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Abstract. This paper presents a methodology to find the exact solution and respective
parametric conditions to the Duffing–Van der Pol class of equations. The supposed method
in this paper is different from the Prelle and Singer method and the Lie symmetry method.
The main idea of the supposed method is implemented in finding the first integrals of the
original equation and leading this equation to a solved equation of lower order to which
the exact solution can be obtained. As results the parametric conditions and the exact solu-
tions in parametric forms are indicated. The algorithm for determining integral constants
and the investigation of solution characteristics are considered.

Keywords: parametric conditions, Prelle and Singer method, Lie symmetry method, exact
solutions, Duffing–Van der Pol equation, Riccati equation, hypergeometric functions.

1. INTRODUCTION

Problems in mechanics, physics, chemistry and biology often lead to nonlinear dif-
ferential equations. Finding new solutions to classes of differential equations is always
an interest to scientists in the field of dynamics. For this purpose a first integral should
be found, based on which the exact solution is obtained. The closed form structure of the
solution is an important basis for observations made on mechanics, physics, chemistry
and biology phenomena.

Pioneered by Prelle and Singer [1], the methodology for finding the first integral of
a first order ordinary differential equations was introduced. Duarte et al. [2] and Chan-
drasekar et al. [3] extended this methodology to second order ordinary differential equa-
tions. The symmetry Lie method can be used for the examination of the nonlinear dis-
sipative system. Senthil et al. [4] and Chandrasekar et al. [5] used the symmetry Lie
method to solve for the first integral of a force-free Duffing–Van der Pol equation. Other
scientists [6–8] have examined different classes of nonlinear differential equations and
contributed methodology for finding the corresponding first integral and exact solution.
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The Duffing–Van der Pol class of nonlinear differential equation is examined in this
paper

ẍ + (δ + βxm) ẋ− µx + xm+1 = 0, (1)

where an overdot represents differentiation with respect to independent variable t. All
other parameters such as δ, β and µ are real numbers, and m is another number of any
value.

This paper proposes a methodology to find the first integral and exact solution to the
above equation in a different approach in comparison to the existing Prelle and Singer
[1] and the symmetry Lie methods. Not only that the proposed methodology renders
an identical solution in comparison with results from the symmetry Lie method when
m = 2, but it can also provide a general solution and new observations to the Duffing–
Van der Pol equation with any m.

2. PARAMETRIC CONDITIONS AND FIRST INTEGRALS

Let us consider the Duffing–Van der Pol type oscillator equation (1) with arbitrary
power m. With m = 2, Eq. (1) has of the form of the classic Duffing–Van der Pol equation

ẍ +
(
δ + βx2) ẋ− µx + x3 = 0,

and then β = 0 this equation leads to the damped Duffing equation

ẍ + δẋ− µx + x3 = 0.

For finding first integrals of Eq. (1) we use the transformations [9] as follows

ẋ
x
+

1
2

axm +
1
2
(b + c) =

u̇
u

, (2)

− 1
2

axm +
1
2
(b− c) =

1
2

v̇
v

, (3)

which lead Eq. (1) to the following equation

d
dt

(
u̇
u

)
+

(
u̇
u

)2

+
d
dt

(
1
2

v̇
v

)
−
(

1
2

v̇
v

)2

= 0. (4)

In order to get Eq. (4) be equivalent to Eq. (1) the coefficients in Eqs. (2) and (3) must
be relative as

b + c = δ, a = β, ab = 1, bc = −µ. (5)

The system of Eqs. (5) consists of four equations with three unknowns, certainly
there exists a relative condition within coefficients. Solving Eqs. (5) yields

a = β, b =
1
β

, c = δ− 1
β

, (6)

and

δ =
1
β
− µβ. (7)
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Accoding to [9] Eq. (4) has a first integral

u
v1/2

(
u̇
u
+

1
2

v̇
v

)
= D1 , (8)

where D1 is an integral constant.
From Eqs. (2) and (3) we obtain

ẋ
x
+ b =

u̇
u
+

1
2

v̇
v

, (9)

u
v1/2 = x exp

 t∫
0

(axm + c) dt

 . (10)

Substituting Eqs. (9) and (10) into Eq. (8) yields

ẋ + bx = D1 exp

− t∫
0

(axm + c) dt

 . (11)

Consequently, determining a, b and c by Eq. (6) and considering condition (7), we
obtain the first integral (11) of the original equation (1). The equality (7) is considered as
the parametric condition under which Eq. (1) has a first integral (11).

