
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Spring 2014 

Updated screening criteria for steam flooding based on oil field Updated screening criteria for steam flooding based on oil field 

projects data projects data 

Mariwan Qadir Hama 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Petroleum Engineering Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Hama, Mariwan Qadir, "Updated screening criteria for steam flooding based on oil field projects data" 
(2014). Masters Theses. 7251. 
https://scholarsmine.mst.edu/masters_theses/7251 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/245?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7251?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7251&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu




 

 

 

UPDATED SCREENING CRITERIA FOR STEAM FLOODING BASED ON   

 

OIL FIELD PROJECTS DATA 

 

by 

 

MARIWAN QADIR HAMA 

 

A THESIS 

 

Presented to the Faculty of the Graduate School of the 

 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

In Partial Fulfillment of the Requirements for the Degree 

 

MASTER OF SCIENCE IN PETROLEUM ENGINEERING 

 

2014 

 

Approved by 

 

Dr. Baojun Bai, Advisor 

Dr. Mingzhen Wei, Co-Advisor 

Dr. Ralph Flori 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2014 

MARIWAN QADIR HAMA 

 All Rights Reserved 



 

 

iii 

ABSTRACT 

Enhanced oil recovery (EOR) screening is considered the first step in evaluating 

potential EOR techniques for candidate reservoirs. Therefore, as new technologies are 

developed, it is important to update the screening criteria. Many of the screening criteria 

for steam flooding that have been described in the literature were based on data collected 

from EOR surveys biennially published in the Oil & Gas Journal. However, these 

datasets contain some problems, including outliers, missing data, inconsistent data and 

duplicate data, that could affect the accuracy of the results. Despite the importance of 

ensuring the quality of a dataset before running analyses, data quality has not been 

addressed in previous research related to EOR screening criteria. The objective of this 

current work was to update the screening criteria for steam flooding by using a database 

that had been cleaned. The original dataset included 1,785 steam flooding field projects 

from around the world (Brazil, Canada, China, Colombia, Congo, France, Germany, 

Indonesia, Trinidad, U.S. and Venezuela). These projects had been reported in the Oil 

and Gas Journal from 1980 to 2012. After detecting and deleting the duplicate projects, 

only 626 field projects remained. To analyze and describe the results of the dataset, both 

graphical and statistical methods were used. A box plot and cross plots were used to 

detect and identify data problems, allowing for the removal of outliers and inconsistent 

data. Histogram distributions and box plots were used to show the distribution of each 

parameter and present the range of the dataset. New screening criteria were developed 

based on these statistics and the defined data parameters. The developed criteria were 

compared with previously published criteria, and their differences are explained. 
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NOMENCLATURE 

Symbol Description 

 

s               Saturation, fraction 

ϼ               Density of the fluid 

ø               Porosity, percent 

h               Formation thickness, ft 

Pp               Pore pressure, psi 

T               Temperature, 
o
F 

p               Reservoir pressure 

μo                    Oil viscosity, (cp) 

μw                   Water viscosity, (cp) 

kw               Water relative permeability, fraction 

ko               Oil relative permeability, fraction 

D               Reservoir depth 

md               Millidarcy 

cp                  Centipoise 

ft               Foot 

F               Fahrenheit 

M             Mobility ratio, dimensionless 

N                    Original oil in place, STB 

EOR  Enhanced Oil Recovery 

IOR  Improved Oil Recovery 

OOIP              Original oil in place  

SOR              Steam oil ratio 

ED  Displacement efficiency 

ES  Sweep efficiency 
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1. INTRODUCTION 

Steam flooding is a conventional thermal EOR method that has been applied in 

many heavy oil reservoirs around the world. This technique also is referred to as 

continuous steam injection and steam drive. In this process, steam is injected 

continuously through an injection well or wells, while oil is produced through a different 

well or wells (Iyoho, 1978). Steam helps to make the conditions favorable for pushing the 

oil toward the producing well by reducing its viscosity, which improves its mobility ratio 

(M) and, therefore, its displacement and areal sweep efficiency (Hong, 1994). In steam 

flooding, the injected steam not only lowers the oil viscosity, but also supplies the drive 

energy. As the steam loses heat to the formation, it condenses into hot water, which, 

coupled with the continuous supply of steam behind it, provides the drive to move the oil 

to production wells (Farouq Ali, 1974). Steam flooding has been applied as the stages of 

primary, secondary and tertiary recovery process. Recovery efficiency by steam flooding 

can reach 50-70% of OOIP (Hong, 1994). 

Numerous enhanced recovery techniques exist today. These techniques and their 

applications and results have been translated into screening criteria (Iyoho 1978). 

Applying these screening criteria (or screening guides) is one of the first steps in 

determining whether the field in question can be produced by a certain recovery method 

(Chu, 1985). Prospects that pass this screen are candidates for further engineering study. 

The criteria include values for parameters such as oil gravity, oil viscosity, reservoir 

porosity, oil saturation start and end, reservoir permeability, reservoir depth, reservoir 

temperature, reservoir pressure and pay thickness. The criteria recommend minimum to 

maximum ranges for each parameter. 
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This is research reviewed recent development in steam flooding enhanced oil 

recovery (EOR) techniques. It is also updated steam flooding screening criteria developed 

by several authors from 1973 to 2010. The new criteria were based on field applications 

data reported in Oil and Gas Journal (1980 – 2012). After cleaning the data, a new set of 

screening criteria has been made for steam flooding. The updated screening criteria are 

shown by tables and graphs. 

1.1. OBJECTIVE OF THE STUDY 

The objective of this study is to update screening criteria for steam flooding and 

show the data distribution of each parameter that affects stream flooding selection. In this 

work, the field projects data reported in EOR surveys in Oil & Gas Journal were used to 

develop the criteria. To achieve this objective, it is essential to ensure that the data is of 

high quality and produces reliable results. Therefore, data cleaning methods were applied 

to identify and remove duplicate, inconsistent and missing data. After cleaning the 

dataset, both graphical and statistical methods were used to display and summarize the 

data in order to develop the new screening criteria. 

1.2. THESIS OUTLINE 

This thesis is organized into six sections. Section 1 is the introduction and the 

objective of the study. Section 2 is a literature review and basic theories for oil recovery 

mechanisms, enhanced oil recovery methods, thermal processes and enhanced oil 

recovery screening criteria. This section also provides a summary of screening criteria for 

steam flooding. Steam flooding mechanisms, application conditions and design projects 

explained in detail in Section 3. Section 4 gives an explanation of the data collection and 
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cleaning processes for steam flooding projects. Section 5 is the data analysis for the 

cleaned dataset. Finally, data summary and conclusions of this research are given in 

Section 6. 
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2. LITERATURE REVIEW 

This section describes a literature review of oil recovery mechanisms, enhanced 

oil recovery, thermal processes and EOR screening criteria. Also screening criteria for 

steam flooding have been reviewed. 

2.1. OIL RECOVERY METHODS 

Oil recovery methods can be divided into three major categories: primary, 

secondary and tertiary recovery (enhanced oil recovery), as show in figure 2.1. In the 

primary process, the oil is forced out of the petroleum reservoir by existing natural 

pressure of the trapped fluids in the reservoir. Primary oil recovery methods include 

solution-gas drive, gas-cap expansion, gravity drainage, rock expansion, water drive 

processes or their combination. With declining reservoir pressure, it becomes more 

difficult to get the hydrocarbons to the surface. Sometimes, artificial lift is required. On 

average, only 5-10% of original oil in place can be recovered by primary techniques. 

Over a period of oil production, the reservoir energy will fall, and at some point, 

there will be insufficient underground pressure to force the oil to the surface. When a 

large part of the crude oil in a reservoir cannot be recovered by primary methods, a 

method for recovering more of the oil left behind must be chosen. Most often, secondary 

recovery is accomplished by injecting gas or water into the reservoir to replace produced 

fluids and maintain or increase the reservoir pressure. Conversion of some production 

wells to injection wells and subsequent injection of gas or water for pressure maintenance 

in the reservoir has been designated as secondary oil recovery. The oil recovered by both 
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primary and secondary processes ranges from 20 to 50% depending on the oil and 

reservoir properties (Speight, J. G. 2009). 

 

 

 
Figure 2.1. Oil recovery methods (Oil and Gas Journal, 1990) 

 

 

The biggest portion of oil left behind after conventional oil recovery exhausted. 

Therefore, enhanced oil recovery methods must be applied if further oil is to be 

recovered. Enhanced oil recovery (Tertiary recovery) methods have focused on 

recovering the remaining oil from a reservoir that has been depleted of energy during the 

application of primary and secondary recovery methods.  

