brought to you by T CORE

Journal of Chemistry, Vol. 45 (2), P. 250 - 254, 2007

STUDY ON THE SYNTHESIS OF SOME NEW DERIVATIVES OF MALLOAPELTA B ISOLATED FROM MALLOTUS APELTA

Received 6 June 2006

NGUYEN HOAI NAM, NGUYEN HUU TUNG, NGUYEN XUAN NHIEM, CHAU VAN MINH, PHAN VAN KIEM

Institute of Natural Products Chemistry, Vietnamese Academy of Science and Technology

SUMMARY

Six new benzopyran derivatives were synthesized by reduction reaction and Michael reaction from malloapelta B. Their structures were determined as 8-(1'-oxo-butyl)-5,7-dimethoxy-2,2dimethyl-2H-1-benzopyran (2), 8-(1'-oxo-3'(R)-methyl-4'-acetyl-5'-oxo-hexyl)-5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran (3), 8-(1'-oxo-3'(R)-methyl-4'(S/R)-(methyl fomiate)-5'-oxohexyl)-5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran (4,4'), 8-(1'-oxo-3'(R)-methyl-4'(S/R)-(ethyl formiate)-5'-oxo-hexyl)-5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran (5,5') by spectroscopic data, including two-dimensional NMR techniques and ESI spectrum.

Keywords: *Malloapelta B; Michael reaction; reduction reaction; 5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran.*

I - INTRODUCTION

Malloapelta B (1), a new benzopyran derivative was isolated from the Vietnamese traditional medicinal plant *Mallotus apelta* (Lour.) Muell.-Arg. [1]. It shows strong cytotoxic effect as well as strong activity against NF- κ B activation with IC₅₀ value 0.54±0.05 μ M. This compound is continued studying further for cancer treatment [2, 3]. To investigate the relations between the structures and their bioactivities as well as probably find new derivatives having stronger bioactivities, we have synthesized a series of its derivatives.

As a part of our research, we report herein six new derivatives synthesized by reduction reaction and Michael reaction. Their structures were determined as 8-(1'-oxo-butyl)-5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran (2), 8-(1'-oxo-3'(R)-methyl-4'-acetyl-5'-oxo-hexyl)-5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran (3), 8-(1'-oxo-3'(R)-methyl-4'(S/R)-

(methyl formiate)-5'-oxo-hexyl)-5,7-dimethoxy -2,2-dimethyl-2H-1-benzopyran (4, 4'), 8-(1'oxo-3'(*R*)-methyl-4'(*S*/*R*)-(ethyl formiate)-5'oxo-hexyl)-5,7-dimethoxy-2,2-dimethyl-2H-1benzopyran (5, 5') by the NMR and MS spectra. The relationships between their structures and cytotoxicities will be reported elsewhere.

II - EXPERIMENTAL

Materials and methods

Material

Malloapelta B was isolated from *Mallotus apelta* (Lour.) Muell.-Arg.. The reagents were purchased of Aldrich Co. Solvents were distilled prior to use.

General Experimental Procedures

The Electronspray Ionization (ESI) mass spectrum was obtained by using an AGILENT 1100 LC-MSD Trap spectrometer. The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectra were recorded on a Bruker AM500 FT-NMR spectrometer using TMS as the internal standard. Column chromatography (CC) was performed on silica gel (Kieselgel 60, 70-230 mesh and 230-400 mesh, Merck). TLC was performed with Thin layer Art 5562 DC-Alurolle Kieselgel made by Merck Co.

The synthesis of 8-(1'- oxo-butyl)-5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran (2)

20 mg (0.62 mmol) NaBH₄ was added slowly to a solution of 150 mg (0.52 mmol) malloapelta B with 15 ml MeOH in a 40 ml round-flask placed on a magnetic stirrer. The reaction was kept at room temperature for 4 h. The reaction mixture was extracted with mixture CHCl₃/H₂O. The CHCl₃ extract was separated by column chromatography over silica gel eluted with *n*-hexane-acetone (10:1) to afford 128 mg of the reduced product **2**, yield 85%.

^{*I*}*H*-*NMR* (500 *MHz*, *MeOD*), δ (*ppm*): 5.44 (1H, d, *J* = 10.5 Hz, H-3), 6.56 (1H, d, *J* = 10.5 Hz, H-4), 6.00 (1H, s, H-6), 2.72 (2H, m, H-2'), 1.70 (2H, m, H-3'), 0.95 (3H, t, *J* = 6.5 Hz, H-4'), 3.70 (3H, 7-OCH₃), 3.83 (3H, 5-OCH₃), 1.39 (6H, s, H-11, H-12).

