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I. INTRODUCTION

The object of investigation in this study is that of 
ill-conditioning in the solution of a system of linear equa
tions. Ill-conditioning arises when the solution is very 
sensitive to small changes in the coefficients of the 
unknowns.

A study is made in this paper of the various proposed 
measures of ill-conditioning for the purpose of finding the 
most practical method or measure for determining whether 
a system is ill-conditioned.

The problem of near-singular or ill-conditioned systems 
is of great importance in the solution of linear systems 
because of the extensive use made of them in practical 
situations. Solution of a system of linear equations with 
this property frequently finds use in many areas of Applied 
Science. In applied mathematics, systems of linear equa
tions are used in solving such problems as method of least 
squares, solution of partial differential equations, ordinary 
differential equations and many others.

Although computation of such a system could be done 
by double precision, giving increased accuracy at each step, 
this does not eliminate the problem. The problem of obtain
ing accurate data may be more important than the actual 
computation. However, when a system is found to be ill- 
conditioned, a method of higher precision is often used to



2

improve round-off errors which would invalidate the solution. 
Nevertheless, it is the identification or means of detecting 
such a system which needs to be considered before further 
analysis can be pursued. In small systems the detection of 
ill-conditioning is fairly obvious by observation; whereas 
for larger systems, it is hidden from observation in most 
cases. Thus, an indicative measure is needed to detect such 
a system.

It is the aim of the author in this study to find a 
suitable measure or method for detecting an ill-conditioned 
system of equations.
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II. REVIEW OF LITERATURE

An examination of the literature available on the 
subject of simultaneous-linear equations reveals several 
proposed measures or tests to establish whether or not a 
system of equations is ill-conditioned.

The problem of ill-conditioning is an obstacle in the 
solution of simultaneous linear equations which can be most 
serious and result in a solution that has no meaning at 
all with respect to the particular situation it is to pre
dict or describe. This was illustrated by Macon^ with the 
following system of equations whose solution is obvious

+ lOx^ = 11
10Xl +101x2 = 111 (1)

— Xg — 1 •

Then considering the set

x^ + 10x2 11

lO.lx-̂  + lOOxg = H I (2)

which is only a slight variation of the preceding set,, but 
whose solution is x^ = 10, x^ = 0.1.

Systems (1) and (2) are simple systems which are ill- 
conditioned and can be observed as such. By inspection it 
is seen in both systems that the equations are almost



dependent or, stated geometrically, they are nearly parallel. 
Thus, the intersection of two nearly parallel lines will 
change greatly if the coefficients are changed in the equa
tions, this intersection being the solution of the two 
equations.

For larger systems parallelism refers to hyperplanes 
and in most cases is hard to recognize or hard to detect due 
to the increased number of equations.

Consider a system of equations written in matrix form

AX = B (3)

A 
X = 
B =

Xi

where
= = (n x n) coefficient matrix

= (n x 1) column matrix of unknowns 
= (n x 1) column matrix of constants

If an approximate solution to (3) is x 1, then

AX' - B = R R = [̂ r-J (4)
where R is an (n x 1) column matrix that measures how well 
the solution satisfies the original system (3)* The quanti
ties r^ are called residuals. Consider again the two equa
tions

X1 +

10xx +

lOXg = 11
(5)

I01x„ = 111

If the solution is approximated by x^ = 1.0001 and 
Xg = 1.0001, the residuals r^ are r^ .01, r2 = .01. But
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if the approximate solution x-̂  = 10.1 and x^ = .09 is sub
stituted in the system, the residuals r^ are r^ = 0.0, 
r^ = .01. It would be natural to conclude that the solution 
x-̂  = 10.1 and x^ = .09 was nearer to the true solution 
than x-̂  = 1.0001 and x^ = 1.0001 which is, however, false

2since it is known that the true solution is x^ = Xg = 1.
From the above it is shown that satisfying the equa

tion by consideration of how small the residuals are does 
not guarantee that the solution is near the true solution, 
especially if the system is ill-conditioned.

