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Abstract. Material nonlinearity is of great importance in many engineering problems. In
this paper, we exploit NURBS-based isogeometric approach in solving materially non-
linear problems, i.e. elastoplastic problems. The von Mises model with linear isotropic
hardening and kinematic hardening is presented, and furthermore the method can also
be applied to other elastoplastic models without any loss of generality. The NURBS basis
functions allow us to describe exactly the curved geometry of underlying problems and
control efficiently the accuracy of approximation solution. Once the discretized system
of non-linear equilibrium equation is obtained, the Newton-Raphson iterative scheme is
used. Several numerical examples are tested. The accuracy and reliability of the proposed
method are verified by comparing with results from ANSYS Workbench software.

Keywords: Isogeometric analysis, NURBS, Rate-independent plasticity, von Mises yield
criterion, isotropic hardening, kinematic hardening.

1. INTRODUCTION

Metal forming and pre-stressed concrete are examples of plasticity being applied
in industry. Plastic deformation is found in a wide variety of materials, such as metals,
soils, rocks, martensitic materials and cellular materials, etc. Thus, investigation of plas-
ticity is of great importance in engineering. One key factor in theory of plasticity is the
yield criterion, which determines whether a material points is under plastic state or not.
There are various yield criteria corresponding to many types of materials, such as von
Mises model and Tresca model for ductile metals, Drucker-Prager and Mohr-Coulomb
for geomaterials, Cam-Clay model for soils, etc. [1].

The accuracy of nonlinear elasto-plastic analysis strongly depends on the integra-
tion scheme. Because the material behaviour is described with a rate-form constitutive
equation, an increment solution strategy is often used. In a small strain problem, the
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strain rate remains constant during the increment. Krieg and Krieg [2] showed an an-
alytical solution for perfectly plastic von Mises model by using the constant strain rate
assumption. Wei [3] derived the stress update formula with the consistent linearization.
Szabó [4], who developed the partial analytical solution proposed by Ristinmaa and Try-
ding [5], achieved a semi-analytical solution for the purely linear isotropic hardening von
Mises elastoplastic model.

Elastoplastic problem has been intensively investigated with the aid of numerical
methods such as finite element method [6, 7], meshfree method [8–10], boundary ele-
ment method [11,12]. The implicit solution schemes were investigated. This method was
proposed by Simo and Taylor [13] in the finite element method context. It exploits the
quadratic rate of convergence in the Newton-Raphson iterative process. In spite of the
great success on existing numerical methods for the elastoplastic problems, there is still
a growing interest in the development of new advanced methods.

In recent years, the isogeometric analysis (IGA) [14, 15] has gained much attention
from research community as an alternative numerical method to the well-known finite
element method (FEM), due to utilizing its exact geometrical modelling and higher order
continuity. IGA has been successfully implemented in many applications, such as struc-
tural vibrations [16], plates [17, 18], shells [19, 20], incompressibility [21], electromagnet-
ics [22] and phase fields [23, 24], etc. However, to the best knowledge of the authors, the
application of IGA in solving the elastoplastic problems has not been much mentioned
in literatures. In this paper, our investigation is focused on the elasto-plastic von Mises
model with isotropic hardening, and the extension of the present approach to other yield
criterion is completely straightforward.

This paper is structured as follows. Section 2 states a brief review of NURBS basis
functions. The algorithms for von Mises plasticity model with linear isotropic hardening
and kinematic hardening using NURBS-based IGA are presented in Section 3. Several
numerical examples are investigated in Section 4. Finally, some concluding remarks are
closed in Section 5.

2. NURBS BASIS FUNCTIONS

In this section, a brief summary of some technical features of non-uniform rational
B-spline (NURBS) is presented. A more detailed description can be found in [25]. A
NURBS curve, C (ξ), of order p is the linear combination of the NURBS basis functions,
in which the coefficients are a given set of control points

C (ξ) =
n

∑
i=1

Ri,p (ξ)Pi , (1)

where Ri,p (ξ) is the univariate NURBS basis functions determined by

Ri,p (ξ) =
Ni,p (ξ)wi

n
∑

i=1
Ni,p (ξ)wi

, (2)
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Pi = (xi, yi) , i = 1, 2, . . . , n is the set of n control points and wi is the non-negative weight
assigned for the ith control point, and Ni,p (ξ) are the B-spline basis functions of order p.
Corresponding to the set of n B-spline basis functions of order p, a knot vector ΞΞΞ with
non-decreasing sequence of real numbers in a parametric space, ξ ∈ [0, 1], is defined as

