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Abstract. This paper deals with the problem of inverse kinematics and dynamics of
a measuring manipulator with kinematic redundancy which was designed and manu-
factured at Hanoi University of Technology for measuring the geometric tolerance of
surfaces of machining components. A comparison between the calculation result and the
experimental measurement is also presented.

1. INTRODUCTION

Robotic systems are coming into general use in the manufacturing industry for
measuring geometric tolerances of manufactured products. These robots are equipped
with a measuring system and can be used very flexibly for complicated measuring tasks,
in particular at locations that are difficult to access.

In the past few years the robotics community evolved growing interest in measur-
ing manipulators which have the characteristic of kinematic redundancy to offer greater
flexibility. A kinematically redundant manipulator is a serial robotic arm that has more
independently driven joints than necessary to define the desired pose (position and orien-
tation) of its end-effector. In other words, a manipulator is said to be redundant when the
dimension of the workspace m is less than the dimension of the joint space n. The extra
degree-of-freedom presented in redundant manipulators can be used to avoid obstacles, to
increase the workspace or to optimize the motion of the manipulator according to a cost
function. Particular attention has been devoted to the study of redundant manipulators
in the last twenty years [1-2]. A number of scientific works are focused upon kinematic
analysis [1, 3, 5, 14], motion planning [4, 6] and controls [2, 7, 10] of redundant robot
manipulators. Summaries of much of the past work are given in refs. [8-12]. Although
different methods and solutions have been proposed and reported, the theory related to
the problem continues to develop and new approaches are regularly being published.

This paper presents some results of the inverse dynamic analysis and control algo-
rithm of a redundant manipulator called BKHN-MCX-04, which has been designed and
manufactured at Hanoi University of Technology for measuring the geometric tolerance of
surfaces of machining components. The mechanical model of the measuring manipulator is
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introduced in Section 2. The inverse kinematic problem of the manipulator is investigated
in Section 3. Section 4 presents the results of the inverse dynamic analysis. Finally, the
experimental investigation to verify the obtained theoretical results is given in Section 5.

2. MECHANICAL MODEL OF THE MEASURING MANIPULATOR

Fig. 1 shows the mechanical model of the manipulator BKHN-MCX-04 as an open
kinematic chain of rigid bodies. The manipulator is driven directly by six servomotors.
The first motor drives link 1 rotating about the vertical axis zg. Rotating axes of the
next three motors which drive links 2, 3 and 4 are parallel. The fifth servomotor drives
link 5 to rotate about the link axis. Links 2, 3, 4 and 5 are assumed to move in a plane.
While the first four motors are used to manipulate point Os moving along a prescribed
trajectory corresponding to the measuring task, the fifth motor changes the orientation of
link 5 to accord with the measuring surface. The last motor located at Os drives the end-
effector link 6 to come into contact with the measuring surface. With such configuration,
the manipulator is able to perform flexibly measurements for geometrically complicated
surfaces. Design parameters of the manipulator are given in Tab. 1.

Table 1. Design parameters of the manipulator

link ¢ | Distance O;_10; (m)
0.14
0.15
0.20
0.0

O O | W DN

Fig. 1. Structural diagram and coordinate frames of manipulator BKHN-MCX-04

First, we introduce the fixed coordinate frame {xq, yo, 20} located at point O. In
addition, the zp-axis is chosen to be in line with the first motor axis. For convenience, the
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moving coordinate frame {z;, y;, z;} attached to link 7 is chosen according to the Denavit-
Hartenberg (DH) notation [9] as shown in the figure. The moving configuration of the
manipulator is described by six rotation angles ¢; (for i = 1, 2,..., 6). The position and
orientation of the end-effector link 6 can be determined by a set of three coordinates of
point O5 and two rotation angle as g5, gg. Thus, the dimension of the joint space n = 6
and the dimension of the workspace m = 5. The degree of redundancy of the overall system
isr=n—m=1.

