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Abstract:

Several important general theorems of Euclidean Ramsey
Theory are presented with an emphasis on trying to prove or
disprove the 1973 conjecture of Erdés et al. that for all
triangles, except for equilateral triangles, it is possible to
find a monochromatic coloring of the vertices in any two coloring
of the plane. Further investigation included looking at

triangles in greater dimensions.



Introduction

In 1928, Frank Plumpton Ramsey published his first and only
paper, "On a Problem of Formal Logic" [13], in the field which
was later to be named after him. Like Ramsey, other early
contributors to Ramsey theory looked at interesting problems,
only to continue with research in other fields. Isaac Schur, for
example, attempted to prove Fermat’s Last Theorem with Ramsey
theory, and B. L. van der Waerden solved only one problem before
returning to his research in algebraic geometry. It was not
until two decades ago that Ramsey theory emerged as a clear sub-
discipline of combinatorial analysis. Today, Ramsey theory is
used to solve geometrical problems, as well as problems in
communication networking and informational retrieval.

The focus of this paper is Euclidean Ramsey theory, which,
as the name suggests, deals with n-dimensional Fuclidean space,
E*. This space is considered to be r-colored, if each point in
the space is randomly colored one of r colors. By connecting a
finite number of points, a finite configuration or geometrical
shape, K, is created. If all the vertices of K have the same
color then the figure is said to be monochromatic. Putting these
definitions together, it is possible to define the relation
R(K,n,r):

DEFINITION. Let K be a finite configuration. If under any
r-coloring of the points of E®, there exists a monochromatic
coloring of the vertices of K’ which is congruent to K then
the relation R(K,n,r) holds [10, 116].

DEFINITION. A configuration K is said to be Ramsey if, for
all r, there exists n’ so that, for n 2 n’, R(X,n,r) holds



[1a, 1I7].

In this paper, I will discuss some important theorems of

Euclidean Ramsey theory and consider some specific questions for

various configurations, with the main emphasis placed on the

relation R(K,n,r) wheren = r = 2 and K is a triangle.

Background

The simplest gquestion one could ask about Euclidean Ramsey

theory is whether or not a line segment of any length is Ramsey.

The following theorem shows that the

answer is ves when n = r = 2:

Theorem 1l: Given any 2-coloring
of a plane, it is possible to
find two points of the same color
at a distance d apart.

Proof: Assume, to the contrary,
that no such monochromatic line
segment exists. Let point C be
red; this means that there must
be a green circle of radius d
around C so that no red point
exists at distance d from C.
However, each green point on the circle must also have a
circle of radius d about it, on which no green point exists.
Choose an arbitrary point B on the circle about C and draw a
circle of radius d about it. This circle will consist of
all red points. However, the circles with centers C and B
have to intersect in two points, and both points can only be
colored once. Thus there exist two points a distance d
apart which are monochromatic in any 2-coloring of R?*.0O

Figure 1

From here, there are two directions in which questions may

be asked. The first, is what happens to a line segment in E®?



By the same argument of Theorem 1, it is easy to discover that
any line segment is Ramsey in E’. Alternatively, one could ask
whether by adding an additional point the resulting triangle is
still Ramsey in E®. This question is more complicated; in fact
R(X,2,2) does not hold for all triangles K:

Theorem 2: The relation R(K,2,2) is false when K is an
equilateral triangle.

Proof: BAn equilateral triangle of side o has a minimum
height of V3a/2. If the plane is striped with two colors in
widths just short of VBG/Z, i.e., each stripe covers the
half open interval [x,, %, + ¥30/2) then no monochromatic
triangle can occur.

However, we will see that the relation R(X,n,r) does hold for 30-
60-90 triangles (see Thm. 7). Graham et al. [10, 117],
conjectured that R(X,2,2) is true for all triangles except
equilateral.

Before continuing our discussion of triangles, let us step
back and look at some important theorems of Euclidean Ramsey
theory. Again a few definitions are needed to begin.