Enhanced oil recovery is often synonymous to some extent with improved oil 

recovery (IOR). Enhanced oil recovery (EOR) is the recovery of oil from a reservoir by 

the injecting of materials that not normally present in reservoir (Lake, 1989). The injected 
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fluids interact with the reservoir rock and oil system to create conditions favorable for oil 

recovery. Improved oil recovery (IOR) refers to any process or practice that improves oil 

recovery. IOR includes EOR processes and other practices such as water flooding, 

pressure maintenance, infill drilling, and horizontal wells. 

2.2. ENHANCED OIL RECOVERY METHODS 

In general, EOR methods can be classified into two major groups: thermal and 

non-thermal processes, as show in figure 2.2. Each main group has a different EOR 

processes. Each technique has different concepts but similar objective which is to recover 

remaining oil and improving the recovery rate (Green and Willhite, 1998). EOR 

processes are important as technologies that could help meet the growing demand for oil 

in the world. It is estimated that roughly 65% of the original oil in place (OOIP) remains 

in the reservoir after primary and secondary recoveries. This remaining oil can be 

recovered by applying suitable EOR processes. The potential for EOR processes is 

clearly substantial and is responsible for the growth of EOR projects in all oil producing 

regions of the world (Ezekwe, 2011). 
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Figure 2.2. Enhanced oil recovery methods (Ali, S. M. F., & Thomas, S., 1989) 

 

 

 

 

EOR refers to the recovery of oil through the injection of fluids and energy not 

normally present in the reservoir. The injected fluids must accomplish one of the 

objectives as follows: 

A. Boost the natural energy in the reservoir 

B. Interact with the reservoir rock/oil system to create conditions favorable for 

remaining oil recovery. 

C. Reduction of the interfacial tension between the displacing fluid and oil. 

D. Increase the capillary number. 

E. Reduce capillary forces. 

F. Increase the drive water viscosity. 

G. Provide mobility-control. 

H. Oil swelling.          

EOR METHODS 

Thermal 

▪Steam drive 
▪Cyclic steam 
▪In-situ combustion 
▪Steam assisted 
..gravity drainage 
▪Hot waterflood 
▪Electromagnetic 

Non-Thermal 

Gas  
Miscible/immiscible 

▪Hydrocarbon 
▪CO2 

▪Nitrogen 
▪Flue Gas 

Chemical 

▪Alkaline 
▪Surfactant 
▪Polymer 
▪Alkaline 
Surfactant Polymer 
▪Micellar/polymer 
▪Foam 

Other 

▪Solvent 
▪Microbial 
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I. Oil viscosity reduction. 

J. Alteration of the reservoir rock wettability. 

EOR processes are very sensitive to oil prices. The price of oil on a sustainable 

basis must exceed the cost of the injectant plus operating costs by a sizeable margin for 

an EOR process to be considered economical. For this reason, an EOR process must be 

efficient in terms of cost per barrel of oil recovered and also effective in substantially 

increasing the volume of oil recovered beyond the current recovery process. Economic 

evaluation is the key important step in the selection of an EOR process and is emphasized 

throughout the selection process. 

An EOR process was deemed successful only if it was both an engineering and an 

economic success (Iyoho, 1978). The goal of EOR processes are to mobilize the oil left 

behind after conventional methods and to increase the overall oil displacement efficiency, 

which is a function of microscopic and macroscopic displacement efficiency (Green & 

Willhite, 1998). Oil displacement efficiency is increased by decreasing oil viscosity 

(thermal and miscible flood) or by reducing capillary forces or interfacial tension 

(chemical and miscible). 

Figure 2.3 illustrates a schematic of microscopic and macroscopic sweep 

efficiencies. Microscopic efficiency refers to the mobilization of oil at the pore scale and 

measures the effectiveness of the displacing fluid in moving the oil at those places the 

displacing fluid contacts the oil. Microscopic efficiency can be increased by reducing 

capillary forces or interfacial tension between the displacing fluid and oil or by 

decreasing the oil viscosity (Satter et al., 2008). Macroscopic or volumetric displacement 

efficiency refers to the effectiveness of the displacing fluid in contacting the reservoir in a 
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volumetric sense. Volumetric displacement efficiency also known as conformance 

indicates the effectiveness of the displacing fluid in sweeping out the volume of a 

reservoir, both areal and vertically, as well as how effectively the displacing fluid moves 

the displaced oil toward production wells (Green & Willhite, 1998). 

 

 

 
Figure 2.3. Schematics of microscopic and macroscopic sweep efficiencies (Lyons and 

Plisga, 2005) 

 

 

The target of EOR processes varies considerably for the different types of 

hydrocarbons. Figure 2.4 shows the fluid saturations and the target of EOR for typical 
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light and heavy oil reservoirs and tar sands. For light oil reservoirs, EOR is usually 

applicable after secondary recovery operations, and the EOR target is ~45% OOIP. 

Heavy oils and tar sands respond poorly to primary and secondary recovery methods, and 

the bulk of the production from such reservoirs come from EOR methods (Thomas S., 

2007). 

 

 

 
Figure 2.4. EOR target for different hydrocarbons (Thomas S. 2007) 

 

 

2.3. THERMAL EOR METHODS (PROCESSES) 

Thermal EOR processes are defined to include all processes that supply heat 

energy to the reservoir and enhancing the ability of oil to flow by reducing its viscosity. 

Thermal recovery processes are globally the most advanced EOR processes. The key of 

thermal recovery is the use of heat to lower the viscosity of oil and reduces mobility ratio, 

therefore, increases the productivity and recovery. The oil caused to flow by the supply of 

thermal energy is produced through production wells. When heated, oil becomes less 

viscous and flows more easily. Because this is an important property of oil, considerable 
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effort has been devoted to the development of techniques that involve the introduction of 

heat into a reservoir to improve recovery of the heavier, more viscous crude oils. 

The viscosity of oils dramatically decreases as temperature increases, and the 

purpose of all thermal oil recovery processes is therefore to heat the oil to make it flow 

easier. Figure 2.5 shows the sensitivity of viscosity to temperature for several grades of 

oil and water. The sharp decrease of crude oils viscosity with temperature, especially for 

the heavier crude, largely explains why thermal EOR has been so popular. 

 

 

 
Figure 2.5. Viscosity Reduction of Oils and Water (Hong, K.C., 1994) 

 

 

In general, thermal enhanced oil recovery can be subdivided into the following 

categories:  
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A. Major thermal processes in use today: 

1. Steam flooding (Steam drive: SD)  

2. Cyclic steam stimulation (CSC)  

3. Steam assisted gravity drainage (SAGD)  

4. In-situ combustion (ISC) 

B. Other processes which are not as widely implemented: 

1. Electrical/electromagnetic heating. 

2.  Hot water flooding. 

2.3.1. Steam Flooding (SD). Also called steam drive. In this process, two 

separate wells are used, one for steam injection and the other for oil production. Steam is 

injected continuously at injectors with the aim of driving oil towards producers. The 

steam injection is continuous until the process becomes uneconomic or is replaced by 

another process. Figure 2.6 shows a schematic of steam flooding process. 

Steam reduces the oil saturation in the steam zone to a very low value, pushing the 

mobile oil out of the steam zone. As the steam zone grows, more oil is moved from the 

steam zone to unheated zones ahead of the steam front. There the oil accumulates to form 

an oil bank. Then the oil is produced using artificial lift. A detailed discussion follows 

later in the (steam flooding) section. 
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Figure 2.6. Schematic of steam flooding process(Hong, K.C., 1994) 

 

 

2.3.2. Cyclic Steam Stimulation (CSS). Also called steam soak or Huff-and-

Puff. In this process one well uses as both injector and producer. It involves injecting 

steam into a well for several days or weeks, shutting the well in as long as necessary to 

allow the steam to heat the oil in the areas around the well. During this period, most of 

the steam condenses to hot water. After the soak period, the well is back to production to 

recover the heated oil. Figure 2.7 shows a schematic of cyclic steam stimulation process. 

This process is repeated when the production from the well declines to a low level. The 

cycle is repeated until the ratio of oil produced to steam injected (OSR) drops to a level 

that is considered uneconomic (Ezekwe, 2011). An average of three complete cycles may 

be used in a single well. Oil recovery per-cycle depends on formation thickness, reservoir 

pressure, oil in place, volume of steam injected, and the number of preceding cycles. CSS 

was the first steam flooding technique used in heavy oil reservoirs. 
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Figure 2.7. Schematic of cyclic steam stimulation process(Ezekwe, 2011) 

 

 

2.3.3. Steam Assisted Gravity Drainage (SAGD). This process consists of two 

horizontal wells about 15 feet apart located close to the bottom of the formation. Steam 

assisted gravity drainage (SAGD) was initially developed to recover bitumen from the 

Canadian oil sands (Dusseault, 1998).  Figure 2.8 shows a schematic of steam assisted 

gravity drainage process. Steam is injected into the top horizontal well, while the 

horizontal well below it functions as the producer. The steam creates an expanding steam 

chamber around the injector as more steam is injected. Within the steam chamber and at 

its boundaries, as the viscosity of the oil is reduced, its mobility increases causing it to 

drain under gravity towards the production well.  

