Water supply of Rolla, Missouri

Perry B. Anderson

Felix John Kersting

Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses
Part of the Civil Engineering Commons
Department: Civil, Architectural and Environmental Engineering

Recommended Citation

Anderson, Perry B. and Kersting, Felix John, "Water supply of Rolla, Missouri" (1897). Bachelors Theses. 219.
https://scholarsmine.mst.edu/bachelors_theses/219

This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

WAIER SUPPIY
$0 F$

ROLISA, MSSOURI.

$$
A R G U M E N T .
$$

An essential feature of a prosperine town is a system of water supply, to protect property from losses by fire ariư to furnish water for domestic use.

Rolla, a town of about fifteen hundred innabitants,is without a proper water supply, in consequence of which it has suffered many losses to property, which could have been averted, or at least diminished, had the proper protection been at hand.

At present the only fire protection the business part of the town has, is derived from one larpe cistern placed on the principal street, while the protection for the residence portion, is derived from private cicterns. The quantity of water in these cisterns is dependant on the amount of rainfall, which in this resion is very uncertain; therefore, when there is the preatest demand for water in these cisterns, the quantity may be insufficient to meet the necessary requirements.

Hence the reason for selecting this subject for our thesis.

LaKe Frisco

$$
S O U P C E
$$

The only source of water supply for Rolla, which can be taken into account, without involving undxe expense, is a lake situated about a half mile north of town, known as tiake Prisco. The area drained by this lake is about 100 acres and its contents at low water, approximately 7000000 mallons. These fiot ares are based upon a survey and soundines made two rears aro; but it is safe to say, that during the greater fart of the year the contents rance nearer the 15,000000 mark.

This water will require filtering before sufficiently pure for household use.

```
    FI L f FR.
--.........000-...........
```

The filter is to be of the gravity type. The filterine material is to be of sand, ravel, broken stone, charcoal and coke. Chis will necessitabe two tanks, one large one, and ore small one. The large tank will contain:-

One 10" Iayer of $2^{\prime \prime}$ broken stone,
" 6" " " ordinary sravel,
" 8" " " fine sand.

The small tank will contain:-
One 3^{\prime} layer of loose coke, and
" ?" " " fine charcoal.

From all the data available we calculate that a filter made as described above, will nave a capacity of 200 gal. per sq.ft. per dav.

Allowing 24.8 sal. per capita as daily consumption, or a total of $1500 \times 24.0=37200$ ral. daily, we dimension our filters as follows:-

Iarge tank $3728 n / 2 n n=186 \mathrm{sq} \cdot \mathrm{ft}$. are necessary for bottom area. imensions $20^{\prime} \mathrm{X}$ 10'X 10^{\prime}. fhis will leave a pressure head of 7^{\prime} above filtering material.

Small filter, $6^{\prime} \times \wp^{\prime} \times 6^{\prime}$.
We estimate 37230 sal. as sufficient for average daily consumption. In order to provide for any consumption above the averare, the water will pass from the filter into a reservoir, which will contain a sufficient amount of filtered water to mest any demand.

Amount of filterinc material required, with ahove dimensions, will be as follows:-

$$
\begin{array}{lcc}
\text { 2" Broken stone } & 6 . \quad \text { cu.yds. } \\
\text { Gravel } & 3.75 \mathrm{"} \mathrm{"} \\
\text { Sand " " } \\
\text { Charcoal } & 10 . & 2.7 "^{\prime \prime} \\
\text { Coke } & 1.5 \text { ton. }
\end{array}
$$

Only sand which will pass throurn a $\# 30$ (900 mesh) seive shall b'e used in this filter. For our purpose 5 cu.yds of sand will be ample, but allowing 50% of the ordinary sand as too coarse - to pass througn seive - we estimate amount of
Pate 18.
FILTER
FOR
SHED

East Elevation

North Elevation

Scale $10^{\prime}-1$ "
sand bought as 10 cu.yds. Both tanks are to be lined with galvanized iron. Filtering material in each tank rests upon wire cloth which is supported by $2^{\prime \prime} x 3^{\prime \prime}$ wooden joists, placed one foot apart, c to c supporting $2 " x 4^{\prime \prime}$ stringers placed one foot c to c, and arranged as shown on Plate A.