DEFINITION. A brick is the set of vertices of a rectangular
parallelepiped.

DEFINITION. A configuration K = {v,,v,,...,v,} of points in
E" is spherical if it is embedded in the surface of a
sphere, that is, i1f there is a center x and a radius r so
that v, - x | = r for all v, € K [5, 348].

Two very important theorems proved by Erdés et al. are:

Theorem 3: If K is a subset of a brick, it is Ramsey [5,
358].

Theorem 4: If K is not spherical, it is not Ramsey [5,
3497,



Theorem 4 is the strongest known restriction on Ramsey
configurations and all known Ramsey configurations are subsets of
bricks. It 1s not known, however whether being a subset of a
brick is a necessary condition for a Ramsey configuration.

In order to prove that any brick is Ramsey, the compactness
principle must be used. This principle is key in all areas of
Ramsey theory, not just Euclidean Ramsey theory. Before stating
the principle, however, we need some more notation and
definitions.

DEFINITION. Let H = (V,E) be a hypergraph where V equals E®
and E is a family of subsets of V containing a fixed finite
number of points. Let W V. The restriction of H to W,
denoted H,, is the hypergraph H, = (W,E,) where E, = {x € E:
¥ < W} [10, 1371.

For example, let V equal the set of all points in E?. Let =
= {{x, v, z}: X, y, z are the vertices of an equilateral
triangle of side a}. If W consists of the points in the first
gquadrant then E,; is all the equilateral triangles of side o which

are in the first quadrant.

DEFINITION. The chromatic number ¥ (H) of a hypergraph H is
the minimal r such that a map %: V- {1,...r} of H exists
where no x € E are monochromatic [10, 117.

For the above example, %(H) = 2 since Theorem 2 tells us

that the relation R({K,2,2) does not hold when K is an equilateral
triangle. Now the compactness principle states:

Theorem 5: Let H = (V,E}) be a hypergraph where all x ¢ E
are finite. Suppose that, for all W c V, W finite
X {Hy) = r;
Then ¥ (H) < r [10, 137.



So, how does the compactness principle apply to bricks? In

order to see this, we need a more precise definition of a brick.
DEFINITION. A brick in E® is any set congruent to a set
B={ (%,....%,) | %, =0, a;; a, 2 0; 1 <1i <n} [5, 357].
Using this second definition, if we let K, = {0, a,}, a brick can
be written as B = K; X...X K,. Each set X, is Ramsey in a finite
subset of E?. So the following theorem applies:

Theorem 6: If K, and K, are Ramsey, then so is K, X K, [5,
357].

The proof of Theorem 6 reqguires the use of the compactness

principle.

Triangles
Triangles are indeed spherical so from the previous section
we know that it is possible that the relation R(K,2,2) holds for
all triangles except equilaterals. 1In trying to prove this
conjecture, I looked at "special" triangles, such as right,
isosceles and 30-degree triangles. My first successful steps

were made with right triangles. I discovered that:

Theorem 7: If N = 2 mod 4 and N 2 6 then there exists %(N -
2) right triangles for which the relation R(K,2,2) holds,
namely

Tir Tar ovver Tio evny Tum -2
For each i, o; = 180i/N is the smallest angle of T,.

To understand the proof, it will be useful to look at the 90-36-
54 triangle of Figure 2 alongside the proof. To construct the
initial triangle:

Let |AB| = a. Create AC at angle o, = 180i/N to AB,
where i=1,2,...,(N-2)/4. Construct BD at angle 90-0, to AB.




Figﬁre 2




BD will intersect AC at some point E since ACAB and ADBA are
acute. Assume AABE is not monochromatic, so let A and B be
red and E be green (Fig. 2a). It must be proven that there
exists a triangle congruent to AABE which is monochromatic.

