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ABSTRACT 

After deregulation of electricity in the United States, the day-ahead and real-time 

markets allow load serving entities and generation companies to bid and purchase/sell 

energy under the supervision of the independent system operator (ISO). The electricity 

market prices are inherently uncertain, and can be highly volatile. The main objective of 

this thesis is to hedge against the risk from the uncertainty of the market prices when 

purchasing/selling energy from/to the market. The energy manager can also schedule 

distributed generators (DGs) and storage of the microgrid to meet the demand, in addition 

to energy transactions from the market. The risk measure used in this work is the variance 

of the uncertain market purchase/sale cost/revenue, assuming the price following a 

Gaussian distribution. Using Markowitz optimization, the risk is minimized to find the 

optimal mix of purchase from the markets. The problem is formulated as a mixed integer 

quadratic program.  The microgrid at Illinois Institute of Technology (IIT) in Chicago, IL 

was used as a case study. The result of this work reveals the tradeoff faced by the microgrid 

energy manager between minimizing the risk and minimizing the mean of the total 

operating cost (TOC) of the microgrid. With this information, the microgrid energy 

manager can make decisions in the day-ahead and real-time markets according to their risk 

aversion preference.  The assumption of market prices following Gaussian distribution is 

also verified to be reasonable for the purpose of hedging against their risks. This is done by 

comparing the result of the proposed formulation with that obtained from the sample 

market prices randomly generated using the distribution of actual historic market price 

data. 
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1. INTRODUCTION 

A microgrid is a localized group of interconnected loads and distributed energy 

resources (DER) with the ability to isolate from the main grid and operate autonomously 

during disturbances in the main grid [1]. The concept of microgrids improved the 

reliability in applications such as defense, telecommunication, hospitals, etc. They also 

support the operation of greener energy resources such as solar, wind and other 

renewable energy resources. With the ability to generate and consume energy, they are 

often considered as prosumers. With ISOs such as California ISO allowing distributed 

energy resources to bid into markets [2], this work explores the role of a microgrid as a 

market player. The property of prosumption makes the role of a microgrid more 

interesting when bidding into the day-ahead and real-markets as they can both purchase 

as well sell energy as a single entity. The framework of the problem in this work defines 

the microgrid as a direct participant in the market as shown in Figure 1.1.  

The motivation of this work is to solve the problem of the Microgrid Energy 

Manager (MEM) through three main objectives. Firstly, the problem of microgrid energy 

scheduling. Secondly, propose a method to manage the problem of market price 

uncertainty in the day-ahead and real-time markets. Thirdly, to verify and study the 

tradeoff faced by the MEM between risk and the TOC of the microgrid. 

MEMs work to provide a safe, reliable and cost-effective operation of microgrids. 

With the historic and forecasted solar insolation, wind speed, load and market price data, 

the MEM works to minimize the expected TOC to meet the demand at a given period of 

time. In the first objective of this work, the end demand is considered to be met by the 

generation of DERs and by purchasing energy from the wholesale electricity market. 

Hence the TOC of a microgrid includes the cost of operating the DERs as well as the 

market purchase cost.  

In the wholesale energy market, price-quantity bids from the generation 

companies (to sell power) and load serving entities (to buy power) are acquired by the 

system operator to solve for the locational marginal price [3]. The day-ahead market 

price-quantity is cleared a day ahead in an hourly interval based on the system load 

forecast. To meet the difference in the forecast and actual demand, the real-time market is 
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cleared every 5 minutes after the actual demand of the system. The electricity market 

prices are inherently uncertain, and can be highly volatile. Generation outages and 

transmission congestion are a few reasons for the price uncertainty. With recent 

advancements in the grid such as increased renewable energy penetration, such as solar 

and wind energy and programs such as demand side managements have made the 

electricity price more uncertain and difficult to forecast [4].  

 

 

 

 

Figure 1.1. Optimal power trading of a microgrid in wholesale electricity market 
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The decision of the MEM to purchase/sell energy to the grid becomes 

complicated when considering uncertainty of the market price. As the first objective of 

this work was to optimally schedule energy, it is important that the MEM manages the 

risks from the market price uncertainty to buy/sell energy. Hence it is important to 

develop a framework that handles the market price uncertainty so that it ensures a 

minimized risk operation of the microgrid which serves as the second objective of this 

work.  