A key to the process is that the injection to production rates are sufficiently low 

that the process is dominated by gravity forces. The SAGD process should be applied to 

reservoirs with formation thickness greater than 50 feet, good vertical permeability, and 

absence of thief zones. SAGD can be considered as a modification of SD for heavy oil 

reservoirs including tar sands. 
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Figure 2.8. Schematic of steam assisted gravity drainage process (Ezekwe, 2011) 

 

 

2.3.4. In-Situ Combustion (ISC). In this process, heat produces by burning some 

of the oil within the reservoir rock. Air is injected into the reservoir, and a heater is 

lowered into the well to ignite the oil. Ignition of the air-crude oil mixture can also be 

accomplished by introducing into the oil-bearing reservoir rock a chemical that 

undergoes an exothermic reaction. This process is an attempt to extend thermal recovery 

technology to deeper reservoirs and or more viscous crudes. The amount of oil burned 

and the amount of heat created during in-situ combustion can be controlled to some 

extend by varying the amount of air injected into the reservoir (Hong, K.C., 1994). In 

recent years it has become known as high-pressure air injection. In-situ combustion 

recovers 10-15% of the original oil in place. 

2.4. ENHACED OIL RECOVERY SCREENING 

In the past, screening criteria or guides have been developed and employed to 

define the candidate reservoirs for each EOR method. Screening criteria are among the 
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first items considered when a petroleum engineer evaluates a candidate reservoir for 

enhanced oil recovery (EOR). The screening criteria for a specific EOR process consist 

of a list of reservoir parameters and fluid properties such as oil gravity, oil viscosity, 

reservoir porosity, oil saturation start and end, reservoir permeability, reservoir depth, 

reservoir temperature, reservoir pressure and pay thickness and their ranges. The criteria 

recommend minimum to maximum ranges for each parameter, which are likely to lead to 

a success. 

The nature of the reservoir will play a dominant role in the success or failure of 

any EOR process. Many of the failures with EOR have resulted because of unknown or 

unexpected reservoir problems. Therefore, geological study is usually warranted. Some 

EOR processes can be rejected quickly because of unfavorable reservoir or oil properties, 

so the use of preferred criteria can be helpful in selecting methods that may be 

commercially attractive (Taber 1997). 

Where two processes are equally suited to any set of conditions, an economic 

study must be performed to determine which is cheaper or which will recover more oil. 

Screening guides are provided to help engineers in deciding which particular recovery 

process might be most applicable for a given set of conditions (Iyoho, 1978). 

Screening Criteria has been developed for EOR processes based on filed 

applications and laboratory tests. In addition to these conventional screening criteria, 

nowadays computer programming and machine learning are also employed to cover a 

wider range of data. The complexity of defining an oil reservoir’s important parameters 

depends largely on the availability and quality of input data; therefore, these descriptions 

can result in a high degree of uncertainty. 
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Some software has been developed to perform screening based on a different 

number of EOR methods, among these softwares are: EORgui, Sword, SelectEOR
TM

, 

PRIze
TM

, Screening 2.0 and IORSys. Trujillo (2010) developed a software based on 

Screening 2.0, which executes screening criteria of nineteen EOR methods. Gharbi 

(2000) proposed an expert system for selecting and designing EOR processes. He applied 

an artificial intelligence (AI) technique to select and design the EOR processes. The 

expert system was able to select an appropriate EOR process on the basis of the reservoir 

characteristics. 

The main problem for using these machine-learning methods is the lack of quality 

data. Sufficient number of data sets must be available so that the expert system can be 

trained to find a relationship between different complex reservoir properties and the 

potential of each EOR method. 

2.5. SUMMARY SCREENING CRITERIA FOR STEAMFLOODING 

Over the last few decades, many researchers have developed and published 

screening criteria for steam flooding. Table 2.1 shows the screening criteria for steam 

flooding published by different researchers from 1973 to 2010. 
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Table 2.1. General screening guide for steam flooding 

 
NC= Not critical. 

* Requires laboratory test to confirm suitability. 

 

 

Geffen (1973) provided criteria based on information reported from laboratory 

and field studies. Farouq Ali (1974) derived general screening criteria for steam flooding 

based on data correlations for 16 selected field tests reported in the literature. Lewin and 

Associates (1976) developed a screening guide for five major EOR methods based on 

consultations with authorities in the EOR field and on the review and analysis of 

literature and field reports of actual EOR projects. Iyoho (1978) published screening 

guides for various EOR processes based on the range of values of each parameter in over 

200 fields, as reported in the literature. Brashear and Kuuskraa (1978) used data collected 

from 200 EOR pilot projects in the U.S. to develop screening criteria by analyzing the 

data from both a technical and an economic perspective. Chu (1985) developed a 

screening guide based on 28 detailed steam flooding projects in the U.S., the Netherlands, 

Venezuela and Germany. Taber (1997) proposed screening criteria based on field data 

and oil recovery mechanisms for common EOR techniques, considering the 1996 

Worldwide EOR Survey to summarize the criteria. Dickson et al. (2010) proposed criteria 

Author Year o
API

 µo

cp

ø

%

So

start, %

K

md

T
o
F

D

ft.

h

ft.

Geffen 1973 >10 ** ** <4000 >20

Farouq Ali 1974 12-25 <1000 ≥30
1200-1700

bbl/ac-ft
∼1000 <3000 ≥30

Lewin & Assocs 1976 >10 NC >50 NC NC <5000 >20

Iyoho 1978 10-20 200-1000 ≥30 >50 >1000 2500-5000 30-400

Chu 1985 <36 >20 >40 >400 >10

Brashear & Kuuskraa 1978 >10 NC 42 NC NC <5000 >20

Taber & Martin 1997 8-25 <100,000 >40 >200 NC <5000 >20

Dickson 2010 8-20 1,000-10,000 >40 >250 400-4500 15-150

Aladasani & Bai 2010 8-30 5E6-3 12-65 35-90 1-15000 10-350 200-9000 >20
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based on a combination of experience and values published in the literature. Aladasani 

and Bai (2010) updated the EOR criteria developed by Taber et al. in 1996 based on EOR 

field application data reported in the EOR surveys published in the Oil and Gas Journal 

from 1998 through 2008. 
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3. STEAM FLOODING 

Steam flooding is an established EOR technique that has been applied on many 

heavy oil reservoirs around the world. The process started in early 1960 with cyclic steam 

injection in the Tia Juana Field in Venezuela (Ezekwe, 2011).  Recovery by steam 

flooding is commonly used in heavy-oil reservoirs containing oil whose high viscosity is 

a limiting factor for achieving commercial oil-producing rates.  

Steam flooding also referred to as continuous team injection and steam drive, 

steam is injected continuously through one well, or set of wells, while oil is produced 

through a different well, or set of wells, in a manner similar to conventional water 

injection operation. High-temperature steam is continuously injected into a reservoir. As 

the steam loses heat to the formation, it condenses into hot water, which, coupled with the 

continuous supply of steam behind it, provides the drive to move the oil to production 

wells. In steam flooding, the injected steam not only serves to lower the oil viscosity, but 

also supplies the drive energy (Farouq Ali, 1974). 

3.1. STEAM FLOODING MECHANISMS 

Steam flooding uses both injection and production wells to improve the rate of 

production and the amount of oil that will ultimately be produced. The injected steam 

reduces the viscosity of the oil and pushes the oil from injector to producer. As steam 

moves through the reservoir between the injector and producer, it typically creates five 

different regions of temperatures and fluid saturations. Figure 3.2 shows typical steam 

flooding temperature and saturation profile. 
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Figure 3.1. Temperature and saturation profile for steam flooding (K. C. Hong, 1994) 

 

 

As steam enters the reservoir, it forms a steam saturated zone around the 

wellbore. This zone, at about the temperature of injected steam, expands as more steam is 

injected. Ahead of the steam saturated zone (A), steam condenses into water as it loses 

heat to the formation and forms a hot condensate zone (B, C). Pushed by continued steam 

injection, the hot condensates carries some heat ahead of the steam front into the cooler 

regions further from the injector. Eventually, the condensate loses its heat to the 

formation, and its temperature is reduced to the initial reservoir temperature. 