Proof by contradiction: Assume there is not a monochromatic
triangle to aABE. Rotate AABE 180° about the midpoint (G)
of AB, lining up the hypothenuse. Color the new point, F,
green so that AABF is not monochromatic. This creates
rectangle ABEF since

mA.AEB = mA.AFB = 90°, mA EAF = mA. BAE + mA BAF = o; + 20 -, = 90

and similarly for AEBF (Fig. 2b). The diagonals of a

rectangle are equal so |EF| = a. By rotating aABF, 180-20,
about G, the hypothenuse of the new triangle will connect
the points E and F (Fig. 2c¢). *In order not to have a

monochromatic triangle, color newly created vertex red.
Rotate triangle 180° about G, aligning hypothenuse (Fig. 2d
and e). Color new vertex red and rotate triangle 180-2¢,
about G, forming a new point to be colored green. Repeat
process N/2 - 4 times from *, alternating coloring new pairs
of vertices red and green so that monochromatic triangles
are avoided. Begin coloring with green. The last new
vertex will coincide with point A if i is odd and B if i is
even, since starting at the 90° angle, E, of the original
triangle, the triangle has been rotated through an angle of
(3 + N/2 -~ 4)(180 + 180 - 204). If i is even, E can be
obtained by repeating from * once more since the total
rotation of E is [180 + (180 - 204)}N/2 which is a multiple
of 360°. If i is odd, * must be repeated again and then the
final triangle must be rotated another 180 degrees in order
te return to E, since, the total rotation of E for i odd is
thus [180 + (180 - 20,)]N/2 + 180 which is again a multiple
of 360°. All vertices of the polygon will be colored and a
monochromatic triangle will exist which is a contradiction.n

After discovering this proof, I found that Erdds et al. [7, 568]
used this same method called the "roulette method" to prove this
and other theorems involwving right triangles. In another article
[15, 388], the "ladder method" of Erdés aleong with a case

@nalysis was used to prove that all right triangles are Ramsey.




For the ladder method [7, 566], T A
let x and vy be two points a distance b | f\\\\
'apart and both colored red (Figure 3). X.C

At a perpendicular distance a’'=a/3 C

]
Fe
Nt

~

pe

from x and y, create green points x,

and y,. Continue this process upwards

alternating colors. Let ¢ be the

length of the hypothenuse of the Figure 3

triangle with legs a and b. Let c¢' be the length of the
hypothenuse of the triangle with sides a' and b. Thus a? + b? =
¢ and (a’)? + b = (c’)?. If (a,b,c)-triangle with points
X,¥,z is assumed to be monochromatic then z = x; or y, which
indicates triangle (a’,b,c’) must also be monochromatic. In
general, let n be any positive integer with a' = a/(2n+l) and z =
Xone1 O Yani- Thus if information about one right triangle on the
plane is known, it is possible to prove all right triangles have
the relation R(K,2,2). However, by Theorem 9'we know there are
many right triangles for which the relation R(K,2,2) holds, thus
a solid foundation exists on which to build.

Next, I worked with 30° triangles. These triangles are
special because the side opposite the 30 degree angle is one half
the length of the hypothenuse. Normally, when trying to force
monochromatic triangles, it is possible to build new triangles
off of only one edge of every triangle, thus greatly restricting
the possibilities. There are two additional ways in which
Segments of the correct length may be created for all thirty-

degree triangles, as illustrated in Figure 4. All three of my
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4b

(™.

30

Create 30° triangle ABC and reflect
it about segment AB to create a ABD,
m A CAD = 60

AC = AD

“ & ACD is an equilateral triangle

Create 30° triangle ABC and reflect
it about segment AC to create a ADC
m A BAD = 60

AB = AD

“ & BAD is an equilateral triangle

Figure 4



proofs depend upon one additional property unique to the
particular triangle. These additional properties are shown in
Figure 5. By using existing edges and creating new edges in the
above fashion, I was able to show:
Theorem 8: The relation R(K,2,2) holds for:
(1) 30-45-105
(ii) 30-40-110
(iii) 30~-50-100
triangles.
The proof of this theorem is illustrated in Figures 6-8. At the
same time, however, I was able to find just as many triangles for
which the relation R(K,2,2) did not appear to hold. As a result
of the necessity of using special principles for each triangle,
the proofs end up using very different methods as can be seen by
comparing Figures 7 and 8. Thus there is no apparent way to
generalize the proofs. However, I have recently come across a

theorem which states:

Theorem 9: For all 30 degree triangles the relation
R(K,2,2) holds.