A lot of work has been done on managing the price uncertainty for generation 

companies to bid in the wholesale electricity markets. The problem of a generation 

company taking part in a day-ahead, real-time and ancillary markets is solved in [5]. The 

Condition Value at Risk (CVaR) is defined as the measure of the market risk. The 

tradeoff faced by the generation company between achieving profits and exposure to risk 

is explored. A multi-stage mixed-integer stochastic problem is solved for the Italian 

market model as a case study to analyze the risk/return tradeoff. With a similar 

motivation of solving the problem of a generation company participating in the energy 

market, an optimal bidding strategy is developed in [6]. The uncertainty in the market 

prices is modeled using the scenario approach. Monte Carlo simulation is used to 

generate scenarios and the size of the stochastic optimization problem is reduced using 

scenario reduction techniques. The risk associated with the market price uncertainty is 

modeled using expected downside risk, and is formulated as a constraint to the 

optimization problem. [7] also solves a similar problem of a generation company trying 

to maximize the profit while minimizing the risk associated with the market price 

uncertainty. A multi-objective particle swarm optimization problem is proposed for 

thermal generation companies to schedule their production in a day-ahead electricity 

market and is solved for the PJM ISO/RTO’s (Regional Transmission Organization) 

market price uncertainty as a case study. The tradeoff between risk and return of a 

generation company is described in [8] by introducing a risk penalty factor based on the 

profits made by the generation company. An analytical approach to manage the 

production of power for multiple markets taking various uncertainties such as fuel price 

volatility, electricity price, etc. was proposed. In [9], for the same objective, uncertainty 

is modeled via scenarios generated by an input/output hidden Markov model. 



4 
 

 A considerable amount of work has been done managing the risk/uncertainty 

from the load serving entity/aggregator or from a MEM’s point of view. [4] presents a 

model predictive control based operation strategy to manage the uncertainty due to high 

penetration of renewable energy resources. This paper solves the problem of a load 

serving entity with energy storage system to manage the price volatility in both day-

ahead and real-time markets. An optimization framework that balances the maximizing 

the return and minimizing the operational cost of a microgrid is proposed in [10]. The 

energy scheduling problem is formulated as a two-stage stochastic program where 

various uncertainties are captured by the Monte Carlo simulation approach. The problem 

of a load serving entity managing the risk associated with market price volatility in spot 

markets with demand response is discussed in [11]. The authors propose a new concept 

using Markowitz optimization that looks into the correlated risks between the day-ahead 

and real-time markets. 

As pointed out in [11], most of the previous works do not take into account the 

correlation of the market prices. The hourly market prices are not only dependent within 

a single market but between different markets as well. It is important to take this 

correlation into account when dealing with the market price uncertainty and hence is 

included in this work. The correlation between the hourly market prices can be realized 

by constructing a covariance matrix for the hourly market prices as shown later in this 

work. Most of the previous work do not explore the problem of a MEM facing market 

price uncertainty and the works related to solving this problem do not take into account 

the market price correlations.  The problem formulation in this work is novel in the sense 

that it minimizes the risk/uncertainty by taking the market price correlation approach to 

schedule the energy of the DERs in a microgrid, as a direct participant in the market. 

Assuming that the market prices follow a Gaussian distribution, the Markowitz 

optimization is used to find the optimal mix of purchase from the markets by minimizing 

the risk associated with both day-ahead and real-time markets   [12].  

The final and the third objective of this work is to analyze the tradeoff between 

the risk and expected TOC of the microgrid. There is always the tradeoff between the risk 

and return of any investment, and hence it is important to see the tradeoff the MEM faces. 

According to the risk-return tradeoff, an investment can render greater profits if it is 
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subject to the possibility of higher risks. This work considers that the MEM has 48 

different assets, (24 hourly investments for day-ahead and real-time markets), and with 

given risk/return for each asset, the problem solves for the amount of energy that needs to 

be purchased/sold from/to the wholesale electricity market that is of maximum profit to 

the MEM. Another important part of this analysis is to check for the assumption of the 

market prices following the Gaussian distribution is a reasonable one. In reality, the 

market prices do not follow a Gaussian distribution. The assumption of market prices 

following Gaussian distribution is also verified to be reasonable for the purpose of 

hedging against their risks. This is done by comparing the result of the proposed 

formulation with that obtained from the sample market prices randomly generated using 

the distribution of actual historic market price data. 
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2. PROBLEM FORMULATION OF THE MICROGRID ENERGY MANAGER 

The objective of the microgrid energy manager (MEM) is to meet the load of 

microgrid in the most economical way. The energy scheduling problem is formulated to 

find the optimal power generation from the DERs and the optimal mix of purchase from 

both day-ahead and real-time markets required to meet the load for 24 hours.  The 

problem is solved before the day-ahead market is settled, so the prices of both day-ahead 

and real-time markets are uncertain.  