ΞΞΞ =
{

ξ1, ξ2, . . . , ξn+p+1
}

; ξi ≤ ξi+1; i = 1, 2, . . . , n + p. (3)

A knot vector is said to be open if the knots are repeated p + 1 times at the start
and end of the vector. For analysis purposes, the open knot vectors are generally used
to take advantage of the Kronecker-delta property at the boundary points. Given a knot
vector, the univariate B-spline basis function, Ni,p (ξ), can be constructed recursively by
the Cox-de Boor formulation

Ni,0 (ξ) =

{
1, if ξi ≤ ξ < ξi+1
0, if ξ < ξi or ξ ≥ ξi+1

(4)

and with p = 1, 2, 3, . . .

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) . (5)

The B-spline basis functions constructed from an open knot vector have the in-
terpolation property at both ends of the parametric space. A set of cubic B-spline basis
functions constructed from an open knot vector is depicted in Fig. 1.

Fig. 1. Cubic basis functions for the open knot vector ΞΞΞ = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}

A NURBS surface, S (ξ, η), of order p in ξ-direction and order q in η-direction can
be expressed generally as

Sξ,η =
n

∑
i=1

m

∑
j=1

Rp,q
i,j (ξ, η)Pi,j, (6)

where Rp,q
i,j (ξ, η) stands for the bivariate NURBS basis functions determined from the

univariate B-spline basis functions Ni,p and Mj,q defined on the ΞΞΞ and H knot vectors
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corresponding to ξ-direction and η-direction, respectively

Rp,q
i,j (ξ, η) =

Ni,p (ξ) Mj,q (η)wi,j
n
∑

i=1

m
∑

j=1
Ni,p (ξ) Mj,q (η)wi,j

, (7)

and Pi,j are the list of n× m control points, and wi,j are the assigned weights. The first-
order derivative of Rp,q

i,p (ξ, η), with respect to each parametric variable, e.g. ξ, is derived
directly from Eq. (7)

∂Rp,q
i,j (ξ, η)

∂ξ
=

∂Ni,p (ξ)

∂ξ
Mj,q (η)wi,jW (ξ, η)− ∂W (ξ, η)

∂ξ
Ni,p (ξ) Mj,q (η)wi,j

W (ξ, η)
, (8)

with

W (ξ, η) =
n

∑
i=1

m

∑
j=1

Ni,p (ξ) Mj,q (η)wi,j , (9)

∂W (ξ, η)

∂ξ
=

n

∑
i=1

m

∑
j=1

∂Ni,p (ξ)

∂ξ
Mj,q (η)wi,j . (10)

Any higher-order derivatives of the NURBS basis can also be obtained in a similar
fashion. The idea of tensor product in Eq. (6) and Eq. (7) is also applicable to build the
NURBS solids

S (ξ, η, ζ) =
n

∑
i=1

m

∑
j=1

l

∑
k=1

Rp,q,r
i,j,k (ξ, η, ζ)Pi,j,k , (11)

where the trivariate NURBS basis function is given by

Rp,q,r
i,j,k (ξ, η, ζ) =

Ni,p (ξ) Mj,q (η) Lk,r (ζ)wi,j,k
n
∑

i=1

m
∑

j=1

l
∑

k=1
Ni,p (ξ) Mj,q (η) Lk,r (ζ)wi,j,k

. (12)

3. RETURN-MAPPING ALGORITHM FOR VON MISES YIELD CRITERION

In this section, the Return-mapping algorithm for the von-Mises yield criterion,
widely used for metal plasticity, with isotropic hardening is adopted. The total hardening
is assumed to be a combination of the isotropic hardening, Hi (α), accounting for the
dilation of the yield surface, and the kinematic hardening, Hk (α), accounting for the
translation of the yield surface. We write [6]

Hi (α) = σY + θξ (α) , (13)

H′k (α) = (1− θ) ξ ′ (α) , θ ∈ [0, 1] (14)

in which σY is the initial yield stress in uniaxial tensile test and αis equivalent plastic
strain and ξ (α) is the hardening function. The von-Mises yield criterion with combined
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isotropic/kinematic hardening is given by

f (s, q, α) = ‖s− q‖ −
√

2
3

Hi (α) , (15)

where s is the deviatoric stress, q defines the center of the von Mises yield surface in
deviatoric space.

