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ABSTRACT 

In this investigation, an experimental study was per

formed on a journal bearing under laminar and turbulent flov 

conditions. Using relationships for friction factor devel

oped previously by other investigators a comparison vas made 

with results of this present investigation. Since the flov 

changes from laminar to turbulent vith a change in speed of 

rotation, curves for friction factor as a function of speed 

vere plotted. Various attempts to make the recording and 

measuring systems more sensitive were also made and are dis

cussed in this thesis. 
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I. INTRODUCTION 

In this modern age of high speed machinery, there are 

various factors to be considered for efficient operations. 

The effect of high speed of rotation on the oil film in a 

journal bearing is one of these factors. It is known that 

when a liquid flows through a pipe, the flow depends on 

velocity; that is, it is laminar or turbulent depending 

upon whether the velocity is lower or higher than the criti

cal speed. In this same way when the speed of rotation is 

less than the critical speed, the lubricant in the bearing 

is in laminar flow and when the speed is higher than the 

critical speed, the flow is turbulent. The governing factor 

is Reynold's number. 

When there is turbulence in the bearing lubricant, the 

bearing performance is affected considerably. In this 

presentation, the effects of turbulence on various factors 

such as friction factor, horsepower loss, temperature, oil 

flow, and load carrying capacity are studied. 

An attempt to experimentally verify the above effects 

was made, but results could not be obtained. The reasons 

for this failure are also given in this paper. 
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II. LITERATURE REVIEW 

The investigation of turbulence in journal bearings is 

relatively new and is in the primary stages of development. 

A journal bearing is equivalent to two rotating cylinders. 

The journal which rotates i$ the solid inner cylinder and 

~he bearing which is stationary is the hollow outer 

cylinder. 

The idea of instability in flow due to speed of rota

tion occured first to G. I. Taylor (1)*, who in the year 

1923, carried out an experiment on two concentric cylinders. 

Taylor proved that when the outer cylinder is stationary and 

the inner cylinder is rotating at a high speed, concentric 

to that, the fluid flow between the two cylinders is un-

stable beyond a certain speed. 

When a liquid flows through a circular pipe, the type 

of flow depends upon the diameter of the pipe, velocity of 

flow, and the viscosity of the fluid. The governing factor 

is the Reynold's number, given by the equation 

( 1 ) 

When the value or the Reynold's number is less than 

2,000, the flow is in the laminar region. Between the 

*Numbers in parenthesis indicate references as listed 
in the Bibliography. 
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Reynold's numbers 2,000 - 10,000,* the flow is said to be in 

the transition zone. During transition, the flow is neither 

completely laminar nor completely turbulent. 

Wilcock (2) was the first to verify the effects of 

turbulence on the performance of journal bearings through 

expe~iment. He also applied the concept of Reynold's number 

to the bearing which is summarized below. 

Assuming a triangular velocity profile, laminar flow 

condition, and negligible radial clearance (i.e. rad1us or 

the journal and the bearing are the same for the calcula

tions of frictional torque), the shear stress is given by 

the equation 

\ 
Figure 1 

Representation of Velocity Profile in the Clearance 

( 2) 

*There are two opinions about the upper bound of the 
transition zone. Some authorities in fluid mechanics mention 
the value ot Reynold's number as 3 1 000 tor the beginning of 
turbulence. 
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The shear force is given by shear stress times the area and 

is equal to 

(3) 

The torque exerted is equal to the force times the lever 

arm, which in this case is the radius of the bearing. Thus. 

the torque is equal to 

(4) 

Substituting U in terms of speed in revolutions per second 

and fl" equal to fv • the torque can be expressed as 

T-=- iT~D3 NLJJf 
2c. ( 5) 

Taylor (1) changed this equation into dimensionless form in 

order to obtain a term which he defined as Reynold's number, 

given by the equation 

1Tl:>NC 

}J 
( 6) 

Taylor further defined the Reynold's number to be equal 

to an empirical relation given as 

- rr2.J t> :-Re. - o. OS77 c.. 
(7) 

