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THE PROBLEM OF LONGITUDINAL SHOCK OF 
TWO SPHERICAL END ELASTIC BARS WITH 

VISCO-ELASTIC RESISTANCE FORCE 

NGUYEN THUC AN, NGUYEN DANG TO, NGUYEN HUNG SON 

Hanoi Water Resour:ces University 

Based on the theory of one-dimensional wave together with Dalembert solution and Hertz's 
law of deformation holds, in [1[ and [2[ we studied the problem of shock of two elastic bars with 
free spherical end. In this paper, we continue to study the above problem when the second end of 
the secc;~nd bar meets visco-elastic resistance force. 

§1. FORMULATION OF THE PROBLEM 

The motion equation of the bars is: 

where j = 1, 2; ai = ["f- wave velocity. 

Initial conditions: At t = 0, 

Boundary conditions: 

au,_ v. 
at - b 

au2 
-=0· at ' 

u, =0; 

U2 = o; 

au, 
-=0 ax, 

au2 
-=0 ax2 

At the shock end x1 = £1; Xz = ~~ 

au, au2 ( )3/2 E,F,- = E2F2- = -K U, + U2 
axl . axz 

At the free end, x1 = 0, 
· au, = 

0 ax, 
When tl).e end of the second bar bear on the visco-elastic. sole, we obtain: 

x2 = 0; 
au2 au2 
- = -K,U2- ).ax2 at 

(1.1) 

( 1.2a) 

(1.2b) 

(1.3) 

(1.4) 

(1.5) 

In this equation k 1, A are elastic and viscid coefficients respectively. They are considered as 
constants. A general solution of eq. (1.1} is of the D'Alembert form: 

u,. = 'Pi(a,.t- x,.) + .p,.(a,.t + x,.) 
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§2. DETERMINATION OF WAVE FUNCTIONS OF BARS 

Assume that the second bar is in. the rest, the first bar centro-longitudinally moves and impacts 
to the second one with velocity V1 , based on [1j we get: 

where ~ii < Zj < ~i~ with j = 1, 2. 
According to the ooundary condition (1.3) we have: 

where 

A(-<p~ + ,P~)-:- 1 13 · (-<p~ + t,b~) = 2p~ + Bp~ + C,P~ 
.!J I 1£ I.!.') 
'1'1 = ~'>1 +-,~pz+ '1'2 

<>: 

(2.1) 

(2.2) 

(2.3) 

K (3= _._·· . 
E 1 · F1 

Consider that T2 ·= iT1 + qT1 with i = 1, 2, 3, ... ; 0 ::; q < 1. 
The wave fUnctions<p~(a,t- x,); ,P~(a,t+x,); <p~(azt- :><z) and ,P~(a2t+x2 ) with 0 < t < Tz 

are determined ·as followS: 

At first period T,(O < t < T,), we have <p~ = 0 and p~ = 0, and from eq. (2.1) p~ = ~ . 
2a, 

Notice that d!2 = ,P~ = y with z = azt + t, then eq. (2.2) can be written as follows: 

I 1 (v' . ) 1/3 y =- - +cy . y 
A a1 

Integrated eq. (2.4) we have: 

3A [ 1 y2/3 ~ C,y'fa + C[ 2yl/3- C, ( 1 )] 
z- zo = c, . C 2y'sln ( C, + yl/3)2 + arctg y'sc, - arctg - VS 

. v, 
where C1 = --· . From eq. (2.3) we obtain: 

Ca1 

.J.I v, . 1 
'1'1 =- + -y 

2al a 

Similarly [1j for the ;th period of first bar we get: 

v 1 i-1 

(p~)li = _21+- LYn. 
ar o: n=l 

: i-1 

I 1 l/3 [v' · 2 " ] Y·= -y. · -+- L..Yn·+Cy; 
$ A 1 a1 a · · 

· n=l ._ 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Equation (2. 7) can be solved by the finite difference method. Value y; of first bar at the start of 
period i is equal to that one at the end of period (i- 1). From eq. (2.3) we have: 

( ') v, 1 ~ 
1/>1 li = z + - L.. Yn 

· a1 a n=l 
(2.8) 
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Finally in the interval iT;< t < T2 = iT1 + qT1 we obtain: 

10;(a2t -£2) = 0 and 10~(a2t -£2) = 0. 

From eq. (2.2) we have 

(2.9) 

where (10~) 1 = (1/>0,. . 
Solving eq. (2.9) the wave functions ( ,p;) 

1 
is determined. From eq. (2.3) we obtain: 

when t < ~2 refiected.wave p~(azt- xz) does not appear in the second bar. 

T 
H 

2
2 < t < T2 then the wave function rp~(a2t- £2 ) = 0, but the wave function cp~(a2·t: x 2 } 

appears in the second bar. Determination of the wave function cp~(a2t- x 2 ) with ~2 < t <. T2 is 

done in the same way described by [1]. According to boundary condition mentioned in eq. (1.5), 
the following cases are occured. 