3. INVERSE KINEMATIC ANALYSIS

As mentioned in the previous section, the real motion trajectory of point Os in-
fluences essentially the accuracy of measurements. Therefore, the following inverse kine-
matic analysis deals with the calculation of angles ¢; (for i = 1, 2,..., 5) for a desired
motion of point Os. Let x = [z, yg, zE]T be the vector of workspace coordinates (Carte-
sian variables) of point £ = Os in the fixed coordinate frame {Oxgyozo} and q =
[q1, @2, g3, q4, q5]T the vector of joint angles (joint variables), the degree of redundancy
for this case is two. In general, the joint angles q and workspace coordinates x are related
by the following expression

x = f(q) (1)
where f is a vector function representing the manipulator forward kinematics. Eq. (1)

can be derived conveniently using DH-parameters given in Tab. 2, where we use the DH-
notation d1 = 001, a9 = 0102, az = 0203, d5 = 0405.

Table 2. DH-parameters

Link QZ dz a; (67

1 q1 d1 0 7T/2
2 q2 0 a9 0

3 q3 0 as 0

4 q4 0 0 -m/2
9 a5 d5 0 ™ / 2

Thus, let H; be the 4x4 matrix transforming the coordinates of a point in the
coordinate frame {z;_1, y;—1, zi—1} into the coordinate frame {x;, y;, z;}, one obtains

01 0 Sl 0 02 —Sg 0 (1202 03 —Sg 0 agcg
o Sl 0 —01 0 o Sg 02 0 (IQSQ o Sg 03 0 agsg
H1_010d1’H2_0 o 1 o |"™={0 0o 1 0
_0 0 0 1 0 0 0 1 0 0 O 1
[cy 0 -S4 0] [05 0 S5 0
_ 54 0 04 0 . 55 0 —05 0
Hi=1 g 21 0 o™= 0 1 o ds |-
i 0 0 0 1 0 O 0 1
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where we use short notations S; = sin(g;), C; = cos(g;). The coordinate transformation
matrix between the coordinate frame {Oxgyozo} and {Osx5y525} takes the form

D; = HHH H3H,H;

C1C234C5 — 5155 —C1S2314 5105 + C155C234  —d5C15234 + a2C1Cy + azC1Coa3
51C234C5 + C1S5  —S515234 —C1C5 + 5155C234  —d5515234 + a251C2 + a351Ca3
5234C5 Ca34 555234 dy + d5sCa34 + a252 + a3.S23
0 0 0 1

where S;jir = sin(g; + ¢; + qx) and Cjji, = cos(q; + ¢ + qx). The use of elements of matrix
D5 yields the relationship between joint variables q and Cartesian variables x

zp = a2C1Cs + a3C1Caz — d5C'1 5234
ye = a251C2 + a351Ca3 — d5515234 (2)
zp = 2859 + a3S93 + d5Co34 + db

Eq. (2) can be expressed in the same matrix form as Eq. (1). Differentiating Eq. (1)
with respect to time, we obtain the relation between generalized velocities

x=J(a)q 3)
_ of

where J(q) = 7 is the Jacobian matrix

Jzg Orxg Orp Ozp g,

91 9g¢2  Ogqzs  Oqu 9% Ju Jig Sz Ju J
5 5 9 9 9 11 12 13 14 15
S ye  9Yp 9YE  GYE GYE | _ |\ g Jpe Joz Jog Jos

ggg a@gg ggg ggg ggg J31 Jz2 J33 Jza J3s

L O0pn Oq2  Oq3 Oqs Ogs |

The elements of J(q) are
J11 = —d5515234 — 351023 — a251C2;  J12 = —d5C1Ca34 — a3C1.S23 — a2C1.S2;
J13 = —d5C1C234 — a3C1523; J14 = —d5C1C234;5 J15 =0
Jo1 = —d5C1 5234 + a3C1Caz + a2C1 Cy; Joz = —d;581Ca34 + a351 523 + a251.52;
Jog = —d5 510234 + a3S1523; Jog = —d551Ca34; Jos = 0; J31 = 0;
J32 = —d55234 + a3Ca3 + a2Co; J33 = —d5S5234 + a3Ca3; J34 = —d5S234; J35 =0

Due to kinematic redundancy of the manipulator, the general solution of Eq. (3)
can be given as follows [4], [7]

q=J"(q)x (4)
where J*(q) € R%*3 is the Moore-Penrose pseudo-inverse of matrix J(q) defined by
~1
I*(q) = 3" (a) [J(a)T" ()] (5)

