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Abstract. Transonic flow is a mixed flow of subsonic and supersonic regions. Because
of this mixture, the solution of transonic flow problems is obtained only when solving the
differential equations of motion with special treatments for the transition from subsonic re-
gion to supersonic region and vice versa. We built codes solving the full potential equation
and Euler equations by applying the finite difference method and finite volume method,
and also associated with software Fluent to consider the viscous effects. The analysis of
results calculated for cases of transonic flow over profiles with blunt and angled leading
edges shows more clearly the physical nature of the gas - solid interaction at leading edges
in the mixed flow and the optimal application of each profile in transonic flows.
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1. INTRODUCTION

In order to solve transonic flows (with free flow Mach numbers M∞ ≥ 0.7), it
is necessary to use the equations of compressible flow. In the assumption of potential
flow, differential equations of compressible flow are Euler equations and full potential
equation. For incompressible flows (with Mach numbers M∞ < 0.3), by considering the
constant density, the Euler equations and the full potential equation are reduced to the
Laplace equation of potential (elliptic form). Whatever the method, the transonic prob-
lem needs to treat the transition from subsonic flow zones to supersonic flow zones and
vice versa. Motion differential equations in this transition zone change back and forth
from elliptic form to hyperbolic form. The appearance of a supersonic region can cause
shock waves. The method of Euler equations permits to calculate cases with relatively
strong shock waves, but the algorithm is complex, the computer memory is required
large and the running time is long. The method of full potential equation (FPE) allows
calculating cases with not too strong shock waves with a maximal local Mach number
M < 1.5. The FPE method saves the memory and running time. In fact, when flow hav-
ing strong shock wave, it may appears a strong interaction between the shock wave and
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the boundary layer. That makes a relatively large difference of results calculated by the
viscous flow theory and the inviscid flow theory. In these cases, it is necessary to use the
viscous method. Viscous flow calculations have be done here by using Fluent software
with stringent verification operations to ensure accuracy in the application domain.

2. METHODS OF RESOLUTION

2.1. Euler equations and method of solving
Differential equations of inviscid flow in the general case are Euler’s equation [1].
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where u, v are velocity components; fex, fey are external force components; ρ is the den-
sity; p is pressure, p = (γ− 1)ρ

[
E− (u2 + v2)

/
2
]
; E and H are the internal energy and

enthalpy H = E + p/ρ; E = c2/γ(γ− 1) + (u2 + v2)/2 with c is the speed of sound and
γ is the ratio of specific heats.

For subsonic flows, entropy remains constant and uniform in the whole flow do-
main. The numerical dissipation generated by the numerical scheme will mimic in some
way the physical dissipation. Seen from the aspect of the discretization, the computer
cannot distinguish physical dissipation from numerical dissipation. However for tran-
sonic flows, the transition from subsonic flow regions to supersonic flow regions and
vice versa, and the increase of entropy require suitable numerical schemes in order to
avoid differences caused by numerical dissipation. When physical dissipations in the
left-hand side and in the right-hand side at a point are different, it is necessary to use a
scheme depending on time in the steady flow. Therefore, time integration methods for
space discretized equations are used in this case. The relationship between the time step
and the space interval is expressed by the Courant number.

We can write Eq. (1) under the following general form

∂U
∂t

+
∂ f
∂x

+
∂g
∂y

= Q. (2)

The use of coupled time scheme allows treating a discontinue transition from left
to right, when one side the flow is subsonic and the other side it is supersonic, and vice
versa [2]. The integral time is done by the method of Runge-Kutta 4. Eqs. (1) and (2) are
solving by a finite volume method. Conservative integral equation for a volume element
Ωj is written ∫

Ωj

∂U
∂t

dΩ +
∫
Ωj

~∇.~FdΩ =
∫
Ωj

QdΩ, (3)

where ~F is a vector of components f and g.
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Fig. 1. a) Cell vertex (finite volume mesh); b) Generation of triangular mesh for Naca 4412

Consider a mesh having triangular cells (Fig. 1). Using Green’s formula for the
domain Ωj leads to the following discretized scheme

Ωj
∂Uj

∂t
+

1
2

6

∑
side=1

[( fk + fk+1)(yk+1 − yk)− (gk + gk+1)(xk+1 − xk)] = 0,

where k and k + 1 are the starting and ending points of each side and the point k = 7
coincides with k = 1.