Moulton also illustrates the above behavior in the 
solution of the system:

.34622x + • 3538ly + .36518z = .24561

.89318x + .90274y + .91143z = .62433

.22431x + .23642y + •24375z = .17145
found as

x = -1.02706 y = 2.09191 z = -.380476 (7)

Upon substitution of this solution into (6) it is found to 
satisfy the equations to the last decimal place.
Also the solutions

x = -1.022773 y = 2.084125 z = -0.376941
x = -1.031229 y = 2.099457 z = -0.383879

will satisfy (6) to the last decimal place. The variation 
in x is nearly one percent and in z nearly two percent. 
Therefore, assuming the equations (6) to be accurate to five 
decimal places, their solution is determinate only to two 
decimal places.
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If equation (6) is written in the general form,
a^x + V + c^z - d^

a2x + V + C2Z = d2

a3x + V + C3Z = d3

(9)

the expression for x by Cramer*s Rule in the solution of 
simultaneous equations is

with corresponding expressions for y and z.
Suppose the numerical value of D is small. If a^, b^, 

and c^ are defined only to five decimal places and the first 
three decimal places in D are zeros, D is really given to 
only two decimal places. Consequently, x is defined only 
to two places. In the example above D is small, and this is 
the explanation of the variations in the solutions .

The above example shows how the value of the coefficient 
determinant, D, plays an important role in the solution of 
a system of linear equations. The smallness of the determinant
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of coefficients in the system is a measure proposed by 
several^ but in this form the value is not too significant 
since the system can be multiplied by a constant without 
altering the solution and can make the determinant as large 
as desired.

A method of testing the condition of a system of equa
tions is to find the determinant of the normalized coefficient 
matrix which is equal to the determinant of the coefficient 
matrix divided by

n
TT

n
n
j=i

(ii)

2A comparison of this value is then made with + 1. The 
quantity obtained is the sine of the angle between two lines 
in a system of two equations and two unknowns. This is 
evident from the definition of the cross product of two 
vectors A and B that

| A @ B  | = \“K\ |B[ sin 0
or

S 0  B |
A| |B|

where the symbol @  indicates cross product. For systems with 
three equations and three unknowns or more the physical inter
pretation is more complicated.

2 ij.Booth and Bodewig have considered another measure of
ill-conditioning in a system of equations. Considering the
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system of equations in matrix form AX = B, this measure is
the ratio | / Amin I > where ATnav is the largest char-
acteristic value of the coefficient matrix A. and A . is
the smallest. This measure or the ratio of I A „ / A . I1 max m m  1
can be shown to be the ratio of the greatest to least axis 
of a hyper-ellipsiod. The equation of such comes about by 
consideration of the following.

If, as before, the inaccuracy of an approximate solu
tion x* is expressed in terms of residuals as

AX» - B = R (14)
ththen for the i equation there is associated a residual 

r̂ . Instead of n residuals to express the inaccuracy, there 
is needed a single number which will express the inaccuracy.
The length of R is considered as this number. The length of 
R is defined as

n
R2 = ( R,R ) = X Z Z  r,2 (15)

1=1 1
which in turn is

R2 = (( AX» - B), ( AX’ - B )) (16)

or writing the above equation as a quadric form in x^ 
n

R2 = . ( an x,i + ai2X,2 + alnx 'n " bi^2

It can be shown that equation (17) can be transformed into 
a new set, Z^, *rfiere the new set is a linear combination of 
only squares of the new set Z^, the cross products being 
eliminated.
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The transformation which will give the required results 
is an orthogonal transformation which will reduce the equa
tion to the form

2 2  2
R2 = ^1 ^ 1 ^2 ^ 2  + • • • • +  Z n (18)

where s are the characteristic values of the coefficient 
matrix A.

Equation (18) is now the equation of an hyper-ellipsoid
1where the semi-axis have length . Thus., the ratio

A
X / X . is the ratio of major to minor axis of this hyper
ellipsoid. Also, if any of the are small, large values of 

can be accompanied by small residuals. The ratio
is a means of indicating this condition which is characteristic

2of ill-conditioned systems. For the above geometrical inter
pretation, it is assumed that the matrix A is positive definite 
meaning all > 0.

Other test measures for detection of ill-conditioned
4equations are given by Bodewig. They are the N-number, 

M-number, and a quantity called [ i which is the dominant 
term in the expansion of the determinant of the coefficient 
matrix by minors divided by the determinant of the coeffi
cient matrix.

If the diagonal element happens to be the dominant 
term in the determinant of the coefficient matrix A then \x 

is given as

M- = 11 22 33 a I /,nn1' (19)
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In ill-conditioned systems \i could be large in magnitude 
as will be shown in the investigations to be considered 
later. If |A| is small, then it is expected that [ i would 
would be large.

