1 2.0327D-1
0.60 1.1812D-1 1.2593D-1 1,9011D-1 2.1600D-~1
0.70 1.2400D-~1 1.3278D-1 1.9706D-1 2.2694D-1
0.80 1,3145D-1 1.4167D-1 2.0033D=-1 2.3467D-1
0.90 1,4213D~-1 1,5488D-1 1.9652D-1 2.3588D~1
0.95 1.5037D~1 1.6573D~1 1,8883D-1 2.3076D-1
0.99 1.6171D=-1 1.8294D-1 1.7453D-1 2.1673D-1
Planar
Layer 1.6742D-1 2.0000D-1 1.6742D-1 2.0000D-1




Table 3.8

Values of the dimensionless radiative flux at the inner boundary for
different ratios of inner to outer optical radii

CA 4
- J‘(Tl)/oTO

2"

11/12=O 11/12=0.1 11/12=0.5 11/12=0.9 Planar Layer
0.001 0.001000 0.001034 0,001202 0.001547 0.001992
0.002 0.001998 0.002066 0.002402 0.003092 0.003971
0.003 0.002996 0.003098 0.003601 0.004634 0.005939
0.004 0.003992 0.004128 0.004799 0.006174 0.007897
0.005 0.004988 0.005158 0.005994 0.007710 0.009844
0.006 0.005982 0.006186 0.007189 0.009244 0.011783
0.007 0.006976 0.007214 0,008382 0.010775 0.013712
0.008 | 0.007968 0.008240 0.009574 0.012304 0.015632
0.009 0.008960 0.009265 0.010764 0.013830 0.017543
0.010 0.009950 0.010289 0.011952 0.015353 0.019447
0.020 0.019801 0.020473 0.023759 0.030439 0.038063
0.030 0.029554 0.030551 0.035423 0.043792 0.056005
0.040 0.039211 0.040526 0.046944 0.059830 0.073352
0.050 0.048771 0.050398 0.058326 0.074146 0.090162
0.060 0.058235 0.060168 0.069569 0.088216 0.106478
0.070 0.067606 0.069838 0.080676 0.102045 0.122335
0.080 0.076884 0.079408 0,091648 0.115636 0.137761
0.090 0.086069 0.088880 0.102487 0.128996 0.152781
0.100 0.095163 0.098254 0.113194 0.142128 0.167417
0.200 0.181269 0.186849 0.213375 0.261869 0.296109
0.300 | 0,259182 0.266736 0.302064 0.363179 0.399916
0.400 0.329680 0.338770 0.380601 0.449234 0.485427
0.500 0.393469 0.403724 0.450167 0.522592 0.556791
0.600 0.451188 0.462294 0.511803 0.585334 0.616899
0.700 0.503415 0.515109 0.566427 0.639156 0.667878
0.800 0.550671 0.562733 0.614850 0.685455 0.711352
0.900 0.593430 0.605677 0.657786 0.725383 0.748594
1.000 0.632121 0.644402 0.695867 0.759896 0.780616
1.500 0.776870 0.787902 0.830835 0.875081 0.886521
2.000 0.864665 0.873474 0.905421 0.933477 0.939733
2.500 0.917915 0.924511 0.946871 0.963971 0.967409
3.000 0.950213 0.954954 0.970024 0.980236 0.982139
3.500 0.959481 0.973117 0,983019 0.989048 0.990109
4.000 0.981684 0.983954 0.990345 0.993882 0,994477
5.000 0.993262 0.994281 0.996848 0.998054 0.998244
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Figure 3.14 - Dimensionless radiative flux at the inner boundary versus difference of outer
to inner optical radii
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Table 3,9

Values of the dimensionless radiative flux at the outer boundary for
different ratios of inner to outer optical radii

7/"(12)/0T04
2"
11/12=0 11/12=0.1 11/12=0.5 11/12=O.9 Planar Layer

0.001 0.001332 0.001468 0.002030 0.002354 0.001992
0.002 0.002663 0.002934 0.004056 0.004699 0.003971
0.003 0.003991 0.004398 0.006076 0.007034 0.005939
0.004 0.005317 0.005859 0.008092 0.008360 0.007897
0.005 0.006642 0.007318 0.010103 0.011677 0.009844
0,006 0.007964 0.008774 0.012109 0.013985 0.011783
0.007 0.009285 0.,010228 0,014110 0.016284 0.013715
0.008 | 0.,010603 0.011680 0.016107 0.018573 0.015632
0.009 0,011919 0.013129 0.018099 0.020854 0.017543
0.010 0.013234 0.014576 0.020086 0.023126 0.019447
0.020 0.026271 0.028913 0.039697 0.045361 0.038063
0.030 0.039114 0.043015 0.058847 0.066756 0.056005
0.040 { 0,051767 0.056887 0.077547 0.087357 0.073352
0.050 0.064232 0.070532 0.095810 0.107207 0.090162
0.060 0.076512 0.083955 0,113646 0.126346 0.106478
0.070 0.088611 0.097158 0.131066 0.146624 0.122335
0.080 0.100531 0.110147 0, 148082 0.162642 0.137761
0.090 | 0.112275 0.122925 0.164703 0.179867 0.152781
0.100 | 0.123845 0.135496 0.180940 0.196519 0.167417
0.200 0.230601 0.250551 0.324240 0.337093 0.296109
0,300 | 0.322770 0.348439 0,438475 0.443311 0.399916
0.400 0.402475 0.431889 0,530150 0.526919 0.485427
0.500 | 0,471518 0.503178 0.604221 0.594671 0.556791
0.600 | 0.531427 0.564210 0.664473 0.650694 0.616899
0.700 | 0.583503 0.616575 0.,713817 0.697675 0.667878
0.800 0.628852 0.661606 0.754496 0.737565 0.711352
0,900 | 0.668418 0.700420 0.788250 0.771409 0.748594
1,000 | 0.703003 0.733954 0.816433 0.800523 0.780616
1.500 0.822033 0.846064 0.904059 0.896593 0.886521
2.000 0.886447 0.904077 0.945348 0.944866 0.939733
3.900 0.945408 0,955002 0.978622 0.983435 0.982139
4,000 0.968844 0.974563 0,989774 0.994732 0.994477
5.000 1 0.980010 0.983746 0.994212 0.998224 0.998244
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Figure 3.15 - Dimensionless radiative flux at the outer boundary versus difference of outer
to inner optical radii
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the dimensionless flux at the inner boundary for spherical geometry
is always less than the dimensionless flux for planar layer with the
same optical thickness T, = Tqe Figure 3.17 shows that for a partic-
ular value of Ty = Tp» the dimensionless flux at the outer boundary
for spherical geometry is less than that of the planar layer to begin
with, But as 11/12 increases, the dimensionless flux at the outer
boundary also increases and finally exceeds the dimensionless flux

of the planar layer at a certain value of TI/TZ.

Direct substitution of T = 0 in expression (3.28) leads to an
indeterminate result. Therefore, to obtain numerical results for the
dimensionless flux at the inner boundary for the ratio TI/TZ =0, a
different expression is developed as shown below.

Substitution of 1 = T in expression (3.11) gives

112 9/*(11) = -20T04[h1(1=11;11) - h2(1=11;11.'r2)] (3.34)

Substituting T = 7, in equation (3.17), we get
1,2 3
- . 1 -7 1 -1
hl(T-Tl,Tl) =——e 1+-xe 1 (3.35)

Utilizing equations (3.35) and (3.22) in equation (3.36) and
simplifying, one obtains
g‘(rl)

—7 " -(1+ %-rl) (e7"1 - e772) (3.36)
o
0

From equation (3.36), we obtain

1im éﬁ(rl)/oro4 =e T2 -1 (3.37)

Tl->0

Expression (3.37) is used to obtain numerical results for the dimen-

sionless radiative flux at the inner layer when T, 0.



Values of the dimensionless radiative flux at the inner boundary for various differences of outer

Table 3,10

to inner optical radii

e 4
-H(1))/o1
Y.
12-11=0.1 12-11=0.5 12-11-1.0 12-11=2.0
U 0.095613 0.393469 0.632121 0.864665
0.01 0.095465 0.394482 0.633347 0.865565
0.10 0.098254 0,403724 0.644402 0.873474
0.20 0,101530 0.414355 0.656793 0.881904
0,30 0, 105050 0.,425506 0.669412 0.890010
0,40 0,108898 0.437362 0.682386 0.897838
0.50 0.113194 0.450167 0,695867 0.905421
0,60 0,118121 0.464277 0.710048 0.912782
0,70 0.123997 0.480241 0.725181 0.919927
0.80 0,131454 0.499018 0.741623 0.,926841
0.90 0,142128 0.522592 0.759896 0.933477
0.95 0.150371 0.537609 0.769929 0.936660
0.99 0.161710 0.552488 0,778432 0.939128
Planar
Layer 0,167417 0.556791 0,780016 0.939733
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Figure 3.16 - Dimensionless radiative flux at the inner boundary

versus ratio of inner to outer optical radii



Table 3,11

Values of the dimensionless radiative flux at the outer boundary for various
differences of outer to inner optical radii

Vo 4
F(1p)lor
Tl/Tz
T2-T1=0.1 T2-T1=0.5 T2-T1=1.0 T2-T1=2.0
0 0.123845 0.471518 0.703003 0.886447
0.01 0.124996 0.474727 0.706224 0.888338
0.10 0.13549¢6 0.503178 0.733954 0.904077
0,20 0.147323 0.533314 0.761574 0.918794
0.30 0.159066 0.560953 0.785043 0.930547
0.40 0.170407 0.585010 0.803575 0.939364
0.50 0.180940 0.604221 0.816433 0.945348
0.60 0.190108 0.617062 0.822943 0.948662
0.70 0.197064 0.621607 0.822557 0.949523
0.80 0.200328 0.615304 0.814986 0.948179
0.90 0.196519 0,594671 0.800523 0.944866
0.95 0.188834 0.577762 0.791111 0.942523
0.99 0.174529 0.561194 0.782791 0.940327
Planar
Layer 0.167417 0.556791 . 0.780616 0.939733

1§
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Figure 3.17 - Dimensionless radiative flux at the outer boundary

versus ratio of inner to outer optical radii
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£E. Nonisothermal Case

In the previous sections, analysis of the local radiative flux
was carried out for isothermal gas. That study turned out to be
relatively simple because the term T4(t) in expression (3.1) could be
pulled out, and mathematically, the problem became more tractable.
Now, the case when the intervening medium is nonisothermal is studied.

To begin with, a conduction temperature distribution

c

T(r) = - ;l + C, (3.38)
is assumed with the following boundary conditions
(1) atr = ros T = T1 (3.39%)
(2) atr = ro, T = T2 (3.39b)

An expression for the dimensionless function ©(1) in terms of O1s Oy
T and T, 1s obtained.

0T = 0171 T1Tp(05-0)

o(t) = - (3.40)
TomTq T(TZ-TI)
where
T T2

©;=yx and 0, = =% (3.41)
T* is some reference temperature.
Moreover, if the bounding surfaces are assumed black, then

F,o=of,® and F, =ot? (3.42)

1 1 2 2

Knowing the incident fluxes Fl’ F2 and the temperature distri-
bution ©(t), numerical results are obtained for the dimensionless
radiative fluxes at the inner and outer boundaries with the aid of
expression (3.1), For some selected values of 02. -rl/T2 and TZ-Tl,

different values of 61 are obtained. To evaluate the integral in
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expression (3.1) numerically, guassian quadrature is used. The
numerical results obtained are tabulated in Table 3.12 and shown
graphically in Fiqure 3.18. The term I in Table 3.12 stands for the
following integral
T2
2 f H(r,t;11)64(t)dt (3.43)
"1

where © is given by expression (3.40).

Table 3.12

Values of the dimensionless radiative flux for the nonisothermal
spherical layer (11=1, 12=2 and 62=1)

0, -1/7,? /1,2 -G ety - Gny)eTy
0 0.1325 0.4275 0.4366 0.4649
0.10 0.1474 0.4490 0.4515 0.4434
0.25 0.1773 0.4859 0.4776 0.4063
0.50 0,2607 0.5636 0.5046 0.3241
0.75 0.4173 0.6699 0.4050 0.1985
0.90 0.5660 0.7521 0.2141 0.0904
1.00 0.6959 0.8164 0 0

Figure 3.18 shows that I/'cl2 decreases as T1 increases, while
I/7,° increases as T; = T,. When o) = 1, the results, 1/7,% = -0.6959
and I/-rz2 = 0.8164, corresponds to the isothermal case and they
compare quite well with the results obtained previously for the case
when 1, - 7; = 1 and T,/1, = 0.5 (see Tables 3.8 and 3.9). The

dimensionless radiative fluxes at the inner and outer boundaries

increases as T1 increases.
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F. Conclusions

Comparison of the expressions for the local radiative flux in
spherical and planar geometry reveals that the functions hl(r;rl)/r2
and hz(r;rl,rz)/r2 of the spherical geometry are analogous to the
functions E3(r-rl) and E3(12-r) of the planar geometry, respectively.
The mathematics of the isothermal analysis are tractable. Thus, by
considering some simplified physical situations (Fiqures 3.3 and 3.4)
one can gain some insight into the effect of various parameters on
the heat transfer. By studying the limiting cases of the functions
hl(r;rl) and hz(r;rl,rz), one comes to know about the usefulness of
the approximate expressions.

The shock layer example reveals that one can obtain closed form
expressions for the radiative fluxes at the inner and outer boundaries.
Numerical results obtained show that there is considerable difference
between the results for the two geometries. The effect of curvature
increases with decreasing 11/12. The study of a particular noniso-

thermal case shows that the temperature variations are important.
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IV. HNONGRAY ANALYSIS: SIMPLIFIED RECTANGULAR MODEL

The gray approximation employed in the previous chapter is the
most frequently used in analysis of radiative transfer problems. The
approximation is based upon the assumption of frequency independent
radiation characteristics of the surfaces and the gases involved. The
gray approximation is usually employed in most radiative transfer
studies because of the mathematical complexity of the nongray analysis.
Unfortunately, most of the substances in which radiation plays a

dominant or an important role cannot be characterized as gray.
A. Physical Model and Governing Equations
1. Spherical Layer

In this and the next chapter a spherical layer of nongray gas is
considered, The absorption coefficient is only a function of
frequency, i.e. Kv=a(v)K. For the simplified rectangular model, the
function a(v) has only two values, zero and unity (see Figure 4.1).
The rectangular model approximates a band by a rectangular box of
calculable width (effective band width) with a suitably determined
average absorption coefficient. The spectra of many substances, such
as glass, carbon dioxide and water vapor have regions where the
absorption coefficient is zero. Thus, an absorption coefficient of
this type is of physical interest. The index of refraction of the
medium is considered to be unity, and the medium is assumed to be in

local thermodynamic equilibrium.
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Figure 4.1 - Simplified rectangular model for spectral absorption

coefficient

For the physical model and form of spectral absorption

coefficient considered, the local radiative flux per unit frequency

can be expressed as [6]

2 - A - .
T é;v(Tv) - ZFlvhl(Tv’Tlv) 2F2vh2(Tv’T1v’T2v)

v
T2v
ez | i) gyt (4.1)
T1v
where the optical radial distance 1 is defined as
r
T = I Kk dr = k. r (4.2)
v v
0
and the inner and outer optical radii as
and T, = K,ro (4.3)

Tiv - 51
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In equation (4.1) Flv and F represent the radiative fluxes incident

2v
on the inside and outside of the layer, respectively, and Ebvanbv
js the Planck function. The functions hl(rv;rlv), hZ(TV;Tlv’TZV) and

H(Tv’t;Tlv) are defined as

h (T ’Tlv) ERRIVES tY E3(Tv-T1v) - (Tv-Tlv) E4(Tv'T1v) - E5(T\)-T1\))
1 L 1
+ (P O gl B B L B DB (a)

ho(T,3T10To,) = TyToy Eg(Ty 7)) = (15-7)) EglTp,-1) = Eglty -1)

