The design of a water supply distributing system for the City of St. James, Missouri

Arch W. Naylor

John Hurtgen

Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses
Part of the Civil Engineering Commons
Department: Civil, Architectural and Environmental Engineering

Recommended Citation

Naylor, Arch W. and Hurtgen, John, "The design of a water supply distributing system for the City of St. James, Missouri" (1912). Bachelors Theses. 106.
https://scholarsmine.mst.edu/bachelors_theses/106

This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

Th i: DESIGN OF A WATRK SUPPLY DISTRIRUMING SYGTEL VCF THB CITY OF SM'. TAMES, MISSOURI.
ky

A
THESIS
submitted to the faculty of the
SCHOOL, CF NINES AND METALLURGY OF RE E UNIVERSITY OF MISSOURI
ir partial sulfijumert of the work required for the
DEGRENCF
BACHELOR OF SCIEREX IN CIVIL ANGIHTHRING

Mola, No.
1912

- -

Approved by

Professor of Civil Frgircerirg.

```
m: TABLE OF CONTENTS :-
```

(1) Design of the distributing system.
(2) Source of supply: (a) Investigation of Brook Spring. (b) Deep wells.
(3) Report On Meramec Springs as a source or power.
(4) Reinforced concrete elevated tank.
(5) Estimated cost of distributing system and tank.
(6) Diagems and plans.
(A) Diagram showing the ratiag of Price Curre.t Meter.
(B) Plat of St. James, Mo., showiag iocation of tank, pipe lines and accessories.
(C) Plan of tank and its connections to the distributing system.

THE DESIGN OF THF DISTRIBUTING SYSTEM.

The design of the distributing system, being governm ed oy the fire requiremets,it is proposed to provide three 250-gellon fire streams under a hydrant pressure of 70 pounds per scuare inch for the business section, from Scioto St. to Bowman St., and from Seymour St. to Meramec St., with a maximum length of hose of six husdred feet; and two fire streams of a mi..imum total capacity of 485 gallons, each under a hydrant pressure of 72 pounds per square inch for the outlying district; the water to enter the system under a pressure of 100 pounds per square inch.

Allowing a maximum $108 s$ of pressure of 28 pounds per square inch at the extremity of the system, the intersectio.. of Meramec and Aida St's, due to friction in the pipe,it is found by the system of eliminating cross lines and substituting equivelent diameters,as shown by accompanying computations and sketches, that 425 gallons per minute are available at that point under a hydrant pressure of 60 pounds per square inth.

The population of St. James, Nio., in the census of 1910,is 1100 but nrovision is made for a possible increase to 1800 with a rate of consumption of 100 galm lons per capita per dey. For small cities, where the fire demand is relatively large, the assumption 18 made that it will increase but little with the increase of population.

In the desiga of this system it is intended to provide a supply adequate to meet the demands, of the territory covered, for ε period of twenty years. The system can easily be extended to take in new torritory without increasing the size of the mains here designed.

The system conteins 375 feet of eight inch,4240 feet of six inch, and 11300 feet of four inch cest-iron pipe with the necessary valves and fittings, designed to withstand a pressure of 130 pounds per square inch.

The "Diagram for Calculating Cast-Tron Pipes" given on page 243 of Turneaure and Russell's "Public Water Supplies", edition of 1910 ,was used in these computatians.

District (1)
Assumed loss of head from A to B, 20°
Discharge thru line $A-B$, gellons 2,15
Discharge thru line $A-C-D-B, g e 1.80$
Equivalent diameter of pine,500 ft. long, which will discharge 295 gallons with a loss of head of $20^{\circ}, 184.5$ inches. District (2)

Assumed discharge thru line $B-E-C-A$,

gallons 400

Loss of head B-E plus C-A,feet 19.04°
Loss of head E-D
Loss of her.d D-C
Equivalent diameter of pipe,2060 feet

long,which will give a loss of head of 104.3^{\prime} when discharging 400 gallons, is 4.7 inches.

District (2), continued.
Assumed loss of head from A to B, 20'
Discharge thru line A-B,gellons 150
Discharge thru line B-E-C-A, gal. 160
Equivalent diemeter of pipe, 940 ft.
long which will discharge 310 gallons with
a. Loss of head of 20 feet,is 5.2 inches.