The N-number is a measure of ill-conditioning based 
upon the coefficient matrix A* the inverse of A, and the 
order n of the system. Stated symbolically, the N-number 
is given as

N - number i N(A) • N(A-1) (20)
where terms N(A) and N(A~^) are called the norms of A and 
A-1 which is defined as

N(A) (21)
where a^j are the elements of the n x n coefficient matrix
A. N(A-1) is similar except the summation will be on the 

-1elements of A
Since by definition

A~1 = adj—  (22)
|A|

and if A is near-singular, then |A| will be small and A~^ 
will have some elements vdiich are large in magnitude. Hence 
N(A~^) will very likely be large, and this large number 
multiplied by N(A) divided by (n) will result in a large N- 
number. Thus, this measure might indicate when a system of 
equations is ill-conditioned.
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The M-number stated symbolically is
M-number = n • m (A) • m (A (23)

where m(A) and m(A ^) designate the maximum element of 
matrix A and A  ̂respectively. Thus* as in the preceding 
measure if A is near-singular, then |A| will be small; and 
the largest element of A  ̂ in magnitude could be large depend 
ing, of course, upon the original elements of A and the small 
ness of |A|• If the system is ill-conditioned, then it seems 
reasonable that the product n • m (A) • m (A would be 
large.

The subject of noise in the solution of large linear
15system has received attention by C. Lanczos.

A method for solving ill-conditioned equations is given
4 1 6by E. Bodewig, N. Macon, and K. Eisemann.

Similar conditions for detection of ill-conditioning
7and an example is given by J. Todd.

Nowhere in the available literature was the attempt 
made to find the most suitable measure of ill-conditioning.
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III. DISCUSSION

When the determinant of the matrix of coefficients in 
a set of n linear non-homogeneous equations in n unknowns is 
not zero., then that set has a unique solution. This., how
ever., does not take into account the practical point of 
view. If the coefficients are furnished by observations * 
of measurements, they are not exact but will only be an 
approximation to a certain number of decimal places. Prac
tical considerations or devices used for measurements have, 
unfortunately, physical limitations.

The mere mathematical solution of a set of ill- 
conditioned equations frequently hides or overshadows the 
dangers which arise when physical noise, caused by the 
inexactitude of the measurements, are introduced in the 
system.

The author attempted to devise a measure of ill- 
conditioning which he hopes might be worthy of mention.

Consider again the system of equations
AX = B (24)

where A is the coefficient matrix, X the unknown column 
matrix, and B a column matrix of constants.

If the coefficients and the right-hand members of (24) 
are only approximations, then the true values of the coeffi
cients could be represented as A + and the true values
of the right-hand members as B + AB, where aA and aB
are the errors of approximation associated with the coeffi
cient matrix A, and the matrix B respectively. Thus, the
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true system would be of the form

(A + AA) (X + AX) = (B + AB) (25)

where X + AX is the true solution. Subtracting equation
Q

(24) from equation (25)* there results

A *  aX + aA *  X + aA • aX = aB (26)
or

A • AX = AB - (aA • X + aA • AX) (27)
If the system is well-behaved then for a small change aA, 
there would be expected small changes in AX so that if all 
elements of the product AX • aA are small and can be neglected, 
we can justify writing equation (27) as

A • AX « AB - (aA • X) (28)

If all the Aa^j and Ab.jj > the possible errors or bounds 
on the errors of approximation are known, the approximate 
errors or deviations of a x^ caused by this change or possible 
errors can be found.

In practice aA and aB are usually known such that the 
errors in each do not exceed a certain magnitude, €, or

—e < Aa^j < e -e < Ab^ < € (29)

Let the right-hand members of system (28) be replaced 
by the matrix N where

'■ [  -  j
N = aB - (aA • X) (30)
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giving
A • AX = N (31)

where X in equation (30) is the solution of the system 
AX = B. If the errors aA and aB are such that their magni
tude does not exceed e* then

I %  I 1  E (32)

where E = (1+ |XjJ + |X̂ T + • • • + lxn l)€ or the 
maximum value possible in equation (30).

