brought to you by CORE

Journal of Chemistry, Vol. 47 (2), P. 230 - 235, 2009

PREMNAODOROSIDE A AND 10-O-*TRANS-P*-METHOXYCINNAMOYLCATALPOL, TWO IRIDOID GLYCOSIDE DERIVATIVES FROM THE LEAVES OF *PREMNA INTEGRIFOLIA* L.

Received 27 March 2008

NGUYEN THI BICH HANG¹, PHAM THANH KY¹, CHAU VAN MINH² NGUYEN PHUONG THAO², AND PHAN VAN KIEM²

> ¹Hanoi University of Pharmacy ²Institute of Natural Products Chemistry, VAST

ABSTRACT

From the leaves of Premna integrifolia L. two iridoid glycoside derivatives premnaodoroside A (1) and 10-O-trans-p-methoxycinnamoylcatalpol (2) were isolated. Their chemical structures were elucidated by means of ESI-mass MS, ¹H-NMR, ¹³C-NMR (CPD and DEPT), HSQC, and HMBC spectra in comparison with the literature. This is the first report of 1 and 2 from P. integrifolia species.

I - INTRODUCTION

Premna integrifolia L. (Verbenaceae) widely distributed in Vietnam, Laos, and Cambodia. In Vietnamese traditional medicine, the leaves of this plant are used to treat indigestion, dysuria, and dysentery. The roots also employed against indigestion, are stomachache and fever [1, 2]. Previous phytochemical investigations on the species of the genus Premna reported the isolation and structural identification of a number of iridoid glycosides [3-6]. Iridoid glycosides occupy an important position in the field of natural product chemistry and biology [7]. From P. integrifolia some alkaloids as aphelandrine, premnine, and premnazole; two diterpenes 12,16-epoxy-11,14dihydroxy-5,8,11,13-abietatetraen-7-one and 11,12,16-trihydroxy-5,8,11,13-abietatetraen-7one; a sesquiterpene premnaspirodiene, and a flavonoid luteolin were isolated [8, 9]. This paper reports on the isolation and structure elucidations of two iridoid glycoside derivatives premnaodoroside A (1) and 10-O-trans-pmethoxycinnamoylcatalpol (2) isolated from the leaves of *P. integrifolia*.

II - EXPERIMENTAL

1. Plant material

The leaves of *Premna integrifolia Roxb*. were collected in Hanam province during July 2007 and was identified by Prof. Vu Van Chuyen, Hanoi University of Pharmacy. A voucher of specimen was deposited at the herbarium of Hanoi University of Pharmacy.

2. General experimental procedures

Melting points were determined using an Electro thermal IA-9200. The IR spectra were obtained on a Hitachi 270-30 type spectrometer with KBr discs. Optical rotations were determined on a Jasco DIP-1000 KUY polarimeter. The electrospray ionization (ESI) mass spectra were obtained using an AGILENT 1100 LC-MSD Trap spectrometer. The ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectra were recorded on a Bruker AM500 FT-NMR

spectrometer and TMS was used as an internal standard. Column chromatography (CC) was performed on silica gel (Kieselgel 60, 70-230 mesh and 230 - 400 mesh, Merck) and YMC RP-18 resins.

3. Extraction and Isolation

Dried leaves of P. integrifolia (1.0 kg) were powdered and then extracted three times with MeOH. The MeOH extract (50 g) was suspended in water and partitioned in turn with chloroform and ethyl acetate to obtain chloroform (12.0 g) and ethyl acetate (15.0 g)fractions. The ethyl acetate fraction (15.0 g) was chromatographed on a silica gel column using CHCl₃-MeOH-H₂O (gradient from 1:1.5:0.05 to 1:5:0.25) as eluent to give six fractions (F1-F6). The fraction F5 (0.7 g) was chromatographed on an YMC column using MeOH-H₂O (3:1) to yield compounds 1 (5 mg) as an amorphous powder. The fraction F6 (1.0 g) was chromatographed on an YMC column using MeOH-H₂O (4:1) to yield compounds 2 (7 mg) as a yellow amorphous powder.

Premnaodoroside A (1): Amorphous powder, mp. 190-191°C; $[α]^{25}_{D}$ +84° (c, 0.5 in MeOH); ESI-MS *m*/*z*: 891 [M+H]⁺; 889 [M-H]⁻ ($C_{42}H_{66}O_{20}$, M=890); ¹H-NMR (500 MHz, CD₃OD) and ¹³C-NMR (125 MHz, CD₃OD): see table 1.

10-O-*trans-p*-methoxycinnamoylcatalpol (2): A yellow amorphous powder, mp. 186- $187^{\circ}C$; $[\alpha]^{25}_{D}$ -63° (c, 0.5 in MeOH); ESI-MS m/z: 523 [M+H]⁺; 521 [M-H]⁻ (C₂₅H₃₀O₁₂, M=522); ¹H-NMR (500 MHz, CD₃OD) and ¹³C-NMR (125 MHz, CD₃OD): see Table 1.

