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BOUNDARY IDENTIFICATION FOR AN 
ELASTIC SOLID PARTLY IMMERSED IN A LIQUID 

D ANG D INH ANG1 NGUYEN D UNG2 DANG D ue T RONG1 

1 University of Natural Sciences HoChiMinh City 
2 Institute of Applied Mechanics, HoChiMinh City 

ABSTRACT. The authors consider a long elastic cylinder of constant section 0 part ly 
immersed in a liquid of constant density. It is assumed that the body is in the state of 
plane strain and that n has a boundary consisting of two piecewise smooth arcs assumed 
to meet each other at two, and only two, points on a horizontal line. The upper arc r, 
which is exposed to air , is assumed known, while the lower arc '"'( , assumed to be totally 
immersed in a liquid of constant density, is unknown and is to be determined. Under the 
conditions that the displacements and surface stresses on a subarc of r are known and that 
the lower arc '"'( is subjected to a known constant hydrostatic pressure, the authors prove 
a uniqueness theorem and in the case of existence of a solution, show the existence of a 
sequence of regularized solutions converging to the exact solution. 

1. Introduction 

Consider a long elastic cylinder of constant (cross) section as shown in Fig. 1. 
Plane strain is assumed. The section is represented as the union of two piecewise 
smooth arcs r and / having two, and only two, common points , these points lying 
on a horizontal line. The arc r is assumed to be above / and to be exposed to air 
whereas I is completely immersed in a liquid of constant density. It is assumed that 
the elastic body is so light that / is near the surface of the liquid. Therefore we can 
safely assume, as a: first approximation, that the hydrostatic pressure acting on I is 
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a (known) constant. The state of plane strain being assumed, the problem will be 
treated two-dimensionally, in x , y and the equation of equilibrium will be on the 
domain n, which is a section of the cylinder. It will be assumed that the surface 
displacements and surface stresses are specified on r (see Fig. 1) . Before proceeding 
further, we note that the following analysis, with some modifications, will go through 
if conditions on displacements and stresses are given on a subarc of r, however for 
simplicity in the presentation, we assume these conditions to be specified on the 
whole of r. 

Under the foregoing conditions, we prove a uniqueness theorem, and in the case of 
existence of a solution, we show the existence of a sequence of approximate solutions 
converging to the exact solution. 

2. Mathematical Formulation 

Let the elastic body n be referred to a Cartesian system of coordinates x, y as 
shown in Fig. 1. Using the notations of Timoshenko and Goodier [TG], we denote 
the displacements in the x-direction and they-direction respectively by u, v and let 
Ex, Ey, rxy ax, ay, Txy be the strain and stress components. Assuming plane strain, 
we have 

where E, v are positive constants satisfying 

E = 2G(l + v) , 
1 

O<v<-· 
2 

(2.1) 

(2.2) 

With X, Y denoting the body forces in x-, y-directions respectively, we have the 
following equilibrium equations (cf. [TG]) 

{ 

Oax OTxy X _ O -+-+ -
ax ay 

Bay OTxy Y O -+-+ = 8y ax 

(2.3) 

On the known boundary r , we assume 

(u ,v)=(f,g) (2.4) 
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{

fax+ mTxy = F 

may + hxy = G 
(2.5) 

where (£, m) is the outer unit normal vector to an and (F, G) are surface stresses. 
Note that if the known boundary r is exposed to air then we can take F and G to 
be 0. In the following, since this involves no extra cost, we shall take F and G to 
be rather arbitrary functions. 

Now, I is assumed to be piecewise C 1 . Accordingly, there exists a finite subset 
{y1, . . . ,yk} of/ such that 

is a finite disjoint union of C1-arcs. 
The boundary I is assumed to be under constant hydrostatic pressure, i.e., there 

is a constant p such that 

on f*· (2.6) 

3. Uniqueness and Approximation 

Theorem 1 (Uniqueness theorem). If the unknown boundary / of n is a finite 
disjoint union of piecewise C 1 -Jordan arcs and if we have 
either 

(a) X = Y = 0, and on r, (F, G) ¢ p(f, m). 
or 

(b) X, YE L2 (n) n C(O) and X(x, y)-:/= 0 (or Y(x, y) -:/= 0) for (x, y) En, 
then there exists at most one pair ( ( u, v), n) with u, v in C1 ( n u r) n C ( n) n H1 ( n) 
satisfying (2.3)-(2.6). 

