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BUCKLING OF THE INITIAL IMPERFECT 
RECTANGULAR THIN PLATE WITH VARIABLE 

THICKNESS 

NGUYEN THI HIEN LUONG AND DANG THUY MINH TUONG 

Department of Civil Engineering, University of Technology of Ho Chi Minh City 

Abstract. This paper analyzes the stability of the rectangular thin plate with sinusoidal 
changes in the plate thickness combined with initial curvature based on the large deflection 
theory. The buckling load for simply supported plates is defined using the energy method. 
The influence of the thickness variation parameter and the initial curvature parameter on 
the crit ical loads is investigated . 

1. INTRODUCTION 

Plates and shells as structural elements are seldom perfectly fl.at and of uniform thick
ness and the amount of init ial curvature and variable thickness can affect the load-carrying 
capacity of structures. Recently, the problem of the influence of the thickness variation 
and the initial curvature on the buckling load has been researched by several authors, such 
as Timoshenko [1], Elishakoff et al [2], Zhiming [3], Yeh et al [4], Mateus et al [5], Nguyen 
and Tran [6], Ciancio [7]. 

In this paper, based on the theory of plates of large deflection, the stability study of 
imperfect rectangular thin plates with initial curvature and variable thickness is a ma
jor object. The energy method is used to determine the critical load factor of plates 
with variable thickness combined with initial deflection. The influence of the thickness 
non-uniformity parameter and the initial curvature parameter to the buckling load is in
vestigated. General asymptotic formulae for the buckling load are derived and numerical 
results are investigated for compressive plates with the simply supported boundary con
dition (Fig. 1). 

2. ENERGY APPROACH 

This section aims at the study of the combined effect of thickness variation and initial 
imperfection on the buckling behavior of the rectangular thin plate. The simplest approach 
to the problem is a direct discussion of t he energy criterion of elastic stability by means of 
the second variation of the potential energy. The energy method permits us to determine 
the buckling load of imperfect plates with variable thickness, as illustrated in [2]. Here, 
we consider the small thickness variation, and as a first approximation, only the terms up 
to the first order of thickness variation parameter are retained. The final product of this 
discussion is an equation that relates the variation parameter and the initial imperfection 
amplitude to the buckling load factor for the plate. 

We assume that the displacement in the fundamental state is uo(O, 0, wo). 
The init ial deflection is defined as 

. (q7rX) wo = -µhosm a ' (2 .1) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Vietnam Academy of Science and Technology: Journals Online

https://core.ac.uk/display/229040494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


104 

Nx 

Nguyen Thi Hien Luong and Dang Thuy Minh Tuong 

0 
r--------,-------, 

b 

L ________ • ______ .J 

a 

y 

Fig. 1. Uniaxially compressed 

rectangular plate 

x 

-The 1uleofplatt thitl!,NiuvariMlon. 
1,,. ....... ' ..... ' .. ""·-·· ...... . 

0.85 ,,, 
~ ~ 0.8 

1 Q75 

~ Cl7 ... 

......... ~ ........ ,... .................... . 

0.1 02 -, o.J o.• o.5;; o.s 0.1 o:a o.9 1 ,,. 

Fig. 2. Expression graph of thickness 

variation h(x)when € = 0.1 

with µ is the non-dimensional parameter describing the magnitude of the imperfection; q 
is the wave number of the initial curvature function. 

We assume that the plate thickness h here is varying with sine function in x direction: 

( 
p7rX) 

h ( x) = ho 1 - € sin ---;;:-- , € 2'. 0, (2.2) 

where ho is the plate constant thickness and E, p are the non-dimensional parameters 
indicating the magnitude and wave of the t hickness variation, respectively. When x = 0 
and x = a, one has h(x) = ho, for the case x = a/2: one has h(x) = ho(l-E) (Fig. 2). The 
thickness parameter c is positive in order to achieve a detrimental effect by a "thinning" 
of the wall thickness . The parameters€,µ vary from zero to 0.2. 