The market price uncertainty complicates the decision of the MEM on the 

quantity needed to purchase from both the markets to meet the load. This work considers 

the variance of the purchase cost as a risk measure to manage the market price 

uncertainty. Hence, the objective function of the energy scheduling problem is to 

minimize the risk/variance of the market prices (both the day-ahead and the real-time 

market) as well the mean of the TOC of the microgrid. The TOC of a microgrid is the 

cost associated to run all the DERs and the purchase from the grid to meet the load over 

the given time period.  

This section builds the different blocks of the objective function and the 

constraints for the mixed integer quadratic program that the MEM solves to schedule the 

DERs and to find the optimal purchase from both markets to meet the load. It is 

organized as follows:  

• First, the objective function that calculates the optimal mix for purchase from 

day-ahead and real-time markets using Markowitz optimization is formulated. 

• Secondly, the covariance matrix of the day-ahead and real-time market price is 

constructed. 

• And lastly, the problem of distributed energy scheduling problem along with the 

constraints is formulated. 

2.1. OBJECTIVE FUNCTION USING MARKOWITZ OPTIMIZATION 

The objective function with respect to the market purchase cost consist of two 

important parts, the risk and mean of the market purchase cost. According to Markowitz 

optimization [12], the objective is to minimize the risk/variance and maximize the 
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return/mean. The MEM can apply the same approach to minimize the market price 

uncertainty and maximize the return, which in the MEMs case is to minimize the 

expected TOC. The objective function is formulated as shown below: 

 

[ ]( ) [ ]( )
1

min
T T T

grid DA RT grid grid
t

r P P m P Mean−
=

      Σ +       ∑  

 

Pgrid is the power to be purchased from the day-ahead and real-time market. The 

covariance matrix RTDA−Σ  or the variance in the market prices, is calculated using the 

approach mentioned in the following section and the mean is simply the expected market 

price. The idea behind variance as a measure of risk is that the variance measures the 

volatility. The more a stock’s returns vary from the average return, the more volatile is 

the stock. Markowitz optimization framework uses variance to quantify risk under the 

assumption that the market prices follow Gaussian distribution. A limitation to use 

variance as a measure of risk is that it adds weights to the numbers since variance is the 

average of the squared differences from the mean. Weighting factors ‘r’ and ‘m’ are 

included to analyze the importance of risk and mean in the optimization problem. It gives 

flexibility to the MEM on choosing the set of optimal mix of portfolio to be invested in 

the day-ahead and real-time markets.  

2.2. FORMULATION OF RISK/VARIANCE  

The MEM tries to minimize the risk associated from both the day-ahead and the 

real-time markets. As discussed in the first section, the hourly prices within a market are 

correlated, as well as between different markets. The covariance or the risk associated 

with the market price uncertainty is calculated using the standard formula used for 

variance as shown in equation below. 

 

[( ) ( ) ]TC  E X Mean  X Mean    
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X is the random vector, where X∈Rn. The problem is solved for a time period for 

24 hours. We are calculating the variance of hourly prices within the same market, as well 

between both the markets. Considering each random variable to be the hourly price of the 

day-ahead and real-time market, n would be 48 random variables.  

 

_1 _ 2 _ 24 _1 _ 2 _ 24[ , , , . ]DA DA DA RT RT RTX X  X X  X  X X       (1) 

 

Assuming that the hourly day-ahead and the real-time market prices have a 

Gaussian distribution, the covariance matrix is constructed. The resulting covariance 

matrix would be an n x n matrix and is positive semidefinite by nature.  

The (i, j) th  term of the covariance matrix is given by: 

 

2[( - )( - )]ij i i j j ijC   E X   Mean X   Mean      

 

The diagonal entries of the covariance matrix are the self-variances and are given by: 

 

2 2[( ) ]ii i i iC   E X Mean      

 

The risk/covariance factor thus looks like: 

 

RTDA−Σ  = 








−

−

RTRTDA

RTDADA

22

22
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2.3. ENERGY SCHEDULING PROBLEM 

The objective function for the energy scheduling problem must contain both the 

mean/variance of the market purchase cost as well as the expected TOC to be minimized. 