¹³C-NMR (125 MHz, MeOD), δ (ppm): 76.7 (s, C-2), 126.6 (d, C-3), 116.4 (d, C-4), 157.6 (s, C-5), 87.8 (d, C-6), 156.5 (s, C-7), 113.6 (s, C-8), 151.5 (s, C-9), 104.2 (s, C-10), 27.7 (q, C-11, C-12), 204.2 (s, C-1'), 47.0 (t, C-2'), 17.6 (t, C-3'), 13.9 (q, C-4'), 55.7 (q, 7-OCH₃), 55.8 (q, 5-OCH₃).

ESI m/z: 291 [M+H]⁺ (C₁₇H₂₃O₄).

The synthesis of 8-(1'-oxo-3'(R)-methyl-4'acetyl-5'-oxo-hexyl)-5,7-dimethoxy-2,2dimethyl-2H-1-benzopyran (3)

A mixture of 150 mg (0.52 mmol) malloapelta B and acetylacetone in 15ml MeOH added 200 μ L NaOH20% was placed on a magnetic stirrer in a 40 ml round-flask. The mixture was maintained at room temperature in 12h. Removal of the solvent afforded a residue that was purified by column chromatography over silica gel eluted with *n*-hexane-acetone (6:1) to give 138 mg product **3**, yield 68%.

^{*I*}*H*-*NMR* (500 *MHz*, *MeOD*), δ (*ppm*): 5.44 (1H, d, J = 10.5 Hz, H-3), 6.55 (1H, d, J = 10.5 Hz, H-4), 5.99 (1H, s, H-6), 1.39 (3H, s, H-11), 1.37 (3H, s, H-12), 2.71 (1H, dd, *J* = 17.0, 8.5 Hz, Ha-2'), 2.74 (1H, dd, *J* = 17.0, 4.0 Hz, Hb-2'), 2.80 (1H, m, H-3'), 3.84 (1H d, *J* = 9.0 Hz, H-4'), 1.01 (3H, d, *J* = 6.5 Hz, H-5'), 2.18 (3H, s, H-7'), 2.19 (3H, s, H-9'), 3.83 (3H, s, 7-OCH₃), 3.78 (3H, s, 5-OCH₃).

¹³*C*-*NMR* (125 *MHz*, *MeOD*), δ (*ppm*): 76.8 (s, C-2), 126.7 (d, C-3), 116.3 (d, C-4), 156.7 (s, C-5), 87.8 (d, C-6), 157.6 (s, C-7), 113.2 (s, C-8), 151.5 (s, C-9), 104.3 (s, C-10), 27.7 (q, C-11, C-12), 202.0 (s, C-1'), 48.7 (t, C-2'), 30.2 (d, C-3'), 73. (d, C-4'), 17.7 (q, C-5'), 204.6 (s, C-6'), 29.7 (q, C-7'), 204.6 (s, C-8'), 29.9 (q, C-9'), 55.7 (q, 7-OCH₃) and 55.7 (q, 5-OCH₃).

ESI m/z: 389 [M+H]⁺ (C₂₂H₂₉O₆).

The synthesis of 8-(1'-oxo-3'(*R*)-methyl-4'-(*S*/*R*)-(methyl formiate)-5'-oxo-hexyl)-5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran (4,4')

A mixture of 150 mg (0.52 mmol) *malloapelta B* and acetoacetate methyl ester in 15 ml MeOH added 20 mg CH₃ONa was placed on a magnetic stirrer in a 40 ml round-flask. The mixture was maintained at room temperature overnight. Removal of the solvent afforded a residue that was purified by column chromatography over silica gel eluted with *n*-hexane-acetone (4:1) to give 148 mg the mixture of two optical isomers 4 and 4', yield 71%.

^{*i*}*H-NMR* (500 *MHz*, *MeOD*), δ (*ppm*): 5.43 (d, J = 10.5 Hz, H-3), 6.55 (d, J = 10.5 Hz, H-4), 5.99 (s, H-6), 1.38 (s, H-11), 1.38 (s, H-12), 2.82 - 2.92 (m, H-2'), 2.74 (m, H-3'), 3.56 (d, *J* = 7.5 Hz, H-4')/3.65 (d, *J* = 7.5 Hz, H-4'), 1.05 (3H, s, H-5')/1.06 (3H, s, H-5'), 2.46 (s, H-7'), 3.71 (s, H-9'), 3.78 (s, OCH₃), 3.83 (s, OCH₃).

