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Abstract. Research on the stability to determine the critical value of structures is a
complex issue but of real significance. Piezoelectric composite plate is one of the struc-
tures which have the ability to control the mechanical behaviors under loads. One of the
prominent capabilities of this structure is the ability to control its vibration and stability.
Using the finite element method (FEM) and construction calculation program in Matlab,
the authors analyzed the elastic stability of piezoelectric composite plates under dynamic
in-plane loads, taking into account damping properties of the structure. Critical loads
and other factors affecting the stability of the plate are investigated.

Keywords : Piezoelectric, plate, dynamic stability, composite.

1. INTRODUCTION

Stability analysis problem of piezoelectric composite plates under static loads has
attracted many researchers, but due to the complexity, the stability problem of piezoelec-
tric composite plates under dynamic loads has less results. Alfredo R. de Faria, Mauricio
V. Donadon [1], Alfredo R. de Faria [2], Dimitris Varelis, Dimitris A. Saravanos [3], Hui-
Shen Shen [4], Piotr Kedziora, Aleksander Muc [5], Rajan L.Wankhade, Kamal M.Bajoria
[6] investigated static stability of composite plates with piezoelectric patches by analytical
methods and combined analytical methods with numerical methods. The authors investi-
gated the effect of the position of the piezoelectric patches on the critical load of the plates.
Postbuckling and vibration characteristics of piezoelectric composite plates subjected to
thermopiezoelectric loads were considered by I.K. Oh, J.H. Han and I. Lee [7]. R. C Bart
and T.S Geng [8] studied the stability of anisotropic plates under impact in-plane loads at
the free end. With the survey size of piezoelectric patches, the authors showed the sensitiv-
ity of this factor to the stabilization of the plate. Also in this direction, by FEM method,
S. Y. Wang, S.T. Quek, K.K. Ang [9] analyzed the stability of the rectangular cantilever
piezoelectric composite plate, subjected to the impact in-plane loads at the free end, and
used Lyapunov’s stability criteria to consider stability of the plate. Stability analysis of
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composite plates with piezoelectric layers under periodic in-plane loads was established by
S.Pradyumna and Abhishek Gupta [10].

In the above studies, the differential vibration equations of the dynamic stability
problem without damping have been solved by the integration method and critical loads
were determined according to an acceptable stability criterion.

To consider the stability problems of piezoelectric composite plates, taking damping
(including damping of structures and damping of piezoelectric) into account is a complex
issue but closely reflects the real work of this kind of structure. Up to now, this problem
has had yet a few results.

Therefore, in this paper, the authors formulate algorithms, calculating programs
and research on critical loads of piezoelectric composite plates with any type of dynamic
loads acting on the plane of the plate, including the damping of structures.

2. FINITE ELEMENT FORMULATION AND

THE GOVERNING EQUATIONS

Consider laminated composite plates with general coordinate system (x, y, z), in
which the x, y plane coincides with the neutral plane of the plate. The top surface and lower
surface of the plate are bonded to the piezoelectric patches or piezoelectric layers (actuator
and sensor). The plate under the load acting on its neutral plane has any temporal variation
rule (Fig. 1).

(a) (b)

Fig. 1. Piezoelectric composite plate and coordinate system of
the plate (a), and Lamina details (b)

Hypothesis: The piezoelectric composite plate corresponds with Reissner-Mindlin
theory. The material layers are arranged symmetrically through the neutral plane of the
plate, ideally adhesive with each other. The authors use FEM to establish equations and
formulate the algorithm, calculation program. The homogenization methods to calculate
the composite plate are also used.
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2.1. Strain-displacement relations

Based on the first-order shear deformation theory, the displacement fields at any
point in the plate are [11, 12]

u (x, y, z, t) = u0 (x, y, t) + zθy (x, y, t) ,
v (x, y, z, t) = v0 (x, y, t) − zθx (x, y, t) ,
w (x, y, z, t) = w0 (x, y, t) ,

(1)

where u, v and w are the displacements of a general point (x, y, z) in the laminate along
x, y and z directions, respectively. u0, v0, w0, θx and θy are the displacements and rotations
of a midplane transverse normal about the y-and x-axes respectively.