This proof is based on two theorems. The first states:

Theorem 10 [7, 563]: If K is a triple with sides a, a, c
and if there exists a coloring for which R(K,2,2) holds
true, then R(K*,2,2) is true for any triple with sides a, b,
¢ for which the triangle inequality holds.

The second theorem needed for the proof of Theorem 9 states:

Theorem 11 [7, 5701: If five points can be found in the
Plane which have only the distances a, b, ¢, d and the
distance d (not necessarily distinct from a, b, ¢) occurs
only once and a, b, c¢ satisfy the triangle inequality, then
R(K,2,2) holds where K is a triangle with sides of length a,
b, c.

Proof: Given five points and two colors, three points must
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30-45-105. Create triangles ACD
d BCD cff of medium side. Connect

A ABD is an isosceles triangle
AB is congruent to BD.

e ___..+,..l+m‘_

b) 30-50-100. Create triangles ABD
and ABC off of shortest side. Connect
DC. A ADC is an isosceles triangle so
DC is congruent to AD.

B

¢) 30-40-110. Create triangles
ACD and BCD off of shortegst gide.
Connect AB. 4 ABC is an isosceleg
[> o ( triangle so AB is congruent to AC.

Figure 5



Proof of Theorem 8i

0B

A O—

E

a) Theorem 1

D
) Create a ABC and reflect
it about AB.

F

e) Figure 5a

E) Figure 4b

E
i B
A
F
f) Create A EFG and a EFH
congruent to a ABC.
£

3 Figure 6

1d) Create a CDE and a CDF
- Congruent to a ARC.




m

g) Figure 4b and create a DFG, which is congruent to a ABC by SAS.

E

¥

h) Create a DHG, which is congruent to a ABC by SAS. Note that
A DHG is monochromatic.



Proof of Theorem 8iii

H

]
N
)}

\ F
i h /

/\ /B

-‘\‘—'_“_
- i .
NOTE : . Proof by contradiction, so always color vertices in order
to avoid monochromatic triangles. Also, all triangles will be

constructed to be congruent to original triangle ABC.

Create monochromatic line segment AB by Theorem 1. Create a 30-50-
100 triangle ABC and reflect it about AB to get a ABE congruent to

A ABC. Thus vertices C and D must be green so that no
Monochromatic triangles exist. Rotate a ABC 180 degrees about the
midpoint of AB. Thus vertex E must be green. Connect CD by

Figure 4b. Create a CDF off of line segment CD. Create A ACG off
of segment AC. By Figure 4a, GB can be conected. Side BC 1is
congruent to CF and m A BCF = 60 so BF is congruent to BC. The
Measure of angle GBF is equal to m A ABC thus by SAS A GBF is
congruent to A ABC. Vertices B and F are colored red so avoiding
Monochromatic triangles, G must be green. Create A CGH off of
Seégment CG. Connect AH by Figure 5b. Off of AH, create a AHT.
Connect IE. Segment AI is congruent to AE and m A IAE = 100 so m
AIEA = m A ETIA =.40. Create figure AIJE to be similar to Figure
Segment IE is congruent to AC. Create A IEK. Segment AE is
congruent to EK and m 4 AEK = 60 so AK is congruent to AE. Note by
Connecting HK, Figure 4a is created and a AHK is monochromatic.

Figure 7



e,

Proof of Theorem 8ii

NOTE: Proof by contradiction, so always color vertices in order
to avoid monochromatic triangles.