¹³C-NMR (125 MHz, MeOD), δ (ppm): 76.88/76.91 (s, C-2), 126.69/126.69 (d, C-3), 116.30/116.31 (d, C-4), 156.65/156.68 (s, C-5), 87.80/87.86 (d, C-6), 157.60/157.60 (s, C-7), 113.21/113.28 (s, C-8), 151.54/151.54 (s, C-9), 104.24/104.24 (s, C-10), 27.65/27.65 (q, C-11), 27.70/27.70 (q, C-12), 202.06/202.17 (s, C-1'), 48.71/48.96 (t, C-2'), 29.38/29.44 (d, C-3'), 64.25/63.97 (d, C-4'), 17.28/17.84 (q, C-5'), 29.64/29.44 (q, C-7'), 52.07/52.12 (q, C-9'), 55.68/5.68 (q, 7-OCH₃), 55.80/55.80 (q, 5-OCH₃).

ESI m/z: 405 $[M+H]^+$ (C₂₂H₂₉O₇).

The synthesis of $8-(1'-\infty -3'(R))$ -methyl-4' (*S*/*R*)-(ethylformiate)-5'-oxo-hexyl)-5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran (5,5')

A mixture of 150 mg (0.52 mmol) malloapelta B and acetoacetate ethyl ester in 15 ml C₂H₅OH added 200 μ L NaOH 20% was placed on a magnetic stirrer in a 40 ml round-flask. The mixture was maintained at room temperature in 14 h. Removal of the solvent afforded a residue that was purified by column chromatography over silica gel eluted with *n*-hexane-acetone (4:1) to give 152 mg the mixture of two optical isomers **5** and **5**', yield 70%.

^{*I*}*H*-*NMR* (500 *MHz*, *MeOD*), δ (*ppm*): 5.45 (d, J = 10.5 Hz, H-3), 6.56 (d, J = 10.5 Hz, H-4), 5.99 (s, H-6), 2.83 - 2.92 (m, H-2'), 2.74 (m, H-3'), 3.52 (d, J = 7.5 Hz, H-4')/3.60 (d, J = 7.5 H-4'), 1.05 (d, J = 6.5 Hz, H-5')/1.06 (d, J =

6.5 Hz, H-5'), 2.24 (s, H = 7'), 4.17 (q, J = 6.5 Hz, H-9'), 1.26 (t, J = 6.5 Hz, H-10'), 3.77 (s, 7-OCH₃), 3.83 (s, 5-OCH₃).

¹³C-NMR (125 MHz, MeOD), δ (ppm): 76.81/76.82 (s, C-2), 126.69/126.69 (d, C-3), 116.30/116.80 (d, C-4), 156.63/156.67 (s, C-5), 87.80/87.80 (d, C-6), 157.09/157.09 (s, C-7), 113.26/113.34 (s, C-8), 151.51/151.51 (s, C-9), 104.24/104.24 (s, C-10), 27.65/27.65 (q, C-11), 27.70/27.70 (q, C-12), 202.13/202.21 (s, C-1'), 48.77/48.99 (t, C-2'), 29.40/29.57 (d, C-3'), 64.30/64.48 (d, C-4'), 17.35/17.80 (q, C-5'), 203.36/203.38 (s, C-6'), 29.30/29.34 (q, C-7'), 169.10/169.16 (s, C-8'), 61.10/61.09 (t, C-9'), 14.12/14.13 (q, C-10'), 55.79/55.79 (q, OCH₃), 56.00/56.00 (s, OCH₃).

III - RESULTS AND DISCUSSION

Compound 2 was obtained as white crystals from the reduction reaction after being purified by column chromatography over silica gel. The synthetic process [4, 5] was illustrated as scheme 1.

Scheme

The NMR spectra of **2** were similar to those of **1**, except for the absence of the double bond signals at C-2' and C-3', and the additional of two methylene signals at $\delta_{\rm C}$ 47.0/17.6 and $\delta_{\rm H}$ 2.72 (m)/1.70 (m) in the NMR spectra of **2**. These changes were further confirmed by analysis of the proton-coupling constants and by the appearance of a quasi ion peak at m/z 291 [M+H] (C₁₇H₂₂O₄ + H) in the positive ESI spectrum of **2**. Consequently, the structure of **2** was 8-(1'-oxo-butyl)-5,7-dimethoxy-2,2dimethyl-2H-1-benzopyran.

Compounds 3, 4/4', 5/5' were obtained as white crystals by Michael reaction with acetylacetone, acetoacetate methyl ester, and acetoacetate ethyl ester as agents of the reactions, respectively. The synthetic process of these compounds [4, 5] was illustrated as scheme 2.