The summation extends over all the nodes by assembling terms such as

( f1 + f2)(y2 − y1) + ( f2 + f3)(y3 − y2) + ... = f2(y3 − y1) + ...− y2( f3 − f1) + ...

we obtain the alternative formulation
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∂t
+

1
2

6

∑
k=1

[ fk(yk+1 − yk−1)− gk(xk+1 − xk−1)] = 0. (4)

With a scheme of 6 triangles associated to point j: y0 = y6; y7 = y1; x0 = x6; x7 = x1
(and similar for f , g). The index ′ j′ is for the control volume and the index ′k′ is for
the triangle next to the control triangle. f jk and gjk are determined by the scheme of

flux splitting. The first order upwind scheme for a numerical flux is written: f ∗(1)i+1/2 =

f ∗(Ui, Ui+1), and the second order upwind scheme is: f ∗(2)i+1/2 = f ∗(UL
i+1/2, UR

i+1/2).

UL
i+1/2 = Ui +
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4
,
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4
,

(5)
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where δ indicates the wave property, getting the values 0, 1,−1. The indexes ′L′ and ′R′
are for the left and right sides at the considering position. In summary, the second order
linear scheme with time (split flux scheme) for flow having different rules in left and right
sides are written as follows

f ∗(2)i+1/2,j = f+(UL
i+1/2,j) + f−(UR

i+1/2,j),

g∗(2)i,j+1/2 = g+(UL
i,j+1/2) + g−(UR

i,j+1/2).
(6)

Four steps of the Runge-Kutta method with time are written

U(1)
j = Un

j −
∆t α1Rn

j

Ωj
, U(2)

j = Un
j −

∆t α2R(1)
j

Ωj
,

U(3)
j = Un

j −
∆t α3R(2)

j

Ωj
, U(n+1)

j = Un
j −

∆t α4R(3)
j

Ωj
,

(7)

where α1 = 1/4; α1 = 1/6; α3 = 3/8; α4 = 1.

2.2. Full potential equation and method of solving
The equation for the full potential Φ is written as [3](

a2 −Φ2
x
)

Φxx +
(

a2 −Φ2
y

)
Φyy − 2ΦxΦyΦxy = 0, (8)

where a is speed of sound; derivatives Φx = ∂Φ/∂x; Φy = ∂Φ/∂y; Φxx = ∂2Φ/∂x2;
Φyy = ∂2Φ/∂y2; Φxy = ∂2Φ/∂x∂y.

Eq. (8) is solved by finite difference method. The transition from subsonic region
to supersonic region is done by the transfer from centered finite difference scheme to the
backward scheme (Fig. 2).

(a) (b)

Fig. 2. a) Finite difference scheme for supersonic regions; b) Generation of grid
by solving Laplace equation (profile f10)
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Derivatives with centered scheme in subsonic region are written as(
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(9)

Derivatives with backward scheme in supersonic region are written as(
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(10)

Boundary conditions for the Euler equations (1) and the full potential equation (6)
are slid conditions on the profile contour, Joukowski condition at the trailing edge and
conditions of small disturbance potential for the far-field boundary.