If 1 - Aa2 of 0 then: 

<p~(a2t)-

or 

(2.11) 

With 0 < azt - xz < 2lz. 
Based on eq. (2:1) when 0 < a2t- x2 <£,then 10~(a2t- x2) = 0. When £2 < a2t- x2 < 2£2 

then 1,b~(a2t- x2) is known and 1/>2(a2t- x2) is determined. Integrating eq. (2.11) with the 
condition of 102 (£, - 0) = 0 we obtain: 

(a2t-x2) . 

I -".J._r [ 1 + Aa2 .Ji ( ) e 1->.."2 . 'fl .,. + 
1- ).a2 

2 
K, l 1-Aa21/>2(r) dr (2.12) 

e, 

H ~ - .Aaz = 0, we have: 

(2.13) 

Based on those menti9.ned above, we can determine the wave function- c,oi{a2t- x 2 ) in the 
second bar. So that we can- determine wave function rp~ (a1t- xi),'¢~ (a1t + x1), rp~(a2t- x2 ) and 

.P;(a2t + x2) at each of the sections of the baxs in interval 0< t < 2£2 · 
02 

In interval T2 < t < 2T2 studying each of period T, with T2 + (n- 1)T, < t < T2 + nT1 • Let 
( )

2
n be·c·a wave function, that .is determined in nth period of first bar and the wave function itself 

is also determined in the second period of second bar, where n = 1, 2, ... , i. At the first period of 
first bar with T2 < t < T2 + T1 , according boundary condition (1.3) we have: 

(1/>~)2, = (10~)2, + ~[2 (10i}2, + B(10~)21 + c(,p;}2,l· [(- 10;)2, + (1/>~) 2 ,] 113 

(1/>;)2, = (IODn + ~[(- 10;)2, + (1/>;)2,] 
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(2.14) 

(2.15) 



From condition (1.4) 

or 

'f'1(a1t- l1) = .;,;(a1t- t,) = .;,;[al(t- T1) + t1], 

(10;)21 = (¢;)20' (2.16) 

where ( ¢;) 20 is the wave function ¢; ( a1 t + l,) with (T2 - T1 ) < t < T2, which WIIS determined, 

so that the wave function (IPDzt is also detennined. According to (1.5) and (2.11) we have: 

( , ). K 1 ( ) . 1 + .l.a2 ( , ). K, ( ) 
102 21 - 1 - .l.a2 102 21 = 1 - .l.a2 ¢2 21 + 1 - .l.a2 ¢2 11 

(2.17) 

If 1- .l.a2 i 0 then a solution of eq. {2.17) is: 

( ) 
~(at-e) rpz 21 = el->.a.z z z . 

(a:~t-i:;l} 

I .-,-'i.,T.[1+.l.a2¢~(r)+ K1 ¢ 2(tJ]dr 
1 - .l.a2 1 - .l.a, 

(2.18) 

e, 

If 1 - .l.a2 = 0 we have: 

(2.19) 

So the wave function (c,o~) 21 = (rp2(azt -lz)}
21 

is knoWn from eq. (2.14) the' function ('02)
21 

is 
determined. Replacing this result into eq. (2.15) the wave function (1/J~} 21 can be found. Doing 

similary we can determine the wave functions at the ith period of first bar. We have: 

(¢~)2, = (10~).;, + ~[2 (10;)2, +B(I0~)2, +G(¢~)2J. [(- 10~)2, + (¢~)2J'/2 
(2.20) 

( .;,;) 2i = ( 10;)2, + ~ [ (- 10~)2, + ( .;,;)2J (2.21) 

(10;)2, = (¢;)2(i-1) (2.22) 

( , ) K1 ( ) 1 + .l.a2 ( , ) K1 ( ) 
102 2i- 1- .l.a2 102 2i = 1- .l.a2 ¢2 li + 1- .l.a2 ¢2 1i (2.23) 

If 1- .l.a2 i 0 then solution of eq. (2.23) is: 

(102) 2 , = (102(a2t- £2)) 2, = (2.24) 
(azt-lz) 

=e'~.,(a,t-t,). { I .-,_'i.,T. [~~~::.p;(r)+ 1 _:<"~02 ¢2 (rJ]dr+G2i} 
[i::~+az(i-l)Tl) 

where 
Czi = cpz [ lz + a2(i- l)T1 - o] . e- t-~az [tz+a:di-t)Tt) 

If 1 - .l.a2 = 0 then 

(2.25) 

So that the wave functions ( ~2} 2i and ( '.bDzi are determined. Now we determine the wave f~nctions 
is odd part of the second period of the second bar. From conditions (1.3), (104) and (1.5) we have: 