The tanks are covered by a shed which is shown in detail on Plate B.

> NFPIOT Qt CIEATING TANKS.

To clean the filter it will be necessary to scrape off from $1 / 2^{\prime \prime}$ to $l^{\prime \prime}$ of the sand of the top layer. The remaining sand should then be stirred so that it will not clos up and become too compact for the ready flow of water. When the sand has been scraped off to a depth of about $4^{\prime \prime}$, new sand should be added until the layer reaches its oririnal thickness. The sand which has been scraped off may be washed and amain used.

This operation of cleaning should be performed about once every two weeks, of at least once a month. The charcoal and coke need not he cleaned so often as the sand but should be taken out and washed about every six weeks.

$$
\mathrm{P} O \mathrm{~W} \mathrm{E} \text { R. }
$$

The pumping from the lake to the reservoir will be done by a wind mill, havine a 16 ft , aermotor on a 100 ft . steel tower. The situation of wind mill is shown on Plate l. The properties of this wand mill are here riven:-
Weirht of 100 ft tower
$5750 \frac{\text { H }}{11}$
" " 16 " aermotor
2200%

Capacity of wind-mill 1470 mal per hr.
The corner posts of the tower are to anchored in brick mascnry. The dimensions are riven in sketch.

Dimensions of excavations are $4^{\prime} \times 4^{\prime} \times 6^{\prime}=3.55$ cu.yds or, total excavations for anchor posts $=$ $1420 \mathrm{cu} . \mathrm{yds}$.

Allowing 500 bricks to one cubic yard; the four foundations require 4.16 cu.yds., or $500 \times 4.16=2080$ brick,

$$
\begin{gathered}
\text { CISTER S. } \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots
\end{gathered}
$$

Che water is puroed to reservoir from a cistern situated immediately below the aermotor. The dimensions of excavation for this cistern are $8^{\prime} \times 8^{\prime} \times 80^{\prime}=47.5$ cu.yds.

The walls are to be of brick, $9^{\prime \prime}$ thick and laid in Louisville cement mortar. Inside dimentions are $6^{\prime} x 6^{\prime} x 20^{\prime}$. The floor for pump will te played 14' from bottom ard made of 2"x 8" joists placed one foot apart and covered with board floorine. b?.sq.ft., will be required for joists and 36.sq. ft., for floorine 12.M.i.

Number of bricks required for lirinr $=8000$. Water is conducted to cistern from the lake throurh a $4^{\prime \prime}$ cast iron pipe which makes connection with cistern as shown on Plate l. 'ne ripe extends into lake 100^{\prime} and at the end is provided with a screen. Slope of pipe $=.4^{\prime}$ in 100^{\prime}.

Trenchine for this pipe equal 3l cu.yds. finis pipe is provided with a rate as giown or flete 1 .

> R E S ERVOIR.
-.......... $\cdot x x x-\cdot . \cdot . \cdot-$

The site of reservoir is siown on Plate 3 . Tts elevation is 90^{\prime} above low water mark of lake. Dimensions of res-ervoin:-

Tottom ? ${ }^{\prime} \mathrm{x} 20^{\prime}$, Slope of sides ?'.l, top $60^{\prime} \mathrm{x} 60^{\prime}$, septh $]^{\prime \prime}$ makint a net capacity of 23480 cu.ft., or 12902 ? rallons.

Neservoir is to be rade partly by excavatine and partly by bankine -.. 7^{\prime} of excavation will yield about enourn material for 3^{\prime} of banking which is to be 4^{\prime} broad on top.

The bottom and sides of the reservoir are to be lined with puddle made up as follows:-

Cotal amount of pudde required 160.9 cu.yds. or

Slate II

Reservoir o

Gravel is to be spread on in layers of $2^{\prime \prime}$ thickness. Olay is evenly spread on over gravel and lumps broken. The sand is then spread on the clay and the whole thorourhly mixed by pessing a harrow over it. After this, is done, it must be rollea with a heavy roller, the lavers heving first been moisteneä, just so they will mix well under the roller and become a compact mass. The next layers are put on in the same manneruntil the required amount of puddenas been put in place. (Fannins)

Rip Rap is placed on top of pudale on slope walls. In this rep rap, stones must not be less than $4^{\prime \prime}$ thick and 12" lonz. They are to put in place by hard, making a uniformly slopine bank; careful attention reine paid to the selection

Topographical M AP

Reservoir and Filter House

and placing of stones at all angles. (Baker.)
An outlet pipe is plaeed on the north side of the reservir for the purpese of discharging all the water when clean ing becemes necessary.