District (3)

Assumed discharge thru ine $A-C-D-B$, gallons

Loss of head C-D plus D-B,
Loss of head A-C

Fquivalent ciameter of pipe, 2100 ft .
long which will give a loss of head of
112.2 ft . when discharging 300 gallons
is 4.3 inches.
Assumed loss of head from A to B, 20°
Discharge thru line A-B,gellons 150
Discharge thru line A-C-D-B, gel. 115
Equivalent diemeter of pipe,940 feet
long which will dischsrge 265 gallons with
a loss of head of 20 feet, is 5.8 inches.

District (4)
Assumed discharge thru line $A-C-D-B$,
gallons

Loss of head, C-D
Loss of head, A-C
Loss of head, D-B
Equivalent diameter of pipe, 3830 ft . long, which will give a loss of head of 189.0 feet when discharging 300 gallons is 4.3 inches.
177.1'

Assumed loss of head from A to $B, 20^{\circ}$
Discharge thru line A-B, gallons 380
Discharge thru line $A-C-D-B$, gel. 85
Equivelent diameter of pipe, 1230 ft, long, which will discharge 465 gallons with a loss of head of 20 ft . is 6.5 in. District (5)

Assumed discharge thru line $B-C-D-E-A$, gellons

Loss of head, B-C
Loss of head, C-D plus E-A

Loss of head, E-D
32.9'

District (5), continued.
Equivalent diameter of pipe, 1980 ft . long,
Which will give a loss of head of 49.7 feet when discharging 400 gallons,is 5.6 inches.

Assumed loss of head from A to $B, 20^{\prime}$
Discharge thru line $A-B$, gallons 150
Discharge thru line $B-C-D-E-A, g a l .2 .35$
Equivalent diameter of pipe,940 ft. long, Which will discharge 385 gallons with a loss of head of $20 \mathrm{ft} .$, is 5.7 inches.

District (6)
Assumed discharge thru line $A-C-B$,
gallons
Loss of heed A-C
Loss of head C-B

Equivalent diameter of pipe, 1980 ft . long, Which will give a loss of head of 39.3 feet when discharging 400 gellons, is 5.8 inches.

Assumed loss of head from A to $B, 20^{\prime}$
Discharge thru line $A-B, g e l l o n s 520$
Discharge thru line $A-C-B, g a l ' s 270$

District (6), continued.
Fquivalent diameter of pipe,1040 ft. long, which will discharge 795 gallons with a loss of head of 20 feet,is 7.5 inches.

Determination of the discharge available,for fire purposes, at the extremity of the system, the intersection of Meramec and Aide St's, and the loss of head or pressure between the pumps and that point.

Assumed a discherge thru line $A-B---E$,
gallons

Loss of head $A-B$
Loss of head B-C
Loss of head C-D
Loss of head D-E
Equivalent diameter of nipe,3200 ft. long Which will give 8 loss of head of 89.9 feet when discharging 300 gallons is 4.8 inches.

Assumed a discherge thru line A-F-F,
gallons
Loss of head A-F
Loss of head F-E

300
22.26°
154.70^{\prime}

Equivalent diameter of pipe,4330 feet long, which will give a loss of head of 177.0 feet when discharging 300 gallons, is 4.5 inches.

Assuming a $108 s$ of head of 65 ft . from A to E,
Discharge thru line $A-B--$ eg, gallons 250
Discharge thru line A-P-E, gallons 175
A loss of head of 65 ft . is equivelent to loss of pressure of 28 pounds per square inch. 将th a pressure, at the pumps, of 100 pounds per square inch the minimum hydrant pressure in the outlying district Will be 72 pounds per square inch. This pressure will give one 250 gallon stream thru a maximum length of hose of 200 ft., and one 175 gallon stream thru a maximum length of hose of 450 ft . The above is the maximum necessary length of hose.

The fire hydrants are to be placed at the block corners, as shown on plat. Those in resident districts to be one stream hydrents and those in the business section to be two stream hydrants.

The plan of the distributing system is shown on the plat.

SOURCE OF SUPPLY.
Brook Spring.
The situation of Brook Spring, as determined by stadia measurements,is 12000 feet East of and at an elevation 300 feet below the sight of the proposed reservoir. Measurements with a Cippoletti weir show a flow of 250 gallons per mimute.

The excessive cost of piving and pumping renders Brook Spring unworthy of consideration as a source of supply.

Deep Fells.
As an abundant supply for private uses and for the St. James Ice and Power Plant is outained from wells 150 to 200 feet deep,it is assumed that a supply sufficient to meet the demands of the City can be had at a depth of from 500 to 600 feet. In the City of Rolla an abundant supply has been found at the last named depth.

MERAMEC SPRINGS AS A SOUROE OF POWER.
An investigation of Meramec Springs as a source of power was made August 16,1911 .