Comparison of the two systems A • AX = N and AX = B 
indicates that they are similar in the fact that both con
tain the coefficient matrix A. The augmented matrices of 
both systems are such that only the last columns are dif
ferent as shown below

AX = B AaX = N

all a12 • • • aln bl
- “ 
all a12 ‘ * ' aln

a21 a22 • * ‘ a2n b2 
• • • •

a2l a22 • - ‘ a2n ^2 
• • • •

• • •  •
• • •  •a ............a bL nl nn n. *„! : ........ v
The Gauss-Jordan elimination method for solving a system 

of linear equations can be applied equally well to solve 
systems with more than one B column* or any number of constant 
columns at the same time. Since it is assumed that each 
element of matrix N is such that [ | < E system (31)
is represented by the augmented matrix
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- a
a
11 a12 ‘ ‘ • aln - E

21 a22 ■ ‘ • • a2n ± E

• • • • ann + E

(34)

If the last column of (3*0 is included as an extra constant 
column in the solution of the AX = B in a Gauss-Jordan elimina
tion, the augmented matrix would be of the form

all al2 • • • * aln bl ± E

a2l a22 • ' • * a2n

+ 1 CVI
rO E

•

•

• • •

•

(35)

anl an2 • • • • ^ - ir> nn bn ± E
terns A • AX = N and AX = B are represented.

The Gauss-Jordan solution of (35) is carried out such 
that the results of the operations on the last column are 
always positive. This is accomplished by replacing sub
traction by additions and working with the absolute value 
of the elements in the last column. The result of solving 
by this method would give the solution X in the n + 1 column 
and the largest AX that could occur in the last column. This 
would be some multiple of E. This is not an upper bound since 
the product AA • AX was neglected.

The author instead of using some value of E for the
elements of the last column, used the column with unity as each 
element and studied \diat might be thought of as multiples of 
some error in the last column.
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As was shown earlier in the system
x-ĵ + lOx^ = 11

lOx-̂  +10 lx^ = 111
(37)

If the coefficients are changed by approximately one percent 
in the second equation., large difference in solutions result. 
This equation is known to be ill-conditioned because of its 
sensitivity to the coefficients and its evident parallelism 
in equations.

The Gauss-Jordan method applied to (37) is the augmented 
matrix.

1 10 11

10 101 111
(38)

Now if equation (38) is modified somewhat by adding 
an extra column with the value of unity as its elements or

1 10 11 1
10 101 111 1 (39)

The solution represented after a number of operations 
on the rows and always adding or dividing by absolute values 
in the last column is

1 0 1 111
0 1 1 11

(*0 )

where the last column indicates the multiples of some 
error [E[ in each equation. It is noticed that this is a 
fairly large multiple.
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In connection with the preceding discussion, a study
was made of the system

X1 + l0x2 =

X1 + mx2 =
where

m = 3,4,5, • •
10. 1, 10. 2 ,

11
(41)11. 1

9, 9.1, 9.2, . . . 9-9,
. . . 10.9, 11, 12, . . . 15

to observe the effect of changing the coefficient m in 
relationship with the average E-multiple obtained by the 
method described above. The results of this study are shown 
graphically in Fig. I. The graph clearly indicates the 
parallelism of the equations when m approaches the value 
of 10. The value of 10 was excluded since the system would 
not possess a unique solution in that case. The study shows 
that there is a relationship between the coefficient and E- 
multiples which is some indication of ill-conditioning. There 
is needed additional study of larger and different systems, 
however, before anything definite can be said about whether 
or not the E-multiples indicate ill-conditioning.

A program was written for the IBM 1620 digital computer 
to calculate the values of the E-multiples for the different 
values of m. In effect, the program was a Gauss-Jordan 
elimination with only slight modification.

An investigation was made of several systems of equa
tions as to ill-conditioning, applying various tests and 
measures as given in the literature along with the author's
measure.
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In applying the test measures * two programs were written 
in the Fortran Computer language for the IBM 1620 digital 
computer at the School of Mines Computer Center* and two 
standard programs were used from files in the Computer Center.

Program I consisted of a Gauss-Jordan with pivot picker* 
the determinant of the coefficient matrix* the determinant 
of the normalized coefficient matrix* the product of the 
diagonal elements divided by the determinant of the coeffi
cient matrix* and the author*s measure.

In Program II the inverse of the coefficient matrix 
was determined* and the measure* s N-number and M-number were 
found. This program called for the subroutine MINVRT(A*N) 
on file in the School of Mines and Metallurgy Computer 
Center to calculate the inverse of the coefficient Matrix 
A of order N.

The program JACOBI was also used from the Computer 
Center files to find the eigenvalues of the coefficient matrix. 
This program uses the Jacobi iterative method to find all 
the eigenvalues of a real symmetric matrix.