The components of the strain vector corresponding to the displacement field (1) are
[11, 13]. For the linear strain
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and for the nonlinear strain
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w0 is the non-linear strain vector, {εL
b } is the

linear strain vector, {εs} is the shear strain vector.
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2.2. Stress-strain relations

The equation system describing the stress-strain relations and mechanical-electrical
quantities is respectively written as follows [10, 14]

{σb} = [Q]
{

εN
b

}

− [e] {E} , {τb} = [Qs] {εs} , (5)

{D} = [e]
{

εN
b

}

+ [p] {E} , (6)

where {σb} =
{

σx σy τxy

}T
is the plane stress vector, {τb} =

{

τyz τxz

}T
is the

shear stress vector, [Q] is the ply in-plane stiffness coefficient matrix in the structural
coordinate system, [Qs] is the ply out-of-plane shear stiffness coefficient matrix in the
structural coordinate system [14], [e] is the piezoelectric stress coefficient matrix, [p] is the

permitivity coefficient matrix, {Ek} =
{

Ex
k Ey

k Ez
k

}T
is the electric-field vector. If the

voltage is applied to the actuator in the thickness only, then {Ek} =
{

0 0 −Vk

tk

}T
, Vk

is the applied voltage across the kth ply, and tk is the thickness of the kth piezoelectric
layer. Notice that {τb} is free from piezoelectric effects [15].

The in-plane force vector at the state pre-buckling
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2.3. Total potential energy

The total potential energy of the system is given by [9, 16]
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where W is the energy of external forces, Vp is the entire domain including composite and
piezoelectric materials.

Introducing [A], [B], [D], [As] and vectors {Np}, {Mp} as
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(9)
where h is the total laminated thickness and combining with (5), (6) the total potential
energy equation (8) can be written
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(10)

where Ω is the plane xy domain of the plate.



Dynamic stability analysis of laminated composite plates with piezoelectric layers 99

2.4. Finite element models

Nine-node Lagrangian finite elements are used with the displacement and strain
fields represented by Eqs. (1) and (4). In the developed models, there is one electric po-
tential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior
and thus the vector of electrical degrees of freedom is [6]

{φe} =
{

. . φe
j . .

}T
, j = 1, . . . , NPLe, (11)

where NPLe is the number of piezoelectric layers in a given element.
The vector of degrees of freedom for the element {qe} is

{qe} =
{

{qe
1
} {qe

2
} . . . {qe

9
} φe

}T
, (12)

where {qe
i } =

{

ui vi wi θxi
θyi

}T
is the mechanical displacement vector for node i.

From Eqs. (3a), (3b), we receive

{ε} = [Bb] {q} . (13)

2.5. Dynamic equations

The dynamic equations of piezoelectric composite plate can be derived by using
Hamilton’s principle [11]

δ

t2
∫

t1

[T − Π] dt = 0, (14)

where T is the kinetic energy.
The kinetic energy at the element level is defined as

T e =
1

2
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Ve
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The energy of external forces for an element
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∫
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where Ve is the volume of the plate elements, {fb} is the body force vector, Se is the surface
area of the plate elements, {fs} is the surface force and {fc} is the concentrated load.

The total kinetic energy
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where Ne is the number of the elements.
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Substituting Eqs. (10), (17) and (18) into Eq. (14) and using Eq. (13), the dynamic
matrix equations can be written as

The vibration equation of the membrane (without damping) with in-plane loads
is [11]

[Mss] {q̈ss}+ [Kss] {qss} = {F (t)} , (19)

The equation of bending vibrations with out-of-plane loads is
[

[Mbb] [0]
[0] [0]

]

{

{q̈bb}
{

φ̈
}

}

+

[

[CR] [0]
[0] [0]

]

{

{q̇bb}
{

φ̇
}

}

+

[

[Kbb] + [KG] [Kbφ]
[Kφb] − [Kφφ]

] {

{qbb}
{φ}

}

=

{

{R}
{Qel}

}

,

(20)
where [Mss],[Kss] and {qss} , {q̇ss} , {q̈ss} are the overall mass, membrane elastic stiffness
matrix and the membrane displacement, velocity, acceleration vector; [CR] = αR [Mbb] +
βR [Kbb] is the overall structural damping matrix (where αR, βR are the damping coef-
ficients, which are generally determined by the first and second natural frequencies and
ratio of damping ξ); [Mbb], [Kbb] and {qbb} , {q̇bb} , {q̈bb} are the overall mass, bending elas-
tic stiffness matrix and the bending displacement, velocity, acceleration vector; [KG] is
the overall geometric stiffness matrix ([KG] is a function of external in-plane loads); [Kbφ]
is the overall coupling matrices between elastic mechanical and electrical effects; [Kφb] is
the overall coupling matrices between electrical and elastic mechanical effects; [Kφφ] is the
overall dielectric “stiffness” matrix [1, 3, 12]; {φ} is the overall electric potential vector;
{F (t)} is the in-plane load vector, {R} is the normal load vector, {Qel} is the vector
containing the nodal charges and in-balance charges. The element coefficient matrices are
[8, 11, 15]