Now we can show that under another parametric condition, Eq. (1) has other first
integral. Multiplying both sides of Eq. (11) by xm yields

xm ẋ + bxm+1 = D1xm exp

− t∫
0

(axm + c) dt

 ,

or
d
dt

(
xm+1

)
+ b (m + 1) xm+1 = D1 (m + 1) e−ctxm exp

− t∫
0

axm dt

,

from which we obtain

xm+1 = e−b(m+1)t

D1 (m + 1)

∫ e[b(m+1)−c]txm exp

 t∫
0

axm dt

 dt

+ D2

 , (12)

where D2 is an integral constant.
Suppose that parameters satisfy the relation

b (m + 1) = c,

using Eq. (6) this relation leads to
m = δβ− 2. (13)

The integral in the right-hand side of Eq. (12) can be performed and Eq. (12) becomes

xm+1 = e−ct

D2 −
m + 1

a
D1 exp

− t∫
0

axm dt

 . (14)
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In the results, under two parametric conditions (7) and (13) the original equation (1)
has another first integral (14) including two integral constants.

Rewriting Eq. (14) as

xm+1 = D2e−ct − m + 1
a

D1 exp

− t∫
0

(axm + c) dt

 ,

and combining it with Eq. (11) we obtain the first integral in another form

ẋ + bx +
a

m + 1
xm+1 =

aD2

m + 1
e−ct. (15)

It is remarkable that the obtained first integral (15) has the form coinciding with the
first integral to be found in Ref. [8, p. 129] by another method.

In particular case m = 2, two parametric conditions (7) and (13) become

δ =
4
β

, µ = − 3
β2 , (16)

and the first integral (15) has of the form

ẋ +
1
β

x +
β

3
x3 =

β

3
D2e−

3
β t. (17)

The parametric conditions (16) and the first integral (17) to be found in this paper
fully coincide with those given by Lie symmetry method in Refs. [3, p. 2467], [4, p. 1936]
and [5, p. 4528].

3. SOLVING EQUATION AND EXACT SOLUTION

Basing on the first integral (14) we derive the solving equation. Introduce a variable
transformation

ξ = exp

− t∫
0

axm dt

 , (18)

from which to get

xm = −1
a

ξ̇

ξ
. (19)

Substituting Eqs. (18) and (19) into Eq. (14) yields(
−1

a
ξ̇

ξ

) m+1
m

=

(
D2 −

m + 1
a

D1ξ

)
e−ct,

and then arising both sides of just obtained equation by power
m

m + 1
lead to

− 1
a

ξ̇

ξ
=

(
D2 −

m + 1
a

D1ξ

) m
m+1

e−
cm

m+1 t. (20)
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Eq. (20) can be rewirtten in another form

− 1
a

dξ

ξ
(

D2 − m+1
a D1ξ

) m
m+1

= e−
cm

m+1 t dt. (21)

Integrating both sides of Eq. (21) yields

cm
a (m + 1)

∫ dξ

ξ
(

D2 − m+1
a D1ξ

) m
m+1

+ γ = e−
cm

m+1 t, (22)

where γ is an integral constant.
The integral in left-hand side of Eq. (22) can be performed by using an appropriate

transformation

z =

(
D2 −

m + 1
a

D1ξ

) 1
m+1

. (23)

A direct calculation gives

ξ = −
(

zm+1 − D2

) a
(m + 1) D1

,

dξ = − a
D1

zm dz.

Substituting the above equalities into Eq. (22) yields

cm
a

∫ dz
zm+1 − D2

+ γ = e−
cm

m+1 t. (24)

The integral in Eq. (24) can be performed through hypergeometric functions [10],
then Eq. (24) can be demonstrated as

cm
a

{
− z

D2
Hypergeometric2F1

[
1

m + 1
, 1; 1 +

1
m + 1

;
zm+1

D2

]}
+ γ = e−

cm
m+1 t. (25)

By making the natural logarithm to Eq. (25) yields

t = −m + 1
cm

ln
{

cm
a

[
− z

D2
Hypergeometric2F1

[
1

m + 1
, 1; 1 +

1
m + 1

;
zm+1

D2

]]
+ γ

}
.