Hence, the cost associated with operating the various DERs and energy storage is added to 

the objective function. 

 

     
1 1

min ( )
T nT T

grid DA RT grid grid Gi i
t i

r P P m P Mean C P t
 

                     
       (2) 

 

The various constraints for this problem are as follows: 

 

1
( ) ( ) ( )

n

grid i D
i

P t P t P t
=

+ =∑     (3) 

( 1) ( )  ( )     ,i i iE t E t P t t i s tη+ = + ∆ ∈ ∀      (4) 

,min ,max( )grid grid gridP P t P≤ ≤      (5) 

,min ,max( )i i iP P t P≤ ≤      (6) 

min max( ) ( ) ( )     ,i i i i iU t P P t U t P i s t+ + +≤ ≤ ∈ ∀      (7) 

min max(1 ( )) ( ) (1 ( ))   ,i i i i iU t P P t U t P i s t− − −− ≤ ≤ − ∈ ∀      (8) 

( ) binary variableiU t →  

 

The constraints have been developed for a similar problem in one of our previous 

works [13]. The decision variables are Pgrid, Pi, Pi
+, Pi

-, Ei and Ui for si∈ where s denotes 

the energy storage components. CGi is the ($/MWh) cost for the DERs and energy 

storage. The supply demand balance constraint is shown in equation (3). The sum of the 
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energy purchased from the grid and the aggregated sum of the DERs and energy storage 

must meet the load at a given time period. The proposed method is shown in the form of 

a diagram in Figure 2.1. 

 

 

 

 

Figure 2.1. Problem solved by the MEM 

 

 

 

The energy stored at a given period is shown in equation (4), where η  is the 

efficiency of the energy storage system. Equations (5) and (6) are the bounds on grid 

purchase power and distributed generations. The reason for including an integer variable 

(U) is because the energy storage system can either charge or discharge at any given 

moment. It is also important to note that the storage could be in an idle state and U could 

take the value of either 0 or 1.  

The MEM solves the mixed integer quadratic program for every hour to schedule 

the DERs and purchase power from both the markets. The load forecast, solar and wind 
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forecast, day-ahead and real-time market price forecast and the day-ahead and real-time 

price uncertainty are obtained for every hour. The result of this problem gives the energy 

to be scheduled by the DERs as well as the power to be purchased from the both the day-

ahead and real-time market to meet the microgrid demand.    
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3. NUMERICAL EXAMPLE AND SIMULATION RESULTS 

3.1. THE MICROGRID AT ILLINOIS INSTITUTE OF TECHNOLOGY 

To verify the proposed method with a numerical example, we consider the 

microgrid at the Illinois Institute of Technology (IIT) in Chicago, Illinois. The system 

consists of solar, wind, natural gas turbine power plant, a flow battery energy storage 

system and multiple backup generators to meet a peak load of roughly 13MW [14]. With 

multiple objectives such as reduced energy costs, improvement of reliability and quality 

and reduction of CO2 emissions, the system at IIT is chosen as a case study for validating 

the proposed model. The capacities of the DERs and their per-MWh production costs are 

given in Table 3.1. The $/MWh for natural gas and diesel for natural gas turbine power 

plant and backup generators respectively were obtained from the U.S Energy Information 

Administration [15 - 16]. The $/MWh for the flow battery storage was obtained from 

[17]. 

 

 

 

Table 3.1. Distributed energy resources of the microgrid at IIT 

Technology 
Total output 

capacity (MW) 

Total MWh 

capacity 

Production cost 

($/MWh) 

Solar 0.300   

Wind 0.008   

Natural Gas Turbine 8.000  22.987 

Flow Battery Storage 0.250 0.500 108 

Backup Generators 4.036  66.584 
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The hourly load data for Microgrid at IIT is shown in the plot below. The peak 

load is around 12.9 MW as shown in Figure 3.1. The load profile follows a regular 

commercial load profile pattern where the peak is around 15th hour and falls back 

eventually towards the end of the day. It is evident that when there is a grid outage, 

roughly 60% of the load is powered by the natural gas turbine power plant and the reason 

is clear due to the $/MWh price of natural gas.  