The expression for critical speed (the speed at which 

the flow ch~nges from laminar to turbulent) can then be 

obtained by equating Jjjquations (6) and (7) and simplifying, 

resulting in (8) 
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(8) 

Thus, Equation (8) gives the value of critical speed 

in terms of radial clearance - c, radius - r, and the kine-

matic viscosity -LJ. Once the dimensions of the bearing are 

fixed, the critical speed depends on the kinematic viscosity 

alone. Thus, it can be seen from Bquation (8) that lubri-

cants with low kinematic viscosity have low critical speeds. 

Wilcock (2) conducted his experiment in the year 1950 

on specially designed test equipment, which was capable of 

driving the bearing at very high speeds. On this unit, 

Wilcock tested various diameter bearings on test shafts. 

The test apparatus was designed to give a speed range from 

250 rpm to 3 1 000 rpm. The bearing was loaded by a hydraulic 

cylinder and the maximum load which could be applied was 

133 1 000 lbs. Wilcock selected various sizes of bearings 

with different clearances as listed in Table I. 

TABLE I. DIFFERENT SIZES OF THE BEARINGS USED BY WILCOCK 

Bearing Diameter Length Radial Re 
Number (in) (in) Clearance cr 

1 8 4 o.oo64 1027 
2 8 4 0.0100 818 
3 8 4 0.0175 311 
~ 4 4 0.0075 668 

Theraocouplea were conneetecl to the•• "Dearings along 
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the circumference to measure the temperature of the oil. 

The inlet oil temperature, outlet oil temperature, and maxi-

mum observed temperature were recorded. 

Readings of speed, torque, horsepower, and oil flow for 

each bearing at various speeds below and above the critical 

speed were obtained and the following curves were plotted. 

(1) Viscosity versus Temperature 

(2) { 'T If' N2D4L) versus ( 1TDNc/.v) 1 which is 
called the Taylor plot.* 

(3) Temperature versus Speed 

(4) Power Loss versus Speed 

(5) Oil Flow Rate versus Speed. 

1. Viscosity versus Temperature. The viscosity varies 

with the temperature as shown in Figure 2. 

I ' 

''-s· 

Figure 2. Viscosity as a Function of Temperature 

*The curve describes the nature ot t"lov ot" the lubri
cant in the bearing. 
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The average temperature during the test can be approxi-

mately taken as I I 

T ~ld·- Ti.,t .. ~ 
:;.. ( 9 ) 

2. Taylor .E1..2.l• ( T /9 N2D4L) versus ( Tt" DNc /J.J ) • 

IO 

'1TbNC.. 
-;;-

Figure 3. Taylor Plot 

The theoretical curve, which is a st~aight line with a 

slope of 45°• is for the laminar region. The critical Rey-

nold's number tor each bearin~ is calculated by substituting 

the values of the corresponding critical speed in Equation 6. 

*Numbers in the circles reter to tbe bearings in Table 

I 1 page 5. 
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These critical Reynold's numbers are listed in Table I. 

3. Temperatur,e ~ Versus Speed. 

100 

I""'\ 
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~ 
t! 

toooo l..ooo~ 

Spuc::l ( rp~) 

Figure 4. Temperature Rise as a Function of Speed 

Figure 4 gives the value of increase in temperature 

above the inlet temperature as the speed increases. 

4. Hgrse,Power Loss Versus Speed. 
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Figure 5. Horsepower Loss as a Function of Speed 



When the horsepower loss is plotted against the speed, 

the increase in loss of horsepower due to turbulence is re-

vealed. The horsepower loss varies as the 1.4 power of the 

speed below the critical speed and as the 2.7 power of the 

speed above the critical speed. 

5. £!!~versus Speed. 