(26)
Otherwise, from Eqs. (20) and (23) we obtain

−1
a

ξ̇

ξ
= zme−

cm
m+1 t ,

by use of Eq. (19) the relation within x and z is given

x = ze−
c

m+1 t , (27)

and Eq. (25) can be rewritten as follows

x = z
{

cm
a

[
− z

D2
Hypergeometric2F1

[
1

m + 1
, 1; 1 +

1
m + 1

;
zm+1

D2

]]
+ γ

} 1
m

. (28)
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Eqs. (26) and (28) can be seen as an exact solution demonstrated in parametric form
with respect to z of the original equation (1), under parametric conditions (7) and (13).

Now we can get parametric solution for velocity ẋ and the phase curve of Eq. (1).
For this season taking differentiation with respect to t Eqs. (24) and (27)

ż = − a
m + 1

(
zm+1 − D2

)
e−

cm
m+1 t ,

ẋ = że−
c

m+1 t − c
m + 1

ze−
c

m+1 t ,

and using just obtained equalities and Eq. (25) we obtain

ẋ = − c
m + 1

z
{

cm
a

[
− z

D2
Hypergeometric2F1

[
1

m + 1
, 1; 1 +

1
m + 1

;
zm+1

D2

]]
+ γ

} 1
m

− a
m + 1

(
zm+1−D2

){ cm
a

[
− z

D2
Hypergeometric2F1

[
1

m + 1
, 1; 1 +

1
m + 1

;
zm+1

D2

]]
+γ

} m+1
m

.

(29)
Finally, the overall results can be drawn: suppose the Duffing–Van der Pol type oscil-

lator equation is given in the form of Eq. (1). If its parameters satisfy relative conditions
(7) and (13)

δ =
1
β
− µβ,

m = δβ− 2,
then the given equation has an exact solution in parametric form represented by Eqs. (26)
and (28), a velocity - by Eqs. (26) and (29) and a phase curve - by Eqs. (28) and (29).
Parameters a and c in the mentioned above equations are defined by relations (6)

a = β, b =
1
β

, c = δ− 1
β

.

4. DETERMINATION OF INTEGRAL CONSTANTS

Suppose the initial conditions are given as

x (t)|t=0 = x0,

ẋ (t)|t=0 = ẋ0,
(30)

from Eq. (27) it leads to
z (t)|t=0 = x0.

Based on Eqs. (26) and (30) the integral constant γ is defined

γ = 1− cm
a

{
− x0

D2
Hypergeometric2F1

[
1

m + 1
, 1; 1 +

1
m + 1

;
xm+1

0
D2

]}
, (31)

and the integral constant D2 is found by the first integral (15)

D2 =
m + 1

a
ẋ0 +

c
a

x0 + xm+1
0 . (32)
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5. APPLICATIONS

In this section some cases of Eq. (1) are considered and numerical cases are given

5.1. Case m = 1

Parametric conditions (7) and (13) in this case are

δ =
3
β

, µ = − 2
β2 ,

the original equation (1) has the form

ẍ +

(
3
β
+ βx

)
ẋ +

2
β2 x + x2 = 0,

and according to Eq. (15) there exists a first integral

ẋ +
1
β

x +
β

2
x2 =

βD2

2
e−

2
β t.

This equation has the form of Riccati equation.
The exact solution of the given equation is obtained from Eq. (26) with m = 1, a = β

and c =
2
β

x =
√

D2e−
1
β tth

(
−β2

2
√

D2e−
1
β t + γ

)
,

where

γ = arth
(

x0√
D2

)
+

β2

2
√

D2 ,

D2 =
2
β

ẋ0 +
2
β2 x0 + x2

0.

Suppose that the input data are given in some cases.
(i) β = 2.5 and initial values x0 = 1, ẋ0 = 0.4, integral constants are calculated by

Eqs. (31) and (32)
D2 = 1.64, γ = 5.04955.

The exact solution is represented in Fig. 1.
(ii) β = 2.5 and initial values x0 = 1, ẋ0 = −2, integral constants are valued as

D2 = −0.28, γ = 0.569439i.

The exact solution is illustrated in Fig.2.
(iii) β = 2.5 and initial values x0 = 1, ẋ0 = −3, integral constants are calculated as

follows
D2 = −1.08, γ = 2.48143i.

The exact solution is shown in Fig. 3, it has an asymptotic line t ≈ 3.2.
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6

5.1 Case 1=m . 

Parametric conditions (7) and (13) in this case are 

2

3 2
, ,= = −δ µ

β β
the original equation (1) has the form 

2
2

3 2
0xx x x xβ

β β
 + + + + = 
 

ɺɺ ɺ

and according to Eq.(15) there exists a first integral 

2
2 21

2 2

−
+ + =ɺ

tD
x x x e βββ

β
. 

