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ABSTRACT

Through-silicon vias (TSVs) are subject to thermal fatigue due to stress over time,

no matter how small the stress is. Existing works on TSV fatigue all rely on measurement-

based parameters to estimate the lifetime, and cannot consider detailed thermal profiles. In

this paper, we propose a new method for TSV fatigue prediction using entropy production

during thermal cycles. By combining thermodynamics and mechanics laws, the fatigue

process can be quantitatively evaluated with detailed thermal profiles. Experimental re-

sults show that interestingly, the landing pad possesses the most easy-to-fail region, which

generates up to 50% more entropy compared with the TSV body. The impact of landing

pad dimension and TSV geometries are also studied, providing guidance for reliability en-

hancement. Finally, full-chip fatigue analysis is performed based on stress superposition.

To the best of the authors’ knowledge, this is the first TSV fatigue model that is free of

measurement data fitting, the first that is capable of considering detailed thermal profiles,

and the first framework for efficient full-chip TSV fatigue analysis.
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1. INTRODUCTION

With the rapid growing requirements on the performance, speed and power of in-

tegrated circuits, tremendous efforts have been made towards the successful development

of the three-dimensional integrated circuit (3D IC). Through-silicon vias (TSVs) play an

important role in 3D ICs as vertical signal and power interconnects and facilitating heat

transfer between different tiers.

Due to thermal loading, all electronic devices have limited lifetime restricted by

thermal failures. In the application of 3D ICs, the mismatch of coefficients of thermal

expansion (CTE) between copper, silicon dioxide and silicon leads to thermo-mechanical

stress and strain at the interfaces. If the stress applied on a material is higher than its yield

strength, it will start plastic deformation. Various literature have thus studied the algorithms

to capture stress hotspots in a 3D IC(e.g.,[1, 2]). A less known and studied problem, on

the other hand, is the thermal fatigue when the stress is below yield strength. With cyclic

thermal loading, the stress and strain will cause elastic deformation, accumulating fatigue

over time. Such fatigue will result in interfacial cracks between liner, substrate, landing

pad and TSV body, as shown in Figure 1.1 [3]. It is essential to understand and investigate

the mechanics of TSV fatigue and optimize chip designs for better performance, reliability

and robustness.

The limited works available on TSV fatigue are mainly based on the Coffin-Manson

model, the details of which will be discussed in Section 2.2. For example, Choa [4] studied

the durability of TSV using the model by analyzing the plastic strain due to repetitive

temperature cycling and investigated the impact of TSV design parameters. Ladani [5]

applied the model in the reliability analysis of TSVs and solder joints as well as in the
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(a) (b)

Figure 1.1: SEM images of interfacial cracks under Cu pad and on the TSV side wall.

impact study of underfill thickness and stiffness. A few limitations exist for the Coffin-

Mason model and thus all these methods. They require measurement data fitting, and

cannot consider any thermal profile details during thermal cycling.

In this paper, we propose a novel model based on entropy production, which does

not need any measurement data fitting, to quantitatively predict TSV fatigue during thermal

cycles. The model takes detailed transient thermal profile into consideration. In addition,

we show that the classic Coffin-Manson fatigue model can be deduced from our model,

which partially verifies its correctness. We then further study the impact of TSV structures

and locations on fatigue using our model. Finally, we present an efficient framework for

full-chip fatigue analysis based on stress superposition. The main contribution of our paper

is that we have proposed (1) the first TSV fatigue model that is free of measurement data

fitting, and the first capable of considering detailed thermal profiles; (2) a few interesting

observations on the impact of TSV structures and locations on fatigue; and (3) the first

framework for full-chip TSV fatigue analysis.

The remainder of the paper is organized as follows: Section 2 reviews two models

for mechanical reliability and thermal fatigue analysis, with their shortcomings. Section 3
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theoretically introduces the novel entropy production fatigue analysis. Section 4 investi-

gates the impact of TSV structures and locations, and Section 5 presents the full-chip TSV

fatigue analysis framework. Concluding remarks are given in Section 6.
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2. PRELIMINARIES

2.1. VON MISES STRESS CRITERION

When stress exceeds the yield strength, materials start to experience irreversible

plastic deformation. The von Mises yield criterion is most widely used to determine

whether an isotropic and ductile metal will yield when it is subject to a complex loading

condition [6, 7].