Cennections for all pipes are shown on Plate 2.
\qquad

$$
\mathrm{P} \mathrm{I} \mathrm{P} \mathrm{E} \mathrm{~S} .
$$

The pipe is to be made of east iron, part of it being $6^{\prime \prime}$ in diameter and the remainder $4^{\prime \prime}$.

The plan of the pipe line is shown on Plate 3 .

$$
\text { rotal lerrth of } 4^{\prime \prime} \text { pipe required } 14494^{\prime}
$$

$"$
" " ビ" "
" -4265°

Total length of pipe required 18759°

$$
G A T E S
$$

A namber of rates will be placed on line so that a portion of the line may be cut out and be repaired without interfering with the flow of water in the remaining portion.

Che positior of these several getes are shown on Plate 3.

HYDRANTS,

In all there will be 25 hydrants, their positions being shown on fate 3. It will be noticed that, in case of fire in any block, water can he drawn from two hydrants sirultanenumbly
TRENCHING.

$$
\text { nimentione of trench for pipe line are } 1.5^{\prime} \times 2^{\prime} \times 18759^{\prime}
$$ equal 313) cubic varas.

 dirt is to be rilled in around it and tamped, so es to rive a rood solia bearing for the line.

The airt in the upper portion of the trench need not be tamped. Chis also applies to the trench joining lake and cistern.
heads ac etavaicd poincs or rours.

In finding elevation of different points on streets alone which the pipe lize is laid, the following data was obtained. The elevation of the B.N. at the School of Mines being taken as reference:-
POINES.
ELEVAIION.
HEAB.

B. ${ }^{\text {a }}$ at School of "ines.	1138.23	32.85
Sive of Reservoin	1171.08	
ㅁ. \because at Iake	1084.06	87.5
Sixtr and Pine	1039.7	81.38
Sixth and Olive	1096.6	74.48
Second and ?edar	1093.61	78.4
Eight and Coajor	1106.6	65.4

Flevations were taken at intersection of streets, and at mid-point of rlonks. The notes riven above are selected as heine most elevatea points in the city.

TARIE SLOWLIM TOSS OF ILFATSS DIJF RO FRIOClON.

POINT	HEAD	L03S	REMAINTG HEAD.
Fiont \& Pine	64.09^{\prime}	$1.56{ }^{\prime}$	$62.53{ }^{\prime}$
" " redar	$65.4{ }^{1}$	5.'	60.1
Sixth " Pine	81.33^{\prime}	$1.83{ }^{\prime}$	79.55^{\prime}
Second anà redar	$78.4{ }^{\prime}$	$12.21{ }^{\prime}$	66.19^{\prime}
School of Nines	32.85^{\prime}	. 6^{\prime}	$32.25{ }^{\prime}$
Sixth R Olive	74.48^{\prime}	$3.67{ }^{\prime}$	70.81

The prices river above on hydrants, pipe, rates, acermotor pct., are catalogue prices.

Prices on masonry, building, \&c., are prices as obtained from Roll e contractors.

$A D D E N D A$.

A

ADDENDA ${ }^{M N /}$ " ".

Another possible source for water supply is a spring situated about a mile-and-a-half south east of the business part of the town.

The flow of the sprine was measured and found to be 18 sallons per minute, or, 1080 gallons per hour, which woald be sufficient for a maximm daily consumption of 17 gallons per capita.

$$
P O W E R .
$$

Eimhteen rallons equal 2.41 cu.ft., discharee per minite. 2.41 cu.ft., equal 350.625 pounds. $165 \mathrm{ft} .$, is the difference of elevation between water in cistern, at spring and reservoir.
$150.625 \times 165=? 4853$ ft.pds., or, about $3 / 4$ horse power required.