2 25 2. 2\ 2 2% 2 2%
* (TZv “Tiv ) (Tv “Tiv ) E3[(T2\) “Tiv )i+ (Tv “T1v )

L 1 L 1
* [(TZ\)Z-TI\)Z)2 ¥ (T\)Z'Tl\)z)2]E4[(T2\)2'T1v2)2 * (Tvz'rlvz)zl
1 2.
+ E5[(12\)2-Tl\)2)2 + (Tvz'Tlv )% (4.5)
H(Tv’t’Tlv) = {TvSign(Tv-t) Ez(lTv-tl) + E3(lrv-tl)

2

L 1 2.%
2)% E,[(t2ety B)% + (1,501 20

2
- (Tv “Tiv
2 2\% 2 2.4
- E3[(t “T1y )2+ (Tv “T1y )2)1t (4.6)

By introducing new optical radial distance
T = Tv/a(v) = kr (4.7)

and new inner and outer optical radii

D VI d 1, = 22 r (4.8)
LS Bl ov) B | an 2 - VT 2 .

equation (4.1) can be expressed as
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hl[a(v)T;a(v)Tll

hz[a(v)(,a(v)Tl,a(v)Tz]

F

v 1v Y4
a”(v)

- 2F
2v GZ(V)

T2
H[a(v)T,a(v)t;a(v)TI]
+ 2 f

alv)

E,, (t)dt (4.9)
"1
With the aid of the asymptotic expansions for functions
E3[a(v)T], E4[a(v)r] and Es[a(v)f] as a(v)t - 0, the expressions for
the functions hl[a(v)r;a(v)rll/az(v), h2[a(v)T;a(v)Tl,a(v)Tzl/az(v)

and H[a(v)r,a(v)t;a(v)rl]/a(v) becomes

hl[a(v)r;a(v)rll T 2 a(v)(r-rl)3
Vi = —— - a(v)TTl(T-Tl) - 3
a“(v)
a(v)(TZ-T12)3/2
+ . (4.10)
h,la(v)T;0{v) T ,0(v)T,] 112 a(v)[(T22-112)3/2 + (T2-112)3/2]
= +
- a(v)(TZB-Tl ) (4.11)
H . 5 -
Lalv)T ai;i; a(v)TI] = a(v)tt signla(v)(t-t)1- Eﬁﬁléll_ﬁl
- OL(\))t(‘rz-le)l/2
2 2\ b 2 2\%
a(v)ti(t -Tl )2+ (T -Tl ) %] (4.12)

* 2
From equations (4.10) through (4.12) it is possible to deduce that
hila(v)tsalv)Tl T4

11 =
a(V;TO a2(v) - 2 (4.13)

lim hzla(v)r;a(v)rl.a(v)rzl i 112 (4.14)
a(v)-0 a?kv) 2 :




lim H[a(v)r,a(v)t;a(v)rl]_
a{v)+0 a(v) -

From equation (4.9), the local radiative flux,

¢

62 = f f;Z vdv
0
can be written as
> hyla(v)Tsa(v)T,]
2 (% - 1 1
¢ % (1) 2 f Flv az(v) dv

0

h : >
., f F2 2[a(\))r a(\))r1 a(v)rz]
v

0 a“(v)

© 12 H[a(v)r,a(v)t;a(v)rl]
vz | T(v)

0 T

Ebv(t)dtdv

6l

(4.15)

(4.16)

Splitting the first integral of equation (4.16) into two parts, it

can be expressed as

e o]

h,fa(v)Tialv)t,]

2 F
[0 1v EZkV)

dv

e o]

= 2 f (1-a(v)] Fly
0

hlta(v)r;a(v)rll

d
2 () ¥

e o]

+ 2 a(v) F1
J0

hl[a(v)r;a(v)TI]

. dv
\Y] GZ(V)

(4.17)

Substituting for the function hl[a(v)r;a(v)rll and using equation

(4.13), equation (4.17) can be written as
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<o

hytal(v)tialv)T;] 2 .
2 fo Fly 7 dv = ©,%F;* + 2F h, (1357,) (4.18)
where
Fi* = [ [1-a(V)] Fiy 9V (4.19)
0
0

In equation (4,18), Fl* and F1 are the incident fluxes that do not act
with the intervening medium and that do act with the intervening
medium, respectively. Similarly, the next two integrals of equation

can be written as

<o

h2[a(v)1;a(v)rl,a(v)12] 2
2 j F2v » dv = 14 F2* + 2F2h2(1;11,12) (4.21)
0 a“(v)
where Fo* = f [1-a(Vv)] Fo, @V (4.22)
0
Fp = f a(v) sz dv (4.23)
0
and
o0 TZ
Hla(v)t,a(v)tsa(v)ty]
2 f J =T5) Ebv(t) dt dv
0 T
12
- zf H(tytsT )E(t)dt (4.24)

11



63

(o o]

where E(T1) = f a(v) Epy dv . (4.25)
0

Making use of the foregoing results, the expression for the local

radiative flux becomes

12 52(1) = le(Fl*-FZ*) + 2F1h1(r;11) - 2F2h2(r;11,12)

T2
+ 2 f H(T,t;Tl) E(t) dt . (4.26)
1
In equation (4.26) the functions hl(T;Tl). hZ(T;Tl.TZ) and H(T,t;Tl)
are the same as defined previously in chapter three. Equation (4.26)
is similar to equation (3.1) of the previous chapter except for an
additional term le(Fl*-Fz*). This term represents the net energy
exchanged through the 'windows' (see Figure 4.1).
The case when a(v)=1,corresponds to the gray medium situation.
As a(v)+1, examination of equations (4.19) and (4.22) shows that both
Fl* and Fz**O and the term le(Fl*-Fz*) vanishes. Thus the expression
for the local radiative flux (4.26) becomes similar to the one given

by equation (3.1). This shows that the gray case is a special case of

the general nongray problem,
2. Planar Layer

Once again, in order to make a comparative study, the planar case
js considered. For a similar problem in planar medium, the local

radiative flux per unit frequency is given by [111]
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égpv(Tv) = ZFlvE3(Tv-T1v) - 2F2vE3(T2v-Tv)
T2y
+ 2 f sign(t -t) E,(|7 -t]) E (t)dt O (4.27)
T1v
Equation (4.27) can also be expressed as
éjbv(r) = 2 Flv E3 [a(v)(r-rl)] -2 sz E3[a(v)(12-r)]
T2
‘2 f a(v) sign(1-t) Eylalv)|t-t]] £, (t)dt (4.28)
™1
By noting that «(v) has only two values, zero and unity, the local

radiative flux can be written as

{J«p(r) = f gpvdv = (Fy*-Fy*) + 2F E(T-1)) = 2F B (1,m1)
0
T2
+ 2 f sign(t-t) E,(|t-t]) E(t)dt (4.29)
1
where F*, F,, F,*, F, and E(t) are given by equations (4.19), (4.20),
(4.22), (4.23) and (4.25), respectively.
Equation (4.29) is similar to equation (3.7) encountered in the
last chapter except for the first term (Fl*'Fz*)' The term (F1*~F2*)

represents the net flux exchanged through the 'windows' (see Figure

4.1).
B. Isothermal Analysis

When the nongray gas is isothermal, i.e. E(t) = EO’ equation

(4.26) reduces to
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2 _ .2 . .
1€ 6 (1) = T S(F *-F %) + 2h (131))(Fy=E) = 2h,(T371,1,) (F,mE,) (4.30)
As in the previous chapter, relation (3.10) is used. HNow, equation
(4.30) is similar to equation (3.9) of the gray analysis except for
2

the term 1, (Fl*'FZ*)‘

The assumption of an isothermal planar medium reduces equation
(4.29) to
(1) = (Fy*=Fp*) + 2E3(t=1))(F}=Ep) = 2E3(1,=1) (F p=E() (4.31)
Examination of equation (4.31) reveals that except for the term

(Fl*'FZ*)’ this equation is similar to equation (3.12).

Case 1: F2 = E0
Consider the physical situation illustrated by Figure 3.3 of the
gray analysis. Since the outer boundary is black, the following

identity results:

F, + Fy* = ol (4.32)

Equations (4.30) and (4.31) simplify to

1262(1)
EZP(T)

respectively.

2 4 ] -
T (Fl*-oT2 +EO) + 2h1(T,T1)(F1 EO) (4.33)

4
(Fl*-oT2 +E0) + 2E3(r-rl)(F1-E0) (4.34)

Case 2: F1 = EO

Referring to Figure 3.6 of the previous chapter, for the case

when the inner wall is black, the following relation ensues:
4

Fit Fl* = oTl (4.35)

For this case, equation (4.30) reduces to
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2 2
G (1) = 7 20T ug g p%) = 2yt 7)) (FpmEg) (4.36)
and equation (4.31) simplifies to

gpm = (0T, -EO-F *) - 2E4(1,-7) (F,~E() (4.37)

Case 3: Shock Layer
The incident fluxes F1 and F2 are essentially zero when the shock
layer is considered. For this case, expressions (4.30) and (4.31) for

the local radiative flux further simplifies to

? 6k (1)
g‘p(r)

-2E0[hl(r;rl)-hz(r;rl.rz)] (4.38)

-ZEO[E3(T-T1)-E3(T2-T)] (4.39)

These expressions turn out to be similar to expressions (3.11) and
(3.13) obtained in the previous chapter. Using expression (4.38),
one can obtain the expressions for the radiative fluxes from the
shock layer to the body and from the shock layer into the free stream,
when the shock shape is taken to be concentric with the body.

Once again, the fact that the gray situation is a special case

of the general nongray situation is reemphasized.

C. Nonisothermal Case

When the temperature variations are considered, numerical results
can be obtained by using equation (4.26). The integral term in
equation (4.26) is not the same as the one in equation (3.1) because
of the fact that E(t) # 0T4(t). It is for this reason that the

results obtained for the integral term of equation (3.1) cannot be
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used for the nongray case. l!Moreover, the first term, 112(F1*-F2*), of
equation (4.26) which does not appear in equation (3.1) should be

accounted for.
D. Case of Radiative Equilibrium

If there is no heat generation in the medium and a steady state
exists, the net emission of radiation from each volume vanishes, i.e.
the radiant energy absorbed per unit time by a unit volume is equal to
the radiant energy emitted per unit time by the same volume. Thus,

the net emission during radiative equilibrium is zero.
1. Formulation

Mathematically speaking, radiative equilibrium for one

dimensional spherical geometry is defined by

d{ra?2ir)1= 0 (4.40)
T

Upon differentiating equation (4.26) and making use of the fact that

dih,(t314)1]
ldT L - 19, (t314) (4.41)
dih,(T37107,) ]
- = 19,(1377T,) (4.42)
T2 12
g? f H(T.t;rl) E(t)dt = 2125(1) -1 f K(T,t;rl) E(t)dt (4.43)
T T
one obtains,
12

E(t) = %;-[Figl(rzrl) + Fzgz(r;rl.rz) + f K(T.t;rl)E(t)dt] (4.44)
T
1
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where
. - - 2 _ 2\%
gl(r,Tl) = Tltz(r—rl) - E3(T-T1) + E3[(T -1y )2 (4.45)

9,(T3T50Ty) = THE,(15-1) + E5(1,-1)

1 1 1
- (TZZ-TIZ)QEZ[(TZZ-le)z + (12-112)2]
- Eyllr, A% + (Br A (4.46)
L p
K(t,t51y) = tE (JT-t]) = Ej1(P-1,9)% + (£2-0 )% (4.47)

Inspection of equation (4.44) reveals that the energy equation has
four independent parameters: Ty Too F1 and FZ‘ The radiative fluxes
F1 and F2 cannot in general be evaluated before the temperature
distribution has been completely determined.

The transformation

E(t) = Fp t (Fl—F2)¢(T) (4.48)
permits one to express the solution of the integral equation (4.44)
in terms of an independent singular Fredholm integral equation of the
second kind:
T2
¢(t) = %; [9,(tiTy) + f K{tytsty)o(t)dt] (4.49)
1
Substitution of equation (4.48) into equation (4.26) results in the

following expression for the local radiation flux
2
2 G (1) = 1 B *=F %) + (F)-F,)Q(1) (4.50)

where
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T2
Q(x) = 20hy(riry) + [ H(n,targde(t)dt) (4.51)
"1
Equation (4.49) represents the dimensionless energy equation.
The function ¢(t) is a universal function and depends only on the
optical radial distances T, T and Toe Equation (4.49) is independent
of the parameters (except T and 12) affecting the particular
conditions to be specified at the two walls. The functions ¢(t) and
Q(t) defined in this analysis are different from the functions o(1)
and 5(1) defined in Reference [17]. The following relation exists:
o(1) = 1-8(1); Q1) = -Q(7) .
Radiative equilibrium for one-dimensional planar geometry is
defined by
df % (1)1 )

—b—=0 (4.52)

Differentiation of equation (4.29) gives
T2
E(t) = § [FyEy(t-1)) + Fofiglr,=1) + f £, (|-t E(t)dt] (4.53)
"1
The above integral equation defines the temperature distribution and
therefore the radiative flux.
The transformation [111]
E(T) = Fp + (Fy=Fple (1) (4.54)
reduces equation (4.53) to a simpler singular Fredholm integral

equation of the second kind:



70

T2
0, (1) = 3 Ep(r-) + [ 4 (0)E)(Ir-t])at) (4.55)
"1
Equation (4.55) represents the dimensionless enerqgy equation,
The function ¢p(r) is a general function representing solutions of a
class of problems for which the gray case is only one limiting
solution., Once ¢p(r) is known, the temperature distribution in the
medium can be obtained by solving equation (4.54). Substitution of
equation (4.54) into equation (4.29) results in the following

expression for the local radiation flux.

Grol1) = F 1% = Fo% 4 (F1-F,)Q (1) (4.56)
where
T2
0, (0) = 2(Ege=r)) + [ sign(e-t)Ey(le-t])g ()t (4.57)
T
1

By comparing the energy equations (4.44) and (4.53) one finds
that the functions gl(r;rl), gz(r;rl,rz) and K(r,t;rl) which arise in
the spherical geometry case are analogous to the functions Ez(r-rl),

EZ(TZ-T) and El(lr-tl), respectively, of the planar geometry.
2. Function gl(T;rl)

Examination of the dimensionless energy equation for the
spherical layer (4.49) and that for the planar layer (4.55) reveals
that the function gl(r;rl)/r is analogous to the function Ez(r-rl).
In order to gain some insight into the behavior of the function ¢(t)

with respect to the optical distance t and the optical radii Tys @
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study of the function gl(T;Tl) is undertaken. The following cases

are considered:
a. Exact Results

By utilizing the expression (4.45) for the function g;(t379)s
numerical results are obtained for several values of Tqe These
results are obtained for several values of Tye These results are
tabulated in Table 4.1 and presented graphically in Figure 4.2.

Examination of Figure 4.2 shows that all the four curves start
at the same value when 11/1 = 1. As the ratio TI/T decreases, the
function gl(T;rl)/r also decreases. For the first two cases, i.e.

T, = 0.01 and 0.1, the decrease in the function gl(r;rl)/r is quite
gradual as TI/T + 0, while for the next two cases, i.e. T T 1 and 5,
the decrease in the function gl(r;rl)/r is quite rapid as 11/1 - 0,

It is observed that the behavior of the function gl(T;rl)/r is quite
similar to that of the function hl(r;rl)/rz. In Figure 4.2 the curves

in broken lines represent the function Ez(r-rl) for four cases of T,
b. Optically Thin

With the aid of the asymptotic expansions for the functions Ez(r)

and E3(r). the function gl(r;rl) in the optically thin 1imit becomes
1 ]
g,(t3ty) = T - [(12-112)2] (4.58)

From equation (4.58), one observes that

1im gl(r;rl) =17 (4.59)
T,

Substitution of T = Ty in expression (4.45) also yields the same

result, i.e. gl(T=T1;T1) = 1.