Before giving a proof of Theorem 1, we shall first state a result on the conver
gence of approximate solutions. For this theorem to hold , we need some additional 
assumptions. 

Let the known points of/ be z1 = (a, 0), z2 = (b, 0) , (a < b), (cf. Fig. l). We 
make the following assumptions 
(C1 ) n is convex, r is the graph of a known piecewise C1-function <p : [a, b] -+ JR. 
satisfying <p(a) = <p(b) = 0 and I is the graph of an unknown convex function 
7/J : [a, b] -+JR. satisfying 7/;(a) = 1/;(b) = 0. 
(C2 ) 7/J E H 2 (a , b) and there is an M such that 

ll7/JllH2 (a,b) ::; M. 

Let no= (a0 , b0 ) x (a0 , b0 ) be a known box satisfying no ~ n. Let 

£be a compact subset of H 1 (a0 , b0 ) x H 1(a0 , b0 ). 
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Under the foregoing assumptions, one has 

Theorem 2. Let (Jo, go , Fa , Go) E (H2(f)}
4 

satisfy (F0 , G0 ) ¢ p(f, m) on r and 
assume that the problem (2 .3)-(2.6) , with the boundary functions(! , g, F, G) replaced 
by Uo,go , Fo,Go), has a (unique) solution ((u0 ,v0 ),0) such that 

(i) there is a function <I>o(x , y) = (a(y) , j3(x)) in£ such that, for all (~,17) E 0, 
we have 

J [uo(x , 77) - a(77) J dx = p'. IITJI 
11) 

j [vo(~ , y) - f3(~)]dy = p'.IJTJ I 
J{ 

where 

IT/= on {(x, 77) : x E JR} ; J€ =on {(Cy): y E JR} 

d
, p(l+v)(l-2v) 

an p -- E . 
(ii) there is a function 'I/Jo in 

K = { 'ljJ E H 2 (a , b) : 'ljJ is convex and ll'l/J llH2(a,b) ::; M} 

such that 0 is limited by the graphs of <p, 'I/Jo. 
Then, from any sequence Un , 9n , Fn, Gn) satisfying 

we can construct a sequence ('I/Jon) in K such that 

'I/Jon -+ 'I/Jo in C 1 [a , b] . 

4. Proof of Theorem 1 

The proof is an appropriate modification of the one in [Al J. Let ( ( u1
, v1

) , 0 1
) , 

((u2 ,v2),02) satisfying (2.3)-(2.6) . We claim that 0 1 =02
, (u1 , v1

) = (u2 , v2
) . The 

proof which is by contradiction, relies on the unique continuation theorem for Lame 
systems [A2] . Indeed, suppose by contradiction that 0 1 -=/= 0 2

. Without loss of 
generality, we assume that 0 1 

\ 0 2 -=!= 0. 
Denote by w the connected component of 0 1 n 0 2 such that r c ow. By unique

ness of continuation for a Lame system (cf. [A2]) , one has 

( 4.1) 
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Using a result proved in [TA] (Step 3 in Proof of Theorem 1, we can find a connected 
component w0 of 0 1 \ w such that 8w0 is piecewise 0 1 and that 

OWo c (ow \ r) u / 1 

where Ii (i = 1, 2) is the unknown boundary of Qi. 
Letting z be a point of a smooth arc of 8w0 , we prove that 

{
f(z)a-;(z) + m(z)r;y(z) = pf(z) 

m(z)a-~(z) + f(z)r;y(z) = pm(z) 

(4.2) 

(4.3) 

where (f(z), m(z)) is the outer unit normal vector to 8w0 at z and a-~ , a-; , T~Y 
(i = 1, 2) are the stress components corresponding to (ui , vi). 