Create a monochromatic line segment AB by Theorem 1. Create a 30-
40-110 triangle ABC and reflect it about AB. Color vertices C and
D green so that no monochromatic triangles exist. Create a CDE and
! A CDF congruent to a ABC off of segment CD, so E and F must be red.
The measure of AADC is 60 degrees and the measure of A CDE is 30
degrees so A ADE = 30°. By SAS, A ADE is congruent to a ABC.
. Create A AEH congruent to a ABC. By Figure 5c¢, DH is congruent to
AB. gide DF is congruent to BD and m A BDF = 60° thus BF is
congruent to BD. Connect BF. Create a BFG. The measure of angle
i GDB is 80 and m A GBD = 50 so m ADGB = 50 thus BD is congrent to

DG. Aangle GDH is 40 so by SAS a DGH is congruent to a ABC and is
monochromatic.

Figure 8




exist which are monochromatic by the pigeon hole principle.
Color the points who are distance d apart opposite colors.
Either a monochromatic triangle of sides of length a, b, ¢
exist or a monochromatic isosceles triangle of sides of
length a, a, b or a, a, ¢ exist. However, if a
monochromatic isosceles triangle exists then by Theorem 10,
a monochromatic triangle of sides a, b, ¢ exists.

Proof of Theorem 9: We will set
up a figure based on Theorem 11,
go that d(1,2) = a is defined as
the distance between point 1 and
point 2. If points 2, 3, 4 are
all at distance a from point 1,
and d{(2,3) = a, then set d(2,4)
= b and d(3,4}) = ¢. By
reflecting the entire figure
about a line of symmetry of the Figure 9
equilateral triangle 1, 2, 3 a
fifth point is obtained. So
d(5,2) = ¢, d(5,3) = b and call d(5,4) = d (see Figure 9).
Angle 312 is 60 degrees so angles 234 and 243 are 30 degrees
since they subtend the same arc as the central angle 312.
Choose points 4 and 5 to have opposite colors and continue
to color the remaining points as desired. Either a thirty-
degree triangle will be moncchromatic (in which case the
proof is complete) or a triangle with sides a, a, ¢ will be
monochromatic. However, if a monochromatic triangle of
sides a, a, ¢ exists, then Theorem 10 says that a
monochromatic triangle of sides a, b, ¢ exists.[

Throughout my research, I have continued to find articles
with new listings of Ramsey triangles. The most extensive
theorem, from "Euclidean Ramsey Theorems, III" [7, 572] states:

Theorem 12: R(K,2,2) holds for all triangles K with sides
a, b, ¢ which

(1) have a 30° angle,

(ii) have a 150° angle.

Furthermore,




Theorem 13: All triangles (a, b, (b® + 2a?)¥?), 2b>a are
Ramsey.

Theorem 14: All triangles (a, b, 4b® - a?), (3/2)¥%b < g <
(5/2)*?b are Ramsey [15, 389].

Conclusion

It is known that for all triangles R(K, 3, 2) holds (12,
345]. However, if three colors are used instead of two in E3,
the question 1s more difficult. Bdna has proved that 30-60-90
triangles and isosceles-right-triangles are Ramsey in 3-colored
E’. His method of proof is very similar to the methods I used in
my proofs, beginning by assuming that no monochromatic triangle
exists and proving that one does with the use of case analysis.
Even more generally, it is known that given any r-coloring, r 2
2, there exists some dimension for which all triangles are Ramsey
[8, 777]. The proof of this is based on Ramsey'’s original
theorem presented in "On a Problem of Formal Logic" [13] and a
similar argument used in the proof that all bricks are Ramsey.

I proved that the relation R(K, 2, 2) holds for a limited
number of right and thirty-degree triangles. I found other
proofs that this relation holds for these and other triangles.
Yet, the question whether all triangles except equilaterals have
this relation remains open. It appears that there is no one way
of answering this question; rather, different proofs must be used
for each kind of triangle, thus making the guestion more
difficult to answer. Time will only tell whether a solution is

found to this problem.
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