The flow was determined by taking readings with the Price Current Meter at five-reet intervals along three different cross-sections of the Spring Branch where eddy currents caused oy riffie were a minimum. The least of these readings shows a flow or 84 cubic feet per second.

At a point 800 feet distant from the foot of the present dam, a head of ten feet can be obtained by making the present dam water tight. With a power plant afficiency of 75% this would develop opproximately 70 horse power, with an additional 7 horse power 1 or each Oide foot increase in the height of the dam.

The winter preceeding ;and the season of 1911 being exceodingly dry it is probable that the acove flow of 84 cunic feet per second is anout a minimum.

The Price Current Meter was reted oy rowing a boat at constant speed and meesuring the distance covered in ten revolutions of the weel by triangulation.

$$
-8-
$$

DFSIGN OF REINFORCED CONGRETE TANK.
Dimensions:

Diameter	20 ft.
Depth	21 ft.
Columns	36 ft.
Capacity	86000 gal.

Unit stresses:

Steel	15000 1bs/sq.in.	
Concrete columns	650	
Concrote floor	710	

Floors and beams were designed by the straight line formulae of Turneaure and Maurer.

The stresses in the columis, due to the wind,were based upon an assumed maximum pressure of 40 pounds per square foot on the vertical projection of the tank.

$$
-2-
$$

Tank Walls.

25.5	14687	. 0792	6	6/8"	$5{ }^{\prime \prime}$	26	884	1.588	1174
22.5	14062	. 9378							
21.6	13437	. 8988							
20.6	12912	. 8842	7	$0 / 8{ }^{\prime \prime}$	5^{4}				
19.5	12187	. 812.8							
18.5	11568	.7708							
17.5	10937	.'2992	7	9/10	8"	14	476	1.076	512
16.5	10312	.6078							
$1 E .5$	9687	. 6488							
14.8	9062	. 6042	8	1/2"	4 5/4"				
13.8	8437	. 5688							
12.5	7818	. 6208				38	1088	. 85	926
11.5	7187	.4792	8	1/2*	$6^{\prime \prime}$				
10.8	6562	. 4378							
9.8	5937	-3968							
8.5	6312	. 3842							
7.5	4687	. 8126	7	$7 / 16^{\prime \prime}$	$61 / 2^{11}$	14	476	. 66	309
6.0	4089	. 2.708							

DESIGN OF FLOOR SLAB.
Moment at center of $12^{\prime \prime}$ strip along the line $A-B$ on plan $=w 1^{2} / 10=(1800)(4)(4)(12) / 10=28800$ insin pounds.
$A_{s}=M / r_{s}(.87)(d)=28800 / 15000(.87)(4.5)=.487 \mathrm{sq}$.
in's of steel. Assumed $d=4.5^{\prime \prime}$ Floor $6^{\prime \prime}$ thiok.
Percentage of steel $=\mathrm{p}=.487 /(4.5)(12)=.9 \%$.
Stress in concrete $=f_{c}=28800 /(.17)(12)(4.5)^{2}=$
710 pounds per square inch.
Use $1 / 2^{\prime \prime}$ square bars, spaced $6^{\prime \prime}$ c-c and expanded metal as shown on plan.

DESIGN OF RADIAL FLOOR BEAM.
Maximum moment by graphics, as shown on plan $=$ 1,071,000 inch-pounds.

Area of steel $=A_{s}=M / f_{5}(\mathrm{~d}-1 / 3 t) . \quad t=6^{\prime \prime}$.
Assumed $d=16^{\prime \prime}$. Then $A=4.5$ square inches.
Use five $1^{\prime \prime}$ square bars as shown on plan.
DESIGN OF CROSS FLOOR BEAM.
Approximate length,7'. Width of flange, $\mathbf{4}^{\prime \prime}$, to carry a unfform load of 1500 pounds per square foot for the full width. $\quad t=6^{\prime \prime} . \quad b=48^{\prime \prime} . \quad d=14.5^{\prime \prime}$.
$\mathbf{M}=w 1^{2} / 10=(1800)(7)(7)(12) / 10=88200$ inch-lbs. Area of steel $=A_{s}=M / f_{5}(d-1 / 5 t)=.5$ square inches. Use two $3 / 4$ inch square rods as shown.

DPTERMINATION OF STRESS IN COLUMN DUE TO YIND.
In the determination of the stress in the column due to wind loads a pressure of 40 pounds per square inch on the vertical projection of the tank alone was taken instead of a pressure of 30 pounds per square inch on the vertical projection of both the tank and the columns.