Note that Eq. (4) leads to the least-squares solution that minimizes ||x — Jq|| and
gives the minimum joint velocities for the desired workspace velocity [4]. Differentiating Eq.
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(3) again with respect to time, we obtain the relationship between generalized accelerations
as

% =J(a)q+J(a)q (6)
Eq. (6) yields
4=J"(q)[x— I(a)q (7)
The joint angles can be numerically calculated using the difference approximation
. Qk+1 — Gk
. Xk+1 — Xk

Substituting Egs. (8) and (9) into Eq. (4), one obtains
Q1 = qk + I (k) (K1 — x) (10)

For a given x, %, X we can calculate approximately joint variables q using Eq. (10)
and then angular velocities q using Eq. (4), angular acceleration g using Eq. (7). However,
only a rough solution of ¢ can be found using Eq. (10). A numerical algorithm to improve
the exactness of the solution is proposed in [15]. This numerical algorithm is based on
the correction of the increment Aq = qri11 — qx. The numerical results of the inverse
kinematic analysis will be presented in section 5.

4. INVERSE DYNAMIC ANALYSIS

The first step of the inverse dynamic analysis is to formulate the differential equa-
tions of motion of the manipulator which is generally expressed in the compact matrix
form [8, 9, 13]

M(a)d+ C(a,9)q +g(q) =T (11)
where M(q) € R%%6 denotes an inertia matrix, C(q, ¢)q € RS is a torque vector caused
by centrifugal and Coriolis forces, g(q) € R is a torque gravity vector, and 7 € RS
represents a joint torque vector. Note that vectors q, q,q have been determined from
results of the inverse kinematics and link 6 muss be considered in the dynamic calculation.
The second step aims at calculating joint torques 7 from the obtained equations of motion
corresponding to a desired trajectory of the end-effector.

The following notations are used to derive equations of motion of the manipulator:

m; mass of the link 4

r; = [zci, Yois ch-]T position vector of the center of mass C; in {Ozoyozo}

@ 0 07

rl(-i) = |::L'CZ-, Yo zCZ} position vector of the center of mass C; in {Oz;y;2;}

v; = 1; velocity of the center of mass C;
(@)

w, ’ angular velocity of link 7 with respect to {Ox;y;2;}

Jri(q) = a—rl translation Jacobian matrix of link 4

. (1)
J %2(q) = % rotation Jacobian matrix of link 4

A, rotation matrix of link ¢
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IZ(.i) inertia matrix of link ¢ with respect to C; in {Ox;y;2;}

Fig. 2. Position of the centers of mass

The 6x6 inertia matrix M(q) is defined by

M(a) = Y [3Fmi 3rs + 351035 (12)
i=1

The elements of matrix C(q, ¢) can be calculated from M(q) using the relationship
[13]
6
1 Omij Omlk Omjk .
= - 13
“ 2Z<0qk " oq,  oa ) (13)

k=1

where i =1,2,...,6 and j = 1, 2, ..., 6. The gravity torque vector g(q) is given by

g(q) = g—{j (14)

where II denotes the potential energy of the manipulator system.
Firstly, according to Fig. 2, the position vector r; of the center of mass C; is given
by

ri=roi+ Ar,  (i=1,2,..,6) (15)

i

()

where vectors r;’ are design parameters given in Tab. 3.
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Table 3. Coordinates of the centers of mass

Link g r”
B 7 B

1 0 (dr—1) |0
2 -((Ig - lg) 0 0
3 -(ag — lg) 0 0
4 0 0 ly
5 0 -(ds—15) |0
6 -(aﬁ — lﬁ) 0 0

Matrices A; and vectors ro; = [£04, Y0i, 20i]” can be calculated by using transfor-
mation matrix D; obtained in the last section. They are

