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ABSTRACT. A solution technique based on the representation of the response of the 
non-linear system by a polynomial of the response of the linearized system is presented. 
The relation between the original non-linear system and the linearized system is introduced 
by considering the so-called extended moment equations and their closed set is to be solved 
to determine unknowns. For the Vanderpol oscillator subject to white noise excitation, the 
technique gives good approximation to the response moments as well as the probability 
density function. 

1. Introduction 

Since all real engineering systems are, more or less , non-linear and for those 
systems the exact solutions are known only for a number of special cases, it is 
necessary to develop approximate techniques to determine the response of non­
linear systems under excitations. Several books examine approximate techniques 
for solving deterministic and / or random vibration problems, for instance, see 
[1, 2] and see [3, 4], respectively. This paper presents a solution technique based 
on the representation of the response of a non-linear system by a polynomial of 
the response of the linearized system. As the result of considering an original and 
the corresponding linear systems together, the extended moment equations are 
developed and their closed set is to be solved to determine unknowns. In [18] the 
application of the method to the Duffing system is presented. Herein, we continue 
our investigation on the Vanderpol oscillator subject to white noise excitation. 
It turns out that, the technique also gives good approximation to the response 

moments as well as the probability density function. 

2. Extended moment equations and polynomial form for the system 
response 

Consider the equation of motion of a single - degree - of - freedom mechanical 
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system 

z + 2hz + (3z + f (z, z) = ae(t), (2.1) 

where h is a positive constant, {3 is a constant, f(z, z) is a polynomial function 
or approximated as a polynomial function of z, i; e(t) is a zero mean white noise 
with the autocorrelation and spectral density given, respectively, by · 

R(r) = (ae(t)ae(t + r)) = a2 8(r) and 
az 

S(w) = - , 
27r 

where 8 ( T) is Dirac delta function, ( ) denotes the expectation operator. For 
sake of simplicity we suppose (z) = 0. Together with (2.1) one considers the 
corresponding linearized equation 

x + 2hx + w5x = a~(t). (2.2) 

For an arbitrary up-to-second-order differentiable function rp(z,i,x,x) the 
extended moment equation corresponding to a stationary solution of (2 .1), (2.2) 
has the form: 

( :z i ) - ( ~: ( 2hz + (3 z + f ( z' i))) + ( ~: x) - ( ~~ (2hx + w5 x)) + 
a2 { azrp azrp azrp } 

+ 2 ( az 2 ) + 2 ( aza±) + ( a:rz ) = 0 · (2.3) 

The equation (2.3) is derived from Fokker-Planck equation (e.g. see [3]). It should 
be noted that the conventional moment equation is derived from only the original 
non- linear equation (2.1). In order to investigate the correlation between the 
original variable z and the linearized variable x, the equations (2.1) and (2.2) are 
considered together. Here, this attempt results in the extended moment equation 
(2.3). 

Using (2.3) one can get, in the non-linear case, i.e ., f # 0, a so - called infinite 
hierarchy of linear algebraic equations for the response moments in the sense that 