I"""\,, 
t 
A. 
d'l 
0,0 
~ 
0 

u. 
65 @ 

IOooo ••••o .Z.oooo 

Sj:~>c.c.l (r p ""') 
Figure 6. Oil Flow as a Function of Speed 

Figure 6 shows depression in the flow at speeds higher 

than the critical speed. This is also an effect of turbu-

lence because the oil flow should increase when higher inlet 

oil temperatures occur in high speed runs. 

Smith and Fuller (3) also investigated this problem in 

the year 1956. They performed an experiment and studied the 

performance of the bearing under the condition of turbulence 

in the lubricant. They also developed a few expressions 

which would enable a calculation of the pressure distribu-

tion, friction factor, and load carrying capacity of a bear-
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ing under turbulent conditions in the lubricant. 

The differential equation given below is known as 

Reynold's differential equation, and was derived from the 

equation of continuity and the Navier-Stokes equations as-

suming that the flow in the lubricant film is laminar, and 

the lubricant is a Newtonian fluid. The equation can be 

used to evaluate the performance characteristics of a bear-

ing in laminar flow. The equation is given as 

(10) 

where: h = film thickness 

p = pressure 

fA- = viscosity 

U = journal peripheral velocity. 

'{ 

Figure 7. Co-ordinate Axis Along the Journal 

Neglecting the end leakage (flow in the direction of 

the z-axis) the expression for pressure gradient for the 

laminar flow condition is given by 
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(11) 

In order to derive a similar expression for the turbu-

lent flow condition Smith and Fuller (3) assumed the princi-

ple of superposition. The flow of lubricant is made up of 

two components; one flow due to turbulent shear, or the 

shear component of flow, and the other due to pressure, or 

the pressure component of flow. 

The shear component of flow remained the same as that 

in the case of laminar flow and is given by the area of the 

velocity profile (the profile is assumed triangular). 

Figure 8. Velocity Profile 

Thus, the shear component of flow is equal to the aver-

age velocity times the thiekness and is given by the equa-

tion 

(12) 

The behavior of the pressure component of flow was 

studied in the lab.o:ratory b)' Saith and Fuller and the per-



formance of the bearing was expected to give the nature of 

the pressure component of flow. It was found to be equal to 

(13) 

The total quantity of flow is the sum of Equations {12) and 

(13), a constant. and is equal to 

(14) 

The pressure gradient under turbulent flow is propor-

tional to the square of average velocity and is given by the 

equation 

(15) 

where K is an empirical constant. 

The values of Uavg from Equation (13) and (14) were 

substituted in Equation (15) and the pressure gradient was 

given by the equations 

If 
I 

n7h ( 16) 

~P:.- k ~ u2.(h -h)4 (17) 

of>' 4 h .. 

The pressure variation during turbulent flow of a lubricant 

is given by Smith and Fuller (3) as 

(18) 

12 
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Smith and Fuller performed their experiment on a test 

unit which vas designed to attain low critical speed, and 

selected water as the lubricant since the low kinematic 

viscosity of water would also help in sup~ressing the value 

of critical speed. The bearing was 3 in x 3 in with clear-

ance ratio of 2.93 milli-inch per inch. The shaft was 

driven by a variable speed motor. Arrangements were made 

to record the pressure of the lubricant film at intervals 

of 7-1/2° over an arc of 255°. 

Smith and Fuller also developed the expressions for the 

friction factors in the laminar and turbulent flow condi-

tions. The friction factor in laminar flow is developed in 

the following paragraphs. 

The shear stress is given by Equation (2) as 

( 2) 

The shear stress is also given in terms of friction factor, 

mass density, and velocity by an equation of the form 

(19) 

Equating Equations (2) and {19) results in a value for 

friction factor of 

{= - (20} 
fUC. 

Substituting the values of "'4• l.> and Tl"Dlf • U gives 
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(21) 

In turbulent flow the friction factor in terms of Reynold's 

number is given by Smith and Fuller (3) as 

(22) 

where: B lies between 0 and l, and A may be any positive 

value. 