The von Mises stress is derived from stress tensor, a combination of normal and

shear stresses that has nine components and completely describes the state of a stress ap-

plied on an object at a point. The equation of stress tensor is shown in Eq. (2.1) and the

related von Mises stress is shown in Eq. (2.2). The indices (i, j) in Eq. (2.2) refer to the

normal and tangential directions of the stress, respectively. When i equals j, σij is called

normal stress and when i does not equal j, σij is called shear stress.

σ = σij =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (2.1)

σv = [
1

2
(σxx − σyy)2 +

1

2
(σyy − σzz)2 +

1

2
(σzz − σxx)2 + 3(σ2

xy + σ2
yz + σ2

xz)]
1
2 (2.2)

The von Mises criterion only shows whether a material starts plastic deformation during

operation at a specific time, and therefore does not apply to long-term material fatigue

analysis (especially when the stress does not exceed the yield strength).
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2.2. EXISTING FATIGUE MODELS

Researchers have attempted to quantify material fatigue under various circum-

stances for many years. Miner [8] proposed the first idea about quantifying the fatigue

damage under the assumption that the life fractions of individual amplitudes sum up to

unity. From then on, various models for fatigue lifetime prediction were developed on dif-

ferent variables such as strain, stress, energy, damage, temperature, frequency, etc. Among

them, the Coffin-Manson model is the most widely used one, which is based on plastic

strain.

Depending on the strain amplitude (∆ε), the total number of cycles to failure (Nf )

is depicted, with the fatigue ductility coefficient (ε′f ) and the fatigue ductility exponent (c)

adopted for various materials by specific measurement data fitting. The equation is shown

in Eq. (2.3).
∆ε

2
= ε′f (2Nf )c (2.3)

Since the Coffin-Manson model applies on the condition that the fatigue due to

plastic deformation dominates, it is commonly combined with Basquin’s equation to take

elastic deformation into consideration, leading to Eq. (2.4).

∆ε

2
=

σ′f
E

(2Nf )b + ε′f (2Nf )c (2.4)

where σ′f is the fatigue strength coefficient, E is the elastic modulus and b is the Basquin’s

exponent. This equation greatly improves the accuracy as it accounts the attribution of

elastic deformation, especially in the higher reversals to failure area.

Two significant limitations exist for both models. First, they rely on measurement

data, which are valid only under specific environmental conditions such as thermal shock

and thermal cycles, to fit various parameters. As such, the fitted parameters are not suit-

able for all the complex conditions. Second, they only consider the effects of maximum
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temperature, temperature change, and cycling frequency, and are thus semi-empirical. For

example, they cannot tell the difference between temperature cycle and thermal shock,

where the ramp rate is the key difference. Thermal shock has much higher ramp rate, and

results in more damage [9].

In this paper, we will propose a new model for TSV fatigue analysis that addresses

both issues.
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3. ENTROPY PRODUCTION MODELING

3.1. CONCEPT OF MODELING

The theory of fatigue prediction using entropy production is developed based on

the Degradation-Entropy Generation (DEG) theorem. According to the second law of

the thermodynamics, entropy is generated when the permanent degradation is presented

through an irreversible process, which leads to a monotonic increase of disorder in a sys-

tem. Therefore, the component of material degradation can be measured by entropy and

thermodynamics energy [10, 11].

As for experimental validation, Naderi [12] validated the sufficient and necessary

condition for the entropy production of a metal which takes cyclic loading before reaching

the final fracture. In the experiment, it is observed that the metal specimen breaks dur-

ing operation when its entropy production through thermal deformation cycles reaches a

critical value. The behavior is independent of the loading type, the size and the geom-

etry of the specimen. Furthermore, by applying the entropy degradation theory related

thermodynamic forces, Amiri [13] experimentally determined the critical damage value of

specimens subjected to different operations based on the entropy flow.

In this work, we take one step further and apply the concept of entropy generation

to the context of TSV fatigue. Based on previous theories, when expressing the fact that

the volumetric entropy production is positive, the Clausius-Duhem inequality (second law

of thermodynamics) can be used

γ̇(t) = σ(t) :
ε̇p(t)

T (t)
− Jq

gradT (t)

T 2(t)
≥ 0 (3.1)
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where Jq is the heat flux through the boundary, σ(t)is the symmetric stress tensor, γ̇(t)is

the entropy production, ε̇p(t)is the strain rate, σ(t) : ε̇p(t) = σij(t)ε̇p(ij)(t) is the tensor

multiplication.