Table 4,1
Values of the function gl(r;rl)/t
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gl(r;rl)/r

Tl/T

1,=0.01 1,=0.1 1,=1.0 7,75.0
0,001 2.2858D~-11
0.002 1.3566D-08
0.003 1.6161D-07
0.004 6.6108D=07
0.005 1.7030D-06
0,006 3.4226D-06 1.0179D-11
0.007 5.9109D-06 1.6539D0-11
0.008 9,2298D-06 1.2762D-10
0.009 1.3422D-05 6.4738D-10
0.010 1.8518D=~05 2.4278D-09
0.020 1.2214D-04 1.4417D-06
0,030 3.2469D-04 1.7181D-05
0.040 6.2752D-04 7.0312D=-05
0.050 1.0310D-03 1.81220-04 1.3314D-10
0.060 1.5355D-03 3.6438D-04 2.0448D-10
0.070 2.1411D-03 6.2964D-04 3.1125D=-09
0.080 2.8480D-03 9.8379D-04 2.4307D-08
0,090 3.6566D-03 1.4316D-03 1.2369D-07
0.100 4,.5670D0=-03 1.9765D-03 4,6511D-07
0.200 1.9357D~02 1.3167D=-02 2.8429D-04 7.1794D-09
0.300 4,4882D-02 3.5547D-02 3.5067D-03 1.5492D-07
0.400 8.2049D-02 7.0199D=-02 1.4954D-02 1.9483D~05
0.500 1.3236D-01 1.1873D-01 4.0495D-02 4.1197D-04
0.600 1,9831D-01 1.8375D-01 8.6485D-02 3.5498D-03
0.700 2.84200-01 2.6976D-01 1.6118D-01 1.8411D-02
0.800 3.9853D-01 3.8557D-01 2.7825D-01 7.0810D-02
0,900 5.6306D-01 5.5368D-01 4.6912D=-01 2.3404D~-01
1.000 1.0000D+00 1.0000D+00 1.0000D+00 1.0000D+00
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3. An Example: Carbon Monoxide

The object of this example is to illustrate how the rectangular
model can be used to analyze radiative heat transfer in a nongray gas.
For this purpose, both the planar and spherical media will be bounded
by black walls at temperatures T1 and T2. The analysis is restricted
to gases having a single fundamental vibration-rotation band; that is,
diatomic gases.

Diatomic absorbing-emitting gases, such as carbon monoxide, have
a single fundamental band as well as overtone bands. The first
overtone band of carbon monoxide has roughly one percent of the
intensity of the fundamental band. Therefore, overtone bands may be
neglected and only the fundamental band will be included in the
following development.

The band intensity, S, and the effective band width, Aw, for the

CO fundamental band may be expressed by the following relations [112],

S(T) = 237 (332) (4.60)
Ao = 214 (3{55)'/2 (4.61)

respectively. The center of the CO fundamental band is located at
w, = 2143 cn”! (4.62)

With the aid of the expressions (4.60) through (4.62), the rectangular
models are plotted for different temperatures as shown in Figure 4.3.
The rectangular model is a very simple band approximation which
assumes that the spectral absorption coefficient Ko, is constant over
an effective band width. Observation of Figure 4.3 shows that Kw/P

decreases as temperature increases while the reverse is true for the
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effective band width. One may say that the rectangle is 'compressed’
as the temperature increases. The values for Vis Vo and Av for

various temperatures are tabulated in Table 4.2,

Table 4.2
Values of the quantities 3;,'31 and Gé for various temperatures
T v, x 10713 vyx 1078w x 107 v x 1078
(°K) (sec™d) (sec™?) (sec™!) (sec™?)
300 6.43 6.12 6.74 0.62
400 6.43 6.06 6.80 0.74
500 6.43 6.02 6.84 0.82
600 6.43 5.99 6.87 0.88
700 6.43 5.94 6.92 0.98
800 6.43 5.90 6.96 1.06
900 6.43 5.88 6.98 1.10
The following identities result for black walls:
F,o+ F %= ol * (4.63)
1 1 1
F. + F,* = oT, 2 (4.64)

2 2 2
where Fl’ F2, Fl* and F2* denote the quantities used in expressions
(4.26) and (4.29). Utilizing the identities (4.63) and (4.64) in

expression (4,56), the following dimensionless function results in

case of a planar layer:

G *(x) —-,P—Tg LA ——-z———-KFl'FZ (1-Q(1)] (4.65)
* = = - - T .
)ﬁp t oT1 -0T2 oTl -0T2 P

Similarly, making use of the identities (4.63) and (4.64), one obtains

from expression (4.51) the following form for the dimensionless
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Figure 4,3 - Rectangular model for spectral absorption coefficient
of carbon monoxide
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function for a spherical layer.

2
T F.~F
Gix(r) = Ly 11 - 32 (1 + ULy, (4.66)
T oT, =oT T
1 2 1
The flux incident on the boundary is given by
Fe | Py av) av (4.67)
0
For a black wall, equation (4.67) reduces to
F = f E, (T) a(v) dv (4.68)
Q
In equation (4.61), Planck's function Ebv is given by
2Hh\)3
E_(T) = (4.69)
bv C z[exp(h\)) - 1]
0 kT
where k is Boltzmann's constant, h is Planck's constant and CO is the
speed of light in vacuum,
By introducing a dimensionless frequency
— _ hv
v = -E-.F (4.70)
and rearranging, equation (4.69) reduces to
BT oamd TP (4.71)
™ ¢ h T °
0 (e¥-1)
By noting that o(v) has only two values zero and unity, equation
(4.68) with the aid of equation (4.71) reduces to
V.
2
F__ 15 f T4 (4.72)
oTl EI - v
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In Figure 4.4, the variation of the integrand of equation (4.72) is
shown with the dimensionless frequency V. The figure shows that the
integrand increases as V increases. It has a maximum at V = 2.8. The
integrand decreases as V increases beyond 2.8. The cut-offs shown
from left to right correspond to the temperatures 900°K, 600°K and
300°K respectively. Figure 4.5 shows the variation of the dimension-
less flux F/oT4 with respect to dimensionless frequency vV for various
values of Av., The technique used to evaluate the integral in equation
(4.72) is outlined in the Appendix of Reference [111]. Examination of
Figure 4.5 shows that for a given V the dimensionless flux increases
as Av is increased. Table 4.3 shows the variation of the quantities

Ve 3&, Vé and F/oT4 with the absolute temperature T,

Table 4.3
Values of the quantities Ce, 3&, Ué and F/oT4 for various temperatures
T Se 3, 3, N F/oT?
(°K)
300 10.30 9.80 10.80 1.00 0.0058
400 7.72 7.28 8.16 0.88 0.0280
500 6.16 5.76 6.56 0.80 0.0613
600 5.14 4,78 5.50 0.72 0.0860
700 4,40 4,07 4,73 0.66 0.1075
800 3.86 3.54 4,18 0.64 0.1217
900 3.43 3.13 3.73 0.60 0.1244

Letting T1 = 800°K and T2 = 400°K, one can proceed to evaluate

the dimensionliess function é;p* for the nongray planar layer. In

2
this analysis the values of F; = 36,300 erg/sec cm  and
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f

F2 = 3,035 erg/sec cm2 used are those obtained by using

vy = 5.99 X 1013 sec™? and v, = 6.87 x 1013 sec! corresponding to an
average temperature of 600°K. The variation of Qp with respect to the
optical thickness T,=Ty is known from Reference [113]}. Thus, knowing
all the quantities in equation (4.65) values of {?p* for a range of
optical thickness T,-T4 are obtained. These results are tabulated in
Table 4.4 and presented graphically in Figure 4.7.

For the sake of comparison, a gray layer is considered. For this

case, equation (4.65) reduces to

gp*(r) = Q(t) (4.73)

Instead of using the value of the absorption coefficient k as shown in
Figure 4.6, an average value \KP) is used. This average value, known

as the Planck mean absorption coefficient, is expressed as

oo

j Ky, Ebv(T) dv

_ 0
Kp = Eb(T) (4.74)

The Planck mean dimensionless function is expressed as

oo

f a(v) Ebv(T) dv

0 -
ap(v) = ) (4.75)

For the case under consideration

ay(v) = L = 0.086 (4.76)
oT

From the graph of Q versus To=Tps values of §2p* are determined for a
range of optical thickness corresponding to values of Q[0.086(12-rl)].
The results for the gray layer are tabulated in Table 4.4 and

presented graphically in Figure 4.7,
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Absorption coefficient, «

Frequency, v

Figure 4,6 - Planck mean absorption coefficient

In a similar manner, values of g;*’for the nongray and gray
spherical layer are obtained for a range of inner optical radius Ty
In this case, the guantity -Q(rl)/rl2 for inner to outer optical radii
ratio of 0.5 is obtained from Reference [17]. Results are tabulated
in Table 4.5 and presented graphically in Figure 4.8,

Examination of Figures 4.7 and 4.8 show that there is consider-
able difference between the nongray and gray results for both the
planar and the spherical layers. As TomTy > @ (i.e. Q> 0),

62* -+ 0.878 for the nongray medium and it tends to zero for the gray
medium. The nongray results indicate that the gray analysis is of

limited utility and should be used with extreme caution.



Table 4.4

Comparison of the gray and nongray values of the
dimensionless radiative flux from a planar layer

A*(1)
2711

Nongray Gray

0.1 0.9870

0.2 0.9816

0.3 0,9748

0.4 0.9690
0.5 0.9640 0.960
0.6 0,959 0,955
0.7 0.9554 0.950
0.8 0.9518 0.940
0.9 0.9485 0.935
1.0 0.9457 0.930
2.0 0.9266 0.870
3.0 0.9148 0.820
4.0 0.9080 0.770
5.0 0.9034 0.735
6.0 0.9000 0.700
7.0 0.8972 0.670
8.0 0.8952 0.640
9.0 0.8938 0.615
10.0 0.8922 0.590
20.0 0.8855 0.420
30.0 0.8831 0.330
40.0 0.8820 0.275
50.0 0.8811 0.235
60.0 0.8807 0.205
70.0 0.8804 0.180
80.0 0.8800 0.160
90.0 0.8798 0.145
100.0 0.8795 0.130
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Table 4.5

Comparison of the gray and nongray values of the dimensionless
radiative flux at the inner boundary of the spherical layer

- g *(Tl)
27

Hongray Gray

0.1 0.9982

0.2 0.9951

0.3 0.9929

0.4 0.9916

0.5 0.9878
0.6 0.9854 0.995
0.7 0.9829 0.994
0.8 0.9805 0.993
0.9 0.9780 0.992
1.0 0.9756 0.990
2.0 0.9561 0.970
3.0 0.9415 0.950
4,0 0.9316 0.930
5.0 0.9244 0.910
6.0 0.9220 0.895
7.0 0.9146 0.875
8.0 0.9110 0.860
9.0 0.9080 0.845
10.0 0.9055 0.830
20.0 0.680
30.0 0.570
40.0 0.480
50.0 0.420
60.0 0.375
70.0 0.335
80.0 0.300
90.0 0.280
100.0 0.255
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E. Conclusions

The expressions for the simplified rectangular model turns out to
be similar to the expressions for the gray analysis. The local
radiative flux for the simplified nongray analysis can be expressed in
terms of the functions of the gray analysis, hl(r;rl). hZ(T;Tl,TZ) and
H(T,t;Tl). The influence of the 'bands' occurs in the functions Fl.

F2 and £ and the effect of the 'windows' is accounted for in the term
2

112/1 (Fl*-FZ*) for the spherical geometry and (Fl*-Fz*) for the
planar geometry. Thus, with a small amount of additional computational
time one can obtain the results for the simplified rectangular model.
The isothermal case simplifies the analysis to the point where one can
directly use the results of the gray analysis.

The radiative flux from a shock Tayer composed of nongray medium
with simplified rectangular model absorption coefficient is propor-
tional to the flux from a gray shock layer. The example of carbon
monoxide analyzed in the study of the radiative equilibrium case

reveals that the influence of the 'windows' is quite profound, thus

exposing the limitations of the gray analysis.



V. NONGRAY ANALYSIS: EFFECT OF BAND OR LINE SHAPE

In this chapter the effect of 1line or band shape on the radiative
transfer in a nonplanar medium is studied. The method of Reference
[{113] is extended to the nonplanar region. Five different models for
the absorption coefficient have been selected to determine the effect
of the absorption coefficient on the radiative transfer. The rectang-
ular, triangular and exponential profiles are usually associated with
bands, while the Doppler and Lorentz profiles characterize spectral
lines. These models have been selected because they approximate the

absorption characteristics of a wide range of substances.
A. Physical Model and Governing Equations

1. Spherical Layer

The medium can absorb and emit but is unable to scatter thermal

radiation. The absorption coefficient is written in the form

K
\Y)

unity (see Figure 5.1). The index of refraction of the medium is con-

a(v)x. The dimensionless function a(v) can range from zero to

sidered to be unity and the medium is assumed to be in local thermo-
dynamic equilibrium.

The mathematical definition of the models is given in Table 5.1
[114]. Each model is the superposition of m symmetric 1ines or bands.
In Table 5.1, a is the amplitude, ¥ is the center, di is the
damping factor and Av1 is the width of the ith band or line. The unit

step function is defined as u(t) = 0 for t < 0 and u(t) = 1 for

t > 0. In all models frequency Vil is larger than frequency Vs

88
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a(v)

Vi Vo2 V3 V4

Figure 5.1 - Arbitrary model for spectral absorption coefficient

From equations (4.7) and (4.8) of the previous chapter, we know
that
T, = a(v)T : T1y = a(\))T1 : Ty, = a(v)r2
Substituting for T , T,/ and T, into equation (4.1) of the preceding

chapter, we obtain
az(v)rzqg'v(r) = 2 Flv hl[a(v)r;a(v)rl] -2 FZv hz[a(v)T;a(v)Tl.a(v)rz]
T2
+ 2 f a(v) H[a(v)r,a(v)t;a(v)rll Ebv(t)dt (5.1)
T
1

where
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Table 5.1

Models for the absorption coefficient a(v)

Model Mathematical Definition
T 1 1
Rectangular a(v) = izl ai[“(v - v+ zavi) - u(v - vy - zﬂvi)]
. _ 0 2 1
Triangular a(v) = igl ai(l - ZU; v - vi])[u(v - v+ ?ﬂvi)

-u(v - v - %Avi)]

m
Exponential a(v) = ) o exp[-dilv - ViI]
i=1
gl 2
Doppler a(v) = 'Zl a exp[-di(v - vi) ]
1:
T 1
Lorentz a(v) = ) a.