By multiplying Equation (19) by the bearing surface 

area, 2VrL, and by the lever arm, r, an expression for the 

torque is obtained as 

2. 2. . 
T: TTf J' u h. L (23) 

Smith and Fuller (3) evaluated A and B from their ex~ 

perimental results by calculating the friction factor using 

Equation (23), and then plotting the log of Reynold's number 

versus the log of friction factor as shown in Figure 9. 

The values of the constants A and B were determined to 

be 0.078 and 0.43, respectively. This gives the equation 

for friction factor in the turbulent region as 

(24) 



c. 
0 

-+ 
I) 

t! 

' 0 
~ u ·-

"" u. 

C7") 
0 ..... 

-H. 

-1·' 

-.7.·0 

-2·2. 

-.2·1+ 

-2·'-

-l:l 

I 
Cv-i-"·1 i.e. 

I 

" ' 

o.o78 

Re-"1+3 

-~·~ 1.-------~-----~----~~---i-----~----~----~----~---------1·1 2.·st ~·C. .:t.·t a-o a-1.. ~-a. 

Figure 9. Variation ot Friction Factor with Reynold's Number 
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III. EXPERIMENTAL WORK 

The equipment used for conducting the experiment vas 

designed and constructed by John Roberts (4). However, a 

fev changes were made. The lubricant used by Poberts vas 

oil whereas in this case water vas selected in order to bring 

down the value of the critical speed. 

A journal was made of mild steel with an outside diam

eter of 1.998 inches. It was mounted on two ball bearings 

and then connected to a small electric motor through a 

rubber hose. The rubber hose acted as a flexible coupling 

and helped to dampen vibrations to a considerable extent. 

The bearing vas made of bronze with an inside diameter of 

2.003 inches and a length of 2.0 inches. Thus, the radial 

clearance was 0.0025 inches. The outside diameter of the 

bearing was 2.375 inches so as to give 3/16 inches of vall 

thickness which was quite sufficient. (See Figure 10). 

A bearing shell vas provided which would enable intro

duction of lubricant to the bearing at different angles 

through aligned holes in the shell and bearing. The inside 

diameter of the shell was 2.376 inches and when fitted with 

the bearing, it left a diametral clearance of 0.001 inches. 

The purpose of such a close fit was to minimize the leakage 

ot lubricant. The bearing was held in place by two set 

screws so that movement relative to the shell was prevented. 

A torque arm vas attached to the shell tor the purpose 

16 
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Figure 10. Bearing and the Shell 



of transmitting the frictional torque to the end of a canti-

lever beam. The cantilever beam was mounted with an SR-4 

(350 ohm) strain gage near the fixed end to measure the 

frictional torque of the bearing offered by the torque arm. 

The strain was measured with the help of a Wheatstone bridge. 

Dummy strain gages were used to compensate tor temperature 

variations and to help balance the Wheatstone bridge. (See 

Figure 11). An industrial analyzer and brush recorder were 

used for the measurement of the strain. The cantilever was 

calibrated by suspending a known load at its free end where 

the torque arm made contact with the cantilever, and the 

curve of load versus strain vas plotted. Knowing the meas-

ured strain, the load applied by the torque arm could be 

read from the curve. 

2. 

Oufoput 

Figure 1~ Wheatstone Bridge Connections 
with One Active Gage 

Arrangements were made to supply the lubricant (water) 

to the bearing. For this purpose, a bottle with an outlet 

at the bottom vas filled with lubricant and placed about 

3·1/2 feet higher than the level ot the bearing in order to 

18 



provide sufficient head. The lubricant flowed from the 

bottle to the inlet hole of the shell through a plastic 

hose. An adjustable clip was attached to the hose at the 

bottle end to allow for variation in the lubricant flow to 

the bearing. 

The lubricant coming out of the bearing vas collected 

in a pan. The amount of water collected over a period of 

time was used to determine the flow rate or lubricant 

through the bearing. 

In order to ensure that the load acted at the center of 

the journal, the load vas applied with the help of a pulley. 