When one is confronted with finding the eigenvalues 
or characteristic values of a matrix* consideration is given 
to the solution of a homogenous set of equation of the form

AX - TOC = 0 (42)
It is seen that this possesses a solution other than the 
trivial solution if and only if the determinant of the

(43)
coefficient matrix vanishes or

[A - M |  = 0
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This says that A must be a root of a polynomial equation 
of degree n, where n is the order of the matrix A. The 
polynomial is called a characteristic polynomial, and the 
A*s are called the eigenvalues or characteristic values of 
the matrix A. When the coefficient matrix of the systems 
investigated were not symmetric, this approach was used to 
find the eigenvalues. The characteristic polynomial equa
tion was formed, and a standard program on file in the 
School of Mines and Metallurgy Computer Center was used tc 
obtain the roots \diich are the eigenvalues of the coeffi
cient matrix.

On the systems tested, the N-number ranged from about 
1.6 to 6.6 for systems which were well-behaved and 38 to 
8,090 for ill-conditioned systems. The N-number is a good 
indication of ill-conditioning, however, in practice it 
requires too many operations for its determination. The 
one big disadvantage is the calculation of the inverse of 
the coefficient matrix. In large ill-conditioned systems 
the calculation of the inverse is a serious problem in 
that cumulative effect of round-off is likely to occur.

The M-number has the same disadvantage in that of 
determining the inverse of the coefficient matrix. The 
M-number gave a good measure of ill-conditioning in the 
systems investigated, but it would not be practical unless 
the system was solved by inversion in the first place. Of 
course, as stated above, this is a serious problem in itself 
if the system is ill-conditioned. The values of the M-number
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ranged from 10.0 to 50.0 for systems that were well- 
behaved and 50.0 to 58,000 for ill-conditioned systems.
Both the M-number and N-number were large numbers when the 
system was ill-conditioned.

The measure p,, or the dominant term in the expansion 
of the determinant of the coefficient matrix (see page 9 ) 
divided by the value of the determinant, was found to give 
a good measure of ill-conditioning. The values obtained 
from the systems investigated ranged between 0.0 to 3-0 
in magnitude for the well-behaved systems and from 3.0 to 
57*600 in magnitude for ill-conditioned systems. In small 
systems, such as the ones investigated, the calculation of 
p, was fairly easy since the dominant term could be determined 
by inspection. In larger systems, however, the dominant 
term would be hard to single out, thus creating a problem 
in determining p.. The Gauss-Jordan method with pivot picker 
provides an easy method for calculation of the determinant 
of the coefficient matrix. Even so, the dominant term of 
this determinant still would need determining. If another 
method of solution is used, a separate calculation for the 
evaluation of the dominant term and the full value of the 
determinant of coefficients would have to be made. This 
would not be practical in most cases.

Since it required no difficulty in programming, the 
product of the diagonal elements were computed as the domi
nant term of the determinant of coefficients. Several systems 
investigated were of this character. However, when the
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dominant term was not the product of the diagonal elements, 
the calculation of jx was made by observing the dominant 
term and dividing by the value of the determinant of the 
coefficients. The determinant was evaluated by program I.

The ratio | Xma^/ I was found to be a very good
indication of ill-conditioning in most of the cases tested. 
The exception being xdien the coefficient matrix was not 
symmetric. System 4 was of this nature where two of the 
characteristic values of the coefficient matrix was complex. 
Thus, this measure is not significant when some of the 
characteristic values are complex. In other systems con
sidered, where the coefficient matrix was not symmetric, 
the characteristic values were found to 
ratio I X /  X .» I was still an indication of ill- 
conditioning. The values ranged from 4.0 to 20.0 for systems 
believed to be well-behaved and 54.0 to 85*000 for ill- 
conditioned systems.

Even though apparently good results are obtained using 
this measure, the complexity of calculating [ Xmin f
is such that this measure is of little practical use. The 
calculation of Xmax and Xm^n is far more complex than that 
of solving the original system. A measure is needed \diich 
will take the least amount of time and calculation to be of 
practical use.

The determinant of the normalized coefficient matrix, 
designated by |A-normalized[, seems to be the better of the
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methods discussed so far. This measure is more practical
than the others in that it requires less operations to
calculate. The values obtained for well-behaved systems
were in the range .2 to .6, whereas for ill-conditioned

-8systems the values ranged from 8 x 10"° to .04. This 
measure has the advantage in that it requires nothing more 
than the coefficient matrix and simple operations on it., 
lereas the other measures require both the original and 

the inverse coefficient matrix. This measure gives good indi
cation of ill-condition and is simple to calculate.