 

 

 

 

Figure 3.1. Load profile of microgrid at IIT 

 

 

 

3.2. COVARIANCE OF PJM’S DAY-AHEAD AND REAL-TIME MARKET   
PRICES 

The problem is solved using data recorded during the summer of 2015. The day-

ahead and real-time market prices were taken from PJM, as the IIT microgrid is located 

under the operation of PJM. To construct the covariance matrix, the day-ahead and real-
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time market prices of 92 days, from beginning of June to the end of August were 

downloaded from the PJM data miner [18].  

The heat map of the covariance matrix is shown in Figure 3.2. The heat map 

shows the volatility of the hourly market prices and this information can be used to 

minimize the variance of the market purchase cost. The real-time market is highly 

uncertain as it is cleared post demand and is used to meet the difference between the 

forecasted and actual demand. The day-ahead and real-time market prices are assumed to 

have a Gaussian distribution. The covariance matrix is semi-positive definite and 

symmetric by definition. 

 

 

 

 

Figure 3.2. Heat Map of Covariance Matrix 
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3.3. SOLAR AND WIND PRODUCTION DATA 

The hourly solar PV output data was obtained using NREL PVWatts Calculator 

[19]. With inputs as the location, the system size (kW-DC) and other parameters such as 

system losses, array type, etc., it estimates the energy production of solar PV systems, 

which in our case was Chicago, IL. The data is obtained for 1kW of capacity and scaled 

up to the capacity of microgrid at IIT, which is 300 kW. Figure 3.3 shows the solar and 

wind production data simulated using the PV Watts calculator and the wind energy 

production calculated from the above method respectively for 24 hours. 

 

 

 

 

Figure 3.3. Solar and wind output in Chicago, Illinois 

 

 

 

Wind energy production depends on factors such as the turbine length, wind 
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NREL Renewable Resource data center for Chicago [20].  Wind power was calculated as 

follows: 

Wind Power (kW) = pCAv3

2
1 ρ  

 

ρ is the air density (1.23 kg/m3), A is the area swept by the blade (m2), and v is the 

wind speed (m/s), and Cp is the Betz limit coefficient (generally between 0.35 and 0.45).  

3.4. THE PROBLEM OF ENERGY SCHEDULING 

The mixed integer quadratic program formulated in Section 2.3 is solved using 

OPTI TOOLBOX [21] with MATLAB interface. [21] can be used to solve linear, 

nonlinear, continuous and discrete optimization problems using MATLAB. The problem 

is solved for 24 hours in an hourly interval.  

The simulation was run initially for variance scaling factor r=1 and mean scaling 

factor m=1 in Equation (2). The result of this optimization problem gives the schedule of 

optimal DER operation and the energy to be purchased from the day-ahead and real-time 

markets.  

The expected TOC of the microgrid was found to be $7,399.3. This cost includes 

the cost of operation of the DERs as well as the market purchase cost to meet the 

microgrid load for 24 hours. The mean of the purchase cost from the wholesale electricity 

market was found to be $184.65 with a variance of purchase cost of 283.55.  

In order to provide a better picture of the results, Figure 3.4 provides the schedule 

of the DERs and the microgrid demand. It is clear that during the peak demand of the 

day, the natural gas turbine plant and diesel generator are being operated to their full 

capacities. In fact, the cost of operating the natural gas turbine plant and diesel generator 

combined was found to be $7,214.6 which is 97.5% of the TOC of the microgrid.  

This is because of the inclusion of the risk factor (covariance of market prices) in 

the objective function due to which the market purchase/sale schedule are limited 

accordingly. The level of importance given to the risk in the objective function is decided 

by the MEM. 
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Figure 3.4. Schedule of the DERs and Load 

 

 

 

As the level of importance for risk changes, the schedule of market purchase/sale 

changes accordingly, which in turn has an effect on the operating schedule of DERs as 

well. This is discussed more in the next section. Figure 3.5 represents the schedule of 

energy storage. The positive schedule is the charging and the negative schedule is the 

discharging of the energy storage.  

Figure 3.6 shows the schedule of the market purchase/sale. Based on the expected 

market prices and covariance of market prices, the day-ahead and real-time market 

purchase/sale is scheduled by the MEM for every hour. The day-ahead purchase at hour 9 

and 10 is higher because of the risk (covariance) being comparatively lower for that 

period. This can be verified using the covariance matrix of the hourly market prices. 