This equation has the form of Riccati equation.

The exact solution of the given equation is obtained from Eq.(26) with1=m , =a β  and
2=c
β

1 1

2 2

2

2
β

D
t t

x D e th eβ β γ
− − 

 = − +
 
 

, 

where 

2
0

2

2
2 0 0 02

,
2

2 2
.

2D

x
arth D

D x x x

βγ

β β

 
= +  

 

= + +ɺ

Suppose that the input data are given in some cases.

(i) 2.5=β  and initial values 0 1x = , 0 0.4x =ɺ , integral constants are calculated by Eqs.(31) and (32) 

2 1.64, 5.04955D γ= = . 

The exact solution is represented in Fig.1 
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t, HsL

0.2

0.4

0.6

0.8

1.0

x@tD, HmL

Fig.1 

(ii) 2.5=β  and initial values 0 1x = , 0 2x = −ɺ , integral constants are valued as 

2 0.28, 0.569439D iγ= − = . 

Fig. 1. The exact solution with β = 2.5, x0 = 1
and ẋ0 = 0.4

7

The exact solution is illustrated in Fig.2 
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(iii) 2.5=β  and initial values 0 1x = , 0 3x = −ɺ , integral constants are calculated as follows

2 1.08, 2.48143D iγ= − = . 

The exact solution is shown in Fig.3, it has an asymptotic line 3.2t ≈

2 4 6 8 10
t,HsL
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5.2 Case 2=m . 

Parametric conditions (7) and (13) providing integrability of Eq.(1) in this case are following

2

4 3
,= = −δ µ

β β
and the original equation (1) has of the form 

2 3
2

4 3
0

 + + + + = 
 

ɺɺ ɺx x x x xβ
β β

. 

The exact solution is represented in parametric from Eqs.(26) and (28) with 2=m , =a β  and
3=c
β

Fig. 2. The exact solution with β = 2.5, x0 = 1
and ẋ0 = −2

7

The exact solution is illustrated in Fig.2 
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(iii) 2.5=β  and initial values 0 1x = , 0 3x = −ɺ , integral constants are calculated as follows

2 1.08, 2.48143D iγ= − = . 

The exact solution is shown in Fig.3, it has an asymptotic line 3.2t ≈
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5.2 Case 2=m . 

Parametric conditions (7) and (13) providing integrability of Eq.(1) in this case are following

2

4 3
,= = −δ µ

β β
andthe original equation (1) has of the form 

2 3
2

4 3
0

 + + + + = 
 

ɺɺ ɺx x x x xβ
β β

. 

The exact solution is represented in parametric from Eqs.(26) and (28) with 2=m , =a β  and
3=c
β

Fig. 3. The exact solution with β = 2.5, x0 = 1 and ẋ0 = −3

5.2. Case m = 2

Parametric conditions (7) and (13) providing integrability of Eq. (1) in this case are
following

δ =
4
β

, µ = − 3
β2 ,

and the original equation (1) has of the form

ẍ +

(
4
β
+ βx2

)
ẋ +

3
β2 x + x3 = 0.

The exact solution is represented in parametric from Eqs. (26) and (28) with m = 2,

a = β and c =
3
β

.

Suppose that input data are given β = 2.5 and initial values x0 = 1, ẋ0 = 0.4. Integral
constants are calculated by Eqs. (31) and (32) as follows

D2 = 1.96, D1/3
2 = 1.25146, γ = 1.58142.
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The exact parametric solutions of the given equation are represented by Eqs. (26),
(28) and (29). The results are illustrated in Figs. 4–6.

8

Suppose that input data are given 2.5=β  and initial values 0 1x = , 0 0.4x =ɺ . Integral constants are 

calculated by Eqs.(31) and (32) as follows

2 1.96=D , 1/3
2 1.25146=D , 1.58142=γ . 

