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Abstract. This paper proposes a numerical procedure based on the well-known Newmark
integration method to determine initial conditions for the periodic solution of a system of
linear differential equations with time-periodic coefficients. Based on this, steady-state pe-
riodic vibrations of mechanisms with elastic elements governed by linearized differential
equations with time-periodic coefficients can be conveniently calculated. The proposed
procedure is demonstrated by a dynamic model of a planar four-bar mechanism with the
flexible coupler.
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1. INTRODUCTION

In high-speed machines, the motion of the transmission mechanisms is often com-
posed of a combination of rigid body motion and elastic deformation [1, 2]. A review
on the vibration and stability behavior of mechanisms with elastic links represents an
update to earlier literatures surveys on this subject [3–5]. Many researchers have tried to
represent the vibration of such mechanisms in a more and more realistic form. Up to now,
the following models are used for modeling of flexible links of mechanisms: continuum
models [6, 7], lumped parameter models [8, 9], finite element models [10–14].

In general, the mathematical formulation of this vibration problem is quite a com-
plicated nonlinear differential equation, for which an exact solution is practically impos-
sible. It is possible to calculate the transient solutions by the numerical methods. The
linearized equations of motion of an elastic mechanism that performs the steady-state
motion can then be expressed approximately by a set of n linear differential equations
having time-periodic coefficients

M(t)q̈ + C(t)q̇ + K(t)q = f(t), (1)
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where n× n matrices M(t), C(t), K(t) and excitation force vector f(t) in Eq. (2) are time-
periodic with the least period T [8–12]. For stability analysis, the homogeneous differen-
tial equation of Eq. (1) is considered

M(t)q̈ + C(t)q̇ + K(t)q = 0. (2)

This equation can also be represented in the form of Hill’s or Mathieu’s type equa-
tion as mentioned in [13, 15, 16]. Because the periodic vibrations are a commonly ob-
served phenomenon of mechanisms in the steady-state motion, a number of methods
and algorithms were developed for calculating periodic vibrations and dynamic stability
analysis [15–29]. Periodic solutions of Eq. (1) can be found directly by other specialized
techniques such as the harmonic balance method, the method of conventional oscillator,
the WKB method, etc. [24–27]. The T-periodic solution can also be obtained directly and
more conveniently by choosing an appropriate set of initial conditions for the vector of
variable q, and then solving Eq. (1) within interval [0 , T] under these conditions using
a numerical integration methods. For the last approach, an efficient numerical proce-
dure was developed to estimate the initial conditions for the T-periodic solution based
on the Runge-Kutta method, and tested by a number of applied problems [28, 29]. These
studies indicated that the agreement between the experimental and calculating results
with Runge-Kutta method is closer than the results calculated by the harmonic balance
method and WKB method. To investigate the dynamic stability of elastic mechanisms,
we can use Hill method [15] or numerical methods [28, 29].

In this paper, a numerical procedure based on the well-known Newmark integra-
tion method is developed to calculate steady-state periodic vibrations of elastic mecha-
nisms governed by linearized differential equations with time-periodic coefficients. The
proposed procedure is then demonstrated by a dynamic model of a four-bar mechanism
with the flexible coupler.

2. NEWMARK PROCEDURE FOR FINDING INITIAL CONDITIONS OF
PERIODIC VIBRATION OF LINEAR SYSTEMS

The procedure presented below for finding the T-periodic solution of Eq. (1) is
based on the Newmark direct integration method. Firstly, the interval [0 , T] is now di-
vided into m equal subintervals with the step-size h = ti − ti−1 = T/m. We use notations
qi = q(ti) and qi+1 = q(ti+1) to represent the solution of Eq. (1) at discrete times ti and
ti+1, respectively. The T-periodic solution must satisfy the following conditions

q(0) = q(T), q̇(0) = q̇(T), q̈(0) = q̈(T). (3)