[Me
bb] =

∫
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e
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∫
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∑
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[
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]

, [Kbφ] = [Kbφ]T ,

where [Ni] is the shape functions in case of bending plate, [Ni] is the shape functions in
case of tensile or compression plate, NPe is the number of the piezoelectric composite plate
elements, [Bφ] is the matrix relating the electric potential.
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]

+
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]

is the element geometric stiffness matrix, with the

components identified
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y
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]

=
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xy [N ′
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[

N ′
y
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dAe,

(21)

where
[

N ′
x

]

=
∂

∂x
[N (x, y)] ,

[

N ′
y

]

=
∂

∂y
[N (x, y)] , (22)
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∂w

∂x
=

[

∂N

∂x

]

{qe
bb} =

[

N ′
x

]

{qe
bb} ,

∂w

∂y
=

[

∂N

∂y

]

{qe
bb} =

[

N ′
y

]

{qe
bb} . (23)

[KG] =
∑

ne

[Ke
G]. (24)

3. DYNAMIC STABILITY ANALYSIS

When the plate is subjected to in-plane loads only({R} = {0}), the in-plane stresses
can lead to buckling, from Eqs. (19) and (20) the governing differential equations of motion
of the damped system may be written as

[Mss] {q̈ss}+ [Kss] {qss} = {F (t)} , (25a)

[Mbb] {q̈bb}+ [CR] {q̇bb} + ([Kbb] + [KG]) {qbb} + [Kbφ] {φ} = {0} , (25b)

[Kφb] {qbb} − [Kφφ] {φ} = {Qel} . (25c)

Substituting {φ} from (25c) into (25b), yields

[Mbb] {q̈bb}+[CR] {q̇bb}+
(

[Kbb] + [Kbφ] [Kφφ]−1 [Kφb] + [KG]
)

{qbb} = [Kbφ] [Kφφ]−1 {Qel}

(26)
Plate vibrations induce charges and electric potentials in sensor layers. The control sys-
tem allows a current to flow and feeds this back to the actuators. Note that, due to the
absolute adhesion of the piezoelectric layers (patches) to the surface of the plate, they
should have the same mechanical displacement with the plate. Therefore, {u}a = {u}s =
{qbb} , {u̇}a = {u̇}s = {q̇bb} (where {u}a is the actuator displacement vector, {u}s is the
sensor displacement vector. If no external charge Qel is applied to a sensor, from (25c) we
have

{φ} = {φs} =
[

K−1

φφ

]

s
[Kφb]s {u}s , (27)

is the generated potential in sensor. {Qel}s = [Kφb]s {u}s is the induced charge due to the
deformation.

The operation of the amplified control loop implying the actuating voltage is

{φ}a = Gd {φ}s + Gv

{

φ̇
}

s
, (28)

where Gd and Gv are the feedback control gains for displacement and velocity, respectively.
From (25c) and (28), the charge in the actuator deformation in response to plate

vibration modified by control system feedback is

{Qel}a = [Kφb]a {u}a − [Kφφ]a {φ}a = [Kφb]a {u}a − [Kφφ]a

(

Gd {φ}s + Gv

{

φ̇
}

s

)

(29)

Substituting (27) into (29), yields

{Qel}a = [Kφb]a {u}a−Gd [Kφφ]a

[

K−1

φφ

]

s
[Kφb]s {u}s−Gv [Kφφ]a

[

K−1

φφ

]

s
[Kφb]s {u̇}s (30)
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Then substitution of (30) into (26), leads to

[Mbb] {q̈bb} + [CR] {q̇bb} +
(

[Kbb] + [Kbφ] [Kφφ]−1 [Kφb] + [KG]
)

{qbb} =

=[Kbφ][Kφφ]−1
(

[Kφb]a{u}a−Gd[Kφφ]a

[

K−1

φφ

]

s
[Kφb]s{u}s−Gv[Kφφ]a

[

K−1

φφ

]

s
[Kφb]s{u̇}s

)

.

(31)
Due to the absolute adhesion between the piezoelectric layer with the plate surface, so

[Kbφ]a ≡ [Kbφ]s ≡ [Kbφ] , [Kφφ]a ≡ [Kφφ]s ≡ [Kφφ] .