A deflection from the fundamental pre-buckling state is described by :g_(u, v, w). 
Membrane strain energy of the rectangular thin plate is : 

b a 

Um = ~ j j (Nxcx + Nycy + Nxyrxy) dxdy = 
0 0 

b a 

= 2(l ~ v2) ff h ( c; + t~ + 2vExEy + ~(1 - v )r;y ) dxdy . 
0 0 

Bending strain energy reads 

b a { 2 [ 2] } 1 fPw a2w a2w a2w a2w 
ub = 2 j j D (x, y ) (ax2 + ay2) - 2(1-v) ax2 ay2 - (axay) dxdy . 

0 0 

(2.3) 

(2.4) 

For the rectangular thin plate under compression load N, the potential energy of the 
applied load t akes the form 

1 jb ja (ow 8w0 )
2 

D = - - N -+- dxdy, 
2 ax ax (2.5) 

0 0 
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where wo is the geometric initial imperfection. 
Thus, the total potential energy reads 

(2.6) 

In the case of large deflection, the strain - displacement increments relations are of the 
forms [1], [2] : 

au 1 (aw) 
2 

Ex = OX + 2 OX ; 
av 1 (aw) 

2 

Ey = Dy+ 2 Dy ; 
OU av aw aw 

/xy = 8y +OX+ OX 8y' (2.7) 

where u, v are the displacements in x and y directions, w is the deflection, positive outward; 
Ex , Ey and /xy are strain components . 

Substituting Eq. (2 .7) into Eq. (2 .3) and Eqs . (2 .3) - (2.5) into Eq. (2.6), we obtain the 
energy expression in the general anisotropic case: 

b a { [ 2] 2 [ 2] [ 2] 1 au 1 aw au 1 ow av 1 aw 
II =-/ J Au - + - (-) + 2A12 - + - (-) - + - (-) + 2 ox 2 ox ox 2 ox 8y 2 8y 

0 0 

[ 

2] 2 2 2 av 1 aw au av ow ow a2w 
+ A22 - + - (-) + A55 [- + - + --] +Du(-) + 8y 2 ay ay ax ax 8y 8x2 

a2w a2w (a2w) 
2 

( a2w ) 
2 

(aw aw0 ) 
2

} 
+ 2D12 ox2 oy2 + D22 oy2 + D55 oxoy - N ox + ox dxdy . 

(2.8) 

In the isotropic case, expression (2.8) is the total potential energy with: 

Eh 1-v 
An = A22 = l _ v2 ; A12 = vAn; A55 = -

2
-An; A15 = A26 = 0, 

Eh3 

Dn = D22 = 
12

(
1 

_ v2); D12 = vDn; D66 = 2(1 - v)Dn; D15 = D25 = 0, 

and v is Poisson's ratio, E is the modulus of elasticity. 
The energy variation is performed at the fundamental pre-buckling state ([2]). Reject

ing the fourth variation of the potential energy from expression (2.8) , one obtains: 

II= Pn [uo , u] + P2 [u] + P3 [u], (2 .9) 

where the bilinear term Pn [uo, u] due to the geometric initial imperfection is given by: 

b a 

cr f J awdwo Pu [u0 , u] = - N ox dx dxdy. (2.10) 

0 0 
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In expression (2.9), P2 [u] is the second (quadratic) variation of the energy for buckling 
modes: 

1 8u 8u8v 8v b a [ 2 2 

P2 [u] = 2 j j Au (ax ) + 2A12oxoy + A22 (ay) + 
0 0 

( 
ou ov) 

2 (82w) 2 
8

2
w EPw 

+ A66 oy + ox + Du fJx2 + 2D12 8x2 fJy2 + 

( 
32 ) 

2 
( 32 ) 

2 
( 8 ) 2] + D22 oy~ + D55 ox;y - Ncr a: . dxdy, 

and P3 [u] is the third variation of the energy: 

b a { 2 [ 2 2] 1 8u ow 8u ow 8v ow 
P3 [u] = - j j Au- ( -) + A12 - ( - ) + - (-) 

2 ax ax ax oy oy ax 
0 0 

8v (ow) 
2 

( 8u 8v) ow ow } + A22 oy oy + 2A66 oy +ax ax oy dxdy . 