Since 

owo c ow c 0(01 n 0 2
) c ao1 u ao2 = r u 11 u 12

, 

two cases are to be considered 
(i) z E / 1 . 

(ii) z E ow n / 2
. 

If (i) holds, then (2,6) implies (4.3). If (ii) holds , (4.1) gives 

a-;(z) = a-;(z) , o-~(z ) = a-;(z) , r;y(z) = r; y(z). 

But by (2.6) , 

(4.4) 

{
f (z)a-;(z) + m(z)r;y(z) = pf(z) (

4
_
5

) 

m(z)a-;(z) + f(z)r;y(z) = pm(z) 

From (4.4), (4.5) we get (4.3). Hence (4.3) holds for all points z of smooth arcs of 
owo. 

Now, put 

u(x , y) = u1(x , y) - p'x; v(x, y) = v1(x , y) - p'y , 

, p(l + v)(l - 2v) . . 
where p = E . Define O"x, O"y , Txy as m (2.1). In view of (2.3)-(2.6), 

(4.5) , we can verify directly that these functions satisfy (2.3) on 0 1 subject to the 
conditions 

(u , v)lr = (f' , g') - (f-p'x,g- p'y) 

{
f O"x + mTxy = F' 

mO"y + fTxy = G' 

5 

on r 

(4.6) 

(4.7) 



where (F', G') = (F - pf, G - pm) and 

{
f(Jx + m'Txy = 0 1 

on ow0 U 'Y . (4.8) 
may +fTxy = 0 

Using (4.7) , (4.8) , we shall show that (F',G') (0, 0) on r which would contradict 
(a) in case X = Y = 0. 

Now, multiplying the first equation of (2.3) by u , integrating over w0 and using 
(4.8) , we have 

(4.9) 
wo 

Similarly, multiplying the second equation of (2.3) by v, integrating over w0 and 
using ( 4.8) we have 

(4.10) 

wo 

Substituting the second and the third equations of (2.1) irito (4.9) , (4.10) , adding 
together the result thus obtained, we get 

J { Ev 2 E 2 2 (ou ov)2} 
(1 + v)(l - 2v) (ex + E:y) + 1 + v [(ex) + (cy) J + G oy + ox dxdy = 0 

wo 

which gives Ex = E:y = 'Yxy = 0 in Wo, i.e., 

ou = ov = ou + ov = O. 
ax ay ay ax 

Since w0 is connected, we can show by elementary technique that there are constants 
h, k, k' satisfying 

u(x, y) = hy + k ; v(x , y) = -hx + k' V(x , y) E w0 . 

Put u = u - hy - k , v = v + hx - k'. 
Defining 0-x, ay , Txy by (2.1) (with u, v replaced by u, V) , we can verify directly 
that 

( 4.11) 

Hence ax , ay, Txy satisfy (2.3) with X = Y = 0 and 

u = v = 0 in Wo ' a-x = a y = Txy = 0 in Wo . 

Hence, by uniqueness of continuation for Lame systems [A2], we obtain 0-x = 0-y = 
Txy = 0 in 0 1. This implies in view of (4.7), (4.11) that (F' , G') -- 0 on r , i.e. , 

(F, G) = p(f, m) on r , 
a contradiction. 

6 



Finally, let the hypothesis (b) of the theorem hold. Without loss of generality, 
we can assume that X ( x, y) > 0 for all ( x, y) E ~V . Integrating the first equation of 
(2.3) over w0 and using (4.8) we get 

J X(x, y)dxdy = 0 

WQ 

which contradicts the assumption that X is positive and continuous on n1 . This 
completes the proof of Theorem 1. D 

5. Plroof of Theorem 2 

WI e shall construct elements 'I/Jon in K as minima of certain functionals. Denoting 
by niJI ('If; in K) the domain limited by the known boundary r and the unknown 
boundary that is the graph of the function 'If; E K. Put 

II ( u, v) II~ = II~~ 11:2cn~) + II~~ 11:2cn~) + II~~ + ~~ 11:2cn~>' 
We can verify directly that 11-11.P is a norm on the space 

Hf,(fl.p) = { (u, v) E (H1(fl.p))
2

: J u(x, ry)dx = 0, J v(~, y)dy = 0 for(~, TJ) E fl} 

Iry Je 

and that V(fl.p) = the completion of Hf,(fl.p) with respect to the norm 11-11.P 
is a Hilbert space. 