. i 2
i=1 1+ di(v - Vi)

hyle(v)Tsa(v)T)] = a?(v)Try Eglalv) (111 = a(v)(t-1;) Ejla(v)(r-1))]
- Egla(v) (1)1 * a(v) (121,20 Eglalv) (Fo1 %))
+ E5[a(v)(12-112)%1 (5.2)
h, [a(v) T3a(v) T salv)T,] = a2 (V)TT, Eglalv) (1))
—a(v)(1,-1) Egla(v)(1,-1)] = Eglalv)(tp=1)]
b (0 (r 21 222t 0 Eyla(o) i Por ) F 4 (P B
+ a(v)[(rzz-wlz)Ai + (121,57 E4[a(V){(T22-T12)% + (2180

+ Egla(v) (1,21, 2% + (x50, %)) (5.3)
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H[a(v)r,a(v)t;a(v)rl] = {a(v)T signfa(v)(t-t)] Ez[a(v)lr-tl]
+ E3[a(v)lt-t|]
- a(W)(t%-19)% Eyla(w) L(t1-19) % + (Per P) )

- E5la(){(t%-1,2)% + (t2-r 5) B Ja(u)t (5.4)
Substituting for the functions hl[a(v)r;a(v)rl],

hz[a(v)r;a(v)rl.a(v)rzl and H[a(v)r,a(v)t;a(v)rll in equation (5.1)
yields

(t-1,)
TZQQ\KT) = 2 Flv{TTI E3[a(v)(T-Tl)] - -;T;%—-E4[a(v)(r-rl)]

(Tz‘le)l/z

- —2%—7 E5[a(v)(r-11)] + -_ERTU———'E4[a(v)(T2-T12)%]
a“(v

+ :2.;-\)-)_ E5[a(\))(1’2-112)%] }

(1,=1)
-2 sz{rrz E3[a(v)(12-r)] - —5%37—‘E4[a(v)(12-1)]

- i Eg () (1,°1)

a”(v)
+ (121 A% B)% B la(w) (7, o1 0)
+ (12-112)%}]

(1,27, 2% + (%=1, 2)%)

al{v)

1 2)1/2

+

E4[a(v){(122-11

+ (TZ-TIZ)%}]

1 2 2.} 2 2\
+ m Es[a(\)){(‘rz -Tl ) + (T "Tl ) }] }
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T
2
.2 f a(v)tt signia(v)(t-t)] Eyfa(v)|t-t]] E,_(t)dt
T
1
12
+ ] t Ejla(v)|t-t]] E,(t)dt
T1
T2
- f a@)t(r )% Byl ((t2er 2 ¢ (<Per 25
T
1
£, (t)dt
T2
- f t 53[0L(v){(t2-112)/2 + (rz-rlz)ﬁ}] £, (t)dt  (5.5)
T
1

The total flux over all wavelengths is obtained by integrating
equation (5.5). The portion of the spectrum which is capable of
absorbing radiation [a(v) # 0] is divided into m regions, The number
of regions considered is such that the narrow band approximation is
valid in each region.

Narrow band approximation - The narrow band approximation assumes
that Planck's function does not vary greatly across the band or line.

Mathematically, this approximation can be stated as follows

f Ebv(t) f(v,t) dv = Ebi(t) j f(v,t) dv (5.6)

Ri Ri
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where Ri is the region of the spectrum over which the integration is
performed and Ebi is the function Ebv evaluated at the center of the
band or line. The validity of the narrow band approximation is

investigated in Reference [115].

Application of the narrow band approximation yields

2 ¢ 2 T i
¢ 6k (1) = T (F1 - F, ) + 2 {TTI 121 viF1i K3 (r-rl)
m m 1
- (r=19) X vy Fyy Ky(metg) = 3 vy Fry Kg (t=1y)
1=1 i=1
b 22y T oy Fo kR A - Ty Foy K
TN Loy By R ety L YiF1i s
i=1 i=1
[(12-112)%1 }
m i
-2 { T, 2 Y; F21 K3 (TZ-T) - (TZ-T)

P2 2w 2y
K3 [(12 'Tl ) + (T Tl ) ]
2 _2\% PR (7,20 %)%
+ e (e T izl i Py Ky UT Ty
1
m 1
i 2 _ 2 2 _ 2%
* Zl vi Faq Ky [(r7-1y ") %+ (-1 770 )



T
m 2 .
. 1
+ 2 { igl Y5 f T t sign(t-t) K, ({t-t]) Ebi(t) dt
1
T
m 2 i
+ ‘Zl Y; f t Ky (Jt-t]) E;(t) dt
'l:
1
m Tz
1 3 1. 1 _
- 'Zl Yy [ t(Tz'le)z K21[(t2-T12)2 + (12-112)2] tbi(t) dt
'l:
1
m Tz
. . 5
cEov et e g @) )
'|=
T
1

where the kernels K21(r). K31(r), K41(T), K51(r) and quantity v, are
defined as follows (see Appendix B for mathematical properties of the

functions Kn(r) ):

Kzi(T) = f a(v)Ez[a(v)r]dv / Y; (5.8)
R;

K5 () = | L (5.9)

3 (1) = {Egla(v)T] - ZHdv / v, 5.
R;

(1) = [ (EgLaln)T) - 4 [a)TI/2} 7 alv) av / (5.10)
R.

1

' (1) = [ (EgLali)Tl = 7+ 1)T1/3 - [@P()T1/4)

R;

/ az(v) dv / Y; (5.11)
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Y. = f a(v) dv (5.12)
R
i
where Ri is the ith region of the spectrum. In equation (5.7) Ebi is
the function Ebv evaluated at the center of the 1th region of the

spectrum and

Fi' = f Fqy, dv (5.13)

F, =f Fly dv (5.14)

If the absorption coefficient in each region is identical in
shape and intensity and the profiles are nonoverlapping (see Figure
5.2), the quantities K21(r), K31(r), K41(1), K51(r) and y; are

independent of i. Thus, equation 5,7 reduces to
ng(r) = rlz(Fl'- F2') + 2y Fl“ﬁl(r;rl) -2y Fz“‘fxz(r;rl,rz)
T2
+ 2 Y{ FC (taty7T)u(t) dt (5.15)
71
where
%11(1;11) = 1Ty K3(T-T1) - (T-Tl)K4(T-T1) - K5(T-11)
1 2\% 2 2\h
# (2ot B (P 20+ Kl (e ) (5.16)
ﬁi,z(T;Tl,Tz) = 112K3(12-T) - (12-1)K4(12-T) - K5(T-11)

L, 2 21} 2 2\}5 2 2\%
+ (122-112)2(1 -7y )2K3[(T2 -7y )2+ (¢ =Ty )4

2 2\% 2 2\} 2 2\5 2- 2\%
+ [(TZ -Tl )2 + (T 'Tl )2]K4[(T2 ‘Tl )i+ (1 Tl )4
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Figure 5.2 - Models for absorption coefficient of bands identical in shape and intensity
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2 1 1
* Kg [ty --T12)2 + (12-112)2] (5.17)

~

T (rt5y) = o

sign(r=t)Ky (Jt-t|) + Ky(]t-t])

- (e AU B s (12r B

NG LN LRI (5.18)
m

Fr= 2, Fu (5.19)
m

Fa= L, Fai (5.20)
m

p(t) = 121 E,; (t) (5.21)

2. Planar Layer

Consideration of a similar problem in planar medium yields the

following expression for local radiative flux [113]

E;Z (t) = F 1'=Fot t 2y Fp Ky (T-T ) -2y F) 3(r -1)
T2
v2y f sign(t-t)K,(JT-t]Ju(t) dt (5.22)
M1
where F,' and F,' are given by equations (5.13) and (5.14) respec-
tively, while Fis F2 and y(t) are given by equations (5,19) through
(5.21). Equation (5.22) is obtained from equation (4.27) of the
previous chapter in a manner similar to the one which is used for the
spherical geometry as discussed earlier in this chapter.
Comparison of equation (5.15) with equation (5.22) shows that the

functions “12—1(1;11)/12 and 412(1;11.12)/12 in spherical geometry
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corresponds to the functions K3(T-T1) and K3(T2-T) in planar geometry
respectively. This pattern is very similar to the one observed in

chapter three during the study of gray medium problem.
3. Isothermal Layer

For the isothermal case, i.e. when u(t) = Ygs equation (5.15)

reduces to

PG (x) = 12 -F,t) + 2 v (riy ) (Fymug)

-2 Y‘ﬂ,z(r;rl.rz)[Fz-wo] (5.23)
To arrive at the above expression, the following relation is used
T2
f F (rtin)) dt = - R (rirg) + B (T, (5.24)
1
The above relation (5.24) is similar to relation (3.10) used in the

study of gray medium problem,

The expression for local radiative flux in a planar medium
reduces to
Sko(T) = F'=Fy" + 2y Ky(r-t))[Fy-9g] = 2 ¥ Kglr,=t) [Fpmgg]  (5.25)
Inspection of equation (5.23) reveals that the local radiative
flux depends on the functions %11(1;11) and *iz(r;rl.rz). Therefore,
to gain some insight into the local radiative flux, it seems appro-

priate to study the functions‘fll(r;rl) and 412(1;11.12).
B, Isothermal Analysis: Function fil(r;rl)

Considering the same physical situation as illustrated in Figure
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3.3 of chapter three, we find from equation (5.23), that in order to
predict the variation in 62(1), some knowledge of the functijon
4{1(1;11) is essential. The following cases of the function

%Ll(r;rl) are studied:
1. Exact Results

Numerical results are obtained using the exact expression (5.16)
for the function ‘ﬂl(r;rl). The results for four different cases,
i.e, Ty < 0.01, 0.1, 1 and 5 are tabulated in Tables 5.2 through 5.5
and presented graphically in Figures 5.3 through 5.6. Inspection of
the results reveal that while the values for the rectangular profile
are always less than that of the other four profiles, the values for
the triangular and Doppler profiles do not defer much. Graphically,
the curves begin to separate around different values of Tl/T,

depending upon the inner optical radius T For Ty T 0.01 separation

occurs around Tl/T 0.06, for 1, = 0.1 separation occurs around

1
1 separation occurs around Tl/T = (0.8, and for

1]

TI/T = 0.6, for 1
T 5 separation occurs around Tl/T = 0.95, Therefore one can infer
that the results become independent of the shape of the absorption
coefficient as T, * 0.

It is worth noting that the following relation holds good always
for the rectangular profile:
2
ot 26)
R (131y) = hylwity) - = (5.



Table 5,2

Values of the function ‘ﬁl(r,rl)/rz for | =0.01
2
-Tﬁl(T,rl)/r
Rectangular Triangular Exponential Doppler Lorentz
(i) T1=0.01
3.1482D-5 3,6611D0-5 3.9618D-5 3,6081D-5 3.9857D-5
7.7876D-5 8.4253D-5 8,7709D-5 8.3534D-5 8,7849D-5
1,2538D-4 1,32190-4 1,35790-4 1,31400-4 1,3589D-4
1,72730-4 1,7972D-4 1,8336D-4 1,7890D-4 1,8344D-4
2,1961D-4 2,2668D-4 2,3033D-4 2,2584D-4 2,30390-4
2.6591D-4 2.72990-4 2.76630-4 2.7215D-4 2.7667D-4
3.1156D-4 3.1863D-4 3.2224D-4 3.17780-4 3.2228D-4
3,5654D-4 3.63560-4 3,67140-4 3.6273D-4 3.6718D-4
4,0083D-4 4,07790-4 4,1134D-4 4,0696D-4 4,1137D-4
4,44400-4 4,51300-4 4.,54800-4 4,50470-4 4,5483D-4
8,3847D-4 8.4447D-4 8.4749D-4 8.4375D-4 8.47500-4
1.1507D-3 1.1557D-4 1,1582D-3 1,1551D-3 1,1582D-3
1.3724D-3 1.3764D-3 1,3784D-3 1,37590-3 1,3784D-3
1,49400-3 1.49710-3 1.4986D-3 1,49670-3 1,4986D-3
1.50460-3 1,50680-3 1.5079D-3 1.50650-3 1.50790-3
1.3901D-3 1,3915D-3 1.39220-3 1,39130-3 1,39220-3
1.1312D-3 1.13190-3 1.1323D0-3 1,1318D-3 1,1323D-3
6.9629D-4 6.9651D-4 6.9663D-4 6.9648D-4 6,9663E-4
3.9341D-4 3.93480-4 3.9351D-4 3.93470-4 3.9351D-4
0 0 0 0 0

001
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Figure 5.3 - Function *11(1;11)/12 versus T,/1 for T = 0.01

101



Table 5.3

Values of the function *11(1;11)/12 for 1, = 0.1
- (137, )7
1''1

TI/T

Rectangular Trianqular Exponential Doppler Lorentz

(i1) T1=0.1

0.01 4,9998D-5 8.9933D-5 1,4365D-4 9,3355D-5 1,7314D-4
0.02 1.9856D-4 3.1949D-4 4,3487D-4 3.1752D-4 4,7299D-4
0.03 4,3282D-4 6.3493D-4 7.9653D-4 6,2393D-4 8.3457D-4
0.04 7.2972D-4 9,9995D-4 1.1946D-3 9,8017D-4 1,2301D-3
0.05 1,0689D-3 1.3934D-3 1,6119D-3 1,.3661D-3 1.6442D-3
0.06 1.4359D-3 1.8032D-3 2.0389D-3 1.7697D-3 2,0682D-3
0.07 1.8211D-3 2.2218D-3 2.47020-3 2,1833D-3 2.4967D-3
0.08 2.2178D-3 2,6447D-3 2.9023D-3 2.6021D-3 2,9264D-3
0.09 2.6213D-3 3.0687D-3 3.3330D-3 3.0229D-3 3,35500-3
0.10 3.0284D-3 3.4917D-3 3.76080-3 3.4433D-3 3.7809D-3
0.20 6.9649D-3 7.4615D-3 7.7279D-3 7.4049D-3 7,7373D-3
0.30 1,0263D-2 1.0708D-2 1,0940D~2 1.0656D-2 1.0945D-2
0.40 1,2702D-2 1.3071D-2 1,3262D-2 1,3028D-2 1.3265D-2
0.50 1,4149D-2 1.4437D-2 1,4585D-2 1.4403D-2 1,4586D-2
0.60 1.4478D-2 1.4686D-2 1,4791D-2 1,4661D-2 1,4792D-2
0.70 1,3536D-2 1,3670D-2 1.3738D-2 1,3654D-2 1,3738D-2
0.80 1,1121D0-2 1,1191D-2 1.1227D-2 1,1182D-2 1,1227D-2
0.90 6.9020D-3 6.9245D-3 6.9358D-3 6,9218D-3 6.9358D-3
0.95 3.9154D-3 3.9223D-3 3.9258D-3 3.9215D-3 3.9258D-3
1.00 0 0 0 0 0

201
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Table 5,4
Values of the function ‘ﬁl(T;rl)/rz for 1) = 1

2
-1i1(T,T1)/T
Tl/T
Rectangular Triangular Exponential Doppler Lorentz
(iii) 11=1.0
0.01
0.02
0.03 4,4805D-4 8.7235D-4 1.8283D-3 2,8792D-3
0.04 8.0000D-4 1.5342D-3 3.0149D-3 4.,4055D-3
0.05 1.2500D-3 2.3706D-3 4.4229D-3 6.1178D-3
0.06 1.8000D-3 3.3747D-3 6.0278D-3 3.6718D-3 7.99000-3
0.07 2,4500D-3 4,5396D-3 7.8088D-3 4,8381D-3 1.0002D-2
0.08 3.2000D-3 5.85800-3 9,7480D-3 6.1687D-3 1.2138D-2
0.09 4,0499D-3 7.32250-3 1.1830D-2 7.63070-3 1.4384D-2
0.10 4.9995D-3 8.9252D-3 1.4039D-2 9,2173D-3 1.6727D-3
1.9718D-2 3.0773D-2 4,0670D-2 3.0430D-2 4,3595D-2
4,1566D-2 5.7773D-2 6.9715D-2 5.6649D-2 7.2027D-2
6.5611D-2 8.3688D-2 9,.5555D-2 8.2100D-2 9.7164D-2
8.6983D-2 1.0413D-1 1,1456D-1 1.0244D-1 1,1558D-1
1.0150D-1 1.1576D-1 1.2398D-1 1.1426D-1 1,2456D-1
1.0534D-1 1.1558D-1 1,2124D-1 1,1445D-1 1,2153D-1
9,4432D-2 1.0032D-1 1,0346D-1 9,9645D-2 1.0357D-1
6.3366D-2 6.5399D-2 6.6453D-2 6.5160D-2 6.6473D-2
3,7367D-2 3.8018D-2 3.8350D-2 3.7940D-2 3.8354D-2
0 0 0 0 0

¥01
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Table 5.5
Values of the function 4K1(T;11)/T2 for T = 5