The heat flow and the work within an arbitrary control volume contribute to the to-

tal energy of a system, which describes the conservation of energy in thermodynamics. By

introducing temperature and total strain, the coupling of thermodynamics and continuum

mechanics can lead to an energy balance as shown in Eq. (3.2), made by heat conduc-

tion (kO2T (t)), thermal inertia retardation effect (ρCṪ ), internal heat generation through

plastic deformation (σ(t) : ε̇p(t)) and thermo-elastic coupling (T (t)∂σ/∂T (t) : ε̇e(t)).

kO2T (t) = ρCṪ − σ(t) : ε̇p(t)−
T (t)∂σ

∂T (t)
: ε̇e(t) (3.2)

Then the entropy production during a certain period of time (γc) can be obtained by com-

bining Eq. (3.1) and Eq. (3.2) with time integration, shown in Eq. (3.3).

γc =

∫ t

0

(
W (t)

T (t)
− Jq · gradT (t)

T 2(t)
) dt (3.3)

Subsequently, the material fatigue status of TSV is obtained based on entropy produc-

tion. A larger entropy production means shorter lifetime due to fatigue. Apparently, the

above model does not have any parameter that needs to be fitted, and considers the detailed

thermal profile T (t).

To conclude, comparisons between the von Mises stress, the Coffin-Manson model

and our entropy production model are summarized in Table 3.1.
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Table 3.1: Comparisons Between the Von Mises Stress, the Coffin-Manson Model and the
Entropy Production Model.

Von Mises Coffin-Manson Entropy
stress model production

Fatigue life √ √
prediction
Consider detailed √ √
thermal profiles
No measurement √ √
data needed

Stress analysis
√

Fatigue analysis
√ √

3.2. RELATIONSHIP TO COFFIN-MANSON MODEL

To partially validate our entropy production model, we will show in this section

that the widely used Coffin-Manson model (i.e., Eq. (2.3)) can be deduced from Eq. (3.3)

by making reasonable assumptions.

As the Coffin-Manson model applies the condition that plastic deformation dom-

inates the fatigue of a material, we only consider the entropy production due to plastic

deformation. First we introduce the model from Morrow [14], in which the plastic strain

energy per cycle keeps approximately constant during the fully reversed experimental fa-

tigue tests. The related equation is

∆wp =
4σ′f (1−n

′

1+n′ )

ε′f
(
∆εp

2
)1+n′

(3.4)
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Assuming that we are dealing with low-cycle fatigue in small volume with heat conduction

neglected, Eq. (3.4) leads to

γf =

∫ t

0

(
f(t)∆wp

T (t)
) dt (3.5)

where f(t) is the fraction of work done by plastic deformation during thermal cycles.

Then, by assuming the plastic energy dissipation and the temperature are constants

throughout the thermal cycles, Eq. (3.5) leads to

γf =
∆wp

T
Nf (3.6)

Therefore, the number of cycles to failure Nf is obtained by employing Eq. (3.4), which

is

Nf =
Tγf (ε′f )n

′

4σ′f (1−n
′

1+n′ )
(
∆εp

2
)−(1+n′) (3.7)

Compared with Coffin Mason model, we get

c = − 1

1 + n′
, ε′f = (

2σ′f (1−n
′

1+n′ )

Tγf (ε′f )n′ )
− 1

1+n′ (3.8)

This leads to the conclusion that Coffin-Manson model is a special case of our entropy

generation model under specific assumptions and simplifications, which partially validates

the correctness of our model. In the future, we will validate our model directly with mea-

surement data.

3.3. EXPERIMENTAL VALIDATION OF ENTROPY PRODUCTION

In the previous section, we have demonstrate that our entropy production method

is more generalized than Coffin-Manson model. To validate it experimentally, we use the

via chain test structures, which would form part of 3D ICs [15] with measurement data for

silicon correlation.
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As shown in Figure 3.1(a), the stacked via chain structure is used for reliability

evaluation. It is made of two SiLK levels and two SiO2 levels upper placed, with three

metal levels (MC, M1 and M2) connected by two level of vias (V1 and V2). In the exper-

iment, the chain has 50 links repeatedly, alternating between M2 and MC, which are local

interconnects linking to other stacks. Therefore, this unsymmetrical structure would lead

to a non-homogeneous stress on vias.