The proof will be divided into two steps. In Step 1, we shall transform (2.3)-(2.6) 
into Cl- variational problem on V ( fl.p) and construct the ('I/Jon) 's as minima of certain 
functionals. In Step 2, we shall prove that 'I/Jon--+ 'I/Jo in C 1 [a, b]. 
Step 1. Transformation of (2 .3)-(2.6) into a variational problem on V(fl.p) and 
construction of the ('I/Jon) 's. 

We set some notations 

U = (u', v') = (u - p'x, v - p'y), 

W = (u1 ,vi) 

(F', G') = (F - pf, G - pm), 

(J~,gb) = Uo -p'x,go - p'y) 

(J~,g~) =Un - p'x,gn - p'y) 

For any (u1 , v1 ) =WE V(fl.p), multiplying (2.3) by u 1 , v1 successively, adding the 
results thus obtained and using the divergence theorem, we get, in view of ( 4.6)-( 4.8), 
that 
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where 

LF,c(W) = j (u1F' + v1G')ds 

r 

J { Ev ( ou' ov') ( ou1 ov1) 
a1/J(U, W) = (1 + v)(l - 2v) ox + oy ox + oy + 

n"' 

(5.1) 

E ( ou' OU1 ov' OV1 ) G ( ou' ov') ( OU1 OV1 ) } + -
1 

- ~--;::;--- + ~--;::;--- + ~ + ~ --;::;--- + --;::;--- dxdy. + v ux ux uy uy uy ux uy ux 

From the above argument it follows that the problem (2.3)-(2.6) is equivalent to the 
problem of finding a pair (U, W) satisfying (5.1) and 

Ulr = (f~,gb) ( = Uo - p'x,go - p'y)). (5.2) 

We shall apply the Lax-Milgram theorem to the latter problem. To this end, we 
shall decompose U into a sum of a function Y in V(OV;) and a <I> E £, i.e., 

U=Y+<P 

Using (5.3) we can rewrite (5.1) as follows 

(5.3) 

a1/J(Y, W) = -a1/J( <P , W) + LF,c(W) \fW E V(OV;) · (5.4) 

Thus, our problem is equivalent to that of finding a triplet (Y, <I>, 7/J) satisfying (5.4) 
and Ylr = -<I>l r + (!~, gb). 
We claim that , for each (<I> ,7/J, F,G) in[, x K x (L2 (f)) 2

, the problem (5.4) has a 
unique solution Y( · ; <I> , 7/J, F, G) in V(OV; )· Indeed, a1/J is coercive in V(OV;)· We 
verify that LF,G is continuous on V(OV;)· One has by direct computations 

I LF,G( U1 ' v1) I ~ II F' If L2(r) II U1 llL2(r) + II G' llL2(r) llv1 llL2(r)' (5.5) 

Let (~, 77) Er. Since (u1 , vi) E V(OV;) one has 

j v1(~, 17)dy = 0. 

J€ 

Hence 

v1(~,77) = v1(~,77) - l~€I j v1(Cy)dy = l~€I j [v1(~,17) - v1 (~,y)]dy 
J€ J€ 
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It follows that there is a constant C > 0 satisfying 

(5.6) 

Similarly, 

(5.7) 

Substituting (5.6), (5.7) into (5.5) gives that Lp,c is a continuous linear functional 
on V(O,µ). 

By using the Lax-Milgram theorem, there exists, for each (q,, 'If;, F, G) in 
[, x K x (L2 (r)) 2

, a unique solution Y( · ; q,, 'If;, F, G) in V(O,µ) of equation (5.4). 
The problem becomes one of finding a ( q,, 'If;) in £ x K such that 

(5.8) 

Jn(q,, 'If;) = J JY(x, y; q,, 'If;, Fn, Gn) + q,(x, y) - (f~(x, y), g~(x, y)) J

2 
ds 

r 

where, we recall, (!~, g~) = Un - p'x, 9n - p'y) . 
Now, consider the problem 

Find min{Jn(q,,'lf;): V(q,,'l/J) ·E £ x K}. (5.9) 

The existence of a solution of (5.9) is a direct consequence of the following lemma 
(the proof of which will be given later) . 