Based on the single-step integration method proposed by Newmark, we obtain the
following approximation formulas [30, 31]

qi+1 = qi + hq̇i + h2
(

1
2
− β

)
q̈i + βh2q̈i+1, (4)

q̇i+1 = q̇i + (1− γ) hq̈i + γhq̈i+1, (5)

where qi, q̇i, q̈i are approximations to the displacement, velocity and acceleration vec-
tors at time ti, β and γ are the constant parameters that define the method. The linear
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acceleration method, in which a linear variation of the acceleration in the time interval
[ti , ti+1] is assumed corresponds to the case γ = 1/4 and β = 1/6. The average accel-
eration method is defined by choosing γ = 1/2, β = 1/4. This case corresponds to the
assumption that the acceleration is constant over the time interval [ti , ti+1] and equal to
1
2 (q̈i + q̈i+1) [31].

From Eq. (1) we have the following iterative computational scheme at time ti+1

Mi+1q̈i+1 + Ci+1q̇i+1 + Ki+1qi+1 = fi+1, (6)

where Mi+1 = M (ti+1) , Ci+1 = C (ti+1) , Ki+1 = K (ti+1) and fi+1 = f (ti+1) .
In the next step, substitution of Eqs. (4) and (5) into Eq. (6) yields(

Mi+1+γhCi+1+βh2Ki+1
)
q̈i+1= fi+1−Ci+1[q̇i+(1−γ)hq̈i]−Ki+1

[
qi+hq̇i+h2

(
1
2
−β

)
q̈i

]
.

(7)
The use of Eqs. (4) and (5) leads to the prediction formulas for velocities and dis-

placements at time ti+1

q∗i+1 = qi + hq̇i + h2
(

1
2
− β

)
q̈i, q̇∗i+1 = q̇i + (1− γ) hq̈i. (8)

Eq. (8) can be expressed in the matrix form as[
q∗i+1
q̇∗i+1

]
= D

 qi
q̇i
q̈i

 , (9)

with

D =

[
I hI h2 (0.5− β) I
0 I (1− γ) hI

]
, (10)

where I denotes the n× n identity matrix, 0 represents the n× n matrix of zeros. Eq. (7)
can then be rewritten in the matrix form as

q̈i+1 = (Si+1)
−1 fi+1 − (Si+1)

−1 Hi+1

[
q∗i+1
q̇∗i+1

]
, (11)

where matrices Si+1 and Hi+1 are defined by

Si+1 = Mi+1 + γhCi+1 + h2β Ki+1, (12)

Hi+1 =
[

Ki+1 Ci+1
]

. (13)

By substituting relationships (9) into (11) we find

q̈i+1 = (Si+1)
−1 fi+1 − (Si+1)

−1 Hi+1D

 qi
q̇i
q̈i

 . (14)

From Eqs. (4), (5) and (8) we get the following matrix relationship qi+1
q̇i+1
q̈i+1

 = T

 q∗i+1
q̇∗i+1
q̈i+1

 , (15)
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where matrix T is expressed in the block matrix form as

T =

 I 0 Iβh2

0 I Iγh
0 0 I

 . (16)

The combination of Eqs. (15), (9) and (14) yields a new computational scheme for
determining the solution of Eq. (1) at the time ti+1 in the form qi+1

q̇i+1
q̈i+1

 = T
[

D
− (Si+1)

−1 Hi+1D

]  qi
q̇i
q̈i

+ T

 0
0

(Si+1)
−1 fi+1

 . (17)

In this equation, the iterative computation is eliminated by introducing the direct
solution for each time step. Note that the matrices T and D are matrices of constants.

By setting

xi =

 qi
q̇i
q̈i

 , Ai+1 = T
[

D
− (Si+1)

−1 Hi+1D

]
, bi+1 = T

 0
0

(Si+1)
−1 fi+1

 . (18)

Eq. (17) can then be rewritten in the following form

xi = Aixi−1 + bi (i = 1, 2, . . . , m). (19)

Expansion of Eq. (19) for i = 1 to m yields

x1 = A1x0 + c1
x2 = A2A1x0 + c2
................................

xm =

(
1

∏
i=m

Ai

)
x0 + cm (20)

where c0 = 0, c1 = A1c0 + b1, c2 = A2c1 + b2, . . . , cm = Amcm−1 + bm.
Using the condition of periodicity according to Eq. (3), the last equation of Eq. (20)

yields a set of the linear algebraic equations(
I−

1

∏
i=m

Ai

)
x0 = cm. (21)

The solution of Eq. (21) gives us the initial value for the periodic solution of Eq. (1).
Finally, the periodic solution of Eq. (1) with the obtained initial value can be calculated
without difficulties using the computational scheme in Eq. (17).