Eq. (31) is rewritten as

[Mbb] {q̈bb} +
(

[CR] {q̇bb} + Gv [Kφφ]
[

K−1

φφ

]

[Kφb]
)

{q̇bb}+

+
(

[Kbb] + Gd [Kbφ] [Kφφ]−1 [Kφφ]
[

K−1

φφ

]

[Kφb] + [KG]
)

{qbb} = {0} ,
(32)

or

[Mbb] {q̈bb} + ([CR] + [CA]) {q̇bb}+ ([K∗] + [KG]) {qbb} = {0} , (33)

where [CA] = Gv [Kφφ]
[

K−1

φφ

]

[Kφb] is the overall active damping matrix; [CR] = αR [Mbb]+

βR [Kbb] is the overall structural damping matrix; [K∗] = [Kbb] + Gd [Kbφ] [Kφφ]−1 [Kφφ]
[

K−1

φφ

]

[Kφb] is the overall active stiffness matrix.

Combining (25a) and (33), we obtain the stability equations of the laminated com-
posite plates with piezoelectric layers

{

[Mss] {q̈ss} + [Kss] {qss} = {F (t)} , (34a)

[Mbb] {q̈bb} + ([CA] + [CR]) {q̇bb} + ([K∗] + [KG]) {qbb} = {0} . (34b)

The overall geometric stiffness matrix KG is defined as follows
- In case of only tensile or compression plates (we = 0): Solving the Eq. (34a) helps

us to present unknown displacement vector {qss}, and then stress vector

{σss} = [As] [Bs] {qss} , (35)

where [As] and [Bs] are the stiffness coefficient matrix and strain-displacement matrix of
the plane problem [11].

Membrane force vector {N 0} is defined by (7) and [KG] is defined by (21) and (24).
- In case of bending plate (we 6= 0): The stress vector is

{σsb} = {σss} + {σbb} , (36)

{σbb} = [Ab] [Bb] {qbb} ,

where [Ab] and [Bs] are the stiffness coefficient matrix and strain-displacement matrix of
the plane bending problem [11]), membrane force vector {N 0} is defined by (7) and [KG]
is defined by (21) and (24).
Stability criteria [8, 10]:

• In case of the plate under periodic in-plane loads and without damping, the elastic
stability problems become simple only by solving the linear equations to determine the
eigenvalues [10].
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• In case of the plate under any in-plane dynamic load and with damping, the elastic
stability problems become very complex. This iterative method can be proved effectively
and the following dynamic stability criteria are used [8].

- Plate is considered to be stable if the maximum bending deflection is three times
smaller than the plate’s thickness: Eq. (34b) has the solution (wi)max satisfying the con-
dition 0 ≤ |wi|max

< 3h, where wi is the deflection of the plate at node number i.
- Plate is called to be in critical status if the maximum bending deflection of the

plate is three times equal to the plate’s thickness. Eq. (34b) has the solution (wi)max

satisfying the condition |wi|max
= 3h.

- Plate is called to be at buckling if the maximum deflection of the plate is three
times larger than the plate’s thickness: Eq. (34b) has the solution (wi)max satisfying the
condition |wi|max

> 3h.
The identification of critical forces is carried out by the iterative method.

4. ITERATIVE ALGORITHM

Step 1. Defining the matrices, the external load vector and errors of load iterations
Step 2. Solving the Eq. (34a) to present unknown displacement vector, {qss} and

the stress vector is defined by (35), updating the geometric stiffness matrix [KG].
Step 3. Solving the Eq. (34b) to present unknown bending displacement vector {qbb},

and then testing stability conditions
- If for all |wi| = 0: increase load, recalculate from step 2;
- If at least one value |wi| 6= 0:
+ In case: 0 < |wi|max

< 3h: Define stress vector by Eq. (36), update the geometric
stiffness matrix [KG]. Increase load, recalculate from step 2;

+ In case: 0 ≤
||wi|max

−3h|
|wi|max

≤ ε
D
: Critical load p = pcr. End.