(¢~)2 = (~0~)2 + ~[2 (10;)2 +B(10;)2 +G(¢~)2]· [(- 10~)2 + (.;,;) 2]
113 

(.PD2 = (10;)2 + ~[(- 10~)2 + (.;,~),] 
(10D2 = (.PD2, 

( , ) K, ( ) 1 + .l.a2 ( , ) K1 ( ) 
102 2 - 1 - .l.a2 102 2 = 1 - .l.a2 ¢2 1 + 1 - .l.a2 ¢2 1 
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(2.26) 

(2.27) 

(2.28) 



H 1 - >.a2 f 0 then 

_...!£!._, [1 + >.a2 , ( ) K1 ·'· ( l] d C } e l-.l.a.~ · 1/J2 T + 'f'2 T T + 2 
1->.a2 1-Aa2 

(2.29) 

where 

H 1 - >.a2 = 0 then 

(2.30) 

So that the wave functions { 1/J~) 
2 

and ( 1/Ji) 
2 

are determined. If the shocks of two bare are still 
not finished Yet in second period of second bar, the next periods are studied is the same method 
as above mentioned. Let ( ) pn be the wav~ function in nth period of first and in pth period of 

second bar. In interval (p -1)T2 + (n- 1)T, < t < (p :-1)T2 + nT1 with n = 1, 2, ... , the problem 
is studied as following: 

From conditions (1.3) and (1.4) we have: 

(·'·") -( ") +_!_[2( ') +B( ') +C(·'i) ]·[(- ') +(·'·') ]'/3 'f'2 pn - lf'2 pn A P1 pn lf>2 pn 'f'2 pn IP2 pn 'f'2 pn 

1 
{ .J;;) pn = { 1"D pn + ;;- [ { - 1"~) pn + { .J;~) pJ 
(1"~)pn = (.P;)p(n-1) 

By sinlillar way mentioned above, and from condition (1.5) we obtain: 
H 1 - Aa2 f 0 then 

a 2t-e2 

(P2)pn = e>-";., (a,t-e,).{ I 
az[(2p-3) .!'j.+(n-l)Tl] 

where p 2: 2, and 

H 1 - Aa2 = 0 then 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

So that the wave functions ( 1/1~) pn and (1ft) pn are determined. Now we are studying this problem in 

final odd part oft he p'h period of the second bar, or (p-l)T2 +iT, < t < (p-l)T2+iT1 +qT1 = pT2 . 

Let ( ) P be wave function determined in odd part of pth period of the second bar. From condition 

(1.3) and (1.4) we have 

(.P~)v = (P~)v + i[2(pDv +B(p;)v +C(.P~)2]. [(- P;)v + (.P~)v]'/3 

(.P;)v = (p~)P + ~[(- P;)v + (.J;~)Pj 
(p~)p = (.p;)pi 
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(2.36) 

(2.37) 

(2.38) 



Doing similarly, from eq. (1.5) we get: 
If 1 - .>.a2 'I 0 then 

where 

C - [ {2 3) T2 + . T o] - 1~ [a2 (2p-3) ~+aziTr 
p - pz az p- - za2 1 - · e "'' - . 

2 

If 1 - .>.a2 = 0 then 

(2.39) 

{2.40) 

So that the wave fl!nctions ( tP;) P and ( tflD P are determined. Impact-pressing force F between 

two bars is determined by the following expression: (F)pn = EzFz[(- <p~)pn + (?J;~)pn] and 

(F) P = E2F2 [ ( - 10~) P + ( '!'>~) P]. Impact time determined by the following expression (F) ,on = 0, 

or (F) P = 0. So we can determine the wave functions rpi ( a 1 t - xt) J '¢'~ ( a 1 t + xi), <p~ ( azt - xz) 
and 1/;~ ( a2t + x2 ) at each section of two bars in impact time, and whence stress, velocity in each 
section of bars can be found. 

§3. CONCLUSION 

In this paper the authors have studied the problem of longitudinal shock of two spherical end 
elastic bars with visco-elastic resistance force. The wave function, stress, velocity in each section 
of bars, impact-pressing force between two bitrs and impact time are given. _The considered model 
can be applied for pile driving on visco-elastic soil. 

This publication is completed with financial support from the National Basic Research Pro
gram in Nat ural Sciences. 
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' \<. ' \<. 

VA CH4M DQC CUA HAl THANH DAU HINH CAU 
VITI LVC CAN DAN NHUT 

Trang bai bio nay d.c tic gilt xet bai toin va ch{Lm d9c cUa hai thanh dfm hOi diuhlnh ciu 
v&i diu kia cUa thanh thtl- hai g~p lv-c d.n dan -nh6t. Da xiC d!nh dU'qc ham·-s6ng, tir d6 xic djnh 
dtr9'C U:-ng suat, v%n tO'c t{Li m~i thie't di~n ella thanh, lvc nen va ch<;tm gi-fi·a hai thanh va thCri gian 
va ch~m. 
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