Also, it is important to note that the purchase/sale from real-time market is not as active 

as day-ahead market. This is because of the fact that real-time market prices are more 

uncertain than the day-ahead markets. It makes sense because the real-time markets are 
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designed to meet the difference in the forecast and actual demand of the system operator 

and is cleared every 5 minutes after the actual demand of the system.  

 

 

 

 

Figure 3.5. Schedule of Energy Storage 

 

 

 

Thus the MEM limits the trading activity in real-time markets to avoid the risk of 

market price uncertainty. 

As mentioned before, the total market purchase cost was found to be $184.65. 

This cost comprises of the day-ahead market purchase cost ($390.676), day-ahead market 

sale revenue ($153.33), real-time market purchase cost ($78.63) and real-time market sale 

revenue ($131.33). The MWh energy trading (purchase/sale) by the MEM in both the 

markets for 24 hours combined (over a day) is shown in Figure 3.7. It is pretty evident 

that the significance of Figure 3.2 has a direct impact on the market trading of the MEM.  
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Figure 3.6. Expected market price vs Purchase from the markets 

 

 

 

To analyze the impacts of the risk factors in operation decisions, the scaling 

factors are varied to see how the scheduling of DERs and market purchase varies 

accordingly.  

It is important to note that the purchase from the market and the scheduling the 

DERs are complimentary to each other, since the cost of purchasing energy from markets 

is cheaper than operating the DERs to meet the load. That is, when there is more energy 

purchased from the market to meet the load, the expected TOC becomes less and vice 

versa. This leads to the important analysis of this work.  

The tradeoff between the risk and return, which in the MEMs case is the tradeoff 

between risk/uncertainty of the market price and expected TOC is analyzed. Another 

important part of the analysis is to see whether assuming that market prices follow a 

Gaussian distribution is reasonable or not. 
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Figure 3.7. Day-ahead and real-time trading (MWh) 

 

 

 

3.5. RISK AND EXPECTED TOC TRADEOFF   

The tradeoff faced by the MEM with uncertain prices is the willingness to take 

higher risks, which could possibly yield higher returns but at a low probability. In order 

to analyze the tradeoff between the risk/variance of the market purchase cost and 

expected TOC of the microgrid, the scaling factors ‘r’ and ‘m’ in Equation (2) are varied. 

This leads to the 2 modes of operation by the MEM, the risk-averse and the risk-taker 

mode. The tradeoff is depicted in Figure 3.8. 

Placing a higher weight of minimizing the risk in the objective function decreases 

the variance of the market purchase cost. In this case, the MEM is concerned more about 

the uncertainty of the market purchase cost and hence is willing to operate the DERs 

more instead of purchasing from the market.  
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Therefore, the expected TOC increases due to the increased operation of DERs 

and less purchase from the market. This is the risk-averse mode of the MEM. 

 

 

 

 

Figure 3.8. Tradeoff between risk and expected TOC 

 

 

 

On the other hand, when the weight of the risk component is decreased in the 

objective function, the variance of the market purchase cost increases having a direct 

impact on usage of the DERs accordingly. This is the risk-averse mode of the MEM. The 

cost of operating the DERs decreases since most of the energy needed to meet the 

demand are purchased from the grid which is cheaper than the operating cost of DERs, 

thereby decreasing the expected TOC. When substituting r = 0.6 and m =1 in Equation 2, 

the variance of the purchase cost was found to be 391.97 and the expected TOC to be 
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expected TOC decreases and vice versa. Table 3.2 below gives the comparison between 

the operation of the risk-averse MEM and risk-taker MEM. 

 

 

Table 3.2. Distributed energy resources of the microgrid at IIT 

Risk-Averse MEM (r = 1.4) Risk-Taker MEM (r = 0.6) 

Variance (Risk) of Purchase Cost: 224.38 Variance (Risk) of Purchase Cost: 391.97 

Expected Market Purchase Cost: $140.33 Expected Market Purchase Cost: $267.23 

Operating Cost of DERs/Storage: $7330.8 Operating Cost of DERs/Storage: $6989.5 

Expected TOC: $7471.2 Expected TOC: $7256.7 

 

 

 

Figure 3.9 compares the market purchase activity of risk-averse MEM and risk-

taker MEM. The MEM as risk-taker purchases more power from the market as compared 

to the risk-averse MEM, i.e. willing to take higher risks, which could possibly yield 

higher returns but at a low probability. Once again, the day-ahead purchase is more than 

the real-time due to the higher uncertainty or risk involved with real-time markets.  