III - RESULTS AND DISSCUSSION

Compound **1** was isolated as an amorphous powder from the methanolic extract of the leaves of *P. integrifolia* by a combination of YMC RP-18 column chromatography and silica gel column chromatography. The ESI-mass spectrum showed the quasi molecular ion peaks at m/z 891 [M+H]⁺ (positive ion mode) and m/z889 [M-H]⁻ (negative ion mode), corresponding to the molecular formula of C₄₂H₆₆O₂₀. In the ¹H-NMR spectrum, two olefinic protons were observed at δ 7.41 and two protons of the oxymethine carbons at δ 5.47 as a doublet (J = 4.5 Hz), which were characteristic for H-3 and H-1 in iridoids, respectively [10].

Figure 1: Structures of 1 and 2

In addition, two glucose units were confirmed by the observation of two anomeric protons at δ 4.69 (d, *J* = 7.5 Hz), two oxymethylene group at δ 3.66 (dd, J = 12.0, 6.0 Hz) and 3.92 (d, J = 12.0 Hz), and of the other oxymethine proton signals at the region from δ 3.23 to 3.36. Besides, two

secondary methyl groups at $\delta 0.92$ (d, J = 6.5 Hz) and $\delta 0.98$ (d, J = 6.5 Hz), two other oxymethylene groups at $\delta 4.18$ (t, J = 6.5 Hz) and 3.92 (m)/ 4.00 (m), together with signals at the region of δ 1.22-1.85 suggested the appearance of a monoterpene portion [10].

C	$\delta_{\rm C}^{\ \#}[10]$		$\delta_{C}^{a,b}$		Dant					
C	1a	1b	1a	1b	Dept	$O_{\mathrm{H}}^{\mathrm{H}}^{\mathrm{H}^{\mathrm{H}^{\mathrm{H}^{\mathrm{H}^{\mathrm{H}^{\mathrm{H}^{\mathrm{H}^{\mathrm{H}^{\mathrm{H}^{\mathrm{H}^{\mathrm{H}^{\mathrm{H}^{\mathrm{H}^{\mathrm{H}}^{\mathrm{H}}^{\mathrm{H}}^{\mathrm{H}^{\mathrm{H}}^{\mathrm{H}^{\mathrm{H}}^{\mathrm{H}^{\mathrm{H}^{\mathrm{H}}^{\mathrm{H}^{\mathrm{H}}^{\mathrm{H}}^{\mathrm{H}}^{\mathrm{H}}^{\mathrm{H}}^{\mathrm{H}^{\mathrm{H}}^{\mathrm{H}^{\mathrm{H}}^{\mathrm{H}}^{\mathrm{H}}^{\mathrm{H}}^{\mathrm{H}}^{\mathrm{H}^{\mathrm{H}}^{\mathrm{H}}}}}}}}}}$	HMDC			
Iridoid aglycon										
1	95.43	95.47	95.43	95.47	CH	5.47 d (4.5)	C-1′, 3, 5			
3	151.91	151.94	151.90	151.90	CH	7.41 d (1.0)	C-4, 5,11a			
4	113.59	113.62	113.57	113.60	C	-				
5	32.07	32.11	32.06	32.10	CH	3.20 m	C-6, 7, 8, 9			
6	30.93	31.01	30.91	31.00	CH ₂	1.62 m/1.74 m				
7	40.68	40.71	40.65	40.95	CH ₂	1.77 m				
8	80.55	80.58	80.54	80.57	С	-				
9	52.30		52.29		CH	2.24 dd (1.0, 6.0)	C-1, 5, 6, 8			
10	24.70		24.67		CH ₃	1.34 s	C-7, 8, 9			
11	169.03	169.07	169.04	169.09	C	-				
Glucose										
1'	99.86		99.84		CH	4.69 d (7.5)	C-1, 3'			
2'	74.76		74.75		CH	3.23 dd (7.5, 9.0)				
3'	78.40		78.37		CH	3.23 m				
4'	71.75		71.73		CH	3.26 t (9.0)				
5'	78.02		77.99		CH	3.36 t (9.0)				
6'	62.98		62.96		CH ₂	3.66 dd (6.0,12.0) 3.92 d (12.0)	C-5′			
Monoterpene portion										
1″	63.5		63.50		CH ₂	4.18 t (6.5)	C-11a			
2"	36.8		36.77		CH ₂	1.50 m/1.73 m				
3"	31.0		30.95		CH	1.45 m				
4"	38.2		38.15		CH ₂	1.22 m/1.34 m				
5″	25.3		25.22		CH ₂	1.33 m				
6"	34.8		34.71		CH ₂	1.22 m/1.40 m				
7"	34.0		33.96		СН	1.85 m				
8″	69.9		69.89		CH ₂	3.92 m/4.00 m	C-6,10,11b			
9″	20.0		19.93		CH ₃	0.92 d (6.5)	C-2, 3			
10"	17	'.5	17.	.49	CH ₃	0.98 d (6.5)	C-6, 8			

Table 1: NMR data of 1 and of the literature

^aMeasured in CD₃OD ^b125 MHz, ^c500 MHz, Chemical shift (δ) in ppm, [#] δ_{c} of premnaodoroside A [10].

