CONVECTION IN BINARY MIXTURE
 WITH FREE SURFACE

NGO HUY CAN and TRAN THU HA

Institute of Mechanics - Hanoi and Institute of Applied Mechanics - Ho Chi Minh City

Convective motion in a binary mixture without free surface have been the subject of the works $[1,2]$.

In this paper the convetion in binary mixture with free surface is studied. The existence theorem is proved.

1. BASIC EQUATIONS

For mathematical description of small convective motion in a binary mixture with free surface the following equations and conditions are assumed (see $[1,2,3]$):

$$
\begin{gather*}
\frac{\partial v}{\partial t}=\nu \Delta v-\frac{1}{\rho} \nabla p+g \beta_{1} \gamma T+g \beta_{2} \gamma C+f_{1} \tag{1.1}\\
\frac{\partial T}{\partial t}=\left(\chi+\alpha^{2} D N\right) \Delta T+\alpha D N \Delta C+b_{1}(v \gamma) \tag{1.2}\\
\frac{\partial C}{\partial t}=D \Delta C+\alpha D \Delta T+b_{2}(v \gamma) \tag{1.3}\\
\operatorname{div} v=0 \tag{1.4}\\
v=0, \quad T=0, \quad C=0 \quad \text { on } S \tag{1.5}\\
\frac{\partial v_{i}}{\partial x_{3}}+\frac{\partial v_{3}}{\partial x_{i}}=0 \quad(i=1,2), \quad \frac{\partial}{\partial t}\left(p-2 \nu \rho \frac{\partial v_{3}}{\partial x_{3}}\right)=\rho g v_{3} \\
\frac{\partial T}{\partial t}=b_{1} v_{3}, \quad \frac{\partial C}{\partial t}=b_{2} v_{3} \quad \text { on } \Gamma \tag{1.6}\\
\left.v\right|_{t=0}=v(0),\left.\quad T\right|_{t=0}=T(0),\left.\quad C\right|_{t=0}=C(0),\left.\quad p\right|_{t=0}=p(0) \tag{1.7}
\end{gather*}
$$

Where the following notations are used: $v=\left(v_{1}, v_{2}, v_{3}\right)$ denotes the velocity, p - the pressure; T, C - the temperature and the concentration in the mixture, ρ - the equilibrium state density of the mixture, g - the acceleration of gravity, β_{1}, β_{2} - the heat and concentration coefficient, χ - the coefficient of heat conductivity, α, N - the thermodiffusion and thermodynamics parameters, γ the unit vector of vertical upward axis $O x_{3}$ in the cartesian coordinate system $O x_{1} x_{2} x_{3}, b_{1}, b_{2}$ the gradients of temperature and concentration in the equilibrium state of the binary mixture.

2. EXISTENCE THEOREM

The following Hilbert spaces are used throughout

$$
L_{2}(\Omega)=H_{2}(\Omega) \times H_{2}(\Omega) \times H_{2}(\Omega)
$$

with the scalar product and norm

$$
\begin{aligned}
& (v, u)_{L_{2}(\Omega)}=\sum_{i=1}^{3} \int_{\Omega} u_{i} v_{i} d \Omega \\
& \|v\|_{L_{2}(\Omega)}=\left\{(v, v)_{L_{2}(\Omega)}\right\}^{1 / 2} \\
& L_{2}(\Omega)=J(\Omega)+G(\Omega)
\end{aligned}
$$

where

$$
\begin{aligned}
J(\Omega) & =\left\{u \in L_{2}(\Omega), \operatorname{div} u=0, u_{n}=0 \text { on } S\right\} \\
G(\Omega) & =\left\{v \in L_{2}(\Omega), v=\nabla p, p=0 \text { on } \Gamma\right\} \\
H_{2,00}(\Omega) & =\left\{q \in H_{2}(\Omega), q=0 \text { on } S \cup \Gamma\right\} \\
H_{2}^{1}(\Omega) & =\left\{q \in H_{2}(\Omega), \nabla q \in H_{2}(\Omega)\right\}, \\
W_{2}^{1}(\Omega) & =H_{2}^{1}(\Omega) \times H_{2}^{1}(\Omega) \times H_{2}^{1}(\Omega)
\end{aligned}
$$