The evolution law gives

ε̇p = γ̇
∂ f
∂σσσ

, (16)

α̇ = −γ̇
∂ f
∂ξ

, (17)

q̇ =
2
3

H′k (α) ε̇p , (18)

in which βββ = s− q is the relative stress. Applying the backward Euler time integration,
the above rate form can be rewritten in an incremental from as

∆εp = ∆γ
βββ

‖βββ‖ , (19)

∆α = ∆γ

√
2
3

, (20)

∆q =
2
3

H′k (α)∆γ
βββ

‖βββ‖ . (21)

With the notice on Eq. (20), Eq. (21) can be rewritten as

∆q =

√
2
3

H′k (α)∆α
βββ

‖βββ‖ =

√
2
3

∆Hk (α)
βββ

‖βββ‖ . (22)

Assume that step n + 1 is plastic, the updated stress is expressed by [6]

σσσn+1 =
I1,n+1

3
I + sn+1 = σσσtr

n+1 − ∆γC : nn+1, (23)

where σσσtr
n+1 is the trial stress, which is assumed to be in elastic state as

σσσtr
n+1 =

Itr
1,n+1

3
I + str

n+1, (24)

and I is the second order unit tensor, nn+1 =
∂ fn+1

∂σσσn+1
=

βββn+1∥∥βββn+1

∥∥ and C is the tensor of

elastic property
C = κI⊗ I + 2GIdev , (25)

in which κ is the bulk modulus, G is the shear modulus and Idev is the deviatoric operator.
Due to the pure deviatoric nature of von Mises plastic flow, i.e. I1,n+1 = Itr

1,n+1 and the
orthogonality between the hydrostatic and deviatoric plane, one obtains

sn+1 = str
n+1 − 2G∆γnn+1. (26)
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From the definition of the relative stress, βββn+1 = sn+1 − qn+1, one has

βββn+1 = str
n+1 − 2G∆γnn+1 −

(
qn +

√
2
3

∆Hk (α)nn+1

)

= βββtr
n+1 −

(
2G∆γ +

√
2
3

∆Hk (αn+1)

)
nn+1.

(27)

Notice the denotation of nn+1, the following relation is obtained

βββn+1

1 +
2G∆γ +

√
2
3 ∆Hk (αn+1)∥∥βββn+1

∥∥
 = βββtr

n+1. (28)

Since the term in the parentheses is a scalar, it can be inferred that βββn+1 and βββtr
n+1

point the same direction,

βββn+1∥∥βββn+1

∥∥ =
βββtr

n+1∥∥∥βββtr
n+1

∥∥∥ . (29)

Substituting above relation into Eq. (28), one obtains

∥∥βββn+1

∥∥+ 2G∆γ +

√
2
3

∆Hk (αn+1) =
∥∥∥βββtr

n+1

∥∥∥ . (30)

Yield condition gives

fn+1 =
∥∥βββn+1

∥∥−√2
3

Hi (αn+1)

=
∥∥∥βββtr

n+1

∥∥∥− 2G∆γ−
√

2
3

∆Hk (αn+1)−
√

2
3

Hi (αn+1)

= 0.

(31)

This equation is in general a non-linear equation and can be solved iteratively using
Newton-Raphson scheme for ∆γ. Once ∆γ is obtained, the values of step n + 1 can be
updated as follows

ε
p
n+1 = ε

p
n + ∆γ

βββtr
n+1∥∥∥βββtr
n+1

∥∥∥ , (32)

αααn+1 = αααn + ∆γ

√
2
3

, (33)

qn+1 = qn +
2
3

H′k (α)∆γ
βββtr

n+1∥∥∥βββtr
n+1

∥∥∥ . (34)
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The consistent elastoplastic material tensor is obtained by

Cep =
dσσσn+1

dεn+1

=
dσσσtr

n+1

dεn+1
− 2G

d (∆γnn+1)

dεn+1

= C− 2G
d∆γ

dεn+1
nn+1 − 2G∆γ

dnn+1

dεn+1
.