-‘ﬁl(r;rl)/r2
TI/T
Rectangular Triangular Exponential Doppler Lorentz
(iv) T1=5.0
0.15 1,1250D-2 2.1744D-2 4,4679D-2 6,8711D-2
0.20 2.0000D-2 3,8128D-2 7.2803D-2 1,0316D-1
0.30 4,5000D-2 8.30150-2 1.41110-1 8.8100D-2 1.78970-1
0.40 7.9981D-2 1,4133D-1 2.1841D-1 1.4514D-1 2,5708D-1
0.50 1,2461D-1 2,0788D-1 2,9540D-1 2,0859D-1 3.2938D-1
0.60 1,7669D-1 2.7375D-1 3.6042D-1 2.,7070D-1 3.8610D-1
0.70 2,23849D-1 3.2396D-1 3.9752D-1 3,1812D-1 4,1358D-1
0.80 2,6010D-1 3.3382D-1 3,8345D-1 3.2763D-1 3.9087D-1
0.90 2,2625D-1 2.6032D-1 2.80490-1 2,5684D-1 2.8220D-1
0,95 1.54290-1 1,6705D-1 1.7410D-1 1,6564D-1 1.74470-1
1.00 0 0 0 0 0

90T



- (151,077

Figure 5.6 - Function 411(1;11)/12 versus TI/T for T,

Lorentz

Exponential
: Doppler
- Triangular
- Rectangular

{ t ‘ 1 I I ' 1
.2 .4 .6 .8
Tl/T

5

107



108

2. Special Limiting Results
a. Optically Thin

By utilizing the asymptotic expansions for functions K3(T), K4(r)
and K5(T) as T > 0 (see Appendix B), function 411(1;11) in the
optically thin approximation becomes
B3y (12 2y32

1, 1

s T (5.27)

411(1;11) = -

Inspection of equation (5.27) reveals that in the optically thin
approximation, the function *11(1;11) becomes independent of the
shape of a(v). Comparison of equations (5.27) and (3.14) shows that
relation (5.26) holds good for all the five profiles in the optically
thin approximation. From equation (5.27) it is possible to deduce

that

Tim 411(r;r1) =0 (5.28)
Ty

Substitution of T = Ty in expression (5.16) leads to the same result

as in (5.27), i.e. *11(r=11;11) = 0,

b. Optically Thick

By utilizing the approximate expressions for large t for
functions K3(r), K4(r) and KS(T) as T ~ < (see Appendix B), the
expression (5.16) for the function 111(1;11) in the optically thick
1imit becomes

(a) Rectangular profile

2
1
“etl(r;rl) = - —%— (5.29a)
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(b) Triangular profile

TTl

\e\fl(T;Tl) = % [ '('.?:?1—)' + (T-Tl) - (TZ-TIZ)I/Z] 2

-7 (5.29b)

(c) Exponential profile

2
TT

. .
411(1;11) = - -%——{ Y + 1n(r-11) + 1n[(12-112)%]} - _Il (5.29c)

Approximate results for the three profiles are presented in Table 5.6
along with the exact results. It is found that for the case when

T, < 0.01, the error in using the optically thick expression is less
than 5% in case of the rectangular profile for values of T 2 4, and in
case of the triangular profile for values of T 2 3, while in case of

the exponential profile the error is less than 5% for values of

T2 2.
c. Small Sphere

Expansion of the function *11(1;11) (5.16) in a Taylor's series

about T, = 0 yields
2 3
! 1
*11(1;11) = = [2 K3(T) + T Kz(r)] t = [T KI(T) + KZ(T)] (5.30)
By comparing equation (5.30) with equation (3,16) of the gray analysis,

one finds that equation (5.30) is similar to equation (3.16) with

En(r) functions replaced by Kn(T) functions.

C. Isothermal Analysis: Function 412(1;11,12)

The study of the function %32(1;11,12) is undertaken in this

section. In order to give the function “ﬁz(T;Tl,Tz) a physical



Table 5.6
Comparison of the exact and optically thick values of the function 411(T;11) for T = 0.01

-5 (w31
Rectangular Triangular Exponential
Exact Approximate Exact Approximate Exact Approximate
(i) T1=0.01
1 3.1482D-5 -2,2250D-5 3.6611D-5 -6.74230D-7 3.9618D-5 2.8525D-5
2 4,3188D-5 2,4305D-5 5.6667D=5 4,9832D-5 6.5819D-5 6,3351D-5
3 4,7494D-5 4,1486D-5 6.8267D-5 6.6592D-5 8.4338D-5 8.3680D-5
4 4,9078D-5 4,7208D-5 7.5420D-5 7.4958D=5 9.8283D-5 9.8092D-5
5 4,9661D-5 4,9079D-5 8.0109D-5 7.9973D=5 1.0932D-4 1.0927D-4
6 4,9875D-5 4,9693D-5 8,3356D-5 8.3315D-5 1.1841D-4 1,1839D-4
7 4.,9954D-5 4,9897D-5 8.5714D-5 8.5701D-5 1.2611D-4 1,2611D-4
8 4.9983D-5 4,9965D-5 8.7494D-5 8. 74900-5 1.3279D-4 1.3279D-4
9 4,9994D-5 4,9988D-5 8.8882D-5 8.8881D-5 1.3869D-4 1.3868D-4
10 4,9998D-5 4,9996D-5 8.9994D-5 8.9993D-5 1.4396D-4 1.4396D-4

011
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interpretation, consider the case described in Figure 3.6 of chapter

three. The following cases are considered:
1. Exact Results

Numerical results are obtained by using expression (5.17) for
four different values of T and three different ratios of the inner
to outer optical radii. The function'fiz(r;rl,rz) changes sign and in
order to facilitate the drawing of the graphs, values of fiz(r;rl.rz)

112
+ —— are shown tabulated in Tables 5.7 through 5.10.

Inspection of the results reveal that the values for the
rectangular profile are always less than the values for the other
four profiles. There is very little difference in the values for the
triangular and Doppler profiles., It is only for the ratio 11/12 = 0.1
that the results for the five different profiles are somewhat differ-
ent., For large ratios of Tl/Tz. e.qg. Tl/r2 = 0,5 and 0.9, the results
become independent of the shape of a(v).

The following relation for the rectangular profile always holds

good:

2
T

‘2.2(1';1'1,1'2) = hz(r;'rl.rz) + -%— (5.31)

2. Special Limiting Results
a. Optically Thin

With the aid of the asymptotic expansions for functions K3(r),

K4(r) and KS(T) as t + 0, the function *iz(r;rl,rz) in the optically

thin approximation becomes
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Table 5.7
Values of the function 412(1;11,12) + 112/2 for 7, = 0.01
. 2
\e‘-z(T,TlnTz) + Tl /2

T/T2

Rectangular Triangular Exponential Doppler Lorentz
0.10 4 ,5556D-5 4,5487D-5 4 ,5452D-5 4 .5495D-5 4,5452D-5
0.20 4,9245D-5 4,9298Db-5 4,9326D-5 4,9292D-5 4,9327D-5
0.30 6.0271D-5 6.0688D-5 6.0902D-5 6.0639D-5 6.0905D-5
0.40 8.2246D-5 8.3372D-5 8.3949D-5 8.3238D-5 8.3956D-5
0.50 1.1888D-4 1.2115D-4 1.2232D-4 1.2088D-4 1.2233D-4
0.60 1.7398D-4 1.7790D-4 1.7991D-4 1.7743D-4 1.7993D-4
0.70 2,5143D-4 2.5753D-4 2.6066D-4 2.5681D-4 2.6070D-4
0.80 3.5531D-4 3.6410D0-4 3.6861D-4 3.6306D-4 3.6867D-4
0.90 4.,8993D-4 5.0182D-4 5.0792D-4 5.0041D-4 5.0800D-4
1.00 6.6018D-4 6.7528D-4 6.8303D-4 6.7349D~-4 6.8313D-4

(b) 7ty/1,=0.5
0.50 4.9402D-5 4.,9401D-5 4,9401D-5 4.9401D-5 4.9401D-5
0.60 4.,9738D-5 4.9738D-5 4,9738D-5 4,9738D-5 4,9738D~5
0.70 5.0285D-5 5.0288D-5 5.0289D-5 5.0287D-5 5.0289D~5
0.80 5.1061D-5 5.1067D-5 5.1071D-5 5.1067D=-5 5.1071D-5
0.90 5.2095D-5 5.2106D-5 5.2111D-5 5.2104D-5 5.2111D-5
0.95 5.2719D-5 5.2732D~5 5.2738D-5 5.2730D=-5 5.2738D~5
1.00 5.3420D-5 5.3434D-5 5.3442D-5 5.3433D=5 5.3442D-5
(c) 11/12=0.9

0.90 4.,9914D-5 4,9914D-5 4,9914D-5 4,9914D-5 4,99140-5
0.91 4.,9926D-5 4,9926D~5 4,9926D-5 4,9926D-5 4,9926D-5
0.92 4,9940D-5 4,9940D-5 4,9940D-5 4,9940D-5 4,9940D-5
0.93 4,9954D-5 4,9954D-5 4,9954D-5 4 ,9954D-5 4,9954D-5
0.94 4,9969D-5 4,9969D-5 4.,9970D-5 4.,9969D-5 4,9970D-5
0.95 4,9985D-5 4,9985D-5 4,9985D-5 4,9985D-5 4,3985D-5
0.96 5.0002D-5 5.0002D-5 5.0002D-5 5.0002D-5 5.0002D-5
0.97 5.0019D-5 5.0019D-5 5.0020D=-5 5.0019D-5 5.0020D-5
0.98 5.0037D-5 5.0038D-5 5.0038D-5 5.0038D-5 5.0038D-5
0.99 5.0056D-5 5.0056D-5 5.0056D-5 5.0056D-5 5.0056D=5
1.00 5.0075D-5 5.0076D-5 5.0076D=-5 5.0076D-5 5.0076D~5
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Table 5.8

Values of the function 432(1;11,12) + 112/2 for T, = 0.1

‘-2'2('[;71’1'2) + T12/2
1/12

Rectangular Triangular Exponential Doppler Lorentz

(a) 11/12=0.1
0.10 1.9716D-3 1.5083D-3 1.2392D-3 1,5567D-3 1.2191D-3
0.20 3.5155D-3 3.6974D-3 3.8420D-3 3.6868D-3 3.8722D-3
0.30 8.1825D-3 1.0277D-2 1.1648D-2 1.0091D-2 1.1827D-~2
0.40 1.7725D-2 2.3564D-2 2.7331D=-2 2.3035D-2 2.7802D-2
0.50 3.4238D-2 4,6154D-2 5.3799D-2 4.,5065D-2 5.4734D-2
0.60 6.0304D-2 8.1014D-2 9.4248D-2 7.9111D=-2 9.5847D-2
0.70 9.9256D-2 1.3167D-1 1.5231D-1 1.2867D-1 1.5478D-1
0.80 1.5561D-1 2.0249D-1 2.3227D-1 1,9815D-1 2.3581D~1
0.90 2.3598D-1 2.9935D-1 3.3956D-1 2.9347D-1 3.4434D-1
1.00 3.5218D-1 4,3166D~1 4,8230D-1 4,2434D-1 4.8843D-1

11/12=0.5
0.50 4.,4340D-3 4.,4225D-3 4.4166D-3 4,4239D0-3 4.4166D-3
0.60 4,7290D-3 4.7319D-3 4,7335D-3 4,7315D=-3 4,7336D-3
0.70 5.2115D-3 5.2376D-3 5.2512D-3 5.2345D-3 5.2516D-3
0.80 5.9019D-3 5.9587D-3 5.9884D-3 5.9521D-3 5.9891D-3
0.90 6.8341D-3 6.9274D-3 6.9762D-3 6.91650-3 6.9773D-3
0.95 7.4040D-3 7.5165D-3 7.5754D-3 7.5034D-3 7.5767D-3
1.00 8.0528D-3 8.1837D-3 8.2522D-3 8.1685D-3 8,2538D~3

11/12=0.9
0.90 4,9148D-3 4.9145D=-3 4.9144D-3 4,9145D-3 4,9144D-3
0.91 4,9268D-3 4,9267D-3 4,9266D-3 4,9267D0-3 4.9266D-3
0.92 4,9400D-3 4.9400D-3 4.,9399D-3 4,9400D~-3 4.,9399D-3
0.93 4,9541D-3 4,9542D-3 4,9542D-3 4,9542D-3 4,9542D-3
0.94 4,9690D-3 4,9692D-3 4,9693D-3 4,9692D-3 4,9693D-3
0.95 4.,9846D-3 4,9849D-3 4.,9851D-3 4,98490-3 4.,9851D-3
0.96 5.0009D-3 5.0013D-3 5.0016D-3 5.0013D0-3 5.0016D-3
0.97 5.,0179D-3 5.0185D-3 5.0188D~3 5.0184D-3 5.0188D-3
0.98 5.0356D-3 5.0363D-3 5.0366D-3 5.0362D-3 5.0366D-3
0.99 5.0540D-3 5.0548D-3 5.0552D-3 5.0547D-3 5.0552D-3
1.00 5.0731D-3 5.0739D-3 5.0744D-3 5.,0738D-3 5.0744D-3
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Table 5.9

Values of the function *12(1;11,12) + 112/2 for Ty = 1

\&'Z(T;TI'TZ) + T12/2
T/Tz
Rectangular Triangular Exponential Doppler Lorentz
(a) 1/71,=0.1
0.10 4.,6408D-5
0.20 3.8466D~4
0.30 2.1407D-3 8.0173D-1 1.5947D-1 1.8792D+0
0.40 9.6109D-3 5.8480D-1 3.4654D+0 1.1880D+0 6.5317D+0
0.50 3.9271D~2 1.77500+0 8.1854D+0 2.99160+0 1.4515D+1
0.60 1.5383D~1 3.9944D+0 1,5933D+1 6.1039D+0 2.7045D+1
0.70 5.9545D~1 8.1820D0+0 2.8272D+1 1.1514D+1 4,5824D+1
0.80 2.33930+0 1.6560D+1 4,38120D0+1 2,1611D+1 7.3685D+1
0.90 9,7158D+0 3.5360D+1 8.2091D+1 4,3375D+1 1.1667D+2
1.00 4,9750D+1 9,.0050D+1 1.5249D+2 1,0559D+2 1,95440+2
(b) t,/1,=0.5
0.50 1.5207D-1 8.3477D-2 4,1748D-2 9,0235D-2 3.7670D-2
0.60 2.3935D-1 2.2673D-1 2.2559D~1 2.2943D-1 2,2890D-1
0.70 3.9390D-1 4.6949D-1 5.3243D-1 4,6585D0~1 5.4760D-1
0.80 6.4896D-1 8.4254D-1 9.9040D-1 8.3025D~1 1.0211D+0
0.90 1.0667D+0 1.4007D+0 1.6487D+0 1.3780D+0 1.6977D+0
0.95 1.3723D+0 1.7780D+0 2.0775D+0 1.7501D+0 2.1361D+0
1.00 1.7849D+0  2,2523D+0 2.5980D+0 2.2203D+0 2.6662D+0
(c) 1,/1,=0.9
0.90 4,2177D-1 4,1926D-1 4,1796D-1 4.1956D-1 4,1794D-1
0.91 4,3149D-1 4,29790-1 4,2893D~-1 4,3000D~1 4,2892D-1
0.92 4.4212D-1 4,4131D-1 4,4093D-1 4,4141D0-1 4.,4094D-1
0.93 4.,5349D-1 4,5362D-1 4,5375D-1 4,5361D-1 4,5378D-1
0.94 4,6557D-1 4,66650-1 4,6731D-1 4,6655D-1 4,6737D-1
0.95 4,7836D-1 4,8041D~1 4,8160D-1 4,8019D-1 4.,8168D-1
0.96 4.,9188D-1 4.,9488D-1 4,96600-1 4,9456D-1 4,9671b-1
0.97 5.0615D-1 5.1009D-1 5.1232D-1 5.0966D-1 5.1246D-1
0.98 5.2123D-1 5.2605D-1 5.2877D-1 5.2553D~1 5.2894D-1
0.99 5.3717D-1 5.4281D-1 5.4599D-1 5.4220D0-1 5.46180-1
1.00 5.5411D~1 5.6045D~-1 5.6403D-1 5.5976D-1 5.0426D-1
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Table 5,10
Values of the function 412(1;11,12) + 112/2 for Ty = 5
) 2
‘fpz(r,rl,rz) + T /2