Because different oil displacement mechanisms are active in each zone, oil 

saturation varies between injector and producer. The active mechanism and hence, the 
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saturation depend mainly on thermal properties of the oil. In the steam zone (A), oil 

saturation reaches its lowest value because the oil is subject to the highest temperature. 

The actual residual saturation achieved is independent of initial saturation but 

rather depends on temperature and crude oil composition. Oil is moved from the steam 

zone to the hot condensate zone (B, C) by steam distillation at the steam temperature, 

creating a solvent bank (B) of distilled light ends just ahead of the steam front. Gas is also 

stripped from the oil in this region. 

In the hot condensate zone, the solvent bank (B) generated by the steam zone 

extracts additional oil from the formation to form an oil-phase miscible drive. The high 

temperature in this zone reduces the oil viscosity and expands the oil to produce 

saturations lower than those found in a conventional waterflood. 

The mobilized oil is pushed ahead by the advancing steam (A) and hot water (C) 

fronts. By the time the injected steam has condensed and cooled to reservoir temperature 

(in the cold condensate zone), an oil bank (D) has formed. Thus, oil saturation in this 

zone is actually higher than initial oil saturation. Displacement here is representative of a 

waterflood. Finally, in the reservoir fluid zone (E), temperature and saturation approach 

the initial conditions (K. C. Hong, 1994). 

The decrease in oil viscosity (μo) with increasing temperature is the most 

important mechanism for recovering heavy oils. With lower oil viscosity, the 

displacement and area sweep efficiencies are improved.  As the reservoir temperature 

increases during steam injection, the viscosity of oil (μo) decreases. The viscosity of 

water (μw) also decreases, but to a less degree. The net result of increasing temperature is 
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to improve the water-oil mobility ratio (M), defined as (M = μo kw/μw ko). Where kw and 

ko are the effective permeability to water and oil, respectively. 

3.2. APPLICATION CONDITION OF STEAMFLOODING 

Steam flooding applications are restricted (limited) for the following (Lyons & 

Plisga, 2005): 

1. Oil saturation must be quite high and the pay zone should be > 20 feet thick to 

minimize heat losses to adjacent formations.  

2. Lighter, less viscous crude oils can be steam flooded if they don’t respond to 

water flood.  

3. Steam flooding is primarily applicable to viscous oil in massive, high 

permeability sandstone or unconsolidated sands. 

4. Steam flooded reservoirs should be shallow as possible as long as pressure for 

sufficient injection rates can be maintained due to the excessive heat losses in the 

wellbore. 

5. Steam flooding is not normally used in carbonate reservoirs.  

6. The cost per incremental barrel of oil is high because approximately one-third of 

the additional oil recovered is consumed to generate the required steam. 

7. A low percentage of water-sensitive clays are desired for good injectivity. 

3.3. CHALLENGING FACED TO STEAMFLOODING APPLICATION 

Major problems facing steam flooding are the following: 

a) Adverse mobility ratio and channeling of the steam through high permeability 

zones, because steam is lighter and more mobile than oil. 
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b) Gravity override occurs in most steam floods, with low density steam rising to the 

top of the formation. This leads to early breakthrough and reduces the amount of 

contacted oil in the reservoir, only heating the upper portion of the reservoir. The 

oil that is directly below it is not heated. Accumulation of steam on the top 

portion of the reservoir causes heat losses to the overburden. Therefore the 

portion of reservoir that is swept by steam has low residual oil saturation whereas 

the bottom part of the reservoir has significantly higher oil saturation (Green & 

Willhite, 1998). 

3.4. DESIGN STEAMFLOODING PROJECT 

Design of a steam flood field project involves the choice of pattern type and size, 

steam injection rates and quality and completion intervals of injectors and producers. 

Many of earlier steam flood projects were based on engineering judgment and 

experience. Since the advent of the three-dimensional (3D), three-phase numerical 

models,
 
an increasing number of steam flood projects have been designed by numerical 

simulation. In addition, physical models were used for the design of steam flood projects. 

The design of any field project requires a correlation of its economics and its 

requirements for technical success (K. C. Hong, 1994).  

The following should be considered in designing any field project (Prats, 1986): 

1. Is the reservoir description adequate? 

2. Is there enough oil in place to justify the effort? 

3. Can the old wells be used for thermal operations? 

4. Are there adequate sources of fresh water and fuel? 
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5. Is there sufficient information to estimate the likely range of operating variables 

(such as pressure and rates and injectors and producers) and production 

performance?  

3.5. FACTORS TO BE CONSIDERED WHEN DESIGNING PROJECTS 

Steamflooding depends upon the following parameters (Donaldson et al., 1989): 

1. Alteration in the fluid properties in situ. These comprise changes in phase 

behavior, densities, viscosities, composition, compressibilities, and P-V-T 

relationship. 

2. Rock properties such as absolute permeability, porosity, rock compressibility and 

the attendant changes in these properties on the injection of steam. 

3. Properties related to fluid-rock interaction. These include residual saturations 

(related in turn to wettability, interfacial tension, etc.) relative permeability, 

capillary pressure and their dependence upon temperature. 

4. Thermal properties of the formation and contained fluids, such us specific heat, 

thermal conductivities, thermal expansion coefficient and changes induced in 

these. 

5. The reservoir environment: net/gross (presence of shale barriers, etc.), 

heterogeneity, properties of the overburden and underburden, the initial oil 

saturation, temperature and pressure.  

6. Flood geometry: pattern shape and spacing, producing-injecting interval (well 

completion) location and thickness. 

7. Parameters within the operator’s control such as steam injection rate, steam 

quality, injection pressure and temperature, cumulative amount of injection. 
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After the conditions (design criteria) under which steam flood projects are 

successful. Many other factors must be taken into account in designing a steam project. 

Some of these are: 

1) Reservoir rock mineral content. 

2) Availability of fuel and water. 

3) Crude analysis, especially if the lease crude is used as steam generator fuel. 

4) Required water treating. 

5) Size of water handling equipment. 

6) Production facilities to handle hot fluids. 

7) Sand and possibly emulsion. 

8) Condition of existing wells. 

9) Surface piping. 

10) Availability of light oil for downhole blending, if required. 

11) Markets and transportation facilities for the heavy crude produced. 

12) Compliance with the local safety and environmental pollution regulation.  

3.6. STRATEGY OF STEAMFLOOD DEVELOPMENT 

A steam flood project typically proceeds through four phases of development:  

1. Reservoir screening. The first step in developing a steam EOR project is to screen 

candidate reservoirs for potential application of the method using as many 

reservoir and geological parameters as available. If sufficient reservoir 

information is available, a scoping study is carried out to define the potential 
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economic of the project. If the study shows that sufficient oil can be recovered 

economically to justify a full-scale project, then a pilot field test is proposed. 

2. Pilot tests. It is a small scale usually involving one or more patterns located in a 

representative area of the candidate reservoir or field. It is carried out to generate 

the information needed. Following the pilot test, if the decision is to proceed, a 

plan of implementation must be developed.  

3. Field wide implementation. This phase is usually accomplished by adding 

patterns adjacent to the pilot in stages until all of the target area is incorporated 

into the project. The reservoir model constructed during the pilot test phase of 

development. Is used to optimize the project expansion and operation. 

4. Performance monitoring, analysis and modification. Reservoir management. 

Performance prediction is essential to provide information for proper execution of 

each of these development phases. Three different mathematical models 

(statistical, numerical, and analytical models) are commonly used to predict steam 

flood performance. This phase of development includes maintaining and updating 

reservoir description, monitoring and analyzing project performance, and 

modifying project operations as necessary.  
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4. DATA COLLECTING AND CLEANING 

4.1. DATA COLLECTION 

A dataset was created by collecting steam flooding field project data from the 

Worldwide EOR Survey biennially published in the Oil & Gas Journal from 1980 to 

2012. The original dataset included a total of 1,785 steam flooding field projects from all 

over the world. Figure 4.1 shows the number of steam flooding projects, thermal projects 

(steam, in-situ combustion and hot water) and total EOR projects (thermal, chemical, gas 

and others, such as microbial) applied in the U.S. from 1971 to 2012. 

Figure 4.2 illustrates the oil production from steam flooding projects in the U.S. 

from 1980 to 2012. From 1978 to 1986, the number of thermal projects rose each year in 

the U.S., but it has been on the decline since 1988. Between 1984 and 1986, the number 

of steam flooding projects increased by 36.1% (Leonard, 1986). On the contrary, the 

number of steam flooding projects decreased drastically between 1986 and 1988 because 

48 projects were shut down due to low crude prices (Aalund, 1988). From 1990 to 2006, 

the number of projects continued to decline due to decreasing crude prices. However, 

thermal projects have increased slightly since 2008. 