Scheme 2

The ¹H-NMR of **3** exhibited two doublets at δ 5.44 and 6.55 (J = 10.5 Hz), which were assigned to H-3 and H-4, respectively. A singlet of H-6 was at δ 5.99, two quaternary methyl groups at δ 1.37 and 1.39 as the singles, two methoxyl groups were at 3.78 and 3.83. The acetoacetyl group was determined to connect at C-3' from the appearance of two methyl groups at δ 2.18 and 2.19, and a methine proton at δ 3.84 (d, J = 9.0 Hz). In addition, the methyl group at δ 1.01 as a doublet (J = 6.5 Hz) also confirmed the acetoacetyl group attached to C-3'. The ¹³C-NMR and DEPT spectra of 3showed signals of 22 carbons. The two acetyl groups were confirmed at δ 204.6, 29.7/29.9. The methylene and methine carbons at δ 48.7 and 30.2, respectively evidenced the absence of the double bond. Furthermore, the ESI exhibited a quasi ion peak at m/z 389 [M+H], correspond to the molecular formula of $C_{22}H_{28}O_6$. From the above data, compound 3 was determined to be $8-(1'-\infty - 3'(R)-\text{methyl}-4'-\text{acetyl}-5'-\text{oxo}$ hexyl)-5,7-dimethoxy-2,2-dimethyl-2H-1benzopyran.

Compounds 4/4' and 5/5' were obtained as two racemics, which were confirmed by the analysis of NMR data. All the NMR spectra of 4/4' and 5/5' were similar to those of 3, except for the more appearance of the methoxy group (δ_c 52.12/52.07 and δ_H 3.71) instead of the methyl carbon at δ_c 29.9/ δ_H 2.19). The stereochemistry at C-3' of 4/4' and 5/5' were suggested to be (R) by comparing the chemical shifts and proton coupling constants of 4/4' and 5/5' with those of 6-(methyl 1'-oxo-3'-hydroxybutyl ether)-5,7-dimethoxy-2,2-dimethyl-2H-1benzopyran and 6-(1'-oxo-3'-hydroxy-butyl)-5,7-dimethoxy-2,2-dimethyl-2H-1-benzopyran [6], and with the similar structure reported in the literature [7]. In addition, the ESI spectra of 4/4' and 5/5' showed the ion peaks at m/z 405 $[M+H]^+$ and 419 $[M+H]^+$ corresponding to the molecular formula of C22H28O7 and C23H30O7, respectively. Thus, compound 4/4'was determined to be a racemic of $8-(1'-x)^{-3'(R)}$ methyl-4'(S/R)-(methyl formiate)-5'-oxohexyl)-5,7-dimethoxy-2,2-dimethyl-2H-1benzopyran and 5/5' was a racemic of 8-(1'oxo-3'(R)-methyl-4'(S/R)-(ethyl formiate)-5'oxo-hexyl)-5,7-dimethoxy-2,2-dimethyl-2H-1benzopyran.

REFERENCES

- P. V. Kiem, C. V. Minh, H. T. Huong, N. H. Nam, J. J. Lee, Y. H. Kim. Vietnamese Journal of Chemistry, Vol. 43, No. 5, P. 652 - 656 (2005).
- C. V. Minh, P. V. Kiem, N. H. Dang, H. V. Bao, N. H. Nam, L. M. Huong, H. T. Huong, N. H. Tung, The Symposium of Vietnamese traditional medicine for cancer treatment, P. 45 - 64 (2005).
- 3. C. V. Minh, P. V. Kiem, N. H. Nam, H. T.

Huong, J. J. Lee, and Y. H. Kim. Vietnamese Journal of Chemistry, Vol. 43, No. 6, P. 773 - 777 (2005).

- P. T. Son, L. D. Doanh. Organic synthesis, Hanoi Science & Technique Pub., Vol. 2, P. 167 - 169 (1976).
- 5. P. D. Chau. Organic pharmaceutical syntheses, Hanoi Science & Technique Pub., P. 172 173 (2003).
- P. V. Kiem, N. H. Dang, H. V. Bao, H. T. Huong, C. V. Minh, L. M. Huong, J. J. Lee and Y. H. Kim. Arch. Pharm. Res., Vol. 28, P. 1131 - 1134 (2005).
- K. Hori, T. Satake, Y. Saiki, and K. Murakami, Chemical and chemotaxonomical studies of Filices. LXXIX. An acylphloroglucinol glycoside from Diplazium nipponicum TAGAWA, Yakugaku Zassshi, Vol. 110, P. 315 - 320 (1990).