_01 0 Sl 0 0102 —0152 Sl i (120102
Ai=15 0 =Cif,ro1=|0|, Ay=[5C =585 —Ci|, ro2=| a251C>
i 0 1 0 dq So Cy 0 i a5y + dy
[ C1Cy3 —C1893 51 asC1Cy + a301Ca3 |
Az =| 5103 51523 —Ci |, roz= | a251C2 +a351C3
Sa3 Ca3 0 d1+ a5z + azSaz |
[ C1Co34 —S1 —C1S234 a2C1C + a3C1Ca3
Ay=| 51Ca3s Ci1 —51534 |, roa= | a251C2 + a351Ca3
S234 0 Ca34 dy + a252 + a3523
[C10234C5 — 5155 —C1S234  S105 + C1S5Ca34
As = |510234C5 + C185  —515234 —C1C5 + 5155C34 |
i S234C5 Casq S55234
—d5C15234 + a2C1Co 4 a3C1 Ca3
ros = | —dsS15234 + a251C2 + a351Ca3

dy 4 d5Caz4 + a2S2 + azSa3

—C6S5155 — S6C15234 + C6C5C1C234  S6.5155 — C6C15234 — S6C5C1C234  S1C5 + S5C1C234
Ag = | C655C1 — 86515234 + C6C551C234 —S5655C1 — C6.515234 — S6C551C234 —C1C5 + 51.55C234
C5C6S5234 4+ S6C234 —C5865234 + CsC234 S55234

—a6C65155 + a2C1Co + (—a6S6C1 — dsCh) Sa34 + a6CsC5C1Ca34 + a3C1Co3
roe = agCsS5C1 + a251C2 + (—a6S6S1 — d5S51) S234 + a6CC551Ca34 + a351Cas
acC5C6S234 + (a6S6 + ds) Caza + a3Sa3 + a2S2 + dy

The angular velocities of the links with respect to the link-fixed coordinate frame
can be calculated using the relationship [13]

) = ATA, (16)
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The use of Eq. (16) yields

[ Saq S23q1 S234G1
1 ) 2 g 3 ! 4 el
w§ ) = q1 | , Wy ) = Cogr | s wé ) = Cazqr ) wz(l )= —(Q2 — 43— Q4)
| 0 G2 g2 + g3 Cas341
) [ C5S93461 — S5(g + d3 + G4)
wy’ = Cazaqr + G5

| S55234G1 + Cs(d2 + G3 + qa)

©) C5C6523441 + S6Ca34G1 — S5C6(G2 + d3 + da) + Se4s
wg’ = | —C58523441 + C6Ca34G1 + S556(d2 + 43 + 44) + Ceds
g6 + S55234G1 + C5 (g2 + 43 + da)

Using the obtained expressions of vectors r; and wl(-i) we get Jacobian matrices

[0 000 0O
Jpi=2-=0000 00 (17)
49 1oo0o0000

[ —1555C —158,C7 0 0 0 0

JTQZ%: 1501Cy 128182 0 0 0 0 (18)
a1 o G 00 00
ors [ —13591C231 — a251Cy  —1301S23 — aaC1 Sy —13C183 0 0 0
Jnga—: l301023+a20102 —l351523—a25152 _l351523 0 00 (19)
a 0 13C23 + a2Cs 13C23 0 0 0
1) 000000 ) S, 00 00 0
J%}:&a"% ~[10000 0], Jgggzag% =1 C, 0000 01/, (20
q 000000 q 0 10000
(3) Se3 00 0O OO (4) Sozqs 0 0 0O 0 0
J§>_ag§ —|Co 00 0 0 0 ,Jggg—ag4 =0 -1 -1 -1 0 0 (21)
q 0 1 1000 Cyss 0 0O 0 00
(5) S234C5 —S5 —S5 =55 0 0
i &8"? —| Cws 0 0 0 10 (22)
1 S23455 Cs Cs Cs 0 0
© w'® S6C234 + 5234C5Cs —S5Cs —S5Cs —S5Cs Sg 0
1 523455 Cs Cs Cs 0 1

Assumed that axes x;, y;, z; of the link-fixed coordinate frame are principal axes.
The inertia matrix IZ(.Z) of i-th link about the center of mass Cj, referred to the principal
axes, can be written in the form
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The potential energy of the system can be written in the form
6
II = ZmigTri (25)
i=1

