Library and
Learning Resources

Power utilization of Meramec Spring

Francis Henry Walsh

Lawrence May

Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses
Part of the Civil Engineering Commons
Department: Civil, Architectural and Environmental Engineering

Recommended Citation

Walsh, Francis Henry and May, Lawrence, "Power utilization of Meramec Spring" (1902). Bachelors Theses. 224.
https://scholarsmine.mst.edu/bachelors_theses/224

This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

=FOR THE=.

- I N

SUBJECT:
"Power Utilization of Meramec Spring."
F. H. WALSH,
For C. E.
LAWRENCE MAY,
For E. M.

MAY, 1902.

Power Utilization of Meramec Spring.

Meramec Spring is situated in the east central part of Phelps County, Missouri, about one quarter of a mile west of the county line. The spring proper is in the center of a small natural amphitheatre from which the water flows through a valley which has a bearing of approximately $N .30$ degrees W., about one quarter of a mile from the the spring the course of the stream is changed about sixty degrees to the east, one quarter mile from this bend the stream joins the Meramec River. The spring is situated about six miles $S 30$ degrees \mathbb{E}. from the town of St. James,Missouri and is about thirteen miles due east of Rolla,Missouri. Ey wagon road the distance from Rolla to the spring is sixteen miles.

The volume of water delivered by the spring is modified to some extent by the amount of rain precipitated in the sarrounding district. In the latter part of the summer of 1901, after several months of prolonged drought, the flow from the spring was found by actual measurement to be about $55,000,000$ gallons per day (one: $:$ set of Observations gave $47,000,000$) of twenty four hours. On March 26 th. 1902, after several weeks of ordinary weather, the flow or the spring was found to be about 60,600,000 gallons per day. Aifter, a' ratn of several hours duration the flow was materially incteased and probably reaches $100,000,000$ gallons at such times.

The improvements contemplated are a dam and sluice to impound and deliver the water from the spring to the turbine in the power house (see Plates I and II). This turbine will be directly connected
(2)
to Three Phase Alternating Current Dynamo. The energy will be transformed at the power plant and transmitted to St.James and Rolla by Duplicate Three Phase Transmission Lines. The water from the turbine is carried away by an inclined draught tube to the tail race which joins the present valley below the old dam, as shown on Plate I.

The dam is to be of the ordinary rock fill type,built of material taken from the surrounding hill sides. This material is well ddapted for the purpose, consisting of boulders from head size down, mixed with gravel,sand and clay. This dam is about ninety-three feet long and three feet wide on the top. The section will not be regular as the material will be dumped and not placed. The westerly end of the dam will terminate in the side of the head sluice. This sluice extends in a straight line to the pen stock which is simply an enlargement of the sluice proper. Ggtes are provided near the entrance of the sluice and a grating is to be built in the penstock to prevent floating objects from entering the turbine.

The datum of elevations is at the level of that point from which the water of the spring issues, therefore this being zero the present water line is at fourteen feet. As the intention is to use a herad of thirty feet the dam is to be thirty-two feet high as about one foot head will be used to obtain the proper slope in the taif radethe?, gates must be manipulated in order to keep a head of thety-ona feet in the reservoir. The effective head will then be firty feet. The foot loss in the tail race is occasioned by the fact that the level of the water in the stream and the level of the point where the water ${ }^{\text {dssues from the spring is the same, approximately. }}$

The head sluice is of trapezoidal section twenty-three feet wide on top, sixteen feet wide on the bottom and seven and one-half feet dep, the water standing to a height of six feet. The earthwork is part cut,part fill, the two approximately equal.

The forebay or penstock is simply an enlargement of the sluice and is provided with the usual gratine and may be covered,it is separated from the power house by a water tight timber partition. The power house partition and the gates are described in description of Plate II.

The tubbine as worked out (see notes on pages \quad) is to be a $27^{\prime \prime}$ horizontal shaft,inward flow Victor turbine as built by the Stillwell, Pxierce and Smith-Vaile Co. of Dayton, Hhio.