'r/'r2

Rectangular Triangular Exponential Doppler Lorentz

(b) 71,/1,=0.5
0.50 3.9404D-2
0.60 1.5385D-1
0.70 5.9546D-1 6.4128D~1 5.7913D+0
0.80 2.3393D+0 6.0230D+0 1.9610D+1 8.5540D+0 3.1651D+1
0.90 9,7158D+0 2.4730D+1 5.2792D+1 2.8048D+1 7.2778D+1
0.95 2.0839D+1 4,3597D+1 7.9831D+1 4,7076D+1 1.0374D+2
1.00 4,97500+1 7.9340D+1 1.2247D+2 8.3003D+1 1.4979D+2
(c) 7,/7,=0.9

0.90 5.5170D+0 4,4655D+0 3.84300+0 4,5727D+0 3.7901D+0
0.91 6.0492D+0 5.2294D+0 4.,7692D+0 5.3187D+0 4.7439D+0
0.92 6.6458D+0 6.0722D+0 5.7871D+0 6.1430D+0 5.7931D+0
0.93 7.3124D+0 6.9923D+0 6.8882D+0 7.0443D+0 6.9275D+0
0.94 8.0581D+0 7.9950D+0 8.0746D+0 8.0281D+0 8.1481D+0
0.95 8.8945D+0 9,0880D+0 9,3510D+0 9,1022D+0 9.4590D+0
0.96 9,8363D+0 1,0282D+1 1.0725D+1 1,0277D+1 1.0867D+1
0.97 1.,09030D+1 1.1589D+1 1.2206D+1 1,1568D+1 1.2382D+1
0.98 1,2119D+1 1,3029D+1 1.3808D+1 1.2992D+1 1.4017D+1
0.99 1,3524D+1 1.4629D+1 1.5552D+1 1.4578D+1 1.5792D+1
1,00 1.5194D+1 1.64390+1 1.7475D+1 1.6381D+1 1.7745D+1
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3.3 2 2.3/2 2 2.3/2
L (131 r)=-(12-r)+(T2-11) +(T-Tl) (5.32)
2\ TiTysTy 7 3 - i

Examination of expression (5.32) shows that in the optically thin
approximation, the function *12(1;11,12) becomes independent of the
shape of the absorption coefficient. Comparison of equations (5.29)
and (3.19) reveals that relation (5.31) holds good for all the five
profiles in the optically thin approximation. From equation (5.32)
one observes that

1im “&-2(1;11,12) =0 (5.33)
™17y

271
The 1imits of expressions for the function 411(1;11) and *12(1;11.12)

in the optically thin approximation tend to the same vaiue, O.
b. Function fiz(r;rl,rz) evaluated at 1 = T

This case is studied in order to gain some idea about the
variation of the flux at the inner boundary. The following relation
exist for the functions 411(1;11) and %12(1;11,12):

‘ﬂ,2(1=11;11.12) = 411(T=12;11) (5.34)
Expansion of the function *12(r=11;11,12) in a Taylor's series about

T, = 0 yields . 2 - 3
‘a-z(f=11*71'12) - _%_, (2 K3(12) + T, Kz(r)] + —%— [12 KI(TZ)
+ KZ(TZ)] (5.35)

Comparison of expressions (5.30) and (5.35) reveal similarity.
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c. Function 412(1;11.12) evaluated at T = T,
For this case, the expression (5.17) reduces to

1

“‘9‘—2(1=12;T1,T2) = (T22-T12)K3[2(T22-T12) ]
2 2\%, 2 2.y %

+ 2('r2 -7y )2|\4[2(‘l'2 T4 )%+ K5[2(T22-T12)2](5.36)

From equation (5.36) we find that
1im H (1=T,3T,,T,) = 0 (5.37)
2 2’12
T,*T
2 1
Results obtained are tabulated in Tables 5.11 through 5.14 and
presented graphically in Figures 5.11 through 5.14. The results
reveal that the values for the rectangular profile are always less
than the values for the other four profiles. The values for the
triangular and Doppler profiles are more or less identical. For the

case when T T 5, the results break down around 11/12 = 0.2.
D. Case of Radiative Equilibrium

1. Formulation

Under the conditions of radiative equilibrium we know from

equation (4.32) that

d['rzg'('r)] =0
dt

Upon differentiating equation (5.15) and making use of the fact that

df “?»l(r;rl)]
dt

= - 1?1(1;11) (5.38)

d[%z(T;Tlth)]
T = T?Z(T;Tl.‘l'z) (5.39)




Table 5.11

2
Values of the function 412(r=12;11,12)/12“ for 1, = 0,01
- . 2
%12(1—12,11,12)/12
Rectangular Triangular Exponential Doppler Lorentz
(i) t470.01
3,5146D-1 4,32280-1 4,8381D-1 4,2484D-1 4,9008D-1
2.3563D-1 2.6409D-1 2.8026D-1 2,6104D-1 2.8129D-1
1.7510D-1 1,8938D-1 1,97170-1 1.8778D-1 1.97500-1
1.3887D-1 1.4741D-1 1.5197D-1 1.4644D-1 1.5212D-1
1,1489D-1 1.2056D-1 1,2355D-1 1.1990D-1 1.23630-1
9.7866D-2 1.0190D-1 1,0400D-1 1.0143D-1 1.0405D-1
8.5159D-2 8.8169D-2 8.9732D-2 8.7816D-2 8,9761D-2
7.5309D-2 7.7639D-2 7.8843D-2 7.7364D-2 7.8862D-2
6.7445D-2 6.9300D-2 7.0255D-2 6.90800-2 7.02690-2
6.1018D-2 6.2528D-2 6.3303D-2 6.2349D-2 6,3313D-2
3.0231D-2 3.0600D-2 3,0787D-2 3.0556D-2 3.0739D-2
1,8838D-2 1.8988D-2 1,9063D-2 1.8970D-2 1.90640-2
1.2613D-2 1.2686D-2 1,2722D0-2 1.2677D-2 1,2722D-2
8.5488D-3 6,5858D-3 8.6043D-3 8.5813D-3 8.6044D-3
5.6324D-3 5.6512D-3 5.6606D-3 5.6489D-3 5,6606D-3
3.4423D-3 3.4511D-3 3,4555D-3 3.4500D0-3 3,45550-3
1.7899D-3 1,7933D-3 1,79500~3 1.7929D-3 1.79500-3
6.1125D-4 6.1199D-4 6.12360-4 6.1190D-4 6.12360-4
0 0 0 0 0

2AN
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Table 5,12

1 \'K = . 2 =
Values of the function 2(1 T2’T1’T2)/T2 for 4 0.1
2
s 2(T=T2;T1oT2)/T2
Rectangular Triangular Exponential Doppler Lorentz
(i1) 1,°0.1
4.9745D-1 9.0491D-1 1.53750+0 1.0744D+0 1,97400+0
4,8981D-1 8.1964D-1 1.1943D+0 8.2989D-1 1.3614D+0
4,7727D-1 7.4418D~1 9.9728D-1 7.3957D-1 1.0817D+0
4,6082D-1 6.7818D-1 8.6134D-1 6.6869D-1 9.1024D-1
4,42000-1 6.20820-1 7.5957D-1 6,10120-1 7.9045D-1
4,22180-1 5.7102D-1 6.7971D-1 5.6049D-1 7.0044D-1
4,0233D-1 5.2765D~1 6.1501D-1 5.1782D-1 6.2959D-1
3.8303D-1 4.8969D-1 5.6137D-1 4,80710D-1 5.7200D-1
3.6460D-1 4.5627D-1 5,1609D-1 4,48140-1 5.2407D-1
3.4718D-1 4,2666D-1 4,7730D0~1 4,1934D-1 4,8343D-1
2.2319D-1 2.4963D-1 2.64620-1 2,4679D-1 2.65550-1
1.5377D-1 1.6576D-1 1.7227D-1 1.6441D-1 1.7254D-1
1.0872D-1 1.1486D-1 1,18120-1 1,1416D-1 1.1822D-1
7.6321D-2 7.9594D-2 8.1306D-2 7.9212D-2 8.1345D-2
5.1583D-2 5.3290D-2 5.4174D-2 5.3089D-2 5.4189D-2
3.2171D-2 3.2987D-2 3.3407D-2 3,2891D-2 3.3412D-2
1.7027D-2 1.7345D-2 1,7507D-2 1.7307D-2 1.7509D-2
5.9175D-3 5.9890D-3 6.0252D-3 5,9804D-3 6.0254D-3
0 0 0 0 0

124!
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Table 5,13
Values of the function 4L2(T=T2;T1,T2)/T22 for T = 1

‘ 2
‘Q,2(1=12;11,12)/12
11/12
Rectangular Triangular Exponential Doppler Lorentz
(i11) T1=1,0
0.1 0.492500 0.895501 1,519872 1,050884 1.949365
0.2 0.470006 0.784040 1.137507 0.792945 1,292922
0.3 0.432786 0.668740 0.888082 0,663551 0.958711
0.4 0.382284 0.552576 0,691428 0.544006 0,726009
0.5 0.321233 0.438075 0,524492 0.430070 0.541553
0.6 0.252930 0.327493 0.378519 0.321423 0,386551
0.7 0.180909 0.223256 0,250382 0,219387 0.253742
0.8 0.109252 0,128598 0,140260 0.126669 0.141349
0.9 0.043827 0.048962 0.051868 0.048409 0.052048
1.0 0 0 0 0 0

921
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Table 5,14

1 \a. = . 2 = |
Values of the function 2(T TZ’TI'TZ)/TZ for T 5

“?»2(1=12;T1.12)/T22

Rectangular Triangular Exponential Doppler Lorentz
5.0
0.454098 0.854565 1.609612 2.284717
0.418400 0.769879 1,348544 2,853524 1,780291
0.372500 0.668397 1,099665 0,705034 1,372898
0.316400 0,551200 0.855395 0.568301 1.019321
0.250102 0,419820 0.614400 0.425559 0,702343
0,173630 0.276793 0,379778 0.276323 0.417264
0.087273 0,127612 0,161200 0.125752 0,169%7
0 0 0 0 0

8¢1
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T2 ‘[2
d
a;-f G’C(r.t;rl)w(t) dt = 2 téy(x) - rf K (,t51)u(t) dt (5.40)
Tl Tl
we obtain,
1 2
W(t) = oz (Fy 4y (1)) + Frgy(tsng,T,) +f K (1ati1)w(t)dt](5.41)
M1
where
21051 = TR (e = Kylrey) + KyllePer, B (5.42)

7}2(1;11,12) = TZKZ(TZ-T) + K3(12-T) - (‘r22-1'12)l§K2[(1'22-1'12)!/2

+ (12-112)%]
- Kyl 2, 8% 4 (22 B)) (5.43)
K (ratsty) = t LK et]) - K2 2% 0 (¢2r B ) (5.44)

The functions 2?1(1;11), ?72(1;11,12) and K (T,t;Tl) are similar to
the functions gl(r;rl), gz(r;tl.rz) and K(T,t;Tl) discussed in chapter
four., These functions {(5.42) through (5.44)] contain the Kn(T)
functions instead of the En(r) functions.
The transformation
(1) = Fy + (F-Fp)e(1) (5.45)
permits one to express the solution of the integral equation (5.41) in
terms of an independent singular Fredholm integral equation of the
second kind:
T2
o(1) = g g (mry) + [ K (ntire(tdt ) (5.46)
™1
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Equation (5.46) represents the dimensionless energy equation.

Function ¢(t) is a universal function of optical radial distance T and
the optical radii T and Ty Once ¢(7) is known, the temperature
distribution in the medium can be obtained by solving the transcen-
dental equation (5.45). Substitution of the transformation (5.45)

into equation (5.15) yields:

26k (1) = 1,2(F,"-F,") + y(F{-F,)a(1) (5.47)
where
T2
Q(r) = 2[“31(T;T1) + f # (Tats37q)0(t)dt] (5.48)
T
1

In case of planar geometry, under the conditions of radiative
equilibrium we know from equation (4.44) that

d{ &k (1)1 .

T
Differentiation of equation (5.22) gives

i
y(t) = %-{FIKZ(T-TI) + F2K2(T2-T) + f Kl(lr-tl)w(t)dt ] (5.49)

T

1

The above integral equation defines the temperature distribution and
therefore the radiative flux.

The transformation [113]
(1) = Fy + (Fy=F,)e (1) (5.50)

permits to reduce equation (5.49) in terms of a simpler singular

Fredholm integral equation of the second kind:
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T2
0p(¥) = 3 Ukplaor) + [k (le-thoy (8) at ) (5.51)
"1
Equation (5.51) represents the dimensionless energy equation for the
radiative equilibrium case. Function ¢(t) is a universal function of
optical depth, optical thickness and the shape of the absorption
coefficient. Once ¢(T) is known, the temperature distribution in the
medium can be obtained by solving equation (5.50).

Substitution of the transformation (5.50) into equation (5.22)

yields
ggzp(T) = Fy'=Fp' + v(F1=Fp)Q (1) (5.52)
where
T2
Qp(1) = 2 [ Kylt-1)) + j sign(-t)Ky(|T-t])e, (£) dt 1 (5.53)
T
1

2. Function /;;1(1;11)

In order to get some idea about the universal function ¢(t), a
separate study of the function 7?1(1;11) is undertaken in this

subsection. The following cases are considered:

a. Exact Results

Numerical results obtained for expression (5.42) are shown in
Tables 5.15 through 5.18 and presented graphically in Figures 5.15
through 5.18, Inspection of the results for different cases of T

reveals that when Ty < 0.01, the results for different profiles are
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same graphically for values of rl/r > 0.1, The effect of the different

profiles is profound for 1, = 1 and T T 5 as seen from Figures 5,17

1
and 5.18. Once again it is to be noted that the values for the
rectangular profile are less than those of the other four profiles.
The difference in the values for the triangular and Doppler profiles

become significant when =T, 2 3.
b. Optically Thin

With the aid of asymptotic expansions for KZ(T) and K3(T) as
T > 0, the expression (5.42) for the function ;71(1;11) in the

optically thin 1imit becomes
i) = e (2.0 2\%
;}l(r,rl) =1 - (7 T ) (5.53)
Examination of expression (5.53) shows that in the optically thin

1imit, the function ;ZI(T;TI) l1ike functions qil(r;rl) and ﬁﬁz(r;rl.

12) become independent of the shape of the absorption coefficient.
3. Optically Thin Limit

Exact closed form solution for equation (5.46) can be obtained
for the optically thin limit. With the aid of asymptotic expansions
for KZ(T) and K3(T) as T + 0, the solution of equation (5.46) in the
optically thin 1imit becomes

2.1
2 5.54
) )21 ( )

It is worth noting that the dimensionless energy equation in the
optically thin 1imit becomes independent of the shape of a(v). This

is in keeping with the general trend observed previously for func-

tions 411(1;11). ‘22(1;11.12) and 17;1(1;11).