(35)

From the yield condition

fn+1 =
∥∥∥βββtr

n+1

∥∥∥− 2G∆γ−
√

2
3

∆Hk (αn+1)−
√

2
3

Hi (αn+1) = 0, (36)

the derivative is taken as

d fn+1

dεn+1
=

d
∥∥∥βββtr

n+1

∥∥∥
dεn+1

− 2G
d∆γ

dεn+1
−
√

2
3

d∆Hk (αn+1)

dεn+1
−
√

2
3

dHi (αn+1)

dεn+1
, (37)

in which the first term

d
∥∥∥βββtr

n+1

∥∥∥
dεn+1

=
d
∥∥∥βββtr

n+1

∥∥∥
dβββtr

n+1

dβββtr
n+1

dstr
n+1

dstr
n+1

dεn+1

= 2Gnn+1Idev

= 2Gnn+1,

(38)

the third term
∆Hk (αn+1) = Hk (αn+1)− Hk (αn) ,√

2
3

d∆Hk (αn+1)

dεn+1
=

dHk (αn+1)

dεn+1

=

√
2
3

dHk (αn+1)

dαn+1

dαn+1

d∆γ

d∆γ

dεn+1

=
2
3

H′k (αn+1)
d∆γ

dεn+1
,

(39)

and the fourth term √
2
3

d∆Hi (αn+1)

dεn+1
=

dHi (αn+1)

dεn+1

=

√
2
3

dHi (αn+1)

dαn+1

dαn+1

d∆γ

d∆γ

dεn+1

=
2
3

H′i (αn+1)
d∆γ

dεn+1
.

(40)
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Since
d fn+1

dεn+1
= 0, the derivative

d∆γ

dεn+1
is calculated as

d∆γ

dεn+1
=

2G
2G + H′i,n+1 + H′k,n+1

nn+1 =
1

1 +
H′i,n+1 + H′k,n+1

3G

nn+1, (41)

dnn+1

dεn+1
=

d βββtr
n+1

‖βββtr
n+1‖

dβββtr
n+1

dβββtr
n+1

dεn+1

=
1∥∥∥βββtr
n+1

∥∥∥ (I− nn+1 ⊗ nn+1) 2GIdev

=
2G∥∥∥βββtr
n+1

∥∥∥
(

Idev − nn+1 ⊗ nn+1

)
.

(42)

Substituting Eqs. (41) and (42) into Eq. (35), the consistent elastoplastic material
tensor becomes

Cep = C− 2G

 1

1 +
H′i,n+1 + H′k,n+1

3G

− 2G∆γ∥∥∥βββtr
n+1

∥∥∥
nn+1 ⊗ nn+1 −

4G2∆γ∥∥∥βββtr
n+1

∥∥∥ Idev. (43)

4. NUMERICAL EXAMPLES

To demonstrate the efficiency of the method, a long metallic thick-walled tube sub-
jected to internal pressure is considered. The length of the tube is enough large to the
width in order to solve this problem under plane strain conditions. The internal and ex-
ternal radius are 100mm and 200 mm, respectively. Fig. 2 illustrates the geometry of this
problem. The material properties are: Young’s modulus: E = 210 GPa, Possion’s ratio:
ν = 0.3, Uniaxial yield stress: σy = 0.24 GPa. The von Mises yield criterion is assumed

P 

a=100mm 

b=200mm 

Fig. 2. Geometry and dimensions of internally
pressurized tube

A 

Fig. 3. A quarter model of internally
pressurized tube
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bilinear hardening (tangent modulus Et = 42 GPa). Due to its symmetry, the problem
can be modeled by one quarter of the cross-section of the tube as shown in Fig. 3. The
computation is performed using 20 load step increments in each load step time.