(2.11) 

(2 .12) 

If the rectangular plate is simply supported around the periphery and edges are im
movable in the plane of plate, then the boundary conditions are: 

W = W,xx = W,yy =0 at x =0,a; y = O,b 

u =0 
a 

y = O,b (2 .13) at x=0, 2,a; 

b 
v =0 at x = O,a; y = 0, 2' b. 

In applying the energy method, we must assume suitable expressions for the displace
ments u, v, w. The proposed displacement functions chosen for this case are given by the 
fo llowing series: 

. (qn x) . (mnx) (nny) w = boho sm ---;;:-- +Cm ho sm -a- sin - b- , 

. (2mnx) . (nny) u = QmCmhosm - a- sm - b- , 

. (mnx) . (2mry) v = KmCmho sm - a- sm - b- , (2 .14) 

where bo , Km, Cm and Qm are constants; m , n are the wave numbers of the buckling mode 
in the x and y directions of thin plate, m, n, q = 1, 3, 5, . .. 

From the condition of minimum of total energy, one obtains: 

arr= o, 
8bo 

arr = o, 
8Cm 

(2.15) 

(2 .16) 
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arr 
8Qm = O, (2.17) 

arr 
8Km = O. (2.18) 

Consider the following normalization: 

(2 .19) 

where ,\ is the non-dimensional buckling load factor, N0 is the buckling load of the 
rectangular plate with µ = 0, c: = O; Ncr is the buckling load of the rectangular thin plate 
with the variable thickness and the initial curvature c: i- 0, µ i- 0. 

Substituting the solution Cm = 0 of equation (2.16) into equation (2.15), we determine 
bo. If Cm i- 0, from equation (2.17) and (2.18), we can determine Qm and Km. 

Substitution bo, Km, Qm into equation (2 .16) leads to the equation expressed the 
relation between the initial curvature amplitude µ , the variable thickness parameter c: and 
the buckling load factor ,\: 

F(µ, c:, ,\) = 0. (2 .30) 

Solving the equation (2.30) , one can determine the buckling load factor Amin. 

3. DETERMINATION OF THE BUCKLING LOAD FACTOR 

When the rectangular plate is simply supported, the number of sine-half-waves in series 

functions can be chosen as: m = n = p = 1, q = 3 and we obtain: w0 = - µh0 sin ( 
3:x) and 

h( x) = ho ( 1 - c: sin 1faX) 

w =boho sin (
3:x) + Cmho sin (1fax) sin (7r:), 
. (27rX \ . (1rY) u =QmCmho sm ----;;:- ) sm b , (3.1) 

. (1fX) (27ry) v =KmCmho sm --;;:- sin -b- . 

a 
In the case of square plate: r = b = 1 and v = 0.3, substituting Eqs. (2.10)- (2.12) 

into the second and third variations, we obtain, after retaining only the first-order terms 
in c: , • 
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( 
435 2 3 2 25 4 5 835 3 2 44 3 2 

P2 [u] = 
728 

7f Eh0Km + 
546

b2 7f Eh0 -
546 

7f Eh0KmE -
39 

7f Eh0QmE -

95 3 435 2 3 2 55 3 5 80 3 
-

273 
7f EhoKmQmE: + 

728 
7f EhoQm -

182
b2 7f Eh0c + 

63
Eh0KmQm-

-~ 2h2 N cr ) c2 ( 675 4Eh5 - ~ 2h2 Ncr - 7290 3 Eh5 ) b2 
8 7f O m + 364b2 7f O 4 7f O 637b2 7f oc O ' 

1f Eh4C 2 bo 
P3 [u] = 18~4~ (1247407r2Qm + 50407rKmc - 1002247rQmc - 16128Km). 

From Eqs. (2 .15) , (2 .16), (2.17) and (2. 18) , one obtains: 

637µb 2 Ncr 
bo - - -----::---.,,-----=------ ---,,---

- 5257f2 Eh5 - 637b2 Ncr - 32407f Eh5c ' 

K _ _ 1087f2hobo(1874257r2c - 6736807f + 620544c - 1753607rc2) 
m - 35b(145536487r2c2 + 18969607fc - 3461120 - 136335967r3c + 30654457r4)' 

Qm = _ 91fhobo(3_7?7_36~~ 56110567f2c2 - 2_18?24-~c - 91237327r3_: + 27130957r4: . . 