The inflow is taken to the turbine through a short sheet iron $\dot{p} \boldsymbol{p}$ pe, In order to get an effective head of thirty feet a draught tube, inclined to the tail race as shown in Plate I, is to be used.

The turbine, which under the given head and running at 286 R.P.M. develops 246 Ip is to be direct connected to a $150 \mathrm{~K} . \mathrm{W}$. , General Electric, three phase al ternator which gives a current of 15.45 ampheres under an E.M.F. of 1000 volts. A masonry pit and foundation fir the dynamo is to be provided as shown on Plate II. The current from the dynamo is to be "stepped up", with a three phase stationary transformer, to 10,000 volts and will be transmitted at this tension over three wire pole line to St. James and Rolla. A switch board ond tool room are to be provided, in the power house as shown on Plate II.

The draught tube, which is of sheet iron and slightiy enlarging as it goes downward, terminates in a dead water pool which is twenty seven feet long, and twenty four feet wide and six feet deep, the tail
race flowing from this pool is eighteen feet wide at the water line, ten feet wide on the bottom, the water flows at a depth of three feet. This sluice is approximately one thousand feet long.

The intention is, that on account of the spring being in a small basin and as there is no opportunity for the storage of water, the reservoir will be nothing more or less than a tank, water entering at one part and being drawn out at another. As before stated,a definite head (of thirty-feet) is to be maintained by manipulation of the sluice gates and any excess of water which can not be used by the turbine is to be wasted over the dam. Fo effect this, the top of the dam will be slightly lower at the center than at the abutments and an apron of broken stone, laid dry is to be built on the down straam side of the dam to prevent undercutting by the waste water.
Plate No. I.

This plate shows a topographical map of the spring and surroundings, with the impsovements contemplated, the contours being shown up to eighty seven feet above the datum. This datum is the plane passing through the exit of the spring and all contours are taken above it.

The topography of the ground above water was determined by the stadia, in the usual manner,from the stations $s, s,:$ the topography of the ground covered by water was determined by soundings from a boat, the position of the boat at time of sounding was taken by an observation m on a stadia rod mounted on the boat.

Two sections are shown,one on the lines AB,BC is projected on the line $A B$,produced, this section shows the relative elevations of the bluff,spring, proposed sam,present dam and the submerged ground.

(B)

The present and proposed water lines are also shown. The other section is taken on the line $D E$ and is projected at right angles to the direction of the head bay.

A section of the head bay is shown, giving also the slope of the hill at the line of section. A plan of the gates and frame work is indicated. These gates are two in number. On each gate are two vertical racks meshing in two gear wheels on the same horizontal shaft. This shaft is turned with hand spikes inserted in the orifices of a disk on the center of the shaft as in the ordinary gate for low heads. Each end of the horizontal shafts is supported by a cast iron bracket fastened to horizontal timbers in the framing of the gate. Theframing of the gates and gate supports must be rigid and of necessity is to be braced in a proper manner so that movements or displacements of the gate structure or any of its parts may be impossible. Fach gate is entirely separate from the other and may be operated independentiy.

The scale throughout is fifteen feet to the inch.

> Plate No. II.

This plate shows sketches of the power house in plan, side elevation and cross section to a scale of one quarter inch equals one foot. The location of the various devises and a general arrangement of the timber is shown. The roof is to be supported by five timber trusses of extra heavy construction, in order that great weights may be sus-
pended from them without ganger to the structure. The building is to be roofed and sided with corrugated iron and windows and a door are to be provided for as shown.

The bulk head between the head bay and power house is to be supported on a well braced framing of timber. This bulkhead consists of two thicknesses of two inch plank with joints at right angles to each other and a layer of water proof roofing material between the layers of plank.

Also on Plate II is shown a cross section of the stream, flowing from the spring, The horizontal scale is,one inch equals five feet, the vertical scale is, one inch equals two-tenths feet.