The pulley vas connected by a small diameter wire which was 

wound around the shell. 

The following is the summary or original dimensions. 

Journal: 1.998 inches in diameter 

Bearing: inside diameter: 
outside diameter: 

2.003 inches 
2.375 inches 

Radial clearance: 0.0025 inches 

Cantilever: length: 
width: 
depth: 

10 inches 
l inch 
0.25 inches 

The lubricating oil used in the experiment of Roberts 

(4) had an average viscosity of 4.3 x lo-6 (lbfsec/in 2 ) with 

a specific gravity of o.B. The kinematic viscosity, J..J , 

vas calculated to be equal to 0.0575 in2/sec. By substitut

ing the values ot radius - r, kineaatic viscosity - b , and 

19 



radial clearance- c into Equation (8) 1 the critical speed 

of the test unit was calculated to be equal to 3010 rps or 

180,600 rpm. 

To reach such a high speed with the available equipment 

was practically impossible and measures were taken to reduce 

this critical speed to the range of 1000 to 1500 rpm. 

The first step was to change the lubricant from oil to 

water because of the low viscosity (1.14 x l0-5 rt 2 /sec) of 

water. Since the load applied to the journal is not of very 

high magnitude, the water film can safely carry the load and 

avoid metal to metal contact. 

The second step vas to increase the radial clearance. 

The journal, which was 1.998 inches in diameter, would have 

been easy to machine, b~t because it was firmly mounted in 

the housing and well supported in its bearing, it was not 

advisable to disturb the journal. The bearing, which was 

loose and small in size, was easy to handle and it was de

cided to increase the internal diameter of the bearing. The 

internal diameter of the bearing was machined to 2.010 inches 

to give a radial clearance of 0.006 inches. 

Thus, water, with low kinematic viscosity, was chosen 

as the lubricant and the radial clearance was increased in 

order to reduce the critical speed. The critical speed 

under the new operating conditions vaa calculated to be 

equal to 22.9 rps or 1 1 370 rpa. To attain this speed and 

20 



give a vide range of speed for operation in the turbulent 

zone, a Universal motor with speed capability up to 5,000 rpm 

was connected to the journal. The motor vas firmly attached 

to the aluminum base plate, and electrically connected 

through a variac to allow for variations in speed. 

The arrangements for measuring strain and supplying 

lubricant remained the same as discussed in the beginning of 

this chapter. 

The adjustable screw of the torque arm was levelled 

against the end of the cantilever and an initial strain 

reading was obtained. Figure 12 shows the equipment. 

The motor was started at the slowest possible speed by 

regulating current through the variac. 

The strain reading recorded on the chart paper of the 

brush recorder was noted and the corresponding speed was 

measured with a tachometer. Then the speed was increased by 

a small amount and once again the strain was read out on the 

chart paper and the speed was measured by the tachometer. 

This procedure was repeated with speed increments of 

100 rpm from 600 rpm up to 3,000 rpm. This upper limit of 

3 1 000 rpm gives about 1 1 700 rpm in excess of the calculated 

value of critical speed (1 1 370 rpm). 

The friction factor, which increases considerably when 

the flow changes from laminar to turbulent 1 was expected to 

21 
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Figure 12. s•t-up of the Equipment 



give a higher value of frictional torque and consequently, 

a higher value of strain. This means that an appreciable 

difference in strain would have predicted the presence of 

turbulence in the bearing lubricant. But the strain reading 

did not change appreciably even when the speed was increased 

well above the critical speed. The pointer (pen bias) on 

the chart paper remained practically on the same line as it 

was when the motor was turned on. On the contrary, it 

fluctuated above and below this line due to external noise 

and vibrations, and it was difficult to decide whether the 

change was due to the increase in frictional torque or due 

to other external factors. Hence, it was decided to use 

direct strain indicators. 