Table 5,15
Values of the function ?71(1;11)/1 for T c 0.01

/}1(1;11)/1
Rectangular Triangular Exponential Doppler Lorentz
(1) T1=0.01
4,5670D-3 4.71210-3 4,7863D-3 4,6948D-3 4,7872D-3
1.93570-2 1.9636D-2 1,9777D-2 1.9603D-2 1,9778D-2
4,4882D-2 4,5272D-2 4,5469D-2 4,52250-2 4,5469D-2
8.2049D-2 8.2526D-2 8.2765D-2 8,2468D-2 8.2765D-2
1.3236D~1 1.3290D-1 1.3317D-1 1,3283D-1 1.3317D-1
1,9831D-1 1.9887D-1 1.9915D-1 1.9880D-1 1,9915D-1
2,84200-1 2,8475D-1 2.8503D-1 2,84690-1 2,8503D-1
3.9853D-1 3,9902D-1 3.9927D-1 3.9896D-1 3.9927D-1
5.6306D-1 5.6341D-1 5.6358D-1 5.6337D-1 5,6358D-1
1.00000+0 1,0000D+0 1.00000+0 1.0000D0+0 1.0000D+0

1231
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Table 5,16
Values of the function ﬁ?l(T;Tl)/T for T = 0.1

??I(T;Tl)/T
Rectangular Triangular Exponential Doppler Lorentz

(i1) r1=0.10
1,9765D-3 2.7634D-3 3.2623D-3 2.6902D-3 3,3202D-3
1,3167D-2 1.5265D-2 1.6434D-2 1.5035D-2 1,6497D=-2
3.5547D-2 3.8825D-2 4.0576D-2 3.8450D-2 4.0633D-2
7.0199D-2 7.4435D-2 7.6648D-2 7.3941D-2 7.6697D-2
1,1873D-1 1,2366D-1 1.2620D-1 1,2308D-1 1.2624D-1
1,8375D-1 1.8905D-1 1.9176D-1 1.8842D-1 1.91790-1
2,6976D-1 2.7504D-1 2,7773D-1 2.7441D-1 2.7775D-1
3.8557D-1 3.9033D-1 3,9274D-1 3.8976D-1 3,9275D-1
5.53680~1 5.5714D-1 5.5888D-1 5.5672D-1 5.5888D-1
1,0000D+0 1,00000+0 1,0000D+0 1.0000D+0 1,0000D+0

9¢T
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Table 5,17
Values of the function 4}10r;11)/1 for 7, = 1

-

—
~
A

/?I(T;Tl)/'l'

Rectangular Triangular Exponential Doppler Lorentz

(ii1) T1=1.0

° o -
W -

— O 000 OCOoOOCOCO
(] L] [ ] L]
O W oo

4,6511D-7 1.1578D-4 5,3874D-4 1,9666D-4 9.5618D-4
2,8429D-4 2,0506D-3 4,6596D-3 2.2511D-3 5.9877D-3
3.5067D-3 1.0077D-2 1.6481D-2 9.9881D-3 1,8515D-2
1.4954D-2 2,8877D-2 3.9757D-2 2.8046D-2 4.2100D-2
4,0495D-2 6.2772D-2 7.7973D-2 6.0938D-2 8,02770-2
8.6485D-2 1,16500~-1 1,3518D-1 1.13630-1 1.37190-1
1.6118D-1 1,9668D-1 2.1733D-1 1,9297D-1 2,1888D-1
2,7825D-1 3.1494D-1 3.3518D-1 3.1088D-1 3,3616D-1
4.6912D-1 4.9913D-1 5.1495D~1 4,9566D-1 5,1537D-1
1,0000D+0 1.0000D+0 1.0000D+0 1.00000+0 1.0000D+0

8€T
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Table 5,18
Values of the function ?11(T;T1)/r for T c 5

’?I(T;Tl)h
Rectangular Triangular Exponential Doppler Lorentz
(iv) T1=5.0
1.0088D-9 8.8662D-5 9.4535D-4 2.4956D-3
1,5492D-7 5.5667D-4 3.5715D-3 1.2075D-3 7.3873D-3
1,9483D-5 2.2795D-3 9,7183D-3 3.6344D-3 1.6612D-2
4,11970-4 7.5221D-3 2,2460D-2 9.5031D-3 3.26870-2
3.54980-3 2.1642D-2 4.7480D-2 2.3475D-2 6.0378D-2
1.8411D-2 5.6171D-2 9,5408D-2 5.6273D-2 1,0921D-1
7.0810D-2 1.3539D-1 1.8714D-1 1.3186D-1 1.9905D-1
2,3404D-1 3.1808D-1 3.7208D-1 3.1043D-1 3.7880D-1
1,0000D+0 1.0000D+0 1.0000D+0 1.0000D+0 1,00000+0

oyt



.001
0 .2

'llTl

I

Lorentz

%Exponential

Doppler

Triangular

Rectangular

1

Figure 5.18 - Function ijl(r;TIYTversus t1,/T for T,

Tl/T

5

141



142

E. Conclusions

The expression obtained for’the local radiative flux is very
similar to the one obtained for the rectangular model in chapter four,
the only difference being that En(T) functions are replaced by Kn(r)
functions. The mathematics involved in the isothermal analysis are
not complex. By undertaking a separate study of functions 411(1;11),
*zz(t;Tl,Tz) and 1?1(T;T1), the behavior of these functions is
examined, It is found that in the optically thin limit, the
functions 411(1;11). 412(1;11,12) and ,7;1(T;T1) become independent
of the shape of the absorption coefficient. The numerical results
reveals that the rectangular profile has the smallest numerical value
of all the profiles. The results for the Doppler and triangular
profiles are approximately the same except for large optical thick-
nesses, For large values of t, the effect of the "wings" of the
Doppler, exponential and Lorentz profiles is evident. This trend will

manifest itself in the results for the radiative fluxes.
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VI. CONCLUSIONS AND RECOMMENDATIONS

Summarizing the systematic investigation of radiative heat

transfer from an absorbing-emitting media in spherical and planar

geometry presented in this study, one may conclude:

(1)

(2)

(3)

(4)

(5)

The study of the isothermal analysis is simple because there
is no complexity in the mathematics involved.

Numerical results obtained in the study of the shock layer
example (chapter three) reveals that there is considerable
difference between the results for the two geometries. The
effect of curvature on the dimensionless radiative fluxes

is appreciable even when the inner optical radius is close
to the outer optical radius. |

The results of the 1imiting cases for the functions hl(T;Tl)
and hz(r;rl,rz) show that the validity of the optically thin
approximation is very limited, while the optically thick
approximation is useful for large optical thickness.
Numerical results obtained for a particular nonisothermal
case in the study of the gray analysis reveals that the
temperature variations are important and cannot be neglected.
The expression for the local radiative flux in case of the
nongray rectangular model depends on the same functions
which are discussed in the gray medium problem. With a
small amount of additional computational work, one can

obtain results in a manner similar to that used in the gray

analysis,
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(6) The results of the carbon monoxide example indicate that the
gray analysis is of limited utility and should be used with
extreme caution.

(7) The effect of band or line shape on local radiative flux is
accounted for by the functions *11. *12 and FH which are
very similar to the functions hl‘ h2 and H, respectively,

(8) The results of the functions 411(1;11), 412(1;11,12) and
4?-1(1;11) reveals that the rectangular profile has the
smallest numerical value of all the profiles, while the
results for the Doppler and triangular profiles are
essentially the same upto an optical thickness of 2. The
influence of the "wings" of the profiles on the functions
B 1(1;11), 412(1=12;11,12) and 2?1(1;11) increases with
the optical thickness.

A number of assumptions have been introduced in the formulation
of the problem and it is recognized that some of them may be
unrealistic under certain conditions. Except in certain idealized
geometries, nongray calculations are so prohibitively complicated that
some simplification is necessary.

The following recommendations are made:

(1) The nonisothermal case when the medium is nongray should be

considered.

(2) A method to solve the dimensionless energy equation of

chapter five should be developed.

(3) Experimental work in this field of study should be performed.
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(4) An interchange of information between the fields of thermal
radiation, neutron transport and astrophysics should be

initiated,
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APPENDIX A
THE EXPONENTIAL INTEGRALS

The nth exponential integral is defined for positive real
arguments by
1
E (1) = j W2 o H g,
0
Integrating equation (A.1) by parts, one obtains the recurrence
relation
= -T-
nEn+1(T) e TEn(T)
The initial values are found from equation (A.1l) to be

=4 =
En(O) =T n=2,3,4, ...

while differentiation of equation (A.4) yields

dEn(T)
—dr " - En-l(T)
dEl(T) 1 -t
—dr - " T7°¢
Conversely,
[Eptoat = - gy ()

156

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

Series expansions of El(r). EZ(T), E3(r), E4(T) and ES(T) are of

the form
o n-1n
EI(T) z -y - Int + z _(:_l%n_!—_L

n=1

(A.7)
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E)(t) = 1+ xly - 1+ 1n 1) + n§1 Gl (A.8)
Ey(0) =5 -1+ %—2- (v +3-1n1)+ nogl (‘rl‘)(;:;?Q (A.9)
Eg(T) = ?1‘- - ;5_2. P2 (y - %-1- +1n 1) + n§1 ('132:3;3 (A.10)
OO S P PSP TN LN

n=1
where vy = 0.5772156. From equation (A.7) it is seen that El(r) has a
logarithmic singularity at the origin,
According to Reference [116], TEl(T) + 0 as T -+ 0 and the
functions EZ(T). E3(r), E4(r) and ES(T) have the following asymptotic

expansions as 1 -+ O:

Eo(1) = 1+ 0(1) (A.12)
Ey(t) = % -1+ 0(c%) (A.13)
1 = 12 3 (A.14)
Balr) = 3 -3+ 3+ 00 '
2 3
Eg(T) =%—--§-+{—--%—+0(r4) (A.15)

For large t (1171,

E (1) = £ __ (A.16)
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APPENDIX B
MATHEMATICAL PROPERTIES OF THE FUNCTIONS Kn(T)

The functions Kl(r), KZ(T), K3(r), K4(r) and KS(T) are defined as

follows

K. (1) = j az(v) E,fa(v)t] dv / v (B.1)

1 1 .
R

Ko (1) =f a(v) Eyla(v)T] dv / v (B.2)
R

K.(1) = f {(Ela(v)T] = £} dv / v (.3)

3 3 2 y
R

(1) = [ gy tatv)n - 3+ 230/ a()y v/ (8.4)
R

- 1, alv)t az(y)rz 2
K5(T) = f {(Es[a(v)rl -F - )/ a"(v)} dv / v (B.5)

R
In the above equations the quantity y is defined as follows
Y =[ a(v) dv (8.6)
R
R refers to the region of the spectrum ogver which the absorption
coefficient does not vanish,

Since the functions Kn(r) and En(r) are related, many of the
mathematical properties of the two functions are similar. The
derivative of the function Kn(r) with respect to 1 yields

dKn(T)
3 = " Ka(D) n>1
with
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,(0) = =
Kz(o) =1
Kn(o) =0 n>2

By utilizing the definitions for functions Kn(r) (expressions
(B.1) through (B.5)) and the recurrence relation (A.2), one obtains

the following relations:

KZ(T) + 7T KI(T) = J a(v) e-OL(\“)T dv / v (B.7)
R

2K3(T) + 1 Kz(T) = f [e-a(v)T - 11 dv/ v (B.8)
R

3K, (1) + T Kylr) = f (e MT L1k ()T / alw)l dv /Y (8.9)
R

4K5(r) + T K4(T) = [ {[e"OL(\")T -1+ afv)t - az(v T2] /

| R

o(v) dv/y  (8B.10)
Substituting the standard series expansions for En(r) into the

definitions for Kn(T) yields the expansions

o An+2('T)n (B.11)
Ky (1) = Aplovg = In ©) + Bg = L —fpr— :
+1
o A (-1)"
n+2 B.12
KZ(T) =1+ AZ(Ye -1+1nr1t) - BOT - nzl ST (B.12)
= + . A, ( + 3. In T) 12 + 1 B 12 -
Ky(1) = -t + 3Rl * 7 7 By
2
o A T)n+
+2
Z nn(n+2)! (8.13)



i 1 11 3 1. .3
K4(T) 7+ B'AZ(Ye -z inTt) 170 - E‘BOT -
o n+3
Z An+2(-T)
n=1 Nin+¥3)t
Ke(t) = -t +1oa (v + 22 _1n 1) &+ d 4
5 BT Yot - In T T 4 gy Byt -
n+4
E Anap (=)
n=1  Nin+a)!
where Yo = 0.5772156 and
_ 2
By = f a™(v)[- Tn a(v)] dv / v

R

>
"

= de avsy
R
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(B.14)

(B.15)

(B.16)

(8.17)

The constants A BO and vy for the various profiles are summarized

k’
in Table B.1,

TABLE B.1

Constants Ak’ BO and y for the various profiles

Profile Ak BO Y
Rectangular 1 0 Av
. 2 2 Av
Triangular T T Va
Exponential %(— %. %.
Coppier 1 A EI
13 4vZ -

~ 1
Lorentz A, =1 In 2 - —
1 3 /g

 2k-1
A1 = 0 A
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From expressions (B.1l) through (B.15) one observes that
TKl(T) + 0 as 1 + 0 and the functions KZ(T), K3(T), K4(T) and KS(T)

have the following asymptotic expansions as Tt + O:

KZ(T) =1+ 0(1) (8.18)

K3(T) = -1 + 0(12) (B,19)
_ 12 3

Ky (1) = 5=+ 0(7) (B.20)
- -T3 4

KS(T) ==+ 0(x) (B.21)

Substitution of the definition of El(r) into expression for Kl(r)
with the assumption that the absorption coefficient is symmetric about

Vo= v yields

a 1
K (1) = %—f f az(y) exp [-a(y)T / ul ﬂ-‘idy (B.22)
0 0
a
where y = 2 [ aly) dy with y = (v - vc) / D .
0

The constants a and D for the various profiles are defined in Table

B.2, Letting x = u / a(y), the function Kl(T) can be expressed as

follows

1
a(y]

a

_ 2 2 T, dx

@ =2 [ Pmew - DR (8.23)
0

Changing the order of integration requires that the integral be broken

into two parts
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1 a
K(z) = ;2;{ J { J az(y)dy] exp (- ;T(-) ;‘:—5
0 0
oo a
+ f ( f a®(y)dy] exp (- <) -3-5- (B.24)
1 f(x)

Rewriting equation (B.24) in a more compact form yields

[ 2]

Ky (t) =f exp (- 7) G(x) )9(2‘- (B.25)
0
where

a

G(x) = G, = %-f az(y)dy 0<x<1 (B,25a)
0
a

a(x) = 6, = 2 «2(y)dy x> 1 (B.25b)
f(x)

The functions G(x) and f(x) for the various profiles are summarized
in Table B.2. Similarly, the functions Kz(r), K3(r), K4(T) and Ks(r)

can be expressed as

oo

K, (%) = f exp (- 5) G(x) dx (8.26)
0

K3(T) = f {exp (- %) - 1] x G(x) dx (B.27)
0

(1) = [ e (= P - 1+ 1 o7 6(x) x (8.28)

0



Table B.2

Functions G(x) and f(x) for the various profiles

Profile a(y)(0 <y < a) a D Y 6, 6, f(x)
Rectangular 1 15 2 1 0 --
Triangular 1-y 1 5 1 % -32--,1(— 3 (x-1)/x
Exponential exp(-y) w é 2 % %-% 2 n x
Doppler exp(-y") > }%; /M 7;? erfc(vTZ Tn xJ1//2 /TR xJ
Lorentz 1/(14y%) - -/-;- 1+ p-ftan VRT- 1] x-1

£91
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s+

2
K5(r) = [ [exp (- 5& -1+ %-- ;l?] x> G(x) dx (B.29)
0 X

Substituting the functions G(x) and f(x) for the rectangular,
triangular and exponential profiles into expressions (B.25) through
(B.29) and then evaluating the corresponding integrals, we arrive at

the following expressions for the Kn(r) functions,

Rectangular profile:

Ky (1) = Ey(7) (B.30a)
Kz(r) = E2(T) (B.30b)
Ky(1) = Eg(T) - 3 (B.30c)
Ky(1) = Eg(0) - 5+ 5 (B.30d)

2

Kg(t) = Eg(t) - 11.+ -1 (B.30e)

Triangular profile:

2 e” T 2 2
= E - (1€ + 2t + 2) + ] (B,31a)
Kl(T) 3' [ 1(T) —T'S' T T 3—?
=2 e” 1 (B.31b)

KZ(T) = 3-[E2(1) - = (t ¢+ 1) + =]

T T

-T
Ky(t) = % [E5(T) - =+ %— - %1 (8.31c)
K4(T) = §'[E4(T) - El(T) - InT+ %1 -y - %1 (B.31d)

- 3
(1) = & IEg() + g (x) + tin T e - Fo s Sy ) (8.300)



Exponential profile

Ky (1) = % [E)(x)

Ko(1) = 5 [Ey(1)

K3(t) = 7 (E4(x)

Kg(t) = F (B (1) + TE (D) + T int-e T4 a(y-3) + 3

Ks (1) = 7 [Eg(1)

]
+

E, (1)

2

-1
2:2 (t +1) + l?]