Figure 3.10 compares the operation of DERs of a risk-averse MEM and a risk-

taker MEM. The risk-averse MEM operates the DER more when compared to the risk-

taker MEM, in order to avoid the risk of market price uncertainty. This increases the 

expected TOC of the microgrid but it is more certain to happen as the risk involved with 

respect to the market purchase is lower.  

With this information, the MEM can now make decisions in the day-ahead and 

real-time markets according to their risk aversion preference. It is once again important to 

note that the decision of their risk aversion preference has an impact on the market 

trading activity, which in turn can change the schedule of operation of DERs accordingly, 

thereby having an effect on the expected TOC of the microgrid. For example, if the MEM 

prefers to reduce the operation of the DERs and bring down the expected TOC of the 
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microgrid, the tradeoff information can give the MEM the risk involved to achieve the 

desired result. 

 

 

 

 

Figure 3.9. Market purchase activity of a Risk-Averse MEM vs Risk-Taker MEM 

 

 

 

3.6. VERIFYING THE GAUSSIAN DISTRIBUTION ASSUMPTION OF THE 
MARKET PRICES 

The second part of the analysis is to check whether assuming the market prices to 

be normally distributed is reasonable. The hourly market prices that were used to 

construct the covariance matrix/risk associated were assumed to follow a Gaussian 

distribution in order to apply the Markowitz optimization theory.  
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But in reality, the market prices do not follow a Gaussian distribution. Figure 3.11 

shows the histogram plot of day-ahead market price for hour 1. It is evident that the 

prices do not follow the distribution that we had assumed for simulating the proposed 

method.  

 

 

 

 

Figure 3.10. DER operation of a Risk-Averse MEM vs Risk-Taker MEM 

 

 

 

To verify the Gaussian distribution assumption, a sample of 1,000 market prices 

for each hour, both for the day-ahead and the real-time markets were generated. This is 

done by randomly generating samples using the distribution of actual historic market 

price data [9].  
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Figure 3.11. Distribution of day-ahead, hour 1 market prices 

 

 

 

To check if the assumption was a reasonable one, we intend to compare (a) the 

expected TOC obtained with the assumption of market prices following Gaussian 

distribution and (b) expected TOC with the generated sample market prices that follow 

the distribution of actual historic market price data.  

Hence, the purchase/sale portfolio obtained as a result of solving the proposed 

mixed integer quadratic program is used to calculate (a) and (b), the only difference being 

for that of (b), we use the generated sample market prices. The histogram plot of (b) is 

shown in Figure 3.12.  

It is evident that (a) and mean of (b) are almost equal. (a) was found to be $7399.3 

in Section 3.4 and the mean of (b) was found to be $7394.9. This proves that the 

assumption of market prices following Gaussian distribution is a reasonable one for the 

purpose of hedging against the risks and also validates the method of applying Markowitz 

optimization to find the optimal set of purchase/sale portfolio in the day-ahead and real-

time markets. It also gives flexibility to the MEM for making decisions in the day-ahead 

and real-time markets according to their risk aversion preference.  
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Figure 3.12. Validating the assumption of market prices following Gaussian distribution 

 

 

 

 

 

 

 

 

 

 

Expected TOCGaussian: $7399.3 
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4. CONCLUSION 

In this work, the problem of a MEM has been solved to schedule the energy 

resources and storage to meet the load of the microgrid. The idea of microgrid as an 

individual market player in the wholesale electricity market has been explored. The day-

ahead and real-time market price uncertainty has been taken into account while solving 

the energy scheduling problem and a risk management method is proposed for the same. 

Simulation results show that the risk is minimized and there is generally a tradeoff 

between the variance/risk of the purchase cost and the expected TOC of a microgrid. An 

important assumption of market prices following Gaussian distribution has been verified, 

thus validating the proposed model.  

This work can be extended to include demand side management in the microgrid 

and see the impact of the scheduling of DERs and energy storage as well as the purchase 

of energy from both the markets. Another important extension of this work would to 

manage the uncertainty of the renewable energy resource energy production as well as 

the load forecast uncertainty due to the implementation of demand side management 

when included in the problem. Also, in order to assess the impact of risk management 

with better accuracy, solar, wind and load data can be obtained for a longer time period 

and the case study of microgrid at IIT can be simulated for multiple days and seasons. 
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