In Figure 3.1(b), the SEM cross section view clearly shows the typical fail at the

stress condition of certain thermal cycles, occurred along the (111) plane.

To model the via structure, the geometry of the structures applied in the experimen-

tal test were adopted from [16]. The entropy production result of via with cross-section

view is shown in Figure 3.1(c). The highest entropy production occurs on upper-right and

bottom-left parts, leading to the crack shears through the entire via. The nonsymmetrical

crack is due to the stacked via test structure: Repeated units of metal levels in the test struc-

ture are connected by two levels of vias, with a nonsymmetrical configuration. This result

agrees well with the crack plane in Figure 3.1(b), showing a precise fatigue prediction of

entropy production method.

To compare entropy production with Coffin-Manson prediction, four different ther-

mal profiles are used. The parameters of Coffin-Manson equation vary due to various

experimental environments [4, 17, 18] and yield multiple results. The resulting cycles to

failure from measurement, entropy production and Coffin-Manson equation are shown in

Figure 3.1(d). ∆T means the temperature difference in thermal cycles, while cycles to

failure in y axis is in log scale. Noted that the measurement data uses N50 median number,

and the entropy production prediction is determined by the result of 215◦C.

As shown in the figure, the curves of Coffin-Manson exhibits a large range of un-

certainties in y-axis (cycles to failure). In practical application, it is hard to decide which

parameters should be used, which depends on specific working environment. By setting
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total entropy production value, the curve fits well with experiment data along higher tem-

perature difference area. Entropy production has a better fatigue prediction performance

than Coffin-Manson in practical application.
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(b)

1

0

0

(a)

(c)

(d)

Figure 3.1: SEM image showing shearing and cracking in via after thermal cycles, cross-
sectional view of via in entropy production modeling and cycles to failure of
experiment test, entropy production and Coffin-Manson prediction.
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4. SIMULATION AND ANALYSIS

4.1. IMPACT OF THERMAL CYCLES

In this section, TSV cells are modeled in Abaqus to calculate the entropy production

of TSV for fatigue prediction. For the first part of the simulation, a single TSV cell with a

copper TSV body and two landing pads attached is built as shown in Figure 4.1(a)(b).

Unless specified, the geometries are the same as in [7]. The parameters of mate-

rials applied are listed in Table 4.1. In this model, we have simplified the bottom part of

the TSV by ignoring the solder joint attached. The top part is modeled accurately for fa-

tigue analysis. The interfaces between different parts are assumed to be perfectly adhesive.

The thermal cycles range from 20◦C to 70◦C, as shown in Figure 4.1(c). Note that this

temperature profile is derived from actual operating conditions of a chip.

It needs to be clarified that since entropy production has only been experimentally

proved on metals, our fatigue analysis only focuses on the TSV body and the attached

landing pad. In other words, it is limited to copper. In addition, in all the figures afterwards,

we use a single color bar for all the parts in the same figure for better comparison.

We simulate the TSV structure for five thermal cycles. The resulting entropy pro-

duction distributions on the top and bottom surfaces of the landing pad attached to the top

surface of the TSV are shown in Figure 4.2.

It is clear that after five thermal cycles, the entropy production at the four corners

of the landing pad increases much faster than that at the center. The reason is that the

expansion and contraction of the TSV body has little axial effect on the attached area

between the TSV body and the landing pad, since they have the same CTE. However,

the corners of the landing pad located between the dielectric layer and ILD have larger

moments during deformation, thus leading to higher entropy production.
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Figure 4.1: Illustration of the side view and the top view of the TSV structure, with the
profile of a thermal cycle.

The results of the TSV body are shown in Figure 4.3, with its inner surface, outer

surface and top surface displayed. After the thermal cycles, the outer edge of the top surface

has the maximum entropy production. This is again due to the CTE mismatch between the

TSV body and the barrier, which causes large stress and strain on the top interface. In

addition, the minimum entropy production area can be found in the middle part of the top

surface, as it is attached to the landing pad with the same CTE. Finally, due to the radial
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Table 4.1: Material Properties

Material
CTE Young’s Poisson’s

(ppm/K) Modulus(GPa) ratio
Cu 17 110 0.35
Si 2.3 130 0.28
SiO2 0.5 71 0.16
Low K 20 9.5 0.3
BCB 40 3 0.34
Ti 8.6 116 0.32

effect of stress, the entropy production also concentrates in the middle of the TSV body,

which increases at about 50% higher rate than the neighboring parts. This suggests that the

middle part of a TSV body can be a new reliability concern in the presence of fatigue.