The use of direct strain indicators eliminated the use 

of the industrial analyser and the brush recorder. An 

active gage was mounted on the top side of the cantilever 

and the Wheatstone bridge circuit was balanced by three 

dummy gages. The strain gages were connected to the appro

priate terminals of the strain indicator. The initial 

reading of strain without any load on the cantilever was 

recorded and the cantilever was once again calibrated by 

suspending known weights at its free end and noting the 

corresponding strain readings. 

Once again the journal was rotated and the initial speed 

and the strain reading were noted. The readings or strain 

were also observed and noted at various speeds above the 
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initial speed of the journal. The pointer on the dial of 

the strain indicator fluctuated by a small angle about the 

null point. This fluctuation resulted in negligible changes 

in the strain reading. 

The cantilever of 10 inches length, one inch width, and 

1/4 inch depth, was not sufficiently sensitive to the small 

frictional force acting at its free end. The magnitude of 

this force was dependent on the frictional torque. To make 

the cantilever more sensitive; ita thickness (depth) waa 

reduced to 1/8 inch, other dimensions remaining the same. 

Thus, the moment of inertia was reduced 8 times and conse

quently the stress and strain increased 4 times. 

In order to make the cantilever even more sensitive, 

another strain gage was mounted on the bottom, below the 

first gage, and was connected in the Wheatstone bridge 

circuit. The connections were made as shown in the Figure 

Figure 1a. Wheatstone Bridge Connections for Two Active Gages 

Bf conne~tinc this aecond active gage is the adjacent branch 
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of the Wheatstone bridge, the sensitivity was doubled and 

the strain read out was doubled. 

The cantilever was calibrated by suspending known loads 

at its end and reading the corresponding strain. The read-

ings are tabulated in Table II. 

Load 

0 

1 

2 

3 

4 

5 

TABLE II. LOAD AND STRAIN READINGS FOR CALIBRATION 

Actual 
Strain 

o.o 

554 

1112 

1667 

2228 

2783 

Theoretical 
Strain 

o.o 

768 

1536 

2304 

3072 

3840 

Correction 
Factor 

o.o 

1.385 

1.382 

1.385 

1.378 

1.38 

The corrected value of strain was calculated from Equa-

tion (25), which gives the strain in terms of load, dimen-

sions of the beam and the Young's Modulus. 

).. ~ C wt) (_ ~:z.) (25) 

( E ) ( Jr 2. bt.~) 

The curves of the actual strain and the theoretical 

strain against load were plotted as shown in Figure 14. 

The ratio of theoretical reading to actual reading was 

obtained in each ease and vas found to be clo•• to 1.382; 
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Scale: 1" = 1 lb. 
1" = 500 in/in. 
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hence. the value of the correction factor was selected as 

1.382. This factor when muliplied by the actual strain 

readings gives corrected values of strain. 

Again the journal vas run and after recording the 

initial reading of strain 1 the speed of the motor vas varied 

and corresponding strain readings were obtained. The read

ings thus obtained are tabulated in Tables III and IV. 

27 
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TABLE III, STRAIN READINGS WITHOUT LOAD 

Sr. Speed Strain f--in./in, 
No. rpm Observed Corrected 

1 0 0 0 

2 1120 4 5.53 

3 1890 2 2.77 

4 2610 1 1.382 

5 2720 43 59.5 

6 3130 40 55.3 

7 3920 22 30.4 

TABLE IV. STRAIN READINGS WITH LOAD 

Sr. Speed Strain f-k in./in. 
No. rpm ' Observed Corrected 

1 0 0 0 

2 1160 8 11.08 

3 1680 3 4.15 

4 2500 9 12.45 

5 3200 9 12.45 

6 3920 9 12.45 



IV. DISCUSSION 

An expression for the friction factor as a function of 

the strain reading was obtained in the following way. 

Figure 15. Force Acting at the End of the Cantilever 

Torque is equal to the force times the lever arm and is 

given by the equation (See Figure 15)~ 

T: (r.\. )( "'-:aJ (26) 

The force F2 acting at the free end of the cantilever 

causes a bending moment equal to 

According to the flexure formula, the stress is then 

given by the equation 

(28) 

The strain is equal to the stress divided by the Young's 

modulus and is given by the equation. 