 



29 

 

 
Figure 4.1. Number of active EOR projects in the U.S., as reported in the Worldwide 

EOR Survey from 1971 to 2012 (from Oil & Gas Journal EOR surveys 1980-2012) 

 

 

 
Figure 4.2. Oil production from steam flooding projects in the U.S. from 1980 to 2012 

(from Oil & Gas Journal EOR surveys 1980-2012) 
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4.2. DATA CLEANING 

Data quality is essential to ensuring the validity of screening criteria results. EOR 

survey data contain many types of problems that can affect the quality of the dataset, in 

particular, duplicate projects, missing data, inconsistent data and outliers. 

 

4.2.1. Duplicate Data. The duplicate data problem was observed while collecting 

data from the worldwide EOR surveys. Many fields were listed more than once with the 

same values in different years of publication. This duplication may have occurred 

because some countries may not have updated their EOR information for several years 

(Moritis, 2002, 2004, and 2008), and the EOR survey did not change their records. 

However, to solve the problem with duplicate data from earlier surveys, duplicate 

projects (the same projects published in different years) were detected and deleted from 

the dataset. After removing the duplicates, 626 projects remained in the dataset.  

Figure 4.3 shows the distribution of the steam flooding field projects applied in 

different countries. Approximately 65% of all steam flooding projects have taken place in 

the U.S. The formation types to which steam flooding can be applied include sandstone, 

unconsolidated sand, limestone, dolomite, tripolitic, fractured Chert-dolomite, 

sandstone/conglomerate, sandstone/dolomite and shale. Figure 4.4 shows the steam 

flooding field projects by lithology. As shown, approximately 84% of projects were 

applied in sandstone formations, 8% in unconsolidated sand formations, 1% in carbonate 

formations, 1% in other formations, such as shale, tripolitic and mixed formations, and 

6% in unknown formations (formation data were not available). 
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Figure 4.3. World steam flooding projects (from Oil & Gas Journal EOR surveys 1980-

2012) 

 

 

 
Figure 4.4. Steam flooding field projects by lithology (based on 626 projects) 

 

 

Each field project in the dataset was placed into one of the following categories 

based on its level of success: too early to tell, promising, successful, discouraging and 
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unevaluated. An EOR process was deemed successful only if it was both an engineering 

and an economic success. To update the screening criteria, only data from successful and 

promising projects were used for statistical analysis. Fig. 4.5 shows the number and type 

of accepted projects; projects in the other categories were removed from the dataset to 

ensure its quality before running the analysis. 

 

 
Figure 4.5. Accepted steam flooding field projects 

 

 

4.2.2. Missing Data. Some fields within the dataset were missing one or more 

pieces of information, including oil saturation (start and end), viscosity, permeability, 

depth, oAPI gravity, porosity, formation type and temperature. Table 4.1 lists the number 

of missing pieces of data for each parameter and the percentage of missing data to all 

data. These missing values were ignored during the analysis. 
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Table 4.1. Data unavailable for each parameter of the projects in the dataset 

 
 

 

4.2.3. Inconsistent Data. Data are considered inconsistent if they contain either 

discrepancies or impossible values. Several pieces of information in the dataset were 

inconsistent, such as:  

 Oil saturation (end) > oil saturation (start). 

 Oil saturation (start) equal to 100%. 

 Oil saturation (end) equal to 100%. 

 Oil saturation (start) < 10%. 

 Porosity > 50%. 

Most of the inconsistent data and outliers were detected by box and cross plots. 

 

Parameter
Data available for

No. of projects

Data unavailable 

for No. of projects

Data missing

percentage

Formation type 588 38 6.1%

Porosity 617 9 1.4%

Permeability 568 58 9.3%

Reservoir depth 622 4 0.6%

 Oil gravity (
o
API) 623 3 0.5%

Oil viscosity 602 24 3.8%

Reservoir temperature 593 33 5.3%

Oil saturation (Start) 544 82 13.1%

Oil saturation (end) 409 217 34.7%
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4.2.4. Data Problem Detection. A box plot is a highly visually effective way of 

viewing a summary of the data. It is particularly useful for quickly summarizing and 

comparing the results. It consists of a center line (the median) splitting a rectangles 

defined by the upper and lower hinges, as depicted in Figure 4.6. Describing the 

following six numbers yields a summary of the data: 

1) The lowest value (minimum). 

2) The highest value (maximum). 

3) The mean (average) of the data. 

3) The first quartile (25th percentile). 

4) The second quartile (50th percentile). 

5) The third quartile (75th percentile).  

Outliers are larger than the upper limit of the data and smaller than the lower 

limit. The upper limit is calculated as 1.5 times the interquartile range plus the 75
th

 

percentile, and the lower limit as 1.5 times the interquartile range minus the first 25
th

 

percentile. Fig. 4.6 shows a schematic diagram of the box plot. The two rectangles 

represent the first to the third quartiles (25
th

 to 75
th

 percentiles, respectively). The median 

of the dataset appears in the center (horizontal line), and the mean is indicated by the 

orange circle. The end of both whiskers represents the minimum and maximum dataset 

observations. 
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Figure 4.6.  Schematic diagram of box plot with outlier 

 

 

A cross plot was used to plot a pair of variables from the dataset. The plot helped 

to reveal the relationships between these variables and to detect outliers. The box and 

cross plots were combined to yield additional clarity.  

Temperature vs depth. Figure 4.7A shows the cross plot of the temperature vs. the 

depth, and Figure 4.7B shows the box plot for the reservoir temperature of the dataset. 

The box plot illustrates that the temperature data from several fields exceeded the upper 

limit (black line, 140 
o
F) of the dataset. The reservoir temperatures in these fields 

exceeded 200 
o
F and also were inconsistent with the corresponding reservoir depths, as 

shown in the crossplot. These projects have been circled and marked as outliers. Both the 

cross plot and box plot show a few projects with very low temperatures. We consider 

these data to have been recorded in error when reported in the Oil & Gas Journal. These 

data also have been circled and marked as outliers. Table 4.2 lists the outlier projects.  
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Figure 4.7C shows the box plot for the reservoir depth of the dataset, which 

indicates that the depth data from several fields exceeded the upper limit (black line, 

3,000 ft). These data were not considered outliers, however, because the reservoir depth 

and other field parameters, such as the temperature, were consistent for these projects. 

 

 
Figure 4.7. (A) Cross plot of temperature vs. depth, (B) Box plot of temperature, (C) Box 

plot of porosity 

 

 

 

Table 4.2. Outlier projects of the dataset for reservoir temperature 
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Sor

end
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Reporting
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1972 Athabasca Canada Unconso. 34.0 250.0 250.0 8.0 10.0 400.0 100.0 Promising 1980

1977 Midway-Security USA Unconso. 33.0 5,000.0 950.0 12.0 1,500.0 280.0 60.0 20.0 Successful 1990

1977 Lost Hills USA Sandstone 40.0 2,000.0 400.0 13.0 10.0 250.0 63.0 30.0 Successful 1986

1977 Lost Hills USA Sandstone 40.0 2,000.0 400.0 13.0 250.0 250.0 63.0 30.0 Successful 1998

1984 Midway-Sec 35 USA Unconso. 35.0 2,000.0 1,600.0 12.0 1,500.0 240.0 55.0 20.0 Successful 1990

1977 Lost Hills USA Sandstone 38.0 2,000.0 200.0 13.0 20.0 220.0 70.0 30.0 Successful 1986

1981 North Midway USA Unconso. 30.0 3,400.0 1,000.0 13.0 1,500.0 220.0 60.0 20.0 Successful 1990

1984 Mckittrick USA Sandstone 38.0 2,800.0 1,000.0 13.0 35.0 220.0 60.0 30.0 Promising 2002

1975 Lost Hills USA Sandstone 38.0 2,000.0 200.0 13.0 20.0 220.0 70.0 30.0 Successful 1998

1977 Midway-Sunset USA Sandstone 24.0 1,500.0 1,000.0 11.3 100.0 220.0 55.0 34.0 Successful 1998

1981 Midway-Sunset USA Sandstone 30.0 3,000.0 1,200.0 13.0 30.0 200.0 45.0 20.0 Successful 1986

1973 Midway-Sunset USA Sandstone 32.0 1,500.0 1,200.0 13.0 3,000.0 200.0 50.0 10.0 Successful 1990

1981 Midway-Sunset USA Sandstone 32.0 1,500.0 1,200.0 13.0 30.0 200.0 50.0 10.0 Successful 1992

1983 Midway-Sunset USA Sandstone 30.0 2,000.0 1,500.0 13.0 5,000.0 10.0 60.0 30.0 Successful 1992

1983 Midway-Sunset USA Sandstone 30.0 2,000.0 1,500.0 13.0 5,000.0 10.0 60.0 15.0 Successful 2000

1980 Midway-Sunset USA Sandstone 1,300.0 13.0 5,000.0 13.0 Successful 1986
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Porosity vs depth. The cross plot in Figure 4.8A shows the relationship between 

the reservoir porosity and depth. The box plot in Figure 4.8B shows the reservoir porosity 

ranges for the dataset. The porosity of six fields exceeded the upper limit in the box plot. 