In the simulations, we also discover that the rate of entropy production increase in

the landing pad and the TSV body through cycles remain the same. Thus, single cycle

modeling is sufficient for TSV fatigue analysis using entropy production, which will be

used in the remaining of the paper.

We summarize the important findings from the above study as follows.

Observation 1: Landing pads have maximum entropy production located at corners.

Observation 2: The middle part of a TSV body shows concentrated entropy pro-

duction, leading to a new reliability concern.

As illustrated in previous section, the Coffin-Manson method only considers the

maximum strain amplitude during the thermal cycles. Therefore, to prove the capable of

considering detailed thermal profiles of entropy production, the TSV models with four

different thermal cycles are built for comparison, shown in Figure. 4.4. The four thermal

cycles have the same cycle time and temperature range, leading to the same Coffin-Manson
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Figure 4.2: Entropy production distributions on the top and bottom surfaces of the landing
pad through five thermal cycles.

fatigue prediction. The four cycles have different rate of temperature change and distribu-

tion. Group 1 and 2, 3 and 4 have the same high temperature period, while group 1 and 3 ,

2 and 4 has the same rates of temperature change. The results are shown in Table. 4.2.

The results clearly illustrate that the time period of high temperature doesn’t in-

fluence the fatigue within entropy production, while the rate of temperature change does

influence. It is observed that the results of group 2 and 4 with a higher temperature change

rate have higher entropy production, in both landing pad and TSV body. This is caused by

the nonlinear increasing of entropy production in plastic deformation at high stress. The

higher temperature change rate, the higher entropy production leading to easier fatigue of

material. Therefore, the entropy production fatigue method is applicable in the fatigue

analysis considering the impact of different thermal cycles.
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Figure 4.3: Entropy production distributions on the inner surface, outer surface and top
surface of the TSV body through five thermal cycles.

4.2. IMPACT OF TSV STRUCTURE PARAMETERS

In this section, we study the impact of TSV structure parameters on the entropy

production in a single TSV cell, hoping to establish guidelines for reliability optimization.

We only focus on the maximum entropy production values of the TSV body and the landing

pad respectively, which provide information about the most dangerous areas.

The results of entropy production of the landing pad and the TSV body with dif-

ferent thickness and width of the landing pad, thickness of the liner and length of the TSV

body are shown in Figure 4.5.
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Figure 4.4: Thermal profiles for entropy production validation.

First of all, from Figure 4.5 we can first see that in all the cases, the landing pad

always has a much higher maximum entropy production compared with the TSV body. For

example, when the landing pad thickness is 0.1 µm, the maximum entropy production of

the landing pad is approximately 50% higher than that of the TSV body.

Observation 3: More attention should be paid to the landing pad than the TSV body

in terms of thermal fatigue during TSV cell designs.

In addition, from Figure 4.5(a) we can see that when the thickness of the landing

pad increases, the maximum entropy production value of the landing pad decreases while

that of the TSV body increases. This is because with the increase of thickness the landing

pad gets stronger to hold against the deformation from the TSV body along the axial direc-

tion. As such, the strain rate gets smaller and the entropy production becomes smaller. As

for the TSV body, a stronger landing pad leads to more stress on the surface, resulting in

higher entropy production.
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Table 4.2: Entropy production of TSV body and landing pad with different thermal cycles.

Thermal Profile Groups 1 2 3 4
Landing Pad Max Entropy 45.4 46.6 45.4 46.6
TSV Body Production(×108J/m3K) 28.0 28.9 28.0 28.9

Observation 4: Increasing the thickness of the landing pad is helpful for the landing

pad to reduce fatigue, but harmful for the TSV body.

Moreover, from Figure 4.5(b) we can see that as the width of the landing pad in-

creases from 6 µm to 9 µm, the maximum entropy production values of both the landing

pad and the TSV body increase. For the landing pad, this is because a wider landing pad

introduces larger strain rate due to longer distance. For the TSV body, the stress acted on

it remains the same while the strain rate increases. Therefore, increasing the width of the

landing pad is not preferred for fatigue reduction.

Observation 5: Increasing the width of the landing pad is harmful for both the

landing pad and the TSV body.