The scalar product in $W_{2}^{1}(\Omega)$ is defined as follows

$$
\begin{aligned}
& (v, w)_{W_{2}^{1}(\Omega)}=\sum_{i=1}^{3} \int_{\Omega} \nabla v_{x_{i}} \nabla w_{x_{i}} d \Omega+\int_{S} v w d S \\
& H_{2,0}^{1}(\Omega)=\left\{q \in H_{2}(\Omega), \nabla q \in H_{2}(\Omega), q=0 \text { on } S\right\} \\
& H_{2,00}^{1}(\Omega)=\left\{q \in H_{2}(\Omega), \nabla q \in H_{2}(\Omega), q=0 \text { on } S \cup \Gamma\right\} \\
& W_{2,0}^{1}=H_{2,0}^{1}(\Omega) \times H_{2,0}^{1}(\Omega) \times H_{2,0}^{1}(\Omega) \\
& \ddot{W}_{2,0}^{1}(\Omega)=\left\{v \in W_{2,0}^{1}(\Omega), \operatorname{div} v=0, \quad v=0 \text { on } S\right\} \\
& H_{0}=H_{2}(\Gamma) \ominus\{1\}, \quad H_{+}=H_{0} \cap H_{2}^{1 / 2}(\Gamma), \quad H_{-}=H_{0} \cap H_{2}^{-1 / 2}(\Gamma)
\end{aligned}
$$

We consider the following auxiliary problems
Problem 1. Let there be given a vector function $g \in J(\Omega)$, we seek $v^{(1)}$ and $p^{(1)}$ so that the following equations and conditions are satisfied:

$$
\begin{gathered}
-\nu \Delta v^{(1)}+\frac{1}{\rho} \nabla p^{(1)}=g, \quad \operatorname{div} v^{(1)}=0 \quad \text { in } \Omega \\
\frac{\partial v_{i}^{(1)}}{\partial x_{3}}+\frac{\partial v_{3}^{(1)}}{\partial x_{i}}=0 \quad(i=1,2), \quad-p^{(1)}+2 \nu \rho \frac{\partial v_{3}^{(1)}}{\partial x_{3}}=0 \quad \text { on } \Gamma, \\
v^{(1)}=0 \quad \text { on } S
\end{gathered}
$$

Problem 2. Let there be given a function $\psi_{1} \in H_{-}$we seek a vector function $v^{(2)}$ and a function $p^{(2)}$ so that the following equations and conditions are satisfied

$$
-\nu \Delta v^{(2)}+\frac{1}{\rho} \nabla p^{(2)}=0, \quad \operatorname{div} v^{(2)}=0 \quad \text { in } \Omega
$$

$$
\begin{gathered}
\frac{\partial v_{i}^{(2)}}{\partial x_{3}}+\frac{\partial v_{3}^{(2)}}{\partial x_{i}}=0(i=1,2), \quad-p^{(2)}+2 \nu \rho \frac{\partial v_{3}^{(2)}}{\partial x_{3}}=\psi_{1} \text { on } \Gamma \\
v^{(2)}=0 \text { on } S .
\end{gathered}
$$

Problem 3. Let there be given a function $h \in H_{2}(\Omega)$, we seek a function $K^{(1)}$ so that the following equation and condition S are satisfied

$$
\begin{aligned}
-\Delta K^{(1)} & =h & & \text { in } \Omega \\
K^{(1)} & =0 & & \text { on } S \cup \Gamma
\end{aligned}
$$

Problem 4. Let there be given a function $\psi_{2} \in H_{-}$we seek a function $K^{(2)}$ so that the following equation and conditions are satisfied

$$
-\Delta K^{(2)}=0 \quad \text { in } \Omega, \quad K^{(2)}=0 \quad \text { on } S, \quad K^{(2)}=\psi_{2} \quad \text { on } \Gamma
$$