Cherefore the wind mill of the foregoing estimate woula furnish enodeh power for pampire. The capacity of the wind mill acainst a head of 165 ft . is 1030 gallons per hour, which would supply waier enough for a raximur daily consumption of 16.5 gallons per capita.
PI P

The distributing mains of this system would be the same as in the first system. Che 1700 feet of pipe conveying water from Lake Frisco to the Reservoir woald not be needed; but, as the sprint is 4920 feet from the nearest main, $4920-1700$ 3220 ft., would be the additional length of 4 " pipe needed.

$$
\subset 0 \leq \mathfrak{R}
$$

Cost of first system

$$
\$ 8408.59
$$

Deduction (Filter, rates Roc.) \qquad

$$
\$ 8101.63
$$

Additional cost for extra pipe,
trenching ko.
Total cost

- -924.836
\$9096.49.

The advantage of tais system lies in the purity of the water, which would dispense with the use of a filter.
line disadvantages are
ls l. Increase of cost,
nd. It furnishes only 16.5 salons per capita per diem.

Bra. The discharge at this sprint was measured within a week after heavy rains; and data as to its uniformity of
flow were not available. Il is very prohable that the discharee in dry weather will fall sact. of this.

A D DEN \cap AMN.

B

ADDEND " B ".

Che following is a commendable desimn of a systom where water for fire protection of the basiness part of town alone is desired.

The desion is basea upan the metnod of obtainine nimh pressure by means of compressed air.

$$
-S O U R C E \cdot-
$$

Water will be taken from the mill pond, waich is sitaatevon 7th and 0ak streets.

$$
-\cdots \text { I A N } \mathrm{F},-\cdots
$$

'The flant will be situated on tae bank of this pond near the 8th str. side, ari will consist of two tanks 8' dia. and 30^{\prime} lone.

These tanks are connecied with an air compesser as siown on Plate l. When the compressor is in operation air is drawn out of one tank and forced into the other whin is filled with water, thus forcine this water oat at a nirmpressure. Che mains also act as a reservoir, supplyin water immediately, when a hydrent is openea. While air is beinc arawr oat of one tank to be forced into the otner, water from the pond masies into the first tank to take its place. Prus each
tank is alternately filled with air and water, as a continגD: pump. A water page is fixed at the side of each tank so that the neigh of water is known at any time.

To illustrate: Suppose a fire alarm tu be sounded and the attendant finds tank ? filled with water. Ie must first - start the compressor*, then open valve B and turn valves A and A^{\prime} to the riant and left respectively as far as they will allow. When the water in tank B has dropped to the bot tor of suave and that in A has risen to the top, valve B is closed and ${ }^{\prime}$ opened; valves A and A^{\prime} are then reverseã, that is, turned to the left and rimit respectively. Chis operation can be repeated as many times as necessary. ---PRESSURE.---

The pressure in the tanks can be computed by the formula
p. $\frac{+14 \cdot 5}{2}=\frac{p_{2}+14.5}{v_{1}}$

Allowing 100 pounds as pressure on the water just as
it leaves the tank we have

$$
\frac{2+14}{22500}=\frac{114.5}{11250} \text { therefore } p=214.5
$$

will be the pressure per square inch on sides of tank. This will require thickness of metal to be $\frac{1}{2}$ inch.

* Ger A is free of cnecfuresed arr when tan B is free of water, valve B is to he opened hefore conpreson is started The air vie tank 7 give the reprised pressure vi pifkeo while confuressor is hera started.
-- P O W ER.....
A small gasoline enrine of $3 / 4$ horse power will furnish sufficient power for operating the compressor. Sompressor used will be same as shown in Fir. 6, Pare ll, Merrill Mfr. Co's Catalorue. ine enrine and compeessor combinea is shown on pare 18 same catalorie.

$$
-M_{M} \mathrm{~N} S .--
$$

Pipes are to be $6^{\prime \prime}$ in diameter and of cast iron. They y will be laía on the followinr streets:

8th, from pump hoise to Bine; Pine, from 8th to 6th; 7th, from Pine to Elm. This will require 1600 ft. of pipe.

liydrants will he distributed as follows: 8th \& Flm, 8th \& Pire, 6 th \& Pine, 7 th \& Pine, 7th \& Fim.

Clddenda CO Olate Z