Furthermore, from Figure 4.5(c) we can see that as the thickness of the liner in-

creases, the maximum entropy production value of the landing pad increases while that of

the TSV body decreases, with very small differences. This is because the liner is made

of silicon dioxide, which has a much lower CTE than copper. When the liner thickness

increases, a more rigid wall is built around the TSV body, which holds against the landing

pad. This causes the landing pad harder to deform, thus an increased stress on the interface

between the liner and the landing pad. For the TSV body, the outer edge of the top sur-

face has less strain rate than before, which leads to a slightly decreased maximum entropy

production value.
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Figure 4.5: The maximum entropy production values of the landing pad and the TSV body,
with various thickness and width of the landing pad, thickness of the liner and
length of the TSV body, respectively.

Observation 6: The thickness of the liner has limited impact on the fatigue of both

the landing pad and the TSV body.

Finally, from Figure 4.5(d) we can see that when the length of the TSV body is

below 20 µm or aspect ratio 4:1, the maximum entropy production value of the landing pad

decreases and that of the TSV body increases with the increase of the TSV body length.

Both stop changing afterwards. This is because when the TSV body is long enough, the

stress from expansion and contraction along the axial direction at the top surface does not

change any more.

Observation 7: Aspect ratio of the TSV body only matters when it is small. In such

scenarios, increasing the aspect ratio is helpful for the landing pad to reduce fatigue, but

harmful for the TSV body.
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Figure 4.6: The entropy production distribution on the top and bottom surfaces of the land-
ing pads in a TSV pair.

In this section, we study the impact of the pitch in a TSV pair. The entropy pro-

duction distributions on the landing pads with different pitches (d1 = 7 µm, d2 = 10 µm,

d3 = 13 µm) are shown in Figure 4.6. From the figure, it is clear that the pitch affects the

entropy production on both surfaces of the landing pad. When the TSVs get closer, the

two inner corners on each landing pad have lower entropy production. This difference is

caused by the silicon between the two TSVs. Small volume has less restricted power and

since copper has a much higher CTE, the stress applied on the inner sides would decrease.

Meanwhile on the contrary, the outer sides of both landing pads would be subject to more

stress from the TSV body, leading to a higher entropy production.
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Figure 4.7: The entropy production distribution on the outer surface, inner surface and top
surface of the TSV body in a TSV pair.

The corresponding entropy production distributions on the inner surface (b,d,f),

outer surface (a, c, e) and top surface (g, h, i) of the TSV body are shown in Figure 4.7.

From the figure we can tell that when the TSVs get closer, there is an easy-to-fail area

in the middle part of the TSV body. Unlike the landing pad, the area closer to the other

TSV body shows a higher entropy production. However, when the pitch increases, the

distribution of entropy production becomes uniform, which is similar as the result of the

single TSV model. The top surface of the TSV also shows the trend that the smaller pitch,

the larger entropy production.

4.3. IMPACT OF THE PITCH IN A TSV PAIR

In this section, we study the impact of the pitch in a TSV pair. The entropy produc-

tion distributions on the landing pads with different pitches are shown in Figure 4.6. From

the figure, it is clear that the pitch affects the entropy production on both surfaces of the
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landing pad. When the TSVs get closer, the two inner corners on each landing pad have

lower entropy production. This difference is caused by the silicon between the two TSVs.

Small volume has less restricted power and since copper has a much higher CTE, the stress

applied on the inner sides would decrease. Meanwhile on the contrary, the outer sides of

both landing pads would be subject to more stress from the TSV body, leading to a higher

entropy production.

The corresponding entropy production distributions on the inner surface, outer sur-

face and top surface of the TSV body are shown in Figure 4.7. From the figure we can tell

that when the TSVs get closer, there is an easy-to-fail area in the middle part of the TSV

body. Unlike the landing pad, the area closer to the other TSV body shows a higher entropy

production. However, when the pitch increases, the distribution of entropy production be-

comes uniform, which is similar as the result of the single TSV model. The top surface of

the TSV also shows the trend that the smaller pitch, the larger entropy production.

Finally, Figure 4.8 with various pitches (d1 = 7 µm, d2 = 10 µm, d3 = 13 µm)

presents the maximum entropy production value of both the landing pad and the TSV body

for various pitches. From the figure we can see that with the increase of the pitch, the

maximum entropy production value of both the landing pad and the TSV body reduces.

Observation 8: Increasing the TSV pitch is helpful for both the landing pad and the

TSV body to reduce fatigue.