3. ANALYSIS OF RESULTS

3.1. Comparison of results
Numerical results calculated from the programming codes by solving the Euler

equations and the full potential equations were compared with each other and compared
with experimental results to verify the accuracy of the built programs. Results calculated
by using Fluent software are also compared with experimental results and the numerical
results to ensure the correctness of Fluent software application operations. The following
graphs represent aerodynamic characteristics of profile about the distribution of pressure
coefficients cp of upper and lower sides on the dimensionless chord x/C (C is the profile

chord, cp =
p− p∞
1
2

ρV∞

with p∞ and V∞ are the pressure and the velocity of the free flow in

experimental conditions of zero altitude).
Fig. 3 shows numerical results on pressure coefficient calculated from the program-

ming codes by the Euler method and the FPE method for Naca 0012, the angle of inci-
dence α = 0◦ and the free Mach number M∞ = 0.8 in comparison with experimental
results [4]. This case is symmetric, so the results on the upper an on the lower are over-
lapping. The comparison shows that similarities of the experimental result and the nu-
merical results calculated by the Euler code and the FPE code. There are some small
differences at the discontinue position where occurs the shock wave. At this position,
numerical results depend on the method of resolution, and it is difficult to determine
them exactly by experiment.

Fig. 4 presents results on coefficient of pressure and for the case of Naca 0018,
α = 2.65◦ and M∞ = 0.7 calculated by Euler code and by Fluent software in comparison
with experimental results [4]. In this case, the shock wave on upper side is relatively
strong. Values of pressure coefficient represented in Fig. 5 are calculated by Fluent soft-
ware in comparison with experimental results for Naca 0012, α = 2.98◦, M∞ = 0.8. The
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Fig. 3. Pressure coefficient - Comparison of
present numerical results (Euler method and
FPE method) with experimental results [4]
(Naca 0012, α = 0◦, M∞ = 0.8)

Fig. 4. Pressure coefficient - Comparison of nu-
merical results by Euler method, by Fluent
software with experimental results [4] (Naca
0018, α = 2.65◦, M∞ = 0.7)

Fig. 5. Pressure coefficient - Comparison of results of Fluent with experiment [4]
(Naca 0012, α = 2.98◦, M∞ = 0.8)

two cases in Fig. 4 and Fig. 5 are flows having strong shock wave with maximum local
Mach number greater than 1.4. These comparisons show similarities between numerical
results and experimental results that verify the accuracy of the built codes, as well as the
exploitation of Fluent software, and allow applications to the study.

3.2. Cases of subsonic-transonic flow 0.65 < M∞ < 1

Consider the profile Naca 0012 with blunt leading edge (blunt LE) and the para-
bolic profile f8 with angled leading edge (angled LE) for an example of calculation. The
two profiles Naca 0012 and f8 have maximum thickness around 12% of chord. Fig. 6
presents results of Mach contour and Mach field calculated for Naca 0012 and f8 with
incidence angle α = 0◦ and free Mach number M∞ = 0.8. At this flow regime, on the pro-
file appear big supersonic regions ended by shock waves with maximum Mach number
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Mmax = 1.24 for Naca 0012 and Mmax = 1.3 for f8. However, the position of supersonic
regions is very different for two profiles Naca 0012 and f8. The distributions of Mach
number and pressure coefficient on the profile contour are shown in Fig. 7.

Fig. 6. Mach Contour and Mach field for Naca 0012 and f8 (α = 0◦, M∞ = 0.8)

Fig. 7. Mach number and pressure coefficient on profile contour for Naca 0012 and f8
(α = 0◦, M∞ = 0.8)

With the angle of incidence α = 0◦, the profiles Naca 0012 and f8 do not create
the lift. Consider the drag for these symmetrical cases. In Fig. 8 are presented drag
coefficients with free Mach number calculated for Naca 0012 and f8 by using inviscid
method (Euler code) and the viscous method (Fluent). It is observed that for the range
of transonic flow with M∞ < 1, drag coefficients of the two profiles Naca 0012 and f8
are not very different, and there are not great differences between inviscid and viscous
calculations.
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Fig. 8. Drag coefficient for Naca 0012 and f8 (α = 0◦)

Consider the case of the incidence angle α = 4◦. The useful aerodynamic force
is the lift. Fig. 9 shows results on the lift coefficient and drag coefficient calculated for
Naca 0012 and f8. It might be seen that in the range of transonic flow with M∞ < 1,
lift coefficients and drag coefficient of the profile Naca 0012 are respectively greater than
those of the parabolic profile f8.