The stress on the outside post $A=$ $\mathrm{My} / \mathrm{I} . \quad \mathrm{I}=$ moment of inertia with rem spect to the neutral axis as shown on accompanying sketch. $\quad y=$ the normal from the neutral axis to the center of the post. $M=$ bending moment at foot or column due to the wind load on tank, considering the structure as a centilever beam.

$$
M=(20)(24)(40)(48)(12)=11,080,000 \text { inch pounds. }
$$

I of column ${ }^{n} A$ " $=($ area $)(r)^{2} . \quad a=(10)(10)$ plus $15(4.76)=171.4$ sq.in. $a=$ area of transformed sectijon when $n=E / E=15 . \quad r=(14)(12)=168$ inches.
$I=171.4(168)(168)=4,840,000$.
I of columns " $B^{\prime \prime}$ plus ${ }^{n} C^{\prime \prime}=2 a r^{2}=(2)(171.4)(84)$ $(84)=2,420,000 . \quad r=84$ inches.

I of whole section $=2(I)$ of " A " plus " $B^{\prime \prime}$ plus " $C^{\prime \prime}$ $=(2)(4,840,000)$ plus $(2)(2,420,000)=14,520,000$.

Stress in concrete per square inch $=\mathrm{P}=128.1 \mathrm{bs}$.
Total wind stress on one column $=171.4(128)=$ 21,900 pounds.

Total compressive stress at foot of column due to the dead load of the tank when empty and the column $=$ 30700 pounds. As the maximum tensile stress due to the wind load is less than the compressive streas due to the dead load of the tank when empty the column can never be subjected to tension.

The maximum compressive stress at the foot of the column $=$ wind 1 oad(128 1bs), tenk whlls and $2 / 3$ of floor (1251bs), colutn and braces(57 1bs), and vater (320 1bs) = 630 pounds per square inch on the transformed section.

$$
-: \text { ESTIMATE OF COST. :- }
$$

PIPR SYSTFA．
This estimate is based upon pipe of sufficient thickness to withstand a pressure of 150 pounds per square inch，equivalent to a head of 300 feet．

$\begin{aligned} & \text { Dian } \\ & \text { eter } \end{aligned}$	ness.	pergnt	t	Total Weight．
4＊	－	21．7并	11300	285000.
$6^{\prime \prime}$	． 51	38．8．8	4240	151000.
$8{ }^{\prime \prime}$	． 86	82．0＊	578	19800．

Total weight，418500并．
Lead for 1000－4 joints e 5．5并 per joint $=5500$ ．

Hemp required，approximately 400 pounds．
208 tons of C．I．plpe e $\$ 27.80$ F．O．B．St．James，$\$ 5780.00$ 9000 pounds lead e 4.8% per nound 400.00 400 pounds of hemp e 2.54 per pound 10.00

Laying 16000 ft．pipe and backfilling e $17.8 申 2800.00$
19 hydrants e $\$ 25.00$ ，setting same， 3.50 ea． 540.00

Brought forward,	\$9500.00
Two $8^{\text {T }}$ valves © 4 14.00 , setting same 3.50 ea.	35.00
Three $6^{\text {T }}$ valves © 11.00 , setting seme \$2.50 en	40.00
Seven 4"valves e 8.00 , setting same 2.00 ea	70.00
Ten valve boxes, in place	30.00
4.6 tons fittings © \$80.00, F. O. E. St. James,	250.00
One automatic valve, in place	45.00
Totel	10000.00

TANK.
Cement
per cu. yd: 4?.00
Sand and rock $" \omega 10$ 1.2.5
Lumber etc. (forms) " \quad. 1.25
Placing forma $\quad . \quad . \quad 1.50$
Placing concrete
$\omega \times \quad \frac{4.00}{10.00}$
Toter

163 cu. yds. concrete $\$ 10.00$ \$1630.00
$18.5 \cdots \quad \cdots \quad$ (pedestals) $08.00 \quad 130.00$
4000 pounds steel (tank walls) © $2.2 .5 申 \quad 90.00$

11000	-	-	(colu	8)	e	4.004	440.00
228	ω	-	(cen.	0	C	2.40%	6.00

Brought forward,		E2296.00
785 nounds steel (floor)	c 2.254	17.00
1200 (floor beams)	c 2.28\%	27.00
200 expended metal	c. 2.80%	5.00
Screen top, ladder and weterproor	ring	158.00
	tal	\$2800.00