5. NUMERICAL APPLICATIONS

5.1. Validation of numerical code and comparison

For the validation of the Matlab code developed for the finite element analysis
of the piezoelectric composite plate, we resolve the elastic dynamic buckling problem
of S.Pradyumna and Abhishek Gupta [10] by the present algorithm and compare the
results obtained with the published results. Square plate edges a = 24 mm, layer layout
rules (P/00/900/900/00/P), the total thickness of the plate h = 1 mm, each composite
layer is made of the graphite-epoxy material and the thickness is 0.2h, each piezoelectric
layer thickness hp = 0.1h is PZT-5A. The plate under periodic in-plane load (P (t) =
αPcr + βPcr cos Ω̄t) is evenly distributed on two opposite edges of the plate, where α
and β are static and dynamic load factors, respectively; Pcr is the static elastic buckling
load of the plate; Ω̄ is the excitation frequency. Material properties for Graphite-Epoxy
orthotropic layer are E1 = 150 GPa, E2 = 9 GPa, G12 = G13 = 7.1 GPa, G23 = 2.5 GPa,
ν12 = ν23 = ν32 = 0.3, ρ

GE
= 1580 kg/m3 and for PZT-5A piezoelectric layer E = 63.0

GPa, G = 24.2 GPa, ν = 0.3, ρpzt = 7600 kg/m3, d31 = d32 = 2.54× 10−10 m/V.
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Consider the case with nondimensional excitation frequency (Ω = Ω̄
/

ω1), where
ω1 is the first natural frequency of the plate and α = 0, voltage at the top and bottom
piezoelectric layers is V = 100 V. The comparison of results on dynamic instability regions
of the plate is shown in Fig. 2.
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Fig. 2. Comparison on dynamic instability regions of the plate ((P/00/900/900/00/P),
a = b = 24 mm, h = 1 mm, hp = 0.1 mm, α = 0, V = 100 V)

In this case, it is shown that the results obtained in this research are in good
agreement with those of the published papers [15] the errors are very small (the maximum
error value is 0.206%).

5.2. Numerical results

Stability analysis of piezoelectric composite plate with dimensions a × b × h, where
a = 0.25 m, b = 0.30 m, h = 0.002 m. Piezoelectric composite plate is composed of 3 layers,
in which two layers of piezoelectric PZT-5A at its top and bottom are considered, each
layer thickness hp = 0.00075 m; the middle layer material is Graphite/Epoxy material,
with thickness h1 = 0.0005 m. The material properties for graphite/epoxy and PZT-5A
are shown in section 5.1 above. One short edge of the plate is clamped, the other three
edges are free. The in-plane half-sine load is evenly distributed on the short edge of the
plate: p(t) = p0 sin(2πft), where p0 is the amplitude of load, f = 1/T = 1/0.01 = 100
Hz (0 ≤ t ≤ T/2 = 0.005 s) is the excitation frequency, voltage applied V = 50 V. The
iterative error of the load ε

D
= 0.02% is chosen.

5.2.1. Effect of the damping

Consider two cases: with damping (ξ = 0.05, Gv = 0.5, Gd = 15) and without
damping (ξ = 0.0, Gv = 0.0, Gd = 15).

The response of vertical displacement at the plate centroid over the plate thickness
for the two cases is shown in Fig. 3.

The results show that the critical load of the plate with damping is larger than that
without damping. In the two cases above, the critical load rises by 6.8%.

5.2.2. Effect of the applied voltages

Analyze the stability of the plate with damping when a voltage of -200, -150, -100,
-50, 0, 50, 100, 150 and 200V is applied to the actuator layer of the piezoelectric composite
plate.
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Fig. 4 shows the time history of the vertical displacement at the plate centroid over
the plate thickness when a voltage of 0, 50, 100, 150 and 200V is applied.

The relation between critical load and voltages is shown in Fig. 5. The results show
that the voltage applied to the piezoelectric layers affects the stability of the plate. As the
voltage increases, the critical load of the plate also increases.

5.2.3. Effect of the amplitude of the load

When the amplitude of the load changes from 0.25pcr to 1.5pcr (where pcr is the
amplitude of the critical load), a voltage of 50V is applied to the actuator layer of the
plate.

The results show the time history response of the vertical displacement at the plate
centroid over the plate thickness as seen in Fig. 6, p0 = 0.25pcr, 0.5pcr, 0.75pcr, 1.0pcr,
1.25pcr, 1.5pcr.
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Fig. 5. Critical load-voltage relation
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From Fig. 6 as can see that when the amplitude of the load acting on the plane of
plate increases, the plate is buckled early.
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6. CONCLUSIONS

The differential vibration equations, algorithms and program of linear stability anal-
ysis of piezoelectric composite plates under any dynamic load in the plane of the plate
taking into account structural damping and piezoelectric damping have been formulated.

The validation of the present formulation is carried out that provides the accuracy
of the choosing research method. The obtained results show:

- In case with damping, the critical load of the plate is higher than that without
damping. In case with damping, the plate is buckled later than that without damping.

- When the voltage applied to the actuator layer of the piezoelectric composite plate
increases, the critical load of the plate increases.
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