The exact parametric solutions of the given equation are represented by Eqs.(26), (28) and (29). The results are 

illustrates in Figs. 4-6. 
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Fig.4 Graphic of parametric solution ( ) ( )–x z t z with z(-1.5; 1.25145) and z(1.25147; 3.8) 

Fig. 4. Graphic of parametric solution x (z) −
t (z) with z(−1.5; 1.25145) and z(1.25147; 3.8)
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Fig.5 Graphic of parametric solution for velocity( ) ( )–ɺx z t z  with z(-0.4; 1.25145) and z(1.25147; 1.7) 
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Fig.6 Graphic of parametric phase curve in the phase plane  

( ) ( )–ɺx z x z with z(-0.5; 1.25145) and z(1.25147; 1.7) 

Fig. 5. Graphic of parametric solution for ve-
locity ẋ (z) − t (z) with z(−0.4; 1.25145) and

z(1.25147; 1.7)
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Fig.5 Graphic of parametric solution for velocity( ) ( )–ɺx z t z  with z(-0.4; 1.25145) and z(1.25147; 1.7) 
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Fig.6 Graphic of parametric phase curve in the phase plane  

( ) ( )–ɺx z x z with z(-0.5; 1.25145) and z(1.25147; 1.7) Fig. 6. Graphic of parametric phase curve in the phase plane ẋ (z)− x (z)
with z(−0.5; 1.25145) and z(1.25147; 1.7)

As can see that the parametric solution has a discontinuous point corresponding to
z = 1.25146. The parametric solution for velocity and phase curve have a discontinuous
point also at z = 1.25146.

5.3. Case m = 3

The parametric conditions in this case reduced from (7) and (13) are

δ =
5
β

, µ = − 4
β2 ,

and the original equation (1) has of the form

ẍ +

(
5
β
+ βx3

)
ẋ +

4
β2 x + x4 = 0.
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The parametric exact solution is described by Eqs. (26) and (28) with m = 3, a = β

and c =
4
β

.

The input data are supposed β = 2 and given initial values x0 = 1, ẋ0 = 0.4. Integral
constants D2, γ are valued as

D2 = 2.8, γ = 2.16835.

The parametric exact solutions defined by Eqs. (26), (28) and (29) are illustrated in
Figs. 7–9.
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As can see that the parametric solution has a discontinuous point corresponding to z=1.25146. The 

parametric solution for velocity and phase curve have a discontinuous point also at z=1.25146 

5.3 Case 3=m . 

The parametric conditions in this case reduced from (7) and (13) are 

2

5 4
,= = −δ µ

β β
                                                                                     

and the original equation (1) has of the form  

3 4
2

5 4
0

 + + + + = 
 

ɺɺ ɺx x x x xβ
β β

.  

The parametric exact solution is described by Eqs.(26) and (28) with 3=m , =a β  and 
4=c
β

 

The input data are supposed 2=β  and given initial values 0 1=x , 0 0.4=ɺx . Integral constants 2D , γ  are 

valued as 

2 2.8=D , 1/4
2 1.29357±D = , 2.16835=γ . 

The parametric exact solutions defined by Eqs.(26), (28) and (29) are illustrated in Figs. 7-9.                                                        

.
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Fig.7 Graphic of parametric solution ( ) ( )–x z t z with z (-3.5; -1.2936), z(-1.2935; 1.2935) and z(1.2936; 3.5) 

 

 

Fig. 7. Graphic of parametric solution x (z) −
t (z) with z(−3.5;−1.2936), z(−1.2935; 1.2935)

and z(1.2936; 3.5)
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Fig.8 Graphic of parametric solution for velocity ( ) ( )–ɺx z t z  

with z (-1.48; -1.2936), z(-1.2935; 1.2935) and z(1.2936; 1.8) 
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Fig.9 Graphic of parametric phase curve in the phase plane 

( ) ( )–ɺx z x z with z (-1.48; -1.2936), z(-1.2935; 1.2935) and z(1.2936; 1.8) 

Fig. 8. Graphic of parametric solution for
velocity ẋ (z) − t (z) with z(−1.48;−1.2936),

z(−1.2935; 1.2935) and z(1.2936; 1.8)
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Fig.8 Graphic of parametric solution for velocity ( ) ( )–ɺx z t z  

with z (-1.48; -1.2936), z(-1.2935; 1.2935) and z(1.2936; 1.8) 
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Fig.9 Graphic of parametric phase curve in the phase plane 

( ) ( )–ɺx z x z with z (-1.48; -1.2936), z(-1.2935; 1.2935) and z(1.2936; 1.8) Fig. 9. Graphic of parametric phase curve in the phase plane ẋ (z)− x (z) with z(−1.48;−1.2936),
z(−1.2935; 1.2935) and z(1.2936; 1.8)

It is observed that the parametric solution has two discontinuous points correspond-
ing to z = ±1.29357 and the velocity and the phase curve also have two discontinuous
points at the same z = ±1.29357.
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5.4. Case m =
2
3

The parametric conditions (7) and (13) are reduced to

δ =
8

3β
, µ = − 5

3β2 ,

and the original equation (1) in this case

ẍ +

(
8

3β
+ βx2/3

)
ẋ +

5
3β2 x + x5/3 = 0 ,

gives an exact solution demonstrated by Eqs. (26) and (28) with m =
2
3

, a = β and c =
5

3β
.