Lemma 1. Let (q,m, 'l/Jm) is a sequence in£ x K. Then there exists a (q,, 'If;) in 
£ x K and a subsequence ( q,mk, 'l/JmJ such that 

and that 

q,mk ---+ q, in ( H 1 
( ao, bo)) 

2 

'l/Jmk ___.'If; in H 2 (a , b) 

(5.10) 
(5.11) 

Y( · ;q,mk,'l/Jmk'Fn,Gn)Jr ___. Y( · ;q,,'l/J,Fn,Gn) (5.12) 

Y( · ;q,mk,'l/Jmk,Fmk•GmJlr ___. Y( · ;q,,'l/J,Fo,Go) (5.13) 

in (L2 (f)) 2 
ask---+ oo. 

Now, we consider the existence problem for (5.9). Put 

B =inf { Jn(q,, 'If;) : V(q,, 'If;) E £ x K}. 

9 



For each m, there exists a pair ( <I>m, 7/Jm) E £, x K such that 

(5.14) 

By the compactness of£ x K, there exist a (<Pon, 7/Jon) E £, x Kand a subsequence 
(<I>mk' 7/Jmk) in£ X K such that 

From (5.12) one has 

<I>mk ---+ <I>on in (H1 (ao, bo))
2 

7/Jmk _,. 7/Jon in H 2(a, b) 

Hence ln(<I>on, 'I/Jon)= 0, i.e., (<I>on, 'I/Jon) is a solution of (5.9). 
Step 2. Convergence of ('I/Jon) to 'I/Jo. 

We have in view of the decomposition 

where (u0, v0) = (u0 - p'x, v0 - p'y), that 

ln(<I>o, 'I/Jo)= J jY(x , y; <Po , 'I/Jo, Fo , Go)+ <I>o(x, y) - (!~ , g~)j 2ds 
ro 

= J j(Jo - fn,90 - 9n)j
2
ds. 

ro 

Hence 

By the definition of (<Pon, 'I/Jon), one has 

From (5.16) , the latter inequalities imply 

(5.15) 

(5.16) 

(5.17) 

By the compactness of K , we can find a subsequence ( 'l/Jonk) of ('I/Jon) and a 'If; E K 
such that 

(5.18) 
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It is sufficient to prove that 

(5.19) 

which would imply that 

a:s desired. 
By the compactness of .C x K, there are a subsequence of ( q,Onk, 'l/Jonk) (still 

represented by the same notation) and a q> in .C such that 

q,onk ~ q, in (H1(ao , bo))
2
. (5.20) 

In view of (5.18), (5.20) , Lemma 1 implies 

Hence, one has in view of (5 .17) that 

J IY( · ; q, , 'If;, Fo , Go)+ q, - (!~ , g~)l 2ds :S liminf Jnk(q>onk ' 'l/JonJ = 0. 
k-+oo 

I' 

Thus (Y, q,, 'If; ) satisfies (5.8). It follows that (U, 'If;)= (Y + q, , 'If; ) satisfies (5.1) and 
(5.2). 

Now, we prove that ( U, 'If;) = ( ( u0, v0), 'I/Jo) . The proof relies on a result of [F]. We 
first verify the regularity of u. Assume that u = (u' ' v') . Put e = au' I fJx +av' I fJy. 
Then one get from (5.1) that 

~e= o 

in the sense of distribution. Since e E L2 (r21/J ), it follows that e E e00 (D,1/J ) (see, e.g., 
[F], page 56). We also have in view of (2.1) 

~u=-~ae 
1 - v fJx ' 

in the sense of distribution. 
In the same way as for (5.6) , (5.7) , we have 

11 11 11L2cn;b) :Sell°: llL2cn;b)' llV'llL2cn;b) :Sell: llL2cn;0) 
It follows that u' , v' are in L2 (r21/J )· Hence, using the regularity results (see [F], 
page 56) one gets that u' , v' E e00 (D,1/J )· 
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From the equality 