The upper limit is represented by a black line and equals approximately 42.5%. These 

fields also appear on the cross plot, where they have been outlined with a square. Table 

4.3 lists the outlier projects. The porosities of these outlier fields ranged from 58-65%. 

These projects were applied in shale and tripolitic formations, though two projects 

contained no formation type data. These can be considered special cases for porosity 

ranges because shale and tripolitic formations are known to have high porosity and low 

permeability. 

 On both the cross plot and the box plot, one field (Jesus Maria field, USA) had a 

porosity of 7.5%, the lowest in the dataset, and a depth of 3500 feet. The project began in 

1982 and has been successful.  

 

 

 
Figure 4.8. (A) Cross plot of porosity vs. depth, (B) Box plot of porosity 
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Table 4.3. Outlier projects of the dataset for reservoir 

 

 

Permeability vs porosity. Figure 4.9A shows the cross plot of the permeability vs. 

the porosity, and Figure 4.9B shows the box plot for the reservoir permeability of the 

dataset. The cross plot depicts a good relationship between the reservoir porosity and 

permeability of the field projects. The plot also shows the projects that we considered as 

special cases for porosity in Figure 4.8. The box plot indicates that several permeability 

data points exceeded the upper limit. The upper limit is represented by a black line and 

equals approximately 6,000 md. These projects were not considered outliers because the 

parameters, such as the permeability and porosity, were consistent. 

 

 
Figure 4.9. (A) Cross plot between permeability and porosity, (B) Box plot of average 

permeability 
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1992 Midway-Sunset USA Shale 65.0 5.0 900.0 12.0 400.0 150.0 60.0 35.0 Promising 2004

1985 Cymric USA Shale 65.0 15.0 1,400.0 12.0 110.0 65.0 55.0 Successful 2004

1997 Midway-Sunset Diatomite USA 65.0 5.0 1,100.0 12.5 1,000.0 90.0 75.0 Successful 2010

2006 North Midway-Sunset USA Tripolitic 65.0 1.0 800.0 14.0 65.0 Promising 2008

1995 South Belridge USA Tripolitic 60.0 5.0 1,800.0 30.0 50.0 110.0 45.0 20.0 Promising 2008

1980 Cymric 1Y USA 58.0 5.0 1,500.0 13.0 110.0 60.0 Successful 2008
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Oil gravity vs oil viscosity. The cross plot in Figure 4.10A shows the relationship 

between the oil gravity and the viscosity, and the box plot in Figure 4.10B shows the oil 

gravity ranges of the dataset. The cross plot shows a few fields lying far from the 

majority of the data and exhibiting different behavioral trends. The 10 projects outlined in 

a square, all implemented in China, thad high oil gravity with high oil viscosity and were 

considered to be special cases. One project (Athabasca oil field, Canada) appears on the 

cross plot and lies far from the trend. The project’s oil gravity data (8 
o
API) and oil 

viscosity data (10 cp) were inconsistent, so this project has been circled and marked as an 

outlier. Table 4.4 lists the outlier projects. 

The box plot shows that several fields exceeded the upper limit. The upper limit is 

represented by a black line and equals approximately 17 
o
API. These fields were not 

considered outliers because these data have physical meaning by having high oil gravity 

and low oil viscosity. The minimum oil gravity recorded in the dataset was 5.8 
o
API 

(Oxnard field, USA), as shown in the box plot. 

 

 
Figure 4.10. (A) Cross plot of oil gravity vs oil viscosity, (B) Box plot of oil gravity 
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Table 4.4. Outlier projects of the dataset for oil gravity 

 

 

 

Oil viscosity vs reservoir temperature. Figure 4.11A shows the cross plot of the 

oil viscosity vs. the reservoir temperature, and Figure 4.11B shows the box plot for the oil 

viscosity of the dataset. The oil viscosity values of several fields exceeded the upper limit 

in the box plot. The upper limit is represented by a black line and equals approximately 

12,870 cp. These data were not considered outliers because the other field parameters for 

the projects, such as the reservoir temperature, oil viscosity and oil gravity, were 

consistent. However, the cross plot shows five projects that fell far from the majority of 

the data and the trend. These data have been circled and marked as outliers. Table 4.5 

lists the outlier projects. Because the oil gravity and oil viscosity in the Muriel Lake, 

Newcastle and Midway-Sunset fields were inconsistent, these data were considered 

outliers. 
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Formation

Type
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cp
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end

Project

evaluation

Reporting

year

1986 Jinglou China Sandstone 32.0 3,000.0 1,936.0 25.0 16,000.0 90.0 73.0 Successful 2008

1984 Karamay 9-1 China Sandstone 32.0 3,170.0 820.0 24.0 2,000.0 66.0 65.0 Promising 2008

1986 Karamay 9-2 China Sandstone 32.0 2,290.0 754.0 24.0 2,240.0 66.0 65.0 Promising 2008

1991 Karamay 9-5 China Sandstone 32.0 2,000.0 1,146.0 24.0 54,000.0 66.0 65.0 Successful 2008

1988 Karamay 9-4 China Sandstone 30.0 3,000.0 1,312.0 24.0 7,200.0 66.0 65.0 Promising 2008

1989 Karamay 6 China Sandstone 31.0 3,100.0 1,016.0 23.0 80,000.0 66.0 70.0 Successful 2008

1987 Guenheng China Sandstone 34.0 7,134.0 1,627.0 22.0 6,000.0 66.0 65.0 Successful 2008

1984 Shu I 7-5 China Sandstone 28.0 1,500.0 2,300.0 20.0 180,000.0 134.0 65.0 Successful 2008

1984 Sanjasi China Sandstone 30.0 5,000.0 3,983.0 19.0 9,200.0 131.0 60.0 Successful 2008

1989 Lean China
Sandstone/

Conglomerate
30.0 4,500.0 3,132.0 18.0 40,000.0 129.0 65.0 Successful 2008

1972 Athabasca Canada Unconsoli. 34.0 250.0 250.0 8.0 10.0 400.0 100.0 Promising 1980
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Figure 4.11. (A) Cross plot of viscosity vs temperature, (B) Box plot of oil viscosity 

 

 

Table 4.5. Outlier projects of the dataset for oil viscosity 

 

 

 

Oil saturation (start) vs oil saturation (end). The cross plot in Figure 4.12A shows 

the relationship between the oil saturation (start) and oil saturation (end). The box plot in 

Figure 4.12B shows the oil saturation (start) ranges for the field projects in the dataset. 

The box plot does not show any outliers. The upper limit is represented by a black line 

and equals approximately 117%. The upper limit exceeded 100% because of the upper 

limit calculating rule (upper limit = 3
rd

 quartile +1.5 * interquartile). The cross plot shows 
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start
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end
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evaluation

Reporting

year

1981 Muriel Lake Canada Sandstone 32 3000 11 40 55 55 45 Promising 1984

2007 Newcastle USA Sandstone 22 100 800 20 20 54 85 60 Promising 2008

1965 Midway-Sunset USA Sandstone 22 300 1400 13 13.3 90 Promising 1984

1985 Teapot Dome NPR-3 USA Sandstone 18 63 325 33 10 65 50 15 Successful 1990

1973 Shiells Canyon USA Sandstone 20.5 140 850 34 6 105 Promising 1984
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that several fields had an oil saturation (start) of 100%. Data indicating an oil saturation 

(start) greater than 96% with previous oil production were considered outliers. 

Both the cross plot and box plot show three projects with low oil saturations 

(start) of 9, 12, and 29%. These points lie far from the majority of the data and have been 

circled and marked as outliers. Table 4.6 lists the outlier projects. 