where g = [0, 0, —g|” with the gravity acceleration g ~ 9.81 m/s?.
I =mygly +mag (1252 + d1) + m3g (13523 + a2S2 + di)
+mag (14C234 + a2S2 + a3S23 + d1)
+msg (I5C234 + a2S2 + a3S23 + d1)
+meg (l6S6C234 + l6C5C65234 + a2S2 + a3S23 + d5Caza + d1)
Substituting Eqgs. (17)-(24) into Eq. (12), we obtain the expression of the inertia
matrix M(q) of the manipulator. Matrix C(q, ¢) can then be determined using Eq. (13).
Substitution of Eq. (26) into (14) yields the gravity torque vector g(q). Finally, the joint
torque vector 7 = [r1, T2, T3, T4, T, 76! is given by Eq. (11). The formulation is im-
plemented conveniently by means of the software packet MAPLE. However, the obtained
expressions of M(q), C(q, q), g(q) and 7 can not be presented here in detail due to the

complexity of formulae. The inertia parameters of the manipulator are given in Tab. 4 for
the purpose of numerical calculation.

Table 4. Inertia parameters of the manipulator

Link ¢ m; I I, I,

xe Yy 21

(kg) (kgm?) (kgm?) (kgm?) (m)

1 2.0 4.0x1073 3.0x1073 1.0x1073 0.10
2 0.9 0.2x1073 3.0x1073 3.0x1073 0.06
3 1.2 0.5x1073 3.5%x1073 4.0x1073 0.10
4 1.1 0.6x1073 2.5%x1073 3.5x1073 0.04
5 0.5 0.7x1073 0.2x1073 0.3x1073 0.03
6 0.05 0.3x10~4 0.2x10~% 0.1x10~% 0.02

5. NUMERICAL EXAMPLE AND EXPERIMENTAL COMPARISON

5.1. Numerical example

Now we consider a numerical example with a simple motion law of point E as shown
in Fig. 3, which is described by the following time functions of coordinates

rxp =0.240.12 (1 — cos %t) (m); yg=0; zp=0.144+0.12sin %t (m) (27)

The following initial values are chosen for the joint angles q: ¢1(0) = 0,¢2(0) =
1.0472, ¢3(0) = 3.5511, q4(0) = 2.1206, g5 (0) =2.0 (rad). In addition, the motion of link
6 is assumed that ¢g = 7/2, ¢ = 0. Figs. 4-5 show the calculating results of the inverse
kinematics and dynamics corresponding to the given trajectory of point E in Eq. (27).
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Fig. 4. Time curves of the joint angles Fig. 5. Time curves of joint torques

5.2. Experiment

The experiment was done at the measuring manipulator designed and manufactured
at Hanoi University of Technology. The major design parameter of the manipulator have
been shown in Tabs. 1 and 4. During the test, the manipulator is controlled by a closed
—loop control system to drive point E moving along the trajectory as shown in Fig. 3. The
measurement of the real motion trajectory of point E was taken with optical transducers.
The signal used in this study has been recorded for a duration of 4 seconds. Fig. 6 shows
the experiment set-up. The measurement result is depicted in Fig. 7. As shown in Fig. 8,
a good agreement is obtained between the calculation result and the experimental result.

6. CONCLUSION

This paper deals with the problem of inverse kinematics and dynamics of a mea-
suring manipulator with kinematic redundancy which was designed and manufactured at
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prescribed trajectory

measuring object

(a) (b)

Fig. 6. (a) 3D-drawing, (b) the manufactured measuring manipulator

yE [m]

02 025 03 035 04

«E [m] 0.2 025 EI‘S ) 035 04
Fig. 7. The measured trajectory of point E Fig. 8 Comparison between the calculation
result (------- ) and the experimental results
(——) for the trajectory of point E

Hanoi University of Technology for measuring the geometric tolerance of surfaces of ma-
chining components. A comparison between the calculation result and the experimental
measurement is also presented. It has been shown that the theory and algorithm used in
this study provides a helpful tool to obtain exactly data for control tasks of redundant
manipulators.
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PHAN TiCH DONG HOC VA DONG LUC HOC NGUGC CUA ROBOT
PO DU DAN DONG BKHN-MCX-04

Bai bao dé cap tdi bai toan phan tich dong hoc va dong liic hoc ngudge clia tay may
16 bot do véi dic tinh du dan dong. Robot nay dude thiét ké va ché tao tai Truong Dai
hoc Béch khoa Ha noi dé phuc vu cho céc phép do do chinh xac hinh hoc ciia chi tiét gia
cong. Cac két qua tinh toan da dude so sanh ddi chiéu véi cac két qua do thie nghiém.