When E: = 0 andµ = 0, N0 is determined as follows: 

Nff = 1007r2Eh5 
273 -b-2 -

(3 .2) 

(3.3) 

(3.4) 

We receive the same formula for a simply supported square plate with constant thick
ness and v = 0.3 in [1] and [6]: 

N.cr = 7r
2 
D (~ !!_) 2 

= 7r
2 
D (l l) 2 = 47r

2 
Eh6 = 100 7r

2 
Eh6 

0 b2 b + a b2 + 12b2(1 - v2) 273 b2 

When E: =f 0 and µ =f 0, we have the relation between ,\, c and µ: 

- 124.74c5 - 115.82>.c4 + 548.33c4 + 452.12>.c3 + l.4413>.2c3µ2 - 889.88c3 

- 33.254>.2c3 + 113.2>.2c2 - 603.79>.c2 + 667.55c2 - 3.0394>.3c2 - 12.978>.2c2µ 2 (3.5) 

+ 8.8189>-3c + 35.569>-2cµ2 + 322.8>-c - 235.28c - 116.83>-2c + 31.617 

- 59.72,\ + 34.349>.2 - 26.773>.2µ2 - 6.246>.3 = 0. 

4. ANALYSIS AND DISCUSSION 

In order to investigate the variation of the buckling load for the plate due to the small 
thickness variation and the initial curvature, the influence of the thickness parameter c 
and the initial curvature parameter µ is studied. The following figures are presented for 
square plates (r = 1) with v = 0.3. 
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From Eq. (3 .5) , the relationship between,\ andµ is shown in Fig. 3 for different values 
of E, the relationship between ,\ and E is shown in Fig. 4 for different values ofµ . The 
combined effect of the thickness variation and the initial imperfection on the buckling load 
is illustrated in Fig. 5. 

The results obtained show that , when the initial imperfection is present, the com
bination of the initial imperfection and the thickness variation reduces the buckling load 
factor even more drastically. When the amplitude of the thickness variation and the initial 
imperfection amplitude are E = 0.1 , µ = 0.2 , the buckling load factor of plate is reduced 
by 28.23 . If the effect of thickness variation is not considered, the buckling load factor 
of plate is reduced by 8.23 for µ = 0.2 from its counterpart of the case with constant 
thickness. In this case, when E: = 0.2 , µ = 0.2, the buckling load factor ,\ decreases up to 
48.53 . 
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5. CONCLUSION 

In this paper, the energy expressions for imperfect plates have been given in the case of 
large deflection. Based on these expressions, a detailed study of the imperfect rectangular 
thin plate with thickness varying along the x-axes with sine functions has been presented. 
The formulae for the buckling load have been derived using the energy method. 
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From the obtained results, one can conclude that the variable thickness and the initial 
curvature may cause a reduction of the load carrying capacity of plate structures, and so 
this effect should be taken into account in the design of plate structures. 

This work was done under the support of Natural Science Council of Vietnam. 
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ON DJNH cOA TAM CHU NH~T KHONG HO.AN HAO c6 CHIEU 
... ~ , . ..e ,,.e ,. ..... - , 

DAY THAY DOI THEO LY THUYET TAM CO DQ VONG LON 

Phan tich 6n d!nh phi tuyen tam chu nh~t c6 chieu day thay d6i theo phm:mg x v&i 
qui lu~t hlnh sin va c6 d9 cong ban da u di.ra tren ly thuyet tam m6ng c6 d9 vong l&n. Li.re 
t&i h~n duqc xac d!nh cho tam ti.ra ti.r do bang each sti'. di.mg phuang phap nang lm;:mg. 

Anh hm'mg cua S\f thay doi chieu day va thong s6 d(> cong ban dau den h~ s6 tru tr9ng t&i 
h~n duqc khao sat. 