T

Inte-vy- %1

2

LE() - S in v+ e (5 - ,})
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(B.32a)

(B.32b)

(B.32c)

(B.32d)

- 12(% - %) - %—T- + 7}-](B.32e)

Using the relation for large T as given by equation (A.16), the

following approximate expressions of Kn(T) functions for the

rectangular, triangular and exponential profiles are obtained

Rectangular profile:

-
Ky(v) = w57

e"T
Kplt) = 757

(8.33a)

(B.33b)

(B.33c)

(B.33d)

(B.33e)
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Triangular profile;

2e-T(-3'r2 -4t -2), 4

Ky(T) =
1 33+ 1) 3 (B.34a)
-T
K(T)=2e (—3T-2)+ 2
? 3t v 2) 32 (8.340)
_ =2e7 T 2
K3(t) = 51 + 57 - 1 (B.34c)
K ( ) - -2e'T 2 1
A CE X1 G VI S A DI (B.34d)
- -8e” " 2
SO = ety iin - - Gt (83
Exponential profile:
Ki(t) = e(-2r - 1) 4 1 (B.35a)
1 2t%(t + 1)  21° '
-T
Ko (1) = 5T = (B.35b)
-T
K3(T) G +-§7(? TIT - %-[1n T+ v + %ﬂ (B.35c)
-7
Ke(T) = 5 +'2‘;(T 17 ¢ %[r Int+ (v - %)r + ,25] (B.35d)

-1
KS(T) = 4(Te+ é}(; 3)1) - z_-l-['t2 Int-(1- Y)T2 + %T - %1 (B.35e)

The functions Kl(T). Kz(r) and K3(r) are presented in graphical
and tabular form in Reference [113]. In this Appendix, the functions
K4(r) and Ks(r) are presented in graphical and tabular form., The
series representation is used to evaluate the Kn(T) functions. While
the series given by equations (B.11) through (B.15) converge for all

values of T, there is a practical limitation. For large values of T,
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the evaluation involves summing of positive and negative numbers which
result in a small number. To help overcome this difficulty the series
were evaluated using double precision.

The behavior of the K4(r) and Kg(7) functions for the various
profiles is illustrated in Figures B.1 and B.2 respectively. The
actual numerical values are given in Tables B.3 and B.4. Except for
the fact that K4(T) and -KS(T) are increasing functions, Figures B.1
and B.2 do not illustrate any general trends. K4(T) and -K5(r) for the
rectangular profile has the smallest numerical value of all the pro-
files. For large values of 1, the effect of the "wings" of the
Doppler, exponential and Lorentz profiles is evident. As for the
other Kn(r) functions, the results for the Doppler and triangular
profiles are approximately the same except for large t. Unlike K4(T),
the function KS(T) is always negative.

The results obtained by using the approximate expressions (B.33)
through (B.35) of Kn(T) functions for the rectangular, triangular and
exponential profiles are tabulated in Tables B.5 and B.6. The first
term of the approximate expression for Kn(r) functions is omitted.

The results of Kl(T) function show fairly good agreement for all the
three profiles for all values of t© > 10, while the results of KS(T)

function agree for all values of ™ > 5.
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Table B.3
Function K4(T) for the various profiles
Kq(T)
T
Rectangular Triangular Exponential Doppler Lorentz
0.01 4,9023D-5 4.,9312D-5 4.,9470D-5 4,9280D-5 4.,9479D-5
0.02 1.9310D0-4 1.9511D-4 1.9622D-4 1,9489D-4 1.9629D-4
0.03 4,2853D-4 4,3470D-4 4,3815D-4 4.,3403D-4 4,3840D-4
0.04 7.5216D-4 7.6575D-4 7.7343D-4 7.6430D-4 7.7403D-4
0.05 1.1612D-3 1,1862D-3 1.2004D-3 1,1835D-3 1.2016D-3
0.06 1.6530D-3 1.6941D-3 1.7176D-3 1.6897D-3 1.7196D-3
0.07 2.2252D-3 2.2876D-3 2.3235D-3 2.2810D-3 2.3267D=-3
0.08 2.8756D-3 2.9650D-3 3.0167D-3  2,9557D-3 3.0215D-3
0.09 3.6021D-3 3.7249D-3 3.7961D-3 3.7122D-3 3.8029D-3
0.10 4,4028D-3 4 ,5655D-3 4.,6604D-3 4.5488D-3 4.6697D-3
0.20 1,6114D-2 1,7124D-2 1.7734D-2 1.7025D-2 1.7808D-2
0.30 3.3602D-2 3.6455D-2 3.8230D-2 3.6187D-2 3.8472D-2
0.40 5.5802D-2 6.1665D-2 6.5402D-2 6.1134D-2 6.5966D-2
0.50 8.1909D-2 9,2045D-2 9,.8650D-2 9,1160D-2 9.9733D-2
0.60 1.1129D-1 1.2702D-1 1.3747D-1 1.2569D~1 1.3931D-1
0.70 1,4345D-1 1,6609D-1 1.8144D-1 1.6425D-1 1.8431D~1
0.80 1,7796D-1 2.0886D-1 2.3018D-1 2.0644D-1 2.3440D-1
0.90 2.1448D-1 2,5496D-1 2.8337D-1 2.5190D-1 2.8928D-1
1.00 2.5273D-1 3.0409D-1 3.4072D-1 3.0034D-1 3.4869D-1
2.00 6.9169D-1 9,1495D-1 1.0974D+0 9,0422D-1 1.1520040
3.00 1.1743D+0 1,6570D+0 2.0956D+0 1.6446D+0 2.2558D+0
4,00 1.6691D+0 2.4679D+0 3,2600D+0 2.4641D+0 3.5945D+0
5.00 2.1674D+0 3.3198D+0 4 ,5499D+0 3.3365D+0 5.1318D+0
6.00 2.6669D+0 4,1984D+0 5.9402D+0 4,2482D+0 6.8442D+0
7.00 3.1668D+0 5.0957D+0 7.4143D+0 5.1908D+0 8.7150D+0
8.00 3.6667D+0 6.0067D+0 8.9600D+0 6.15870+0 1.0732D+1
9.00 4,1667D+0 6.9281D+0 1,0568D+1 7.1481D+0 1.2885D+1
10.00 4,6667D+0 7.8579D+0 1,2232D+1 8.1561D+0 1.5165D+1
20,00 9,6667D+0 1,7396D+1 3.1063D+1 1.8824D+1 4,3860D+1
30,00 1.4667D+1 2.7126D+1 5.2510D+1 8.1180D+1
40,00 1.9691D+1 3.6936D+1 7.5655D+1 1.2545D+2
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Figure B.1 - Comparison of function K, (1) for the various profiles
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Table B.4
Function KS(T) for the various profiles
-KS(T)
T
Rectangular Triangular Exponential Doppler Lorentz
0.01 1.6412D-7 1.6488D-7 1,6529D-7 1,6479D-7 1.6531D-7
0.02 1,2972D-6 1.3078D-6 1.3136D-6 1,.3066D=-6 1.3140D-6
0.03 4 ,3306D-6 4,3796D-6 4.4069D-6 4,3743D-6 4,4088D-6
0.04 1.0162D-5 1.0307D-5 1.0388D-5 1.0291D-5 1.0394D-5
0.05 1.9658D=-5 1,9993D-5 2.0181D-5 1,9957D-5 2.0196D-5
0.06 3.,3661D-5 3.4322D-5 3.4697D=5 3.4251D-5 3.4727D-5
0.07 5.2986D-5 5.4159D-5 5.4828D-5 5.4035D-5 5.4885D-5
0.08 7.8425D-5 8.0353D-5 8.1457D-5 8.01500-5 8.1553D-5
0.09 1.1075D-4 1.1373D-4 1.1545D-4 1.1342D-4 1.15600-4
0.10 1.5071D-4 1.5512D-4 1.5766D-4 1.5466D-4 1.5790D-4
0.20 1.1230D-3 1.1787D=-3 1,2119D-3 1,1732D-3 1,2156D-3
0.30 3.5656D-3 3.8053D-3 3.9517D-3 3.7821D-3 3.9700D-3
0.40 8.0002D-3 8.6655D-3 9.0803D=-3 8.6031D-3 9.1376D-3
0.50 1,4856D-2 1,6310D=-2 1,7234D-2 1.6178D-2 1.73720-2
0.60 2.4491D-2 2,7227D=2 2.8996D~2 2.6985D-2 2.9278D-2
0.70 3.7207D-2 4.1850D-2 4.,4900D-2 4,1451D=-2 4,5415D=-2
0.80 5.3259D-2 6.0569D-2 6.5443D-2 5.9956D~2 6.6310D-2
0.90 7.2865D-2 8.3733D-2 9.1085D-2 8.2847D-2 9,2455D-2
1.00 9.6212D=-2 1.1166D-1 1.2226D-1 1,1044D-1 1.2432D-1
2.00 5.6201D-1 7.0588D~1 8.1644D-1 6.97280-1 8.4549D-1
3.00 1.4933D+0 1,9843D+0 2.3967D+0 1,9635D+0 2.5278D+0
4,00 2.9145D+0 4,0424D+0 5.0627D+0 4,0126D+0 5.4352D+0
5.00 4.,8326D+0 6.9336D+0 8.9583D+0 6.9092D+0 9,7828D+0
6.00 7.2498D+0 1.0691D+1 1.4196D+1 1.0699D+1 1.5757D+1
7.00 1.0167D+1 1,5337D+1 2.0867D+1 1.5416D+1 2.3524D+1
8.00 1.3583D+1 2.0887D+1 2.9048D+1 2.1089D+1 3.3236D+1
9.00 1.75000+1 2.7353D+1 3.8807D+1 2.7740D+1 4.,5033D+1
10.00 2.1917D+1 3.4746D+1 5.0203D+1 3.5391D+1 5.9047D0+1
20.00 9.3583D+1 1,6075D+2 2.6384D+2 1.6986D+2 3.4592D+2
30.00 2.1525D+2 3.8327D+2 6.8002D+2 9,6480D+2
40.00 3.8690D+2 7.0352D+2 1.3196D+3 1.99260+3
50.00 7.3840D+2 1,1154D+3 2.2128D+3 3.49810+3
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Figure B.2 - Comparison of function KS(T) for the various profiles



Table B.5
Comparison of the exact and approximate values of the function Kl(r)

K (1)
Rectangular Triangular Exponential
Exact Approximate Exact Approximate Exact Approximate
1 2.1938D-01 1.8394D-01 2,53320-01 1,3333D+0 2.4181D-1 5,00000-1
2 4.,8901D-02 4,5112D-02 8.64880-02 1,6667D-1 9,8700D-2 1.2500D-1
3 1.3048D-02 1.2447D-02 3.7183D-02 4,9383D-2 5.1016D-2 5,5556D-2
4 3.7794D-03 3.6631D-03 1,8392D-02 2.0833D-2 3,0278D-2 3.1250D-2
5 1.1483D-03 1.12300-03 1,0103D-02 1.0667D-2 1.9766D-2 2.0000D-2
6 3.6008D-04 3.54110-04 6.0304D-03 6.1728D-3 1,3828D-2 1,3889D-2
7 1.1548D-04 1.1399D-04 3.8491D-03 3.8873D-3 1.0187D-2 1.0204D-2
8 3.7666D-05 3.7274D-05 2.5935D-03 2,6042D-3 7.8077D-3 7.8125D-3
9 1.2447D-05 1,2341D-05 1,82590~03 1.8290D-3 6.1714D-3 6.1728D-3
10 4,1570D-06 4,1273D-06 1,3324D-03 1,3333D-3 4.99960-3 5,0000D-3
15 1,9186D-08 1.9119D-08 3.9506D-04 3.9506D-4 2.,2222D-3 2,2222D-3
20 9,8355D-11 9,8150D0-11 1,6667D-04 1.6667D-4 1,2500D-3 1,2500D-3
25 5.3489D-13 5.3415D-13 8.5333D-05 8.5333D-5 8.0000D-4 8,00CuD-4
30 3.0186D-15 4.9383D-05 4.,9383D-5 5.5556D-4 5.55560-4
35 1,7514D-17 3.1098D-05 3.1098D-5 4.0816D-4 4,0816D-4
40 1.0362D-19 2,0833D-05 2,0833D-5 3.1250D-4 3.1250D-4
45 6.2229D-22 1.4632D-05 1,4632D-5 2.4691D-4 2.4691D-4
50 3.7819D-24 1.0667D-05 1.0667D-5 2.0000D0-4 2.00000-4
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Table 8.6
Comparison of the exact and approximate values of the function KS(T)

-K5(T)
Rectangular Triangular Exponential
Exact Approximate Exact Approximate Exact Approximate
1 9,6212D-2 1.0535D-1 1.1166D-1 5.9634D-2 1,2226D-1 1,0264D-1
2 5.6201D-1 5.6400D-1 7,0588D-1 6.9507D-1 8.1644D-1 8.1203D-1
3 1.4933D+0 1.4938D+0 1,9843D+0 1.9817D+0 2.3967D+0 2.3956D+0
4 2.91450+0 2.9146D+0 4,04240+0 4,04180+0 5.0627D+0 5.06240+0
5 4.8326D+0 4,8327D0+0 6,9336D+0 6.93340+0 8.95830+0 8.9583D+0
6 7.2498D+0 7.2498D+0 1,0691D+1 1.0691D+1 1.4196D+1 1.4196D+1
7 1.01670+1 1.0167D+1 1,53370+1 1.53370+1 2.0867D+1 2,08670+1
8 1,35830+1 1.3583D0+1 2.0887D+1 2,08870+1 2.9048D+1 2,9048D+1
9 1.7500D+1 1.7500D+1 2.7353D+1 2,7353D+1 3.8807D+1 3.8807D+1
10 2.19170+1 2.1917D0+1 3.4746D+1 3.47460+1 5.0203D+1 5.0203D+1
15 5.1500D+1 5.15000+1 8.58140+1 8.5814D+1 1.33420+2 1,33420+2
20 9.35830+1 9,35830+1 1.6075D+2 1.6075D+2 2.6384D+2 2.6384D+2
25 1.4817D+2 1.4817D+2 2,5984D+2 2.5984D+2 4.4510D+2 4.45100+2
30 2,1525D+2 2.1525D+2 3.83270+2 3.8327D+2 6,8002D+2 6.8002D+2
35 2.9483D+2 2,9483D+2 5.3113D+2 5.3113D+2 9,7089D+2 9,7089D+2
40 3.8690D+2 3.8692D+2 7.0352D+2 7.0352D+2 1.3196D+3 1,3196D+3
45 4,9146D+2 4.9150D0+2 9.0043D+2 9,0048D+2 1,7278D+3 1,72800+3
50 7.3840D+2 6.0858D+2 1.1154D+3 1.12210+3 2,2128D+3 2,19730+3
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