The ¹³C-NMR and DEPT spectra (table 1) revealed the presence of 42 carbon atoms ($12\times$ CH₂, $20\times$ CH, $6\times$ C and $4\times$ CH₃). Analysis of the NMR spectra, the presence of two β-glucopyranosyl moiety were confirmed by typical signals at 99.84 (2 x CH), 78.37 (2 x CH), 77.99 (2 x CH), 74.75 (2 x CH), 71.73 (2 x

CH), and 62.96 (2 x CH₂), two iridoids were characterized at δ 95.43/95.47 (2 x CH), 151.90 (2 x CH), 113.57/113.60 (2 x C), 32.06/32.10 (2 x CH), 30.09/31.00 (2 x CH₂), 40.65/40.95 (2 x CH₂), 80.54/80.57 (2 x C), 52.29 (2 x CH), 24.67 (2 x CH₂) and 169.07/169.09 (2 x C) [10]. Of the remaining signals, ester carbonyl (169.07 and 169.09), double bond [151.90 (2 x CH), 113.57/113.60 (2 x C)] and acetal (95.43 and 95.47) carbons were characterized. The monoterpene portion was further confirmed by the carbon chemical shifts as shown in Table 1. The H-C connections in the structure of 1 were deduced from the HSQC spectrum and the partial structure of 1 were deduced from the results of HMBC spectrum in comparison with the NMR data of premnaodoroside A, which was isolated from *Premna odorata* [10]. All the NMR and the other physical data of 1 were compared to those of premnaodoroside A and found to match well (table 1). This evidence led us to conclude that compound 1 was premnaodoroside A, which was first isolated from *P. integrifolia*.

C	δ _c [1]	$\delta_{\rm C}$ [1] $\delta_{\rm C}^{\rm a,b}$ D		$\delta_{\mathrm{H}}^{\mathrm{a,c}}J\left(\mathrm{Hz} ight)$	HMBC			
1	95.6	95.60	СН	5.09*	C-1′, 3, 9			
3	141.8	141.8	СН	6.37 d (2.0, 6.5)	C-1, 4			
4	103.7	103.71	СН	5.08^{*}	C-1, 3, 5, 9			
5	39.0	39.01	СН	2.32 m	C-1			
6	79.5	79.45	СН	3.97 dd (1.0,8.5)				
7	62.8	62.78	СН	3.51 d (1.0)				
8	63.6	63.60	С	-				
9	43.6	43.62	СН	2.67 dd (8.0, 9.0)	C-1, 6, 7, 8			
10	63.0	64.26	CH_2	4.29 d (12.5) 4.99 d (12.5)	C-8, 9, 9"			
Glucose								
1'	100.3	100.30	СН	4.77d (8.0)	C-1			
2'	74.8	74.78	СН	3.21 t (9.0)				
3'	78.4	78.42	СН	3.30*				
4'	71.4	71.42	СН	3.32 m				
5'	77.8	77.82	СН	3.40 m				
6'	63.0	62.98	CH_2	3.69 dd (6.0, 12.0) 3.92 dd (2.0,12.0)				
p-Methoxycinnamoyl								
1″	128.3	128.32	С	-				
2"	131.1	131.08	CH	7.57 d (8.5)				
3"	115.4	115.40	CH	6.96 d (8.5)				
4″	163.2	163.18	С	-				
5″	115.4	115.40	СН	6.96 d (8.5)	C-4″			
6"	131.1	131.08	СН	7.57 d (8.5)	C-4″			
7"	146.6	146.51	СН	7.68 d (16.0)	C-1", 9"			
8″	115.9	115.85	СН	6.41 d (16.0)	C-9″			
9″	168.9	168.82	С	-				
OMe	55.9	55.88	CH ₃ O	3.84 brs				

Table 2: NMR data of 2 and of the literature

^aMeasured in CD₃OD ^b125 MHz, ^c500 MHz, Chemical shift (δ) in ppm,*Overlapped signals, [#] δ_{c} of 10-O-*trans-p*-methoxycinnamoylcatalpol [6].