77 

v'(c;, TJ) = v'(c;, O) + j: (c; , y)dy (c; , TJ) E n 1/J (5 .21) 

0 

one gets v' E C(f.11/J U f). Similarly u' E C(f.11/J U f). By the smoothness assumption 
on (!0 , g0 , F0 , G0), we have that u', v' E C 1(01/J U f) . It follows that (u' , v') satisfies 
the conditions of Theorem 1. By the uniqueness result in the latter theorem, it 
follows that 

((u,v), 'l/J ) = ((uo ,vo) ,'l/Jo) 

where (u, v) = (u' + p'x, v' + p'y). This will complete the proof of Theorem 2 once 
Lemma 1 is proved. 

Proof of Lemma 1. Since £ is compact in H 1(00 ) and since ('l/Jm) is bounded in 
H2 (a, b) , there exists a subsequence (<I>mk ' 'l/Jmk) of (<Pm, 'l/Jm) such that (5.10) , (5.11) 
hold. We next prove that (5.12) , (5 .13) hold. We prove (5.13) . The proof of (5 .12) 
which is similar is omitted. For notational convenience, we put 

Zm = Y( · ; <Pm , 'l/Jm, Fm , Gm) 
Zo = Y( · ; <I> , 'l/J, Fa , Go) 

'l/Jm = max{'l/Jm,'l/J}. 

From (5.4)-(5.7), we can find a constant M such that 

llZmllv(n,p) :SM form= 0, 1, 2, .. . 

For Win H 1(00 ) , we get by direct computation, 

la~m (Zm - Zo , W)I :'.S la1/Jm(Zm , W) - a1/J (Zo, W) I + 

+ CllZmll v (n,µm) llWllL2(0,µm \ rl,µ) 

+ CllZollv(rl,µm) llWll L2(rl,µ \ rl,µm) 

:S la1/Jm(<I>m, W) - a1/Jm (<I> , W)I + 
+ C(llFo - FmllL2(r) + llGo - GmllL2(r)) 

+ CM(llWllL2(0,µ m \O,µ) + llWllL2(0,µ\ 0,µm) ) · 

In view of (5.4) , (5.5), the latter inequality implies that 

la~m (Zm - Zo , W)I-+ 0 as m-+ oo. 

In view of the representation (5.21), it follows from (5.23) that 

Zmlro ____,. Zolro in (L2
(fo))

2
. 

(5.22) 

(5.23) 

This proves Lemma 1 and hence the proof of Theorem 2 is completed. 0 
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, A ' A A ,,, ' "' 

XAC DlNH BIEN CUA MQT V~T THE DAN HOI 

NHUNG MOT PHAN TRONG CHAT LONG 

Xet m(>t tn,i dan hoi dai c6 tiet di~n khong d6i f2 duqc nhung m(>t phan trong 
m(>t chat lOng c6 m~t d9 khong doi. Gia thiet rang v~t the & tr<;lng thai bien d<;lng 
phiing va n c6 bien gom hai cung trcm tung do9-n g~p nhau t<;li hai diem tren dm:mg 
th~ng nam ngang. Bien tren r duqc biet tru&c, bien du&i / hoan toan nam trong 
chat lOng, la chua biet va phru xac dinh. Gia thiet biet trm:mg chuyen v! va u ng 
suat m~t t ren m(>t phan cua r , va bien du&i ch!u tac d\lng cua ap suat thuy tlnh 
khong doi, cac tac gia chung minh m(>t d!nh ly ve tfnh duy nhat, va trong t rm:mg 
hqp ton t<;li nghi~m, Se chi ra S\f ton t<;li CUa m(>t day cac nghi~m chfnh quy h6a h(>i 
t\l ve nghi~m, se chi ra S\f ton t<;li CUa m(>t day cac nghi~m chfnh quy hoa h(>i t\l ve 
nghi~m chfnh xac. 
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