3. PERIODIC TRANSVERSE VIBRATION OF THE FLEXIBLE COUPLER
OF A PLANAR FOUR-BAR MECHANISM

One of the most challenging problems in dynamics of machines is the calculation
of relative vibrations of elastic members. There are some important cases in which de-
formation plays an important role in the dynamic analysis. It happens, for instance, in
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lightweight high-speed mechanisms [3,4]. The occurrence of large base motion of a mech-
anism, in which all bodies are assumed to be rigid, can cause small relative vibrations of
flexible links. Conversely, small vibrations of flexible links lead to deviations of its mo-
tion from desired base motion, i.e. to dynamic errors.
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Fig. 1. Kinematic schema of a planar 4R-fourbar mechanism with flexible coupler

Planar four-bar mechanisms are widely used in reciprocating machines. Steady-
state vibrations, dynamic stability analysis and vibration control of the flexible planar
four-bar mechanism were the objective of a number of studies, e.g. [6, 7]. In this exam-
ple, a planar revolute-jointed 4-link mechanism with the flexible coupler is considered to
investigate the problem of relative transverse vibration of the coupler that becomes a se-
rious factor at high speed. The kinematic diagram of the mechanism is depicted in Fig. 1.
The origin of the ground-fixed coordinate frame {x0, y0} coincides with joint 0 of input
link 2. Assuming that the geometrical axis of the coupler (link 3) without deformation is a
segment of the straight line that is chosen for x-axis. Neglecting the longitudinal oscilla-
tion, the objective of the investigation is to derive analytically the governing equation of
the relative transverse vibration of the coupler in the direction of y-axis, and to apply the
numerical procedure described in section 2 for finding a periodic solution of the obtained
equation.

When the angular velocity Ω of input link 2 is assumed to be constant in the steady
state, the loop equations can be expressed in the form

l2 cos Ωt + l3 cos ϕ3 − l4 cos ϕ4 − l1 cos θ = 0,
l2 sin Ωt + l3 sin ϕ3 − l4 sin ϕ4 − l1 sin θ = 0, (22)

where l1, l2, l4 is the length of ground link 1, input link 2 and output link 4 respectively, l3
the undeformed length of coupler 3. Rotation angles ϕ3(t), ϕ4(t) of the coupler and out-
put link as well as their time derivatives ϕ̇3, ϕ̈3, ϕ̇4, ϕ̈4 can be determined from Eq. (22)
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using a recursive algorithm as Newton-Raphson method. Neglecting higher order non-
linear terms, we obtain the partial differential equation of the relative transverse vibration
for the coupler in the following simplified form [32]

∂4w
∂x4 + α

∂5w
∂x4∂t

− ρ

E
∂4w

∂x2∂t2 −
[

f4(t) + f3(t)− f2(t)
x2

2

]
∂2w
∂x2 − [ f3(t)− f2(t)x]

∂w
∂x

+
µ

EI
∂2w
∂t2 +

cy

EI
∂w
∂t
− f2(t)w = − f0(t)− f1(t)

(23)

where functions fi(t) for i = 0, 1, . . . , 5 are defined by

f0(t) =
µ

EI
[
g cos ϕ3 − l2Ω2 sin(Ωt− ϕ3)

]
+

cyl2
EI

Ω cos(Ωt− ϕ3), (24)

f1(t) =
1

EI
(
cy ϕ̇3 + µϕ̈3

)
, (25)

f2(t) =
µ

EI
ϕ̇2

3, (26)

f3(t) =
µ

EI
[
g sin ϕ3 − l2Ω2 cos(Ωt− ϕ3)