 

 

 
Figure 4.12. (A) Cross plot of oil saturation (start) vs oil saturation (end), (B) Box plot of 

oil saturation start 
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Table 4.6. Outliers projects of the dataset for oil saturation 

 

Started

year
Field name Country

Formation

Type

ø

%

K

md

d

ft

Gravity
o
API

 µ o

cp

T
o
F

So

start

Sor

end

Previous

production

Project

evaluation

Reporting

year

1982 Zuata (heavy oil belt) Venezuela Sand. 32.0 2,800.0
d

ft
10.0 2,500.0 130.0 100.0 100.0 Primary Successful 1984

1961 East Tia Juana Venezuela Sand. 38.0 1,300.0 1,000.0 9.5 12,000.0 105.0 100.0 76.9 Primary Promising 1990

1964 Winkleman Dome USA 24.0 480.0 1,225.0 14.0 900.0 81.0 100.0 50.0 Primary Successful 1980

1975 Midway-Sunset USA Sand. 30.0 2,250.0 550.0 12.0 6,500.0 90.0 100.0 40.0 Cyclic Promising 1984

1966 NW Polo Seco Trinidad Sand. 33.0 2,000.0 1,200.0 12.0 400.0 120.0 100.0 Primary Promising 1980

1969 East Tia Juana Venezuela Sand. 38.1 1,300.0 1,250.0 10.2 12,000.0 102.0 99.9 89.9 Primary Promising 1990

1969 Main Tia Juana Venezuela Sand. 38.1 850.0 10.5 10,000.0 95.0 99.9 84.6 Primary Promising 1984

1969 East Tia Juana Venezuela Sand. 38.1 850.0 10.5 10,000.0 95.0 99.9 84.6 Primary Promising 1986

1974 White Castle USA 38.0 3,000.0 1,350.0 16.0 150.0 92.0 99.0 50.0 Primary Promising 1980

1975 White Castle USA 38.0 3,000.0 1,000.0 15.0 300.0 90.0 99.0 50.0 Primary Successful 1980

1975 Lost Hills USA 38.0 800.0 200.0 14.0 577.0 100.0 99.0 45.0 Primary Promising 1980

1966 Cymric USA Sand. 32.0 1,200.0 700.0 11.0 6,500.0 81.0 99.0 Primary Successful 1984

1964 Midway-Sunset USA Sand. 30.0 1,500.0 1,800.0 12.0 4,000.0 100.0 98.0 60.0 Primary Successful 1984

1967 Slocum USA 34.0 3,000.0 520.0 19.0 2,000.0 75.0 98.0 50.0 Primary Successful 1980

1970 Lagunillas Venezuela Sand. 35.0 1,725.0 11.4 9,000.0 118.0 97.8 91.0 Primary Promising 1984

1968 East Tia Juana Venezuela Sand. 38.1 1,250.0 11.7 7,500.0 106.0 97.5 82.5 Primary Promising 1986

1970 Lagunillas Venezuela Sand. 35.0 1,750.0 11.8 11,500.0 115.0 97.3 89.4 Primary Successful 1984

1974 Brea Olinda USA 31.0 1,086.0 800.0 12.0 3,100.0 100.0 97.0 77.0 Primary Successful 1980

1982 Celtic Canada Sand. 33.0 700.0 1,500.0 13.0 5,000.0 75.0 97.0 67.0 WC Promising 1984

1965 Lagunillas Venezuela Sand. 35.0 2,100.0 11.4 3,500.0 117.0 96.9 58.7 Primary Successful 1984

1972 Kern River USA Sand. 33.0 4,000.0 1,200.0 13.0 8,000.0 90.0 29.0 2.0 Steam soak Successful 1986

1985 Fort Kent Canada Sand. 35.0 1,000.0 11.0 21,300.0 12.0 None Promising 1988

1967 Lagunillas Venezuela Sand. 35.0 2,100.0 11.4 3,500.0 117.0 9.0 7.0 Primary Successful 1986
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5. DATA ANALYSIS 

After removing the duplicate projects from the dataset, the number of steam 

flooding projects decreased from 1,785 to 626. Figure 5.1 shows the number of studied 

projects by year before and after cleaning the dataset. 

 

 

 
Figure 5.1. Steam flooding projects before and after cleaning the dataset 

 

 

5.1. METHODS FOR DISPAYING THE DATA 

In this work, two types of methods were used to display data. The first type was 

graphic, including histograms, box plots and cross plots. The second type was statistical 

methods. 
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5.1.1. Histograms. Histograms are used to display datasets graphically and show 

data points in specified ranges. They show the frequency of the data on the y-axis and the 

variables being measured on the x-axis. 

Figure 5.2 shows the reservoir porosity distribution of the dataset, across 611 

porosity data points. The distribution is skewed to the left. The minimum porosity is 

7.5%, and the maximum is 40.3%. The highest porosity frequency in the distribution is 

between 29 and 31%. A tail appears on the left side of the distribution, and there is only 

one field project with a porosity of less than 11%. Approximately 66% of the data points 

fall between 29 and 35%. 

 

 

 
Figure 5.2. Reservoir porosity distributions of the dataset 

 

 

Figure 5.3 shows the reservoir permeability distribution of the dataset across 568 

reservoir permeability data points. The highest peak in the distribution is in the 2,000-

3,000 md range. Approximately 94.4% of the data points fall between 100 and 4,000 md. 

1 1 3 1 3 2 8 
23 21 

37 

166 

107 

131 

40 
56 

12 

0

20

40

60

80

100

120

140

160

180

N
o

. o
f 

p
ro

je
ct

s 

Porosity, % 



46 

 

 
Figure 5.3. Reservoir permeability distributions of the dataset 

 

 

         Figure 5.4 shows the oil gravity distribution of the dataset across 622 oil gravity 

data points. The distribution is skewed to the right and shows two oil gravity value peaks, 

one between 10 and 12 
o
API and the other between 12 and 14 

o
API. These peaks 

represent roughly 73% of the data. The distribution shows that steam flooding projects 

were mostly applied in reservoirs with oil gravity between 8 and 26 
o
API (heavy and 

medium oil). 
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Figure 5.4. Oil gravity distributions of the dataset 

 

 

Figure 5.5 illustrates the oil viscosity distribution of the dataset across 598 oil 

viscosity data points. The distribution is skewed to the right. The most frequent viscosity 

is in the 1,000 to 5,000 cp range. Approximately 85.4% of the data points fall between 

100 and 10,000 cp. 

 

 
Figure 5.5. Oil viscosity distributions of the dataset 
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Figure 5.6 shows the reservoir temperature distribution of the dataset, which is 

characterized by a bell shape (symmetrical or normal). Steam flooding has been 

implemented in different ranges of reservoir temperatures. The lowest reservoir 

temperature is between 40 and 50 
o
F, and the highest is between 170 and 180

o
F. The most 

frequent reservoir temperature is in the 90 to 100 
o
F range. Approximately 65% of the 

temperature data points fall between 80 and 110 
o
F. 

 

 

 

Figure 5.6. Reservoir temperature distributions of the dataset 

 

 

Figure 5.7 shows the reservoir depth distribution of the dataset across 622 

reservoir depth data points. The distribution is skewed to the right. The highest depth 

frequency is between 1,000 and 1,300 ft. The majority of the data fall between 700 and 

1,900 ft, representing 67% of the field projects. There is a tail on the right side of the 

distribution, and there is only one field project with a depth greater than 5,400 ft. 
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Figure 5.7. Reservoir depth distributions of the dataset 

 

 

Figure 5.8 shows the oil saturation (start) distribution of the dataset, which is 

skewed to the right. The highest peak in the distribution is between 50 and 55%. 

Approximately 88% of the data points fall between 45 and 90%. 

 

 

 
Figure 5.8. Oil saturation (start) distributions of the dataset 
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Figure 5.9 shows the oil saturation (end) distribution of the dataset across 389 

data points ranging from 10 to 89%. The distribution is skewed to the right. The highest 

oil saturation (end) frequency occurs between 10 and 15%. There is only one data point 

in the 85 to 89% range. 