4.1. A study of the convergence
To check the accuracy and convergence, the internal pressure P = 0.25 GPa is con-

sidered. Data for meshes of a quarter tube are described in Appendix A and Fig. 4. We
study the performance of the 2-D quadratic (p = 2), cubic (p = 3) and quartic (p = 4)
NURBS basis function elements in comparison with quadratic finite elements derived
from ANSYS Workbench software. As provided a reference solution for this problem,
we use ANSYS solution with a very fine mesh of 500 × 500 quadratic elements (1504002
DOFs). The obtained ure f and σre f values are 0.45123 mm and 0.42272 GPa, respectively.
The relative errors are calculated by Eq. (44)

εA =

∣∣∣∣uA − ure f

ure f

∣∣∣∣ · 100 [%], εσ =

∣∣∣∣σA − σre f

σre f

∣∣∣∣ · 100 [%], (44)

where ure f and σre f are the reference solutions of x-displacement and von Mises equiv-
alent stress, respectively. uA and σA denote the computed value of x-displacement and
von Mises equivalent stress at point A, respectively.

(a) Coarsest mesh (b) A quartic element (c) 5× 5 quartic elements

Fig. 4. The meshing of internally pressurized tube

(a) (b)

Fig. 5. The comparison of the relative errors of (a) the x-displacement
and (b) the von Mises equivalent stress at point A
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The relative errors of x-displacement and von Mises equivalent stress versus the
total number of degree of freedoms (DOFs) at point A are displayed in Fig. 5(a) and
Fig. 5(b), respectively. It is observed from Fig. 5(a) that the present results are almost
identical (with the error εA < 0.1%) to the reference solution of x-displacement for few
DOFs (5 × 5 quadratic NURBS elements or approximately 98 DOFs) while ANSYS so-
lution requires a large number of degree of freedoms (approximately 450 DOFs). In the
other hand, Fig. 5(b) shows the relative error of von Mises equivalent stress. We need
a large number of degree of freedoms of ANSYS (approximately 241602 DOFs) to adapt
(the error εσ < 0.1%) the von Mises equivalent stress reference value while the IGA so-
lution needs only 98 DOFs with meshing of 3× 3 quartic NURBS elements. It is highly
noted that the present method, that just uses a slighly coarse mesh of 3× 3 quartic NURBS
elements in both displacement and equivalent stress results, produces very accurate so-
lution compared to the reference solution. For this reason, we recommend meshing of
5 × 5 quartic NURBS elements (Fig. 4(c)) as a good candidate for below problems. It
shows clearly an enormous advantage of the present method. The distributions of total
displacement, von Mises equivalent stress and plastic strain solutions of the long metallic
thick-walled tube are illustrated in Fig. 6.

(a) (b) (c)

Fig. 6. The distributions of (a) the total displacement, (b) the von Mises equivalent stress
and (c) the plastic strain solution

4.2. A study of the hardening
In this section, series of loading-unloading with the maximum loading are higher

after each cycle, as shown in Fig. 7, is applied to investigate the “hardening” phenome-
non. The pressure-displacement curve in Fig. 8 shows clearly the “hardening” behavior.
At first, the internal pressure is gradually increased from 0 to 0.25 GPa (Fig. 7), causing
the material behavior changing from linear elasticity to plasticity (Fig. 8). Then the load
is released. The part of the pressure-displacement curve corresponding to unloading is a
straight line whose slope is the elastic modulus, showing the elastic recovery. The load is
then increased. The interesting “hardening” is observed, as the pressure-displacement is
a straight line, characteristic to elastic behavior, until the load reaches 0.25 GPa and when
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the load is more than 0.25 GPa, the response displays plastic behavior. Noting that 0.25
GPa is the maximum load ever reached and it is higher than the yield stress, which is 0.24
GPa. This means that the material is “hardened” and now the yield stress is shifted to
a higher level, equal to the maximum load ever applied. The loading is continued until
the pressure reaches 0.275 GPa, then followed by unloading. Again, elastic recovery is
observed. Then loading is applied again. Similarly, the material displays elastic behavior
until the load reaches the maximum load ever reached, i.e. 0.275 GPa, and turns to plastic
behavior after that level. When the pressure reaches 0.3 GPa, unloading is again applied
and it is obviously that the response shows elastic recovery.

Fig. 7. Loading history of internal pressure Fig. 8. The internal pressure versus x-displac-
ement at point A to check hardening behavior.
The arrows denote the direction of loading-
unloading

This test shows that the present model is able to capture well the hardening be-
havior under tensile condition. However, in tensile test, it is not possible to distinguish
whether the hardening is isotropic or kinematic.