This profile was obtained by the use of the level, The readings were taken at intervals of five feet on a tape stretched across the stream. These points are indicated by the numbers $65,60,55$ etc. At the points marked $65 \mathrm{a}, 65 \mathrm{~b}, 60 \mathrm{a}, 60 \mathrm{~b}$, etc., readings of the current meter were taken in the usual manner.

Probable Horse Power Developed.

Measurements taken during the summer of 1901 showed that the minimum flow during a severe drought was 84.28 cubte feet per second. March 1902,measurements were again taken, when the flow was supposed to be an average and it was found as shown on Plate No.I to be 93.41 cubic feet per second.

The Horse Power developed theoretically from 84.28 cubic feet per second with 30 feet head is 289.

Fhe water wheel selected was efficient to 79.8%. This leaves 230.6 Horse Power to be delivered to the dynamo.

(: 7)

During high water the effective head is decreased on account of back water one or more feet but since the volume is increased we can keep the power nearly constant by using a larger wheel. This wheel is as before stated, a Pictor Horse Power 246.04.

Losses in Dynamo and Transformer.
The lesses generally allowed in dynamo and transformer are 8% and 2% respectively.

This leaves 207.5 Horse Power to be delivered to the line.

Whater Wheel.

Outward FRow.
The equations used are taken from P. 387 Merriman's Hydraulics. The angie sisefered to are the same as those in diagram on page 379. As men $\chi=28^{\circ} ; \phi=90 ; r_{1}=128^{\prime \prime} ;, r_{2}=17,3^{\prime \prime}$ Give $h=30$ ft.

From Equa. (107)

$$
\begin{aligned}
& \mathbf{u}=\sqrt{\frac{g h \operatorname{sen}(\phi-\alpha)}{\cos \alpha \sin \phi}} \quad 31.04 \mathrm{ft} . \sec . \\
& \boldsymbol{r}_{0}=\sqrt{\operatorname{ghh}^{\operatorname{san} \alpha \sin (\phi-\alpha)}} \quad 35.2 \mathrm{ft} . \sec .
\end{aligned}
$$

From Equa.(105)

$$
\begin{aligned}
& \frac{u^{\prime}}{V_{0}}=\frac{x_{1}^{2} d \sin \alpha}{r_{1}^{2} d \sin \beta} \text { or } \sin \beta=\frac{r_{1}^{2} V_{1} \sin \alpha}{u r_{1} r_{2}^{2}}=.2912 \\
& \text { or } \beta=16056 \\
& \text { r. f. } m=\frac{21 \times 60 \times 12}{\pi \times 20.6}=279 \\
& u_{2} r=u_{1} r_{1} \text { or } u_{2}=\frac{u, r_{2}}{r_{1}}=42 \\
& \text { From qua }(104) \geqslant r \text {, Rec. } \\
& V_{1}=u_{1}=42 \text { ute per. } \\
& \text { " } "(10.3) \quad d=\frac{Q}{r_{2}^{2} \pi r_{1} \sin \alpha=} 82 \mathrm{ft}
\end{aligned}
$$

J
Vinn nlation sir triaugles, (p, 3y9)

$$
\begin{aligned}
& \sqrt{ }=\sqrt{u^{2}+v_{0}^{2}-2 u \sqrt{0} \cos a}=16.4 \mathrm{ft} / \mathrm{rec} \\
& r_{1}=\sqrt{2}^{2}+\bar{u}^{2}-2 u, \sqrt{1} \operatorname{cas} / 3=13 \mathrm{sf} / \mathrm{Rec} . \\
& r
\end{aligned}
$$

Nrom eqpeatione p. 386
$a_{0}=2 . \mathrm{T} \sin \alpha=2.5 \% \mathrm{pg}$ ft
wher $a_{0}=a r e a$ of givide orifiees.
$a=2 \pi r d \sin \phi=\sigma=35 \mathrm{pg}$. ft
When $a=$ area of eutravee in off ft.