 

 

 
Figure 5.9. Oil saturation (end) distributions of the dataset 

 

 

5.1.2. Box Plot. Box plots were used not only to detect outliers, as explained 

previously, but also to display the ranges and summarize the dataset for each variable, as 

shown in Figure 5.10. Data value ranges were provided for each parameter (minimum 

and maximum value) after removing outliers. These ranges are illustrated by the distance 

between the opposite ends of the whiskers. Also, the box plot displays additional 

information, such as the mean and median of the dataset. A schematic of a box plot was 

shown previously in Figure. 4.6. 
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Figure 5.10.  (A) Box plot of oil gravity, (B) Reservoir depth, (C) Reservoir temperature, 

(D) Oil viscosity, (E) Reservoir permeability, (F) Reservoir porosity, (G) Oil saturation 

start and end 

 

 

Table 5.1 lists the names and locations of the field projects for each minimum and 

maximum value of individual screening parameters. Table 5.2 provides the details of the 

field projects that had the minimum and maximum screening parameter values. 
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Table 5.1. Names of field projects that have maximum and minimum parameters 

 

 

 

Table 5.2. Filed projects for each maximum and minimum parameters 

 

 

 

 

                                                                                      Names and locations of fields 

Parameters Min. Value Max. Value

Porosity Jesus Maria, USA Cymric, USA

 Permeability Lacq Superieur, France Mount Poso, USA

Depth Coalinga, USA Gaosheng, China

Gravity, 
o
API Oxnard, USA Shiells Canyon, USA

Oil Viscosity Shiells Canyon, USA Athabasca Oil Sands, Canada

Temperature Midway-Sunset, USA McKittrick, USA

Oil Saturation(Start) Midway-Sunset, USA Pikes Peak, Canada

Started

year
Field name Country

Formation

Type

ø

%

K

md

D

ft

Gravity
o
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 µ o

cp

T
o
F
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start

Sor

end

Project

evaluation

Reporting

year

1982 Jesus Maria USA Fractured 
Chert-Dolomite 7.5 2.0 3,500.0 9.0 20,000.0 110.0 60.0 45.0 Successful 1986

1985 Cymric USA Shale 65.0 15.0 1,400.0 12.0 110.0 65.0 55.0 Successful 2004

1977 Lacq Superieur France Limestone 15.0 1.0 2,100.0 22.0 20.0 150.0 45.0 Successful 1988

1971 Mount Poso USA Sandstone 33.0 20,000.0 2,000.0 15.0 277.0 110.0 65.0 34.0 Successful 1984

1983 Coalinga USA Sandstone 30.0 800.0 100.0 12.5 3,000.0 96.0 70.0 32.0 Successful 1984

1982 Gaosheng China Sandstone/Dolomite 25.0 2,200.0 5,410.0 19.0 2,000.0 150.0 65.0 Successful 2008

Oxnard USA Sandstone 36.0 2,500.0 1,800.0 5.8 1,500,000.0 100.0 100.0 66.0 Successful 1984

1973 Shiells Canyon USA Sandstone 20.5 140.0 850.0 34.0 6.0 105.0 Promising 1984

1984 Athabasca Oil Sands Canada Unconsoli 35.0 10.0 500.0 8.0 5,000,000.0 45.0 85.0 15.0 Successful 2008

1983 Midway-Sunset USA Sandstone 30.0 2,000.0 1,500.0 13.0 5,000.0 10.0 60.0 15.0 Successful 2000

1982 McKittrick USA Sandstone 37.0 1,500.0 1,100.0 11.3 300.0 180.0 60.0 30.0 Successful 1986

1964 Midway-Sunset USA Sandstone 37.0 2,500.0 1,000.0 13.0 1,500.0 110.0 31.8 Successful 1984

1981 Pikes Peak Canada Sand. 30.0 6,000.0 1,640.0 12.0 15,000.0 70.0 100.0 80.0 Promising 1984
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6. DATA SUMMARY AND CONCLUSIONS 

6.1. SUMMARIZING SCREENING DATA 

Table 6.1 provides a summary of the updated steam flooding criteria derived from 

the preceding statistical analysis of the cleaned dataset. This summary includes the 

screening parameters that have led to the success or failure of steam flooding projects. 

These parameters include the oil gravity, oil viscosity, reservoir porosity, oil saturation 

start and end, reservoir permeability, reservoir depth and reservoir temperature. The 

standard statistics used to describe the criteria are the mean, median, standard deviation, 

and minimum and maximum values. 

 

 

Table 6.1. Screening criteria for steam flooding in the dataset 

 

 

 

The following differences exist between the updated screening criteria and 

previously published criteria for steam flooding: 

 In our dataset, the oil gravity ranges from 5.8 
o
API up to 34 

o
API. Geffen (1973), 

Lewin and Associates (1976) and Brashear and Kuuskraa (1978) suggested an oil 

gravity greater than 10
 o

API, while Chu (1985) assigned an oil gravity less than 

Statistics
Oil gravity

o
API

Oil viscosity

cp

Temperature
o
F

Depth

ft

Porosity

%

Permeability

md

Oil saturation

start, %

Oil saturation

end, %

Mean 13.7 24,766.2 99.8 1,511.3 32.1 2,529.2 67.7 34.8

Median 13.0 2,100.0 100.0 1,372.5 32.0 2,000.0 65.0 30.0

Standard deviation 3.7 224,773.5 19.6 754.5 4.3 2,457.2 14.9 20.5

Minimum 5.8 6.0 45.0 100.0 7.5 1.0 31.8 10.0

Maximum 34.0 5,000,000.0 180.0 5,410.0 40.3 special case

 (65.0)

20,000.0 100.0 89.0
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36 
o
API, Dickson et al. (2010) suggested a range of 8-20

 o
API and Aladasani and 

Bai (2010) suggested a range of 8-30
 o
API. 

 In our dataset, the maximum oil viscosity is 5,000,000 cp, and the minimum is 

6.0 cp. Iyoho (1978) reported a viscosity range of 200-1,000 cp, Taber (1997) 

suggested an oil viscosity less than 100,000 cp and Dickson et al. (2010) 

suggested 1,000-10,000 cp for successful steam flooding projects. Farouq Ali 

(1974) suggested oil viscosity less than 1,000 cp, noting that oils with viscosities 

less than 20 cp usually are not candidates for steam flooding because water 

flooding is less expensive under these conditions. 

 The maximum reservoir temperature in our dataset is 180 
o
F, and the minimum is 

45 
o
F. Other published criteria have reported the reservoir temperature only in 

relation to the reservoir depth. As a screening criterion, the reservoir depth has 

priority over the temperature. Aladasani et al. (2010) reported a maximum 

reservoir temperature of 350 ˚F for steam flooding, but a mistake was made when 

they converted the temperature from ˚C to ˚F. 

 The maximum and minimum reservoir depths are 5,410 ft and 100 ft, 

respectively, in our dataset. In designing steam flooding projects, the reservoir 

depth is a significant parameter. Shallow reservoirs are preferable because heat 

losses in the wellbore are minimal (Donaldson et al., 1989). Chu (1985) assigned 

a minimum depth of 400 ft., while an upper limit for depth of less than 5,000 ft 

has been suggested by Lewin and Associates (1976), Brashear and Kuuskraa 

(1978) and Taber (1997). Aladasani and Bai (2010) suggested an upper limit for 

depth of 9,000 ft. 
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 In our dataset, steam flooding had been applied in reservoirs with porosities 

ranging from 7.5 to 40.3%. The porosity data for six projects (Figs. 10 and 11) 

were significantly different than the porosity data from other fields. These six 

shale and tropolitic fields had high porosities ranging from 58 to 65%, with low 

permeabilities (Table 4). These ranges are special cases. Farouq Ali (1974) and 

Iyoho (1978) reported that the formation porosity should be equal to or greater 

than 30%. Chu (1985) suggested porosity greater than 20%. 

 The maximum and minimum formation permeabilities are 20,000 md and 1.0 md, 

respectively, in our dataset. For steam flooding projects, to allow steam injection 

at adequate rates and to control the speed of the oil flow into the wellbore, the 

permeability must be suitably high (Donaldson et al., 1989). Farouq Ali (1974) 

suggested a formation permeability of at least 1,000 md, Iyoho (1978) suggested 

that this value should be greater than 1,000 md, Taber (1997) suggested a 

reservoir permeability greater than 200 md and Dickson et al. (2010) reported 

that this value should be greater than 250 md for successful steam flooding 

projects. 

 The minimum oil saturation (start) for steam flooding projects is 31.8% in our 

dataset. Lewin and Associates (1976) and Iyoho (1978) suggested that the oil 

saturation should be greater than 50%, while Chu (1985), Taber (1997) and 

Dickson et al. (2010) suggested that it be greater than 40%. 

 Steam projects were applied mostly in sandstone and unconsolidated sand 

formations. Steam flooding has not been popular in carbonate formations. If only 
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the formation type were considered, the applicability of steam flooding in 

sandstone formations would increase by approximately 84%. 

6.2. CONCLUSIONS 

 This work described the procedures for cleaning a dataset for EOR projects.  

 After data cleaning, the distribution of each parameter for steam flooding projects 

was presented graphically using histograms and box plots with statistical values. 

 New steam flooding screening guidelines were presented and compared with 

previously reported criteria, and their differences were explained. 

 The steam flooding screening criteria can be summarized as follows: oil gravity 

<34 
o
API; oil viscosity <5x10

6
 cp; temperature <180 

o
F; porosity >7.5%; 

permeability >1.0 md; start oil saturation >31.8%; formation-type sandstone, 

unconsolidated sand and carbonate. 

 Specific considerations for steam flooding were presented. 
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