4.3. A study of the cycling loading
Next, to study the von Mises model with linear isotropic hardening and kine-

matic hardening, series of cyclic tension-compression loading is applied, as illustrated
in Fig. 9. The difference between isotropic hardening and kinematic hardening is the
difference in material behavior under cyclic tension-compression loading, and it is visu-
alized in Fig. 10. The results obtained by the present method are in good agreement with
those derived from the commercial software ANSYS Workbench. The kinematic hard-
ening model, shown in Fig. 10(b), is clearly distinguished from the isotropic hardening
model, shown in Fig. 10(a), as Bauschinger effect is observed in the kinematic hardening
model. Bauschinger effect implies that the yield strength of metal decreases as the direc-
tion of strain is changed, i.e. change from tension to compression and vice versa. For
example, an increase in tensile yield strength leads to the reduction of compressive yield
strength. The kinematic hardening model, with the assumption that the yield surface
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does not change in term of size but translates following the loading condition, is able to
capture the Bauschinger effect.

Fig. 9. Loading history of internal pressure

(a) (b)

Fig. 10. The Internal pressure versus x-displacement at point A
(a) The kinematic hardening and (b) linear isotropic hardening

4.4. A study of the spring-back phenomenon
To study the spring back phenomenon, a metal pipe is considered. Spring-back

occurs when a structure is loaded over the yield limit and then the load is released. Due
to the irreversibility of the plastic deformation, the structure does not recover to the initial
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x 

y 

z 

L=2000 mm 

Ri=40 mm 

Ro=50 mm 

A 

P 

Fig. 11. Geometry of the pipe clamped on one end
and loaded on the other end

Fig. 12. Loading history of uniform
y-direction pressure

configuration (before the load is applied), but only the elastic part of the deformation is
recovered. In metal forming, in order to obtain the desired deformation, it is necessary
to compensate the spring-back phenomenon, by applying a larger load, such that after
the load is released, the shape is sprung back to the desired one. Here, only the spring-
back phenomenon is presented. However, the algorithm that compensates the spring-
back phenomenon is not within the scope of this study. In this example, the pipe is
modeled in three-dimension (Fig. 11). One end of the pipe is clamped and the other end
is subject to load. The internal radius, outer radius and length of the pipe are 40 mm, 50
mm and 2000 mm, respectively. A uniform pressure P is applied on the free-end of the
pipe on y-direction with loading path shown in Fig. 12. It is assumed that the material
experiencing von Mises yield criterion with linear hardening. The material properties are
as follows: Young’s modulus E = 207000 MPa, Possion’s ratio: ν = 0.3, uniaxial yield
stress: σy = 207 MPa, and tangent modulus Et = 25900 MPa. Data for the coarsest mesh
of the pipe is described in Appendix B, Fig. 13(a) and Fig. 13(c). It is observed from Fig. 5
that quartic NURBS gives better results in terms of accuracy. In this problem, the initial
quartic mesh (Fig. 13(b)) is obtained by elevating the NURBS degree from the coarsest
mesh. A mesh of 320 three-dimensional quartic NURBS elements is chosen to compute
the problem, i.e. 10440 DOFs, as shown in Fig. 13(d).

The results of displacement are depicted in Fig. 14, showing clearly the shape of the
pipe in three configurations: initially un-deformed shape, deformed shape at peak load,
and the shape after load released totally. It is observed that the pipe does not recover to
the un-deformed configuration. This reason is because the region near the clamped end
of the pipe is already yielded, as shown by the distribution of plastic strain in Fig. 15.

The graph in Fig. 13 presents the displacement at point A (see Fig. 16) with re-
spected to the pressure applied obtained by IGA, compared with that obtained by the
software ANSYS. An excellent agreement is observed. As the pressure increases, defor-
mation increases. Non-linearity occurs when part of the pipe experiences plastic yielding.
When the load is released, the elastic part of the deformation is recovered. When the load
is totally released, the pipe is still deformed, due to existence of plastic deformation.
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(a) (b)

(c) (d)

Fig. 13. The meshing of 3D pipeline: (a) coarsest mesh and control points;
(b) a 4 - quartic - element - mesh and control points; (c) coarsest mesh

with 4 elements; and (d) computing mesh with 320 elements

Initial un-deformed shape 

Deformed shape at peak load 

Shape after load is released 

Fig. 14. Distribution of y-displacement in three time steps

(a) (b)