Compound 2 was also isolated as a yellow amorphous powder from the methanolic extract of the leaves of *P. integrifolia* by a combination of YMC RP-18 column chromatography and silica gel column chromatography. The ¹³C-NMR spectrum of 2 showed signals of 25 carbons, including 18 CH, 2 CH₂, 4 C, and 1 methoxyl carbon determining from the DEPT 90 and DEPT 135 spectra. Analysis of the NMR spectra suggested the presence of an iridoid, a β *p*-methoxycinnamoyl glucopyranosyl, and moiety. The double bond signals at δ 141.8 (CH), 103.71 (CH), the acetal signal at δ 95.60, the epoxi carbons at δ 62.78 and 63.60, the methine carbon bearing to oxygen atom at δ 79.45, together with two methine signals at δ 39.01 and 43.62 were characterized for the of iridoid presence an [6]. The pmethoxycinnamoyl moiety was confirmed by the ester carbonyl signal at δ 168.82, double bond signal at δ 146.51 and 115.85, methoxyl signal at δ 55.88, and *p*-substituted aromatic ring at δ 128.32 (C), 163.18 (C), 131.08 (2 x CH), 115.40 (2 x CH). The β -glucopyranosyl moiety was confirmed at δ 100.30, 74.78, 78.42, 71.42, 77.82 (5 x CH) and 62.98 (CH₂). Proton resonance at δ 6.41 and 7.68 (1H, each, J = 16.0Hz) were attributable to trans-olefinic protons and two doublet at δ 7.57 and 6.96 (each 2H, J = 8.5 Hz) in the ¹H-NMR spectrum of 2 clearly confirmed the presence of a trans-pmethoxycinnamoyl. A double signal with large coupling constant at δ 4.74 (1H, J = 7.5 Hz) indicated a β -configuration anomeric proton of the sugar moiety (vicinal H-1"/2" in cis position). The H-C connections in the structure of 2 were deduced from the HSQC, and the partial structure of 2 were deduced from the results of HMBC spectrum in comparison with the NMR data of 10-O-trans-pmethoxycinnamoylcatalpol [6] (Table 2) and found to match well. Moreover, in the HMBC spectrum, proton H-1' (δ 4.77) correlated with C-1 (δ 95.60), proton H-10 (δ 4.29/4.99correlated with C-8 (δ 63.60) and with carbonyl carbon at δ 168.82) confirming that the *p*- methoxycinnamoyl unit linked to C-8, and the β -D-glucopyranose attached to C-1 of the aglycon. From the above data, the structure of 2 be 10-O-trans-pdetermined to was [6], methoxycinnamoylcatalpol whose molecular formula is C25H30O12, which was further confirmed by the exhibition of the quasi molecular ion peaks at m/z 523 [M+H]⁺ (positive ion mode) and m/z 521 [M-H]⁻ (negative ion mode) in the ESI-mass spectrum. Compound 2 was isolated from Premna subscandens [6]. However, this is first report of this compound from *P. integrifolia*.

Acknowledgments: *The authors would like to thank Prof. Vu Van Chuyen, Hanoi University of Pharmacy for the plant identification.*

REFERENCES

- Bich, D. H., Trung, D. Q., Chuong, B. X., Dong, N. T., Dam, D. T., Hien, P. V., Lo, V. N., Mai, P. D., Man, P. K., Nhu, D. T., Tap, N. and Toan, T.. The medicinal plants and animals of Vietnam. Hanoi Science and Technology Publisher, 1st edition, Hanoi, Vol. II. 1063 - 1064 (2004).
- 2. Loi DT. The medicinal plants and animals in Vietnam. Hanoi Medicine Publishing House, Hanoi, Vietnam, 209 (2000).
- Otsuka H, Sasaki Y, Yamasaki K, Takeda Y, Seki T. Phytochemistry, 28, 3069 - 307 (1989).
- Otosuka H, Kashima N, Hayashi T, Kubo N, Yamasaki K, Padolina WG. Phytochemistry, Vol. 31, 3129 (1992).
- Otsuka H, Watanabe E, Yuasa K, Ogimi C, Takushi A, Takeda Y. Phytochemistry, Vol. 32, 983 (1993).
- Sudo H, Ide T, Otsuka H, Hirata E, Takushi A, Takeda Y. Phytochemistry, Vol. 46 (7), 1231-1236 (1997).
- Hosy M, Rosazza JPN. Gmeliosides A-L. Journal of Natural Products, Vol. 61, 734 -742 (1998).

- Dasgupta B, Sinha N K, Pandey V B, Ray A B. Planta Med. Vol. 50(3), 281 (1984).
- Dictionary of Natural Products on CD-ROM, Version 15:1, Copyright © 1982-2007 Chapman & Hall/CRC
- 10. Hideaki Otosuka, Naozumi Kashima, Tomoki Hayashi, Naoko Kubo, Kazuo Yamasaki, and William G. Padolina Phytochemistry, Vol. 31 (9), 3129 - 3133 (1992).