]
+

cxl2
EI

Ω sin(Ωt− ϕ3), (27)

f4(t)=
JC ϕ̈4 + m4gs4 cos(ϕ4 + α4) + Me

EI l4 sin(ϕ4 − ϕ3)
+

+ cot (ϕ4 − ϕ3)

[
ρ

E
ϕ̈3 + f0(t)

l3
2
+ f1(t)

l32

3

]
+ f2(t)

l32

3
− f3(t)l3. (28)

The boundary conditions at x = 0 and x = l must be specified for the solution of
Eq. (23). These boundary conditions are given by

w(0, t) =
∂2

∂x2 w(0, t) = 0, w(l, t) =
∂2

∂x2 w(l, t) = 0. (29)

Using the mode superposition principle, a solution of Eq. (23) corresponding to the
boundary conditions (29) is assumed in the form

w(x, t) =
n f

∑
i=1

qi(t) sin
iπx
l3

, (30)

where qi(t) are generalized coordinates to be determined. Eq. (23) takes the following
form

n f

∑
i=1

{[
ρ

E

(
i
π

l

)2
+

µ

EI

]
q̈i+

[
α
(

i
π

l

)4
+

cy

EI

]
q̇i+

[(
i
π

l

)4
+
(

i
π

l

)2
f4(t)− f2(t)

]
qi

}
sin
(

i
π

l
x
)

+
n f

∑
i=1

(
i
π

l

)2
f3(t)qix sin

(
i
π

l
x
)
−

n f

∑
i=1

(
i
π

l

)2 1
2

f2(t)qix2 sin
(
i
π

l
x
)
−

n f

∑
i=1

(
i
π

l

)2
f3(t)qi cos

(
i
π

l
x
)

+
n f

∑
i=1

(
i
π

l

)2
f2(t)qix cos

(
i
π

l
x
)
= − f0(t)− f1(t)x.

(31)
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Multiplying both sides of Eq. (31) by sin(iπx/l) and then integrating the newly
obtained equation from 0 to l, we get the system of ordinary differential equations[

ρ

E

(
i
π

l

)2
+

µ

EI

]
q̈i +

[
α
(

i
π

l

)4
+

cy

EI

]
q̇i +

[(
i
π

l

)4
+
(

i
π

l

)2
f4(t) + j2

π2

2l
f3(t)+

−
(

1
4
+ j2

π2

6

)
f2(t)

]
qi −

n f

∑
i=1,i 6=j
i+j=2k+1

αij

[
2
l

f3(t)− f2(t)
]

qi −
n f

∑
i=1,i 6=j
i+j=2k+1

αij f2(t)qi = hj(t),
(32)

where we use indexes j = 0, 1, 2, . . . , n f and k = 1, 2, . . . , and functions hj, αij are

hj =


2l
jπ

f1(t) for j = 2k

− 1
jπ

[4 f0(t) + 2l f1(t)] for j = 2k + 1
(33)

αij =

[
1

(i− j)2 −
1

(i + j)2

]
for i 6= j. (34)

Eq. (32) can be rewritten in the compact matrix form as

Mq̈(t) + Bq̇(t) + C(Ωt)q(t) = h(Ωt), (35)

where M, B, C are n f × n f matrices having coefficients as

mij =

[
ρ

E

(
i
π

l

)2
+

µ

EI

]
δij, bij =

[
ρ

E

(
i
π

l

)4
+

cy

EI

]
δij, (36)

cij =



(
i
π

l

)4
+
(

i
π

l

)2
f4(t) +

j2π2

2l
f3(t)−

(
1
4
+

j2π2

6

)
f2(t) for i = j

−αij f2(t) for i 6= j, i + j = 2k

−αij

[
2
l

f3(t)− f2(t)
]

for i 6= j, i + j = 2k + 1

(37)

with function δij =

{
1 for i = j
0 for i 6= j.