Fig. 15. The plastic strain of pipeline at end step: (a) front view and (b) 3D view
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Fig. 16. The y-direction pressure versus y-displacement at point A [mm]

5. CONCLUSIONS

We presented an effectively computational tool based on an isogeometric finite ele-
ment approach. Numerical validation is tested for a long metallic thick-walled tube with
linear isotropic hardening and kinematic hardening of von Mises model. Higher-order
NURBS basis functions were used for modeling geometry and obtaining approximate
solutions. The method allows us to design exactly arbitrary geometry at a coarse mesh
level and to achieve highly accurate solutions. We found that the quartic NURBS el-
ement is a great choice for providing an ultra-accurate solution with a low number of
degrees of freedom. Its result is well competitive with other existing and ANSYS so-
lutions. The method is also promising for analyzing other elastoplastic problems using
return-mapping algorithm for von Mises yield criterion through NURBS basis functions.
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APPENDIX A: DATA FOR A THICK-WALLED TUBE MODEL

The 2-D geometry for a thick-walled tube model in Section 4 uses a bivariate NURBS
basis function. There are two parametric directions, ξ and η, are corresponded to the cir-
cumferential and radial directions, respectively. The corresponding polynomial degrees
and knot vectors are given in Tab. 1 and the control points are given in Tab. 2.

Table 1. Polynomial degrees and knot vectors for a thick-walled tube model

Direction Degree Knot vector
ξ p = 2 ΞΞΞ = {0, 0, 0, 1, 1, 1}
η q = 1 ΞΞΞ = {0, 0, 1, 1}

Table 2. Control points for a thick-walled tube model

i Pi,1 Pi,2 wi,,1 wi,,2

1 (100, 0) (200, 0) 1 1

2 (100, 100) (200, 200)
√

2
/

2
√

2
/

2

3 (0, 100) (0, 100) 1 1

APPENDIX B: DATA FOR A 3D PIPELINE MODEL

The 3-D geometry for a pipeline model in Section 4 uses a trivariate NURBS basis
function. There are three parametric directions, ξ, η, and ζ are corresponded to the radial,
circumferential and longitudinal directions, respectively. The corresponding polynomial
degrees and knot vectors are given in Tab. 3 and the control points are given in Tab. 4.
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Table 3. Polynomial degrees and knot vectors for a pipeline model

Direction Degree Knot vector
ξ p = 1 ΞΞΞ = {0, 0, 1, 1}
η q = 2 ΞΞΞ = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1}
ζ r = 1 ΞΞΞ = {0, 0, 1, 1}

Table 4. Control points for a pipeline model

j k P1,j,k P2,j,k wi,,1 wi,,2

1 1 (40, 0, 0) (50, 0, 0) 1 1

2 1 (40, 40, 0) (50, 50, 0)
√

2
/

2
√

2
/

2

3 1 (0, 40, 0) (0, 50, 0) 1 1

4 1 (−40, 40, 0) (−50, 50, 0)
√

2
/

2
√

2
/

2

5 1 (−40, 0, 0) (−50, 0, 0) 1 1

6 1 (−40,−40, 0) (−50,−50, 0)
√

2
/

2
√

2
/

2

7 1 (0,−40, 0) (0,−50, 0) 1 1

8 1 (40,−40, 0) (50,−50, 0)
√

2
/

2
√

2
/

2

9 1 (40, 0, 0) (50, 0, 0) 1 1
1 2 (40, 0, 2000) (50, 0, 2000) 1 1

2 2 (40, 40, 2000) (50, 50, 2000)
√

2
/

2
√

2
/

2

3 2 (0, 40, 2000) (0, 50, 2000) 1 1

4 2 (−40, 40, 2000) (−50, 50, 2000)
√

2
/

2
√

2
/

2

5 2 (−40, 0, 2000) (−50, 0, 2000) 1 1

6 2 (−40,−40, 2000) (−50,−50, 2000)
√

2
/

2
√

2
/

2

7 2 (0,−40, 2000) (0,−50, 2000) 1 1

8 2 (40,−40, 2000) (50,−50, 2000)
√

2
/

2
√

2
/

2

9 2 (40, 0, 2000) (50, 0, 2000) 1 1
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