(29) 
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Substituting for F2 in terms of torque from Equation (26), 

the strain in terms of the fri~tional torque is given by the 

following equation. 

( 30) 

Equation (23), whi~h gives the torque in terms of the 

friction factor and the other known quantities, is then 

substituted into Equation (30), giving the following expres-

sion for friction factor as a function of the strain. 

( 31) 

By using Bquation (31), the friction factor for each set of 

readings vas calculated. These values are tabulated in 

Table V. 

TABLE V. FRICTION FACTORS FOR UNLOADED AND LOADED BEARING 

Sr. Speed 
No. rpm 

l 0 

2 1120 

3 1890 

4 2610 

5 2720 

6 3130 

1 3920 

Unloaded Bearing 

Strain 

0 

4 

2 

1 

43 

40 

22 

Corrected 
Strain 

0 

5~53 

2.77 

1.382 

59.5 

55.3 

30.4 

Friction 
Factor 

0 

0.00712 

0.00125 

0.000328 

0.0129 

0.00912 

0,0032 

30 



31 

Loaded Bearing 

Sr, Speed Strain Corrected Friction 
No. rpm Strain Factor 

1 0 0 0 0 

2 1160 8 11.08 .0133 

3 1680 3 4.15 • 00238 

4 2500 9 12.45 .00321 

5 3200 9 12.45 .00197 

6 3920 9 12.45 .• 000582 

·Table VI gives the theoretical values of friction factor 

and Reynold's number for different speeds below and above the 

critical speed as calculated from Equations (6), (21}, and 

{ 2 4). 

A set of curves of friction factor versus speed on a 

log-log scale was plotted containing theoretical and experi-

mental results. (See Fiwure 16) c • 

The experimental values of friction factor showed con-

siderable deviation from the theoretical curves. However, 

it did give some idea about the frictional behavior at 

higher speeds. 

The change in friction factor did not take place at the 

calculated value of critical speed but at a higher speed. 

For loaded bearings, the friction factor is higher and 
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TABLE VI. THEORETICAL FRICTION FACTORS 

Laminar Flow Turbulent Flow 

Speed Reynold's Friction Speed Reynold's Friction 
rpm Number Factor rpm Number Factor 

100 38.2 .0504 1100 420 .00577 

200 76.4 .0252 1200 456 .00561 

300 114.8 .0168 1300 497 .00542 

400 153 .0126 1370 530 .00526 

500 191 .01007 1400 536 .0052 

6oo 229 .oo84 1500 572 .0051 

700 268 .0072 1600 611 .00494 

800 306 .0063 1700 649 .oo482 

900 344 .0056 1800 686 .0047 

1000 382 .00504 1900 726 .00458 

1100 420 .00457 2000 764 .oo447 

1200 458 .0042 2100 804 .00438 

1300 497 .0038 2200 840 .00431 

1370 530 .00378 2300 878 .00423 

1400 536 .00373 2400 917 .00415 

1500 572 .00349 2500 955 .oo4o6 

1600 611 .00327 2600 994 .00398 
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the sudden rise in friction factor takes place at a lower 

speed. 

Possible reasons for deviation from the theoretical 

friction factor curve are presented below. 

The presence of turbulence is always uncertain since 

the range of the transition zone is uncertain. In the 

transition zone, the flow is neither laminar nor turbulent 

and consequently the frictional behavior is not predictable 

with the speed of rotation. 

The magnitude of the frictional force is also very 

small. From Equations (21) and (24) developed by Smith and 

Fuller (3), the values of friction factor in laminar and 

turbulent flow at the erttical speed of 1370 rpm are calcu-

lated to be* 

The value of Reynold's number at the critical speed is calcu-

lated by using Equation (6). 