The initial value for the periodic solution of Eq. (35) are then determined using
Eq. (21), in which parameters γ = 1/4, β = 1/6 and step-size h = 10−4(sec .) were used
for the numerical calculation. The calculating parameters are given in Tab. 1. The ob-
tained results of the maximal value of coordinates qi in Eq. (35) for a range of rotating
speeds of the crank listed in Tab. 2. It can be clearly seen that the transverse vibration re-
sponse of the rod can be closely approximated by the first mode since the higher modes
are insignificant. The result for transverse vibrations of the connecting rod correspond-
ing to different angular velocities of the crank are shown in Fig. 2. In addition, Fig. 3
shows a spectrum calculated by FFT that includes harmonic components of the rotating
frequency, such as Ω and 2Ω. The spectrum indicates that the connecting rod performs
stationary periodic transverse vibrations only.
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Table 1. Calculating parameters

Parameters Value Parameters Value

l1(m) 1.0 ρ (kg m−3) 7860

l2(m) 0.05 I(m4) 45× 10−10

l3(m) 0.8 cx (kg m−1s−1 ) 0.001

l4(m) 0.8 cy(kg m−1s−1 ) 0.001

s4(m) 0.4 JC(kg m2) 3.35

m3(kg) 3.74 α (s) 10−4

m4(kg) 15 α4(rad.) 0

E(Nm−2) 2.1× 1011 θ(rad.) 0

F(m2) 6× 10−4

Table 2. Calculating results for three modes (n f = 3)

Crank speed (rpm) max |q1|(mm) max |q2|(mm) max |q3|(mm)

600 0.2750 0.0090 0.0011

900 0.6309 0.0204 0.0025

1200 1.1583 0.0364 0.0046

1500 1.8704 0.0572 0.0072

Table 2. Calculating results for three modes ( 3)fn 

Crank speed (rpm) 1max q (mm) 2max q (mm) 3max q (mm)

600 0.2750 0.0090 0.0011

900 0.6309 0.0204 0.0025

1200 1.1583 0.0364 0.0046

1500 1.8704 0.0572 0.0072

Figure 2. Midpoint deflection of the flexible coupler versus crank rotating angle

Figure 3. Midpoint deflection of the flexible coupler at 162.8 s (a) versus time  

and  (b) versus angular frequency
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Fig. 2. Midpoint deflection of the flexible coupler versus crank rotating angle

To verify the correctness of the proposed procedure using Newmark equation, the
procedure using the fourth-order Runge-Kutta formula presented in [29] is also applied
to solve the same problem. The obtained results with both approaches are identical, but
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Table 2. Calculating results for three modes ( 3)fn 

Crank speed (rpm) 1max q (mm) 2max q (mm) 3max q (mm)

600 0.2750 0.0090 0.0011

900 0.6309 0.0204 0.0025

1200 1.1583 0.0364 0.0046

1500 1.8704 0.0572 0.0072

Figure 2. Midpoint deflection of the flexible coupler versus crank rotating angle

Figure 3. Midpoint deflection of the flexible coupler at 162.8 s (a) versus time  

and  (b) versus angular frequency
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Fig. 3. Midpoint deflection of the flexible coupler at Ω = 62.8 s−1

(a) versus time and (b) versus angular frequency

the computation time with the proposed procedure is greatly reduced, especially in the
cases of large number of time steps.

4. CONCLUDING REMARKS

In this study, the problem on the calculation of steady-state periodic vibrations
of elastic transmission mechanisms is addressed. The differential equations of motion
of the mechanism is established and linearized to obtain a system of linear differential
equations having time-varying coefficients, known as a parametric vibration system.

A numerical algorithm based on Newmark integration method is proposed to
determine initial conditions for the periodic solution of a system of linear differential
equations with time-periodic coefficients. Using the obtained initial conditions, the pe-
riodic solution can be found by a common numerical integration method. For linear
systems, this numerical procedure is simpler and easier to implement than one based on
the fourth-order Runge-Kutta algorithm which was presented in [29, 32].

Although this approach has been applied to only one example of a flexible four-
bar mechanism, but the obtained results are wider applicability to more complicated
transmission systems that perform the steady state motions. The problem of vibration
control of elastic mechanisms, as addressed in [33, 34], using the periodic solution of the
linearized vibration equations will be the subject of our future investigation.
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