The problems 1-4 are investigated in the works [4, 5, 6]. Using the lemmas 1-4 in [5] we can prove that the system of equations and conditions (1.1)-(1.6) is equivalent to the following system of equations

$$
\begin{align*}
& \frac{d v^{(1)}}{d t}=-\nu A_{1} v^{(1)}+\nu^{-1} g Q_{1} \Gamma\left(v^{(1)}+v^{(2)}\right)+V_{1}\left(T^{(1)}+T^{(2)}\right)+V_{2}\left(C^{(1)}+C^{(2)}\right)+\Pi f_{1}, \tag{2.1}\\
& \frac{d v^{(2)}}{d t}=-\nu^{-1} g Q_{1} \Gamma\left(v^{(1)}+v^{(2)}\right) \tag{2.2}\\
& \frac{d T^{(1)}}{d t}=-\left(\chi+\alpha^{2} D N\right) A_{2} T^{(1)}-\alpha D N A_{2} C^{(1)}-V_{3}\left(v^{(1)}+v^{(2)}\right)-b_{1} Q_{2} \Gamma\left(v^{(1)}+v^{(2)}\right) \tag{2.3}\\
& \frac{d T^{(2)}}{d t}=b_{1} Q_{2} \Gamma\left(v^{(1)}+v^{(2)}\right) \tag{2.4}\\
& \frac{d C^{(1)}}{d t}=-D A_{2} C^{(1)}-\alpha D A_{2} T^{(1)}+V_{4}\left(v^{(1)}+v^{(2)}\right)-b_{2} Q_{2} \Gamma\left(v^{(1)}+v^{(2)}\right) \tag{2.5}\\
& \frac{d C^{(2)}}{d t}=b_{2} Q_{2} \Gamma\left(v^{(1)}+v^{(2)}\right) \tag{2.6}
\end{align*}
$$

Where A_{1}, A_{2} are self - adjoint, positive definite operators

$$
\begin{array}{ll}
D\left(A_{1}\right) \subset \tilde{W}_{2,0}^{1}(\Omega), & D\left(A_{1}^{1 / 2}\right)=\tilde{W}_{2,0}^{1}(\Omega) \\
D\left(A_{2}\right) \subset H_{2,0}^{1}(\Omega), & D\left(A_{2}^{1 / 2}\right)=H_{2,0}^{1}(\Omega)
\end{array}
$$

The operators Q_{1}, Q_{2} are the linear and compact operators

$$
\begin{gathered}
Q_{1}: H_{-} \rightarrow \tilde{W}_{2,0}^{1}(\Omega) \\
Q_{2}: H_{-} \rightarrow H_{2,0}^{1}(\Omega) \\
V_{1} T \equiv g \beta_{1} \Pi(T \gamma), \quad V_{2} C \equiv g \beta_{2} \Pi(C \gamma) \\
V_{3} u \equiv b_{1}(u \gamma), \quad V_{4} u \equiv b_{2}(u \gamma)
\end{gathered}
$$

Π denotes the projector -- operator to $J(\Omega)$. So the problem (1.1) - (1.7) is equivalent to the following problem:

$$
\begin{equation*}
\frac{d X}{d t}=-N_{1} M_{1} A X+B X+f \tag{2.7}
\end{equation*}
$$