Fig. 9. Lift coefficient and drag coefficient for Naca 0012 and f8 (α = 4◦)

A special point for the range of free Mach numbers 0.7 < M∞ < 0.9, results calcu-
lated by viscous theory and inviscid theory are very different for the two profiles Naca
0012 and f8. In order to explain the effect, see results on Mach lines calculated for flow
M∞ = 0.86 in Fig. 10. With the free Mach number M∞ = 0.86, differences between in-
viscid and viscous results are relatively largest. In inviscid calculations, the supersonic
region on the upper profile is much larger than that on the lower profile. This large dif-
ference much shortens in viscous calculations. It is shown that differences in the position



Calculation of transonic flows around profiles with blunt and angled leading edges 9

and dimension of supersonic regions appeared on Naca and parabolic profiles are caused
by the attack of flow on blunt LE and angled LE.

Fig. 10. Mach line - Supersonic zone shock wave by viscous and invicid calculations (Naca 0012
and f8, α = 4◦, M∞ = 0.86)

Consider the ratio of lift coefficient on drag coefficient to assess the quality of aero-
dynamic profiles that is shown in Fig. 11. With free Mach number M∞ < 0.86, the aero-
dynamic quality of Naca 0012 (blunt LE) is much better than that of f8 (angled LE). How-
ever, with 1 > M∞ > 0.86, drag coefficients increase and aerodynamic qualities decrease.
This is the range of transonic flows having too low efficiency, it is often not used.

Fig. 11. Ratio of lift coefficient on drag coefficient for Naca 0012 and f8 α = 4◦
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3.3. Cases of supersonic-transonic flow 1 < M∞ < 1.5

With free Mach number M∞ > 1, shock waves appear right at the surrounding
leading edge. Supersonic flows can produce oblique shock waves attached the angled
leading edge in conditions of the free Mach number being high enough and the pointed
angle being small enough. For free Mach numbers 1 < M∞ < 1.5, it is possible to do
not produce an oblique shock wave at angled leading edge, and these are supersonic
transonic flows. For these flows, shock waves are detached from the angled leading edge
and form a curved shock wave located in front of leading edge. The detached curved
shock wave for a profile with angled LE (as f8) causes a big energy loss. That is similar
to a profile with blunt LE (as Naca 0012). This phenomenon is illustrated in Fig. 12 with
the graphs of drag coefficient calculated for Naca 0012 and f8 at incidence angles α = 0◦

and α = 4◦. It can be seen that only when free Mach numbers M∞ > 1.5, losses of
flow through the profile f8 (angled LE) are smaller than losses for the profile Naca 0012
(blunt LE). Note that in these supersonic transonic flows, drag coefficients calculated by
inviscid and viscous theories are not much different. This is explained by the absence of
interactions between boundary layer and shock wave, and losses of boundary layer are
too small by comparison with losses of shock waves.

Fig. 12. Drag coefficient for Naca 0012 and f8 (α = 0◦, α = 4◦, M∞ > 1)

The formation of detached curved shock wave for a profile with angled LE with
free Mach number M∞ = 1.3 (i.e. 1 < M∞ < 1.5) can be seen in Fig. 13, in which on the
left side are shown streamlines and shock waves for the parabolic profile f8 (α = 0◦), and
on the right side presented the limiting line for oblique shock waves of wedge [5]. The
parabolic profile f8 has angled leading edge of θ = 13.86◦ that corresponds to the critical
Mach number M∞ min = 1.55. So, with M∞ = 1.3 < M∞ min a detached curved shock
wave appears in front of leading edge.

With the incidence angle α = 4◦, the flow becomes asymmetric between the upper
and the lower sides. Due to this asymmetry, at the trailing edge, oblique shock wave on
the upper side much stronger than oblique shock wave on lower side. Results in Fig. 14
illustrate this comment. At the free Mach number M∞ = 1.3, subsonic regions formed
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Fig. 13. Streamlines, detached curved shock wave for f8 and limiting line for
oblique shock waves of wedge

Fig. 14. Curved shok waves and subsonic regions for f8 and Naca 0012 (M∞ = 1.3, α = 4◦)

around the trailing edge are very different for the blunt LE profile Naca 0012 and the
angled LE profile f8.