The author1s measure seemed to indicate ill-conditioning 
for systems whose elements or coefficients were small in 
magnitude. However, when the test was made on systems whose 
elements were large, the measure failed to indicate ill- 
conditioning. Three systems were noted of this character, 
and they were all three constructed such that they were 
ill-conditioned. All three had elements which were large 
in magnitude.

These results indicate that further study was needed.
It was found that the last column in the augmented solution 
of AX = B and AaX = N, assuming that the column was originally 
all elements of unity, is a maximum multiple of E that could 
occur for that system. If these multiples are denoted by m^ 
in the last column, the product m^ E would represent a bound 
on the deviation of the solution or

= m± E (44)
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where the value of E can be calculated from the relation 
E = (1 + |XjJ + |Xg| + . . • Ixn l) e > for a change of e
magnitude in all coefficients and constant terms of the 
system. Thus equation (44) is written in the form

“ mi (1 + IxjJ + |xg| + . . . xn) e (45)
Comparison of a x  ̂and x^ should be some indication of ill- 
conditioning realizing that large change in solution accom
panied by small change in coefficients is characteristic of 
ill-conditioning.

It may be known that the coefficients are accurate to 
a number of places. If this is the case, a value of € may 
be used corresponding to the measure of doubt in the coeffi
cients. If it is not known how accurate the coefficients are, 
a value of € can be chosen to test the sensitivity of the 
solution. The value assumed for € should be a reasonable 
value associated with the particular system.

A study was made of changes in solution, a x  for each 
system investigated. A value of e was chosen for each 
particular system, and the results or the change in solution 
a x  tabulated in the last column of Table I.

The results of this study give more of an indication of 
ill-conditioning than just the E-multiples considered pre
viously. Where the E-multiples failed to indicate ill- 
conditioning when the coefficients of the systems studied 
were large, this measure indicated ill-conditioning satis
factorily.

To illustrate the sensitivity of the coefficients 
in the case of an ill-conditioned system of equations,the
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coefficients of the systems investigated were changed slightly 
and the corresponding solution noted.

The result of changing or deviating only the coefficients 
in the last equation of each system caused the solutions to 
change greatly. The original and deviated systems are shown 
with their corresponding solutions in Appendix I.

A solution of the various systems was carried out with 
the Gauss-Jordan elimination method without the feature of 
picking the largest pivot to note any change in solutions 
as compared with pivot picker. The solutions obtained were 
the same. If larger systems were considered, this would 
make a difference in the solution; but since it was only 
small systems considered, the change was not significant.
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IV. CONCLUSIONS

From the results obtained in the investigation of 
measures of ill-conditioning, it is believed that the most 
suitable measure considered was that of the determinant of 
the normalized coefficient matrix. This measure was found 
to indicate ill-conditioning quite well. It was found that, 
with any of the measures considered, a considerable amount 
of computation is required of each. The determinant of 
the normalized coefficient matrix takes considerable amount 
of computation unless the solution of the system is carried 
out by Gauss-Jordan elimination with pivot picker. The 
determinant in this case is the product of the pivot elements 
times (-1)*5 where p is the number of times the rows or equa
tions of the system are interchanged. Using the number of 
multiplications as a measure of efficiency and n as the 
order of the coefficient matrix, there are approximately 
n2 + 2n multiplications to perform in calculating the 
determinant of the normalized coefficient matrix when the
Gauss-Jordan algorithm with pivot picker is used. Generally

n3the evaluation of a determinant requires on the order of 
multiplications. Even so, it still would be desirable that 
programs for the solution of linear equations include the 
computation of the determinant.

Some of the other measures studied, such as the N-number, 
required the calculation of the inverse of the coefficient
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matrix. The calculation of an inverse matrix requires on 
the order of n3 multiplications. This amount plus additional 
operations on the elements of the inverse and original coeffi
cient matrix far exceeds the amount of operations when the 
determinant of the normalized coefficient matrix in conjunc
tion with the Gauss-Jordan algorithm is applied.

The measure [ i is an attractive measure in that it requires 
about 2n + 1 multiplications when the Gauss-Jordan algorithm 
is used. It has the disadvantage due to the determination 
of the dominant term in the expansion of the determinant of 
the coefficient matrix by minors. If it is assumed, in all 
systems, that the dominant term is the product of the diagonal 
elements, the measure is found to give poor indication of 
ill-conditioning. The above assumption would simplify calcula
tion of the measure greatly; however, system 1 5 of this study 
gave a number which indicated a well-behaved system when the 
product of the diagonal elements were used as the dominant 
term in the expansion of the determinant of the coefficient 
matrix. The system was ill-conditioned by construction.
Thus, no prescribed choice for the dominant term will work 
for all systems.