For example the input data are given as

β = 1, m = 2/3, x0 = 1, ẋ0 = 0.4.

Integral constants are valued

D2 = 3.33333, D3/5
2 = 2.05934, γ = 1.37973.

The parametric solutions determined by Eqs. (26), (28) and (29) are demonstrated in
Figs. 10–12.
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   Fig.10 Graphic of parametric solution ( ) ( )–x z t z with z (-2; 0), z(0; 2.059) and z(2.0595; 3) Fig. 10. Graphic of parametric solution x (z)− t (z) with z(−2; 0), z(0; 2.059) and z(2.0595; 3)
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Fig.11 Graphic of parametric solution for velocity ( ) ( )–ɺx z t z with  z (-2; 0), z(0; 2.059) and z(2.0595; 3) 

Fig. 11. Graphic of parametric solution for ve-
locity ẋ (z)− t (z) with z(−2; 0), z(0; 2.059) and

z(2.0595; 3)
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Fig.12 Graphic of parametric phase curve in the phase plane 

( ) ( )–ɺx z x z with z (-2; 0), z(0; 2.059) and z(2.0595; 3) 

As can see that, the parametric solutions have two discontinuous points corresponding to 0=z  and 2.05934=z .          

Remark 

In the considered cases 5.2 – 5.4. the solution can be expressed by hypergeometric function of involved 

parameters. This function can be developed by power series which may be converged in or out of unit circle 

depending on the parameter z.  The points where the functions are not converged represent discontinous points 

as indicated in from Fig.3 to Fig.12. 

Discussion 

• The closed formed solution can be expressed through a hypergeometric function of involved 

parameters, see (26), (27), (28). This has traditionally been expressed as integral functions. 

• In case 1, parametric condition and exact solution to the Riccati equation can be obtained when m = 1. 

In case 4, parametric condition and exact solution when m is not a integer number can also be found. 

Note that those are traditionally regarded as equations without exact solutions. 

• An identical solution in comparison with results from the symmetry Lie method when m = 2, see (16) 

and (17). 

Conclusions 

• A method for finding parametric condition and exact solution to the Duffing – Van der Pol class of 

equations has been proposed. 

Fig. 12. Graphic of parametric phase curve in
the phase plane ẋ (z) − x (z) with z(−2; 0),

z(0; 2.059) and z(2.0595; 3)

As can see that, the parametric solutions have two discontinuous points correspond-
ing to z = 0 and z = 2.05934.

Remark. In the considered cases 5.2–5.4, the solution can be expressed by hypergeometric
function of involved parameters. This function can be developed by power series which
may be converged in or out of unit circle depending on the parameter z. The points where
the functions are not converged represent discontinuous points as indicated in from Fig. 3
to Fig. 12.

Discussion
The closed formed solution can be expressed through a hypergeometric function of

involved parameters, see (26), (27), (28). This has traditionally been expressed as integral
functions.

In case 1, parametric condition and exact solution to the Riccati equation can be
obtained when m = 1. In case 4, parametric condition and exact solution when m is
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not an integer number can also be found. Note that those are traditionally regarded as
equations without exact solutions.

An identical solution in comparison with results from the symmetry Lie method
when m = 2, see (16) and (17).

6. CONCLUSIONS

A method for finding parametric condition and exact solution to the Duffing–Van
der Pol class of equations has been proposed.

Exact solutions and respective parametric conditions to the Duffing–Van der Pol
class of equations can be found with any order of m, with m being a real number. The
proposed methodology is proved to be more general than the pioneered by the Parelle
and Singer method and the symmetry Lie method.

A method to reduce the order of the original differential equation is proposed. The
solution procedure for an exact solution can therefore be simplified.

Parametric condition and exact solution to the Riccati equation can be obtained when
m = 1. Parametric condition and exact solution when m is not an integer number can also
be found. Note that those are traditionally regarded as equations without exact solutions.

With closed formed solution, observation on solution characteristic such as disconti-
nuity, bifurcation, and asymptotic can conveniently be made.
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