Fig. 15 presents comparisons between results of aerodynamic quality for the profile
f8 and the profile Naca 0012 with α = 4◦, 1 ≤ M∞ ≤ 2. It is observed that with M∞ < 1.3,
the aerodynamic quality of profiles f8 and Naca 0012 is equivalent. Only with free Mach
numbers M∞ > 1.6 (supersonic flow), the aerodynamic quality of profile with angle
leading edge is increased by the shift from detached shock waves into attached shock
wave. Obviously, the aerodynamic quality of profile Naca 0012 with blunt leading edge
is too bad in supersonic flows M∞ > 1.6 due to a strong detached shock wave in front of
leading edge.
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Fig. 15. Ratio CL/CD for f8 and Naca 0012 (α = 4◦, M∞ > 1)

4. CONCLUSIONS

In fact, transonic flows are used for large civil aircraft and other flight objects. The
implementation of computational methods and deep understandings of physical nature
of the transonic flow are always needed [6, 7]. The above analysis for subsonic-transonic
flow and supersonic-transonic flow allows drawing the following conclusions.

It is clear that transonic flows are very complex problems. Mathematically, the
differential equations of transonic motion take the mixture between elliptic, parabolic
and hyperbolic types. Physically, transonic flows are very sensitive to any changes in the
aerodynamics, meaning that only a very small change in geometry or dynamics, it can
lead to very large changes in the physical nature of the phenomenon, and of course a very
large change in aerodynamic characteristics. For transonic flow problems, it is difficult
to draw any analytic rule. The problems require solving the differential equations for
each specific case. This report refers to the transonic flow problems, the use of profiles
having blunt and angled leading edges with advantages and disadvantages and practical
applications. In order to draw conclusions on this issue, it is necessary to split the Mach
range 0.65 < M∞ < 1.5 into two domains 0.65 < M∞ < 1 (subsonic-transonic flow) and
1 < M∞ < 1.5 (supersonic-transonic flow).

- With the supersonic-transonic flow domain (M∞ > 1), the profile with blunt
leading edge is not usable due to the formation of detached shock wave in front of the
leading edge that causes too large losses of energy. However, if using the profile with
angled leading edge, it is only effective when forming oblique shock waves attached the
leading edge. But with free Mach numbers 1 < M∞ < 1.5, shock waves are detached
the nose, even using an angled nose. So, the range of free Mach numbers 1 < M∞ < 1.5
should not be used in practice.

- With the subsonic-transonic flow domain (0.65 < M∞ < 1), using the profile with
blunt leading edge is more effective. However, supersonic flow regions formed on the
profile are very different in terms of strength and size, very different on the upper side
and the lower side, and they can produce normal shock waves ended on the profile or
oblique shock waves at the trailing edge. The aerodynamic characteristics of the gas -
solid interaction change very sensitively. The range of free Mach numbers 0.9 < M∞ < 1
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has very low efficiency, should not be used. The range of free Mach numbers 0.7 < M∞ <
0.9 has very high performance if choosing optimal modes.

- Especially, for transonic flows with free Mach numbers 0.7 < M∞ < 0.9, nor-
mal shock waves often appear on the profile. This is also the mode that has a sensitive
interaction between the shock wave and the boundary layer. The interaction can make
a separation of boundary layer and causes large variations of aerodynamic character-
istics [8]. So, inviscid and viscous calculations give different results. For this range of
free Mach number, it is necessary to use the viscous theory and especially experimental
results. These transonic flows are extremely sensitive to very small changes in profile ge-
ometry, incidence angle and free Mach number. Only a very small change of one among
these parameters can lead to very large changes in the aerodynamic characteristics and
they can be transformed from positive to negative and vice versa. Therefore, it requires a
high accuracy in the calculation.
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