4.4. IMPACT OF LANDING PAD ORIENTATION IN ARRAYS

The entropy production distribution depends on the configuration of TSV array.

The TSV fatigue with various TSV array while retaining the same TSV density have been

studied by [19]. However, the impact of TSV array configuration on landing pad has not

been investigated before. As the previous section shows, the landing pad always has a

higher entropy production compared with TSV body during thermal cycles, that attract
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Figure 4.8: The maximum entropy production of the landing pad and the TSV body, with
various pitches.

more attention on fatigue preventing. Therefore, two arrays with different landing pad

orientations and same TSV density are modeled for comparison, shown in Figure. 4.9(a)

and (b). The angles of the landing pad in two groups have a difference of 45 degree. Models

with various pitch sizes are built for comparison.

The results are shown in Figure. 4.9(c) with five different pitch size groups. It is

observed that the maximum entropy production of landing pad is higher than that of TSV

body as the same as before. The larger pitch size causes the lower entropy production, for

both TSV body and landing pad. For most cases, the entropy productions of TSV body and
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landing pad in group (b) is lower than those in group (a). The only exception is the TSV

body entropy production with pitch size is 10 µm, where the distance between two landing

pads is as small as 1.5 µm. This is caused by close interact of each landing pads, which

occur a high stress effect on the other TSV body. Therefore, the fatigue tradeoff between

landing pad and TSV bdoy needs to be made when TSV pitch is small enough. In most

cases, the TSV layout with landing pad orientation as Figure. 4.9(b) is preferred.
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(a) (b)

(c)

(Angle)

(Pitch Size)

Figure 4.9: The two layouts of TSV arrays and the corresponding results.
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5. FULL CHIP ANALYSIS

FEA analysis of TSV fatigue using entropy production for a single TSV and a TSV

pair has been investigated in the previous section. However, FEA is limited to small scale

simulation due to the computational complexity. Therefore, it is necessary to develop a fast

and accurate framework to analyze the fatigue of TSVs at full-chip scale. Superposition

is the best approach in this context, but unfortunately, the entropy production as can be

seen from Eq. (3.3) is nonlinear and cannot be superposed. Accordingly, we propose to use

stress tensor superposition to achieve this target. The validity of stress tensor superposition

has been verified in [7]. With the full-chip stress obtained from superposition, the strain

can be obtained by fitting Hooke’s law and the strain-stress curve of copper. The entropy

production can then be readily derived.

To validate the correctness of our framework, the layout of a TSV pair is simulated

by both FEA and our framework, with results shown in Figure 5.1. Note that the landing

pads are not included in the analysis. It can be clearly seen that the patterns from both

exactly match. The meshes in Figure 5.1(b) is the computation grid used to perform the

superposition of stress.

Now we are ready to apply our framework to full-chip analysis. We apply two

TSV placement styles on the same design with the same TSV cell size. A total of 1,472

TSVs are placed in a chip area of 1 mm×1 mm. In the regular placement the TSVs are

uniformly placed with 25 µm pitch as shown in Figure 5.2(a). The irregular placement, as

shown in Figure 5.2(b), results in shorter wirelength. The minimum TSV pitch is 10 µm.

Comparing the two maps, the irregular TSV placement results in 17.3× higher maximum

entropy production during thermal cycles. In addition, in the irregular placement, the hot-

pots are mainly located at places where the TSVs have small pitches. Meanwhile in the

regular placement with much larger pitches, almost identical entropy production occurs at
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Figure 5.1: Entropy production distributions on the top surfaces of a TSV pair using FEA
and our framework.

each TSV. Therefore, we can conclude that full-chip TSV placement needs to consider the

tradeoff between wirelength and TSV fatigue.
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Figure 5.2: Entropy production distributions of full-chip TSVs in regular and irregular lay-
outs.
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6. CONCLUSIONS

In this paper, a new TSV fatigue model based on entropy production has been

proposed. By combining thermodynamics and mechanics laws, the fatigue process can be

quantitatively evaluated with the model. Experimental results show many interesting and

important observations on the impact of TSV structure and location, providing guidance

for reliability enhancement. Finally, full-chip fatigue analysis is performed based on stress

superposition. To the best of the authors’ knowledge, this is the first TSV fatigue model

that is free of measurement data fitting, the first that is capable of considering detailed

thermal profiles, and the first framework for efficient full-chip TSV fatigue analysis.
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