$$
a_{1}=2 \pi r_{1} d, \sin \beta=2.05 \operatorname{syf}
$$

rhers a, = anea of exit nifieier in py.ft
Trom eqpuation p. 388

Theoritie $\$ 1 . \theta=\frac{Q h \lambda}{530}=308.2$

$$
\text { when } \begin{aligned}
Q & =\text { no.cu. ft peer. } \\
h & =\text { henght in ft. } \\
\lambda & =62, s \text { ehs }
\end{aligned}
$$

308.2 $2.92=2838$ 11. This does not nindeude loskes
fy fritim, invfact, form, ete,
The whel peleeted is a Wictor Turbiue made hy Ptienall. Pierce \& Co, Juytion chio.

$$
\begin{aligned}
& \text { 11. } \theta=246.04 \\
& \text { r.f. } 22=286 . \\
& \text { Eff }=\frac{\text { Actual }}{\text { Therration }}=\frac{246.04}{308.2}=77.8 \% \text {. }
\end{aligned}
$$

Line From Meramec Jo st. James.

There shall be three 10.8 wires placed 18" apart, the center one being placed on top of pole. These will be transposed every half mile. 10000 volts shall be used for transmission. The voltage at machine shall be 1000 and will be steped up to 10,000 volts by a Three Phase Stationary Transformer.

The reaction per mile for No. 8 conductors spaced $18^{\prime \prime}$ apart is.712 ohs The Resistance per mile for \#8 is 3.32 opus.

The Capacity per mile for \#8 spaced $18^{\prime \prime}$ is given by Cocker Vol. II p 138. Formula 67 is found to be .00344 micro forced. This is so small it may be neglected.

Therefore the empedence per mile where $R=R s$ $R=R s$
$h \cdot I r=1 n d v e t i n s$
M

$$
=\sqrt{\frac{2}{3.32+} \cdot \frac{712}{2}}=3.390 \mathrm{hms} . \quad=\sqrt{R^{2}+L^{2} w^{2}}
$$

Total resistance $=12 \times 3.39=40.68$ ohms.

Volt drop $=C R=15.45 \mathrm{X} 40.68=628.5$
$\therefore 10000$ (1) $628.5=937 \%$ volts delivered at $\mathrm{St} . \mathrm{James}$.

Per cent drop in line $=\frac{9371.5}{10000}=1.3 \%$
(10)

Cost of Line from Meramec to St.James.
Poles per mile at $\$ 1.10$
$\$ 49.40$
Insulators 264 per mile at $\$ 1.40$ per 1000
39.96

Pins,porcelain base at $25 \not \subset$
66.00

Gross Brames at $6 \&$ per foot 17.52
Tron braces $5 / 16 \times 1 \times 201(w t .104 \#$ per ft$)$ at $6 \varnothing \quad 18.20$ \#B B \& S guage, aldowing 10% for losses at $71 / 2 \not \subset$ per \# 278.84 putting up line wire
20.00

Setting in poles
22.00

Total cost per mile 510.92

Length of line is six miles.

Cost of line from St. James to Rolla.
The same size wire will be used and the same material in constructing the line. Therefore the cost per mile is same as above. tength of line is ten miles.

Total cost Meramec to St. James 2065.52 St. James to Rolla 5109.20 gotal cost of line 8174.72

Loss in Line from St. James to Rolla.
The resistance per mile is the same as before since the same slze wire will be used, spaced same distance apart and at the same height from ground.

Iength of line 10 miles.
rotal resistance equals $3.39 \times 10 \times 2=67.8$ ohms.

(10)

The probability is that only half the current will be used at Rolla.

Probable volt drop $=C \mathrm{R}=7.72 \mathrm{X} 67.8=523.4$

Voltage delivered at Rolla equals 9371-523-8848

Cost of Aynamo.

of theee phase 1000 volt alternatorill cost nearly $\$ 35$ per K.W. Capacity of Dynamo is 150 K. W. Cowt of Dynamo will be $\$ 5250$

Cost of Pransformer for Powr House.
Voltenge must be raised from 1000 to 10000
Cost per K.W. nearly \$10
Cost of fransformer \$1500

Capacity of Beservotr. Contents of Dam. Amount of Bxcavation, etc.

The areas within the contour were found by means of the planimeter and knowing the distance between contour the volume can be figured.

The capacity of Reservoir and head race is found to be 109273 cubic feet.

Phe contents of the dam is approximately 691 cubic faze. The cost per cubic yard,including excavation, hauling,labor, etc. is taken as 75¢

fhe material excavated at upper side will be approximately enough to raise the lower side sufficiently high. \#fnot excavated equals 891 cubic yards.
Cost per cubic yard. 25 ¢
甲otal cost \$222.

Pail Raee.

The total length of tail race is approximately 1000 feet. $\mathrm{T}^{\text {he }}$ amount of excavation equals 41000 cubic yards. Cost per cubic yard 256 fotal cost \$1020.
switch Board.
qhisnshall consist of Blue Marble up which will be mounted switches, circuit, breakers, Instruments, etc.

Total cost will approsimate
$\$ 200$.

																																						最
							\bigcirc																															9
							$\cdots+1$	\square																														
																										－												
ir					－	T	＋1	－+		－		－														T												
																					－																	
								－1	－		－7i－					H							－			－												
	－									－	1，				1				－				\cdots					1										
											－		－1－1																									
													－											H														
																		T．		－																		
													－																									
								－1－4		－		－1	－		2：	－1－4				F		－：																${ }^{8}$
								－		－										－																		
								－		\bigcirc										\square																		
					7	－	－	T－		－			－				$\frac{1}{1}$																					8
											－1									1		＋																
													H－1．							－				－														
					－1	T		－1		：		－	－ 1							：	－			－1														
								＋1					－			－				－																		
													－－：		\pm					－	－1			－1－1														
													－T－9							－1																		
															－																							돚
							$1+$								1														1			－		I－				\％
													－4\％			H：		I－																				
													－1－1			－7－1																						
													－1－1			－				\％	－	－																
							\square						－－			－1－i				H	－	－1－1																
									－			－TM	－		－	－			\square	－		－17			\square													0
							－			\pm	－	－1＋1	＋			＋1＋				1－1	＋	－！			，				！									V
							\pm			－	－1：		－f					－		1																		
							－			\square	－－－i．		$\xrightarrow{-1-}$			－r－r		－	－	it					O					－								
										－	－1＋		－＋			－				－1－1																		
								1			－1－	－－	－			$\underline{-1}$				H																		
								－			-1											：－				\cdots												
																－						－1																
									－	－ $1: 1$	L－－	－	－																									
								－1－1		－1－1	－1	5	1																									
				＋			－	－	－i－	－－	－ic	－1－	－																	－				－				
				－-1	$\underline{1-10}$		－1－4			－	＋－	－i－1－	＋1，							－	\square																	
						－	\％	$+$		－	H－1	1	＋1－		1	－ H					－	－																\cdots
													－			\square				－		－																
							T^{-}						－－			± 7			\square			\cdots						－										0
												－1．	－1－1												－i－i－													
															－											－												$\stackrel{*}{ }$
			－			－					$1+$		－H		－－	－1－				＋－		＋+							7.		T－1－1							
										$\square 1$	－上	－i－	$\frac{1}{1-1}$							二		－1－1－																
			H										－																	－1－1								
																																						ぶ
									－																													3
										－1－1	－－		$\square-1+$			－1					－1				－1－1					－								\cdots
													1			－1																						
													I			－																						
											－		－－									－－			－				1	－－								
																																		－				
		－1																	H																			
		2				6				． 0		2		1.4			6				1.8		2.0			2			2	2.4	2.			2			3	3.

$y=b+a x$ $y=b=.0 c^{5} 2$ $7 a 72 \cdot x=.175$

(13)
Approximate cost of Power House $\$ 1200.00$
Frobine and ifttings 3000.00
Total line M to St.J and St. James to Rolla 8175.00
Dynamo 5250.00
Trams 1500.00
Dam. 518.00
Ex. Head Sluice 222.00
甲ail Race 1000.00
Switch Board and fittings 200.00Total, including labor but exclusive ofsuperintendence$\$ 21.065 .00$

Etadia Puivay of Ineramee Rpming. Thar. 25-1902 pacion ori. ay Nonth Red owisparert veert

24	3
25	2
26	
27	2

16

Moundicig takeu un Pprieg Mar 26.6 2
oso ay fospor ver er fac note
E0 14.94

208

Levels run for obtaining difference in elevation between present water level and proposed exit of tal 1 race.

Assumed Datum 40 ft .
H.I.
B.S
F.S.

Elev.
42.19
2.19

40
33.75
34.995
4.08
12.52
29.67
8.515
7.27
26.48
9.28
25.715

Diff of Flevation 14.285
Point of exit is opposite rolling mill in direct line with front of mill.

Rating of Meter .
The following tabulated distance and time are for twenty revolutions of meter.

Dis.inft. Time in sec. Rev.per sec. Vel.

48	23.1	.87	2.09
46.	22.	.91	2.09
$47 \% 5$	22	.91	2.16
46.5	17	1.176	2.74
47.5	16.3	1.23	2.92
48.	15.3	1.31	3.14
47.5	16.2	1.23	2.92
48.	15.7	1.27	3.06

These readings were used to plot the following curve which is used to find the velocity having given thenrevoltions per second.
(21-
Meter Measurements.
Levels taken for obtaining profile of spring branch. These were taken every five feet and also every two and one-half feet whree bed of spring was irregular. The elevations refer to the water surface as a datum. For profile see Plate \#.
Sta. H.I. F.S. Elev.

46.85

65	4.85	$0 / 17$
60	5.22	0.54
55	5.43	0.75
50	5.89	1.21
45	6.15	1.47

$421 / 2$	6.38	1.70
40	6.11	1.43

$371 / 2 \quad 5.65 \quad 0.79$

85	5.87	1.19
$321 / 2$	6.35	1.67
80	6.40	1.72
$271 / 8$	6.19	1.51
25	5.85	1.17
$221 / 2$	5.93	1.25
20	5.80	1.12
15	5.56	0.88
$121 / 2$	5.31	0.63
10	5.06	0.38

(22)

Meter leadings.

Two readings were taken between the five feet station as shown in drawing \#

Station	Time of 10 rev .	Time of 10 rev	Av.Time of 10 rev .	Vel in ft . per sec.	Rev/Se
$65 a$	44.2	43.6	43.9	0.44	. 228
65b	28.2	28.0	28.1	0.74	. 356
60a	23.4	23.3	23.3	0.94	. 429
60b	15.6	15.6	15.6	1.46	. 641
55a	15.0	15.2	15.1	1.5	. 662
55b	12.8	13.0	12.9	1.79	. 776
50a	13.4	13.2	13.3	1.74	. 752
500	15.4	16.0	15.7	1.44	. 636
45 a	13.0	12.8	12.9	1.79	. 775
45 b	11.4	11.6	11.5	2:04:	. 870
40a	12.	11.8	11.9	1.96	. 840
40b	12.8	12.6	12.7	1.805	. 787
35a	12.4	12.0	12.2	1.92	. 820
35b	11.8	12.0	11. 9	1.96	. 840
30a	12.0	12.0	12.0	1.95	. 833
30b	12.6	12.6	12.6	1.80	. 793
25a	15.2	15.0	15.1	1.5:	. 662
$25 b$	16.8	17.0	16.9	1.35	. 592
20a	16.4	16.4	16.4	1.39	. 610
20b	18.0	18.2	18.1	1.24	. 552
15a	30.8	30.6	30.7	0.68	. 326