$$
\left.X\right|_{t=0}=X(0)
$$

where

$$
\begin{aligned}
& X=\left(v^{(1)}, v^{(2)}, T^{(1)}, T^{(2)}, C^{(1)}, C^{(2)}\right)^{\perp} \\
& A=\left(\begin{array}{cccccc}
\nu A_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & A_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & A_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad N_{1}=\left(\begin{array}{cccccc}
I & 0 & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 & 0 \\
0 & 0 & I & 0 & 0 & 0 \\
0 & 0 & 0 & I & 0 & 0 \\
0 & 0 & 0 & 0 & N^{-1} & 0 \\
0 & 0 & 0 & 0 & 0 & I
\end{array}\right) \\
& M_{1}=\left(\begin{array}{cccccc}
I & 0 & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 & 0 \\
0 & 0 & \chi+\alpha^{2} D N & 0 & \alpha D N & 0 \\
0 & 0 & 0 & I & 0 & 0 \\
0 & 0 & \alpha D N & 0 & D N & 0 \\
n & 0 & 0 & 0 & 0 & I
\end{array}\right) \\
& B=\left(\begin{array}{cccccc}
\nu \rho^{-1} g Q_{1} \Gamma & \nu \rho^{-1} g Q_{1} \Gamma & V_{1} & V_{1} & V_{2} & V_{2} \\
\nu \rho^{-1} g Q_{1} \Gamma & \nu \rho^{-1} g Q_{1} \Gamma & 0 & 0 & 0 & 0 \\
V_{3}-b_{1} Q_{2} \Gamma & V_{3}-b_{1} Q_{2} \Gamma & 0 & 0 & 0 & 0 \\
b_{1} Q_{2} \Gamma & b_{1} Q_{2} \Gamma & 0 & 0 & 0 & 0 \\
V_{4}-b_{2} Q_{2} \Gamma & V_{4}-b_{2} Q_{2} \Gamma & 0 & 0 & 0 & 0 \\
b_{2} Q_{2} \Gamma & b_{2} Q_{2} \Gamma & 0 & 0 & 0 & 0
\end{array}\right) \\
& f=\left(\begin{array}{llllll}
\Pi \\
f_{1} & 0 & 0 & 0 & 0 & 0
\end{array}\right)^{\perp}
\end{aligned}
$$

It is clear that the operators N_{1}, M_{1} are positive and limited, the operator A is self-adjoint positive definite and the operator B is limited.

Let us realize in the equation (2.7) the change of variable $X=N_{1}^{1 / 2} Y$, we receive

$$
\begin{equation*}
\frac{d Y}{d t}=-N_{1}^{1 / 2} M_{1} A N_{1}^{1 / 2} Y+N_{1}^{-1 / 2} B N_{1}^{1 / 2} Y+N_{1}^{-1 / 2} f \tag{2.8}
\end{equation*}
$$

Since $A N_{1}^{1 / 2}=N_{1}^{1 / 2} A$, it follows from (2.8) that

$$
\begin{equation*}
\frac{d Y}{d t}=-N_{1}^{1 / 2} M_{1} N_{1}^{1 / 2} A Y+N_{1}^{-1 / 2} B N_{1}^{1 / 2} Y+N_{1}^{-1 / 2} f \tag{2.9}
\end{equation*}
$$

It is easy to see that the operator $M_{2}=N_{1}^{1 / 2} M_{1} N_{1}^{1 / 2}$ is positive and limited. Realizing in the equation (2.9) the change of variable $Z=M_{2}^{-1 / 2} Y$ we get

$$
\begin{gather*}
\frac{d Z}{d t}=-M_{2}^{1 / 2} A M_{2}^{1 / 2} Z+M_{2}^{-1 / 2} N_{1}^{-1 / 2} B N_{1}^{1 / 2} M_{2}^{1 / 2} Z+M_{2}^{-1 / 2} N_{1}^{-1 / 2} f \tag{2.10}\\
\left.Z\right|_{t=0}=Z_{0}=M_{2}^{-1 / 2} N_{1}^{-1 / 2} X_{0} \tag{2.11}
\end{gather*}
$$

The operator $M_{2}^{1 / 2} A M_{2}^{1 / 2}$ is self-adjoint positive definite, the operator $M_{2}^{-1 / 2} N_{1}^{-1 / 2} B N_{1}^{1 / 2} M_{2}^{1 / 2}$ is limited, so we get [7].

Theorem. Let $u(0) \in \tilde{W}_{2,0}^{1}(\Omega), p_{\Gamma}(0) \in H_{-}, T(0) \in H_{2,0}^{1}(\Omega), C(0) \in H_{2,0}^{1}(\Omega)$ then there exists an unique generalized solution of the problem (1.1) - (1.7).
(xem tiếp trang 19)