An expression for the difference in frictional torque, 

Td, due to the change in the friction factor at the critical 

*Suffix L and T refer to the laminar and turbulent flow 
conditions. respectively. 
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speed, is obtained by using Equation (23), resulting in 

(32) 

Substituting the values of each quantity in Equation 

(32) the difference in torque is calculated to be equal to 

o,Ol787 1n .. lb. 

This difference gives the value of frictional force 

equal to o.oo4468 and the strain due to this force is 1.72 

Microinch per inch. This difference is quite small and is 

difficult to be recorded by the instrument. 

Taylor proved that the flow of lubricant between a 

rotating outer cylinder and a stationary inner cylinder 

remains more stable than between a rotating inner cylinder 

and a stationary outer cylinder. This implies that a bear

ing as shown in Figure 17 is more stable for lubricant 

from the consideration of turbulence. 

-) SHAFi 

Figure 17. Proposed Journal Bearing System for Study 

A study comparing the bearing of the above type with a 
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standard type journal bearing of similar dimensions can be 

made and the difference in the critical speed for each sys-

tem can be determined experimentally. 

The following suggestions are made to make the system 

more sensitive and consequently to obtain better results. 

The magnitudes of the frictional torque and the fric-

tional force are small and the cantilever is not 

sensitive enough from the strain consideration. Equation 

(31), when rewritten in the following way, gives the value 

of strain in terms of the friction factor and other quanti-

ties. 

For a given value of friction factor the strain can be 

increased by increasing the value of the terms in the numer-

ator and reducing the value of the terms in the denominator. 

Thus, the system can be made more sensitive by: reducing the 

width of the cantilever, shortening the distance between the 

torque arm and the center of the journal. using a longer bear-

ing. An increase in the length of the cantilever will result 

in a higher strain reading; however, the vibrations caused by 

an increase in length of the cantilever could make the accu-

rate reading of strain difficult. Further, an arrangement for 

amplification of the output voltage of the Wheatstone bridge 

could be used to improve the system senaitivity. 
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If the wire strain gages mounted on the cantilever beam 

are replaced by wire gages or film gages of higher gage 

factor, strain readings will be higher for a small change 

in frictional force and better results should be obtained. 
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SYMBOLS AND UNITS 

D Diameter of Bearing (in) 

C Radial Clearance (in) 

f Coefficient of Friction (dimensionless) 

h Film Thickness (in) 

h' Film Thickness at the Maximum Pressure Point (in) 

L Length of the Bearing (in) 

N Speed (rps) 

p Pressure {psi) 

p 

r 

u 

v 
K 

v 

d 

e 

Load per Projected Area (psi) 

Radius of Bearing (in) 

Reynold's Number (dimensionless) 

Journal Peripheral Velocity (in/sec) 

Lubricant Viscosity (Reyns = lbfsec/in2) 

Lubricant Mass Density (lb sec2/in4) 

Shear Stress (psi) 

Angle of Attitude ( 0 ) 

Kinematic Viscosity (in2/sec) 

Empirical Constant 

Velocity of Flow (in/sec) 

Diameter of Pipe (in) 

Eccentricity (in) (Distance between the center of 
journal and center of bearing) 

Eccentricity Ratio = e/c (dimensionless) 

Shear Component of Flow (cubic in/sec) 

Pressure Component of Flow (cubic in/sec) 
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l 

b 

t 

M 

I 

w 

E 

T' 

Difference in Torque (in-lb) 

Force Acting at the End of Cantilever (lb) 

Distance Between the Torque Arm and the Center of the 
Journal (in) 

Length of Cantilever (in) 

Width of Cantilever (in) 

Thicknewa of Cantilever (in) 

Bending Moment on the Cantilever (in-lb) 

Stress in the Cantilever (psi) 

Momlnt of Inertia of the Cantilever Cross Section 
(in ) 

Load (lb) 

Young's Modulus for the Material of Cantilever (psi) 

Strain (micro in/in) 

Temperature (°F) 

Ang~e Measured from Reference Line ( 0 ) 
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