The author^s measure requires about n2 multiplications 
to calculate. It must also be used in conjunction with the 
Gauss-Jordan algorithm to be very useful. It could be a 
useful measure in other respects as well as a measure to 
indicate ill-conditioning. For reasonable choices of €
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the measure seems to indicate ill-conditioning satisfactorily. 
If the systems are well-behaved, the values obtained are 
still worth while in that they give a bound on the errors 
in solutions.
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V. SUMMARY

Ill-conditioning is a problem that can be easily over
looked when one is confronted with obtaining the solution of 
a system of non-homogeneous linear equations. The result 
of overlooking this problem may lead to solutions which are 
unreasonable. A study was made of several measures which 
indicated ill-conditioning, and these measures were applied 
to a number of different systems of equations. The largest 
system of equations considered was a system of five equa
tions in five unknowns. Programs were written for the IBM 
1620 Digital Computer to calculate the various measures 
considered. The values obtained were then tabulated and 
studied in an effort to determine which measure (1) best 
indicated ill-conditioning, (2) was the simpliest to com
pute, and (3) required the least time to perform the compu
tations .

Systems of equations of order greater than five were 
not studied since the same measures can be applied to systems 
of any order. It is also reasonable to assume that the most 
suitable measure for small systems would also be the most 
desirable measure for large systems.
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AUGMENTED SYSTEMS AND THEIR SOLUTIONS
System 1

APPENDIX I

Original Deviated
5 7 6 5 23 3 7 6 5 23
7 10 8 7 32 7 10 8 7 32
6 8 10 9 33 6 8 10 9 33
5 7 9 10 31 5.1 7.1 9.1 1 0 . 1 31

i----0
 •r“l

1 _ - 2 .0 7 6 9

1 .0
x=

2 .8 4 6 1

1 .0 1 .9 2 3 0

1 .0 • 3846
- — _

System 2
1 10 1 1

10 10 1 1 1 1

X =
1.0
1.0

1 10 11
10.1 100 111

10.0"
0.1

System 3
9 9 8 26 9 9 8 26

9 8 7 24 9 8 7 24
8 7 6 2 1 8 .1 7.1 6 . 1 2 1_

1.0
— “ 

1 .3 3 3

X = 1.0 X = -2.000

-------1
0

•
H

 1

4.000 
— —
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.34622 -35381

.89318 .90274

.22431 .23642

X =

.365I8 .2 4 5 6 1 

.91143 .62433 

.24375 .17145

.34622 

.89318 

.2 2 6 5 5

System 4

-1 .0 2 7 0  

2.0919 
-0.3804

•35381 .36 5I8 .2 4 5 6 1  

.90274 .91143 .62433 

.23406 .24619 .17145

X =
-3 1 .8 2 5 0  

4 7 .5 6 8 5

-1 5 .2422

System 5

2 .0 0 3 .0 0 5 .0 0 2 .0 0 3 .0 0 5 .0 0

.65 1 .0 7 1 .6 8 .6 6 1.05 1 .6 8

x=
1 .6 3 1 7
.5789 _ —

System 6

x=
1-75 
• 50

1.00000000 .500000000 •333333333 .250000000 2.083333333
•50000000 •333333333 .250000000 .200000000 1.283333333
•33333333 .250000000 .200000000 .166666666 .949999999
.25000000 .200000000 .166666666 .1428571^2 •759523808

1.000001 
.999895 

X = 1.000240
.999848

Change of last row of:
.25300000 .203000000 .169666666 .142587142 .759523808

'  1 . 101620'

- .219380 
X = 4.048450

-1.032290
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System 7

’1 1 1 1 1 5 1 1 1 1 1 5 ]
1 2 3 4 5 15 1 2 3 4 5 15
1 3 6 10 15 35 1 3 6 10 15 35
1 4 10 20 35 70 1 4 10 20 35 70
1 5 15 35 70 126 1.0 5.1 15.1 3 5 .2 7 0 .3 126

’l.o“ 2.^ 274 X  10-5
1 . 0 4.99994
1 . 0 X = -4.99995
1 . 0 4.99999
1 . 0 1.07497 x 10"°

System 8

30.0 .00325 6 0 .5 90.50325
. 00325 .00620 .00620 .0 1565

6 0 .5 .00625 12 0 .0 180.50625

1.0
X = 1.0 30.0 .00325 6 0 .5 90.50325

1.0 .OO325 .00620 .00620 .OI565

6 1 .1 0 5 .00618 1 2 1 .2 18 0.5O625

X =
- .79445 
1.05083 
1.88981

System 9

".90 .30 .60 1.80 .90 .30 .60 1.80
.30 .60 .20 1.10 0on• .60 .20 1.10
.60 .21 • 39 1.20 .61 .22 .40 1.20

1 . 0

1-----
00

•
CVJ

1__
!__

X = 1 . 0 X = 1 . 0 0

1 . 0 5 . 5 0



36

System 10

"8 - 1 5 1 13" "8 - 1 5 1 13"
- 1 5 2 - 1 5 - 1 5 2 - 1 5
5 2 9 - 1 15 5.05 1.98 9.09 -1.01 15
1 -1 - 1 4 3_ 1 .0 1 -1 .0 1 - .99 3-96 3_

1 .0 1.01664
1.0 X = 1 .0 1 3 1 1
1.0 •97587
1.0_ _1 .00064_

System 11

" 49.0 -7.0 1.0 43.0 " 49.0 -7.0 1.0 43.0"
- 7.0 9.0 1.0 3.0 - 7.0 9.0 1.0 3.0
1.0 1.0 3.0 5.0 1 .0 1— 1 .0 1 3.03 5-0_

l.o" 1.00072
X = 1.0 X = 1.0 0 2 5 1

1.0 .98242
System 12

"69.0 4.0 1 2 .0 30.0 1 1 5 .0 69.0 4.0 12 .0 30.0 1 1 5 .0

4.0 36.0 8 .0 16.0 64.0 4.0 36 .0 8 .0 1 6 .0 64.0
12 .0 8.0 20.0 7.0 47.0 12 .0 8 .0 20.0 7 .0  47.0
30.0 20.0 7.0 60 .0 1 1 7 .0 30.1 2 0 .1 7.1 6 0 .2 II7 .0

1.0 "1.0 0 53
1.0 1.0 0 52

X = 1.0 X =
.99913

1.0 .98739
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System 13

6 3 0 0 12 6 3 0 0 12
3 -7 3 0 - 2 3 -7 3 0 - 2
0 3 8 3 42 0 3 8 3 42
0 0 3 4 25 0 0 3-03 3-96 25

1.0' 1.00138
2.0 1.99723
3.0 X = 2.99216
_4.0_ A. 02368.

System 14

10 .2 -4 0 0 6 .2 ‘10 .2 -4 0 0 6 .2'
4 5 -4 0 - 7.0 - 4 5 -4 0 -7 .0
0 -4 5 -4 - 2 .0 0 -4 5 -4 -2 .0
0 0 -4 - 1 -10 .0 0 0 -4.1 -1 . 1  -10 .0

1.0“ ' .956387"
1.0 X = .888787
2.0 1.904600
2.0 1.991960 — —

System 15

11.5 4.5 -2.0xl06 50.0 11.5 4.5 -2.00xl06 50.0 
a10.0 1.0 -1.25x10° -50.0 10.0 1.0 -1.25x10°g -50.0

6.0 .5 - .63x 106 70.0 6.1 .5 5 - .635x 10 70.

loo.o - 0.2205
X = 200.0 X = 44.4854

.001 .00007382
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System 16

8764.5
4382.0
2191.5

4382.0
2191.5
1095-7

2191.5
1095.7

5 10 .0

15338.0
7669.2
3797-2

X =
1
1
1

8764.5 4382.0
4382.0 2191-5
2191.0 1095.2

X =

2191.5 15338.0"
IO9 5 .7 7 6 6 9 .2

5IO.5 3797-2_
1.0 0 3 37
0.99994
.98661

System 17

428.0 108.0 214.0 750.0" 428.0 108.0 214.0 750.0
108.0 428.0 55-0 591.0 108.0 428.0 55-0 591.0
214.0 55-0 106.0 375-o_ 214.5 55.5 106.5 375-5.

X = "1 X = .3 3 719 5
1 .996688
1- — 2.327280

System 18

6 4 3 19 6 4 3 19
4 2 1.6 11.6 4 2 1.6 11.6
_3 1.6 1.5 9.1 3.1L 1.7 1.6 9 . !_

"2 2.14815
X = 1 X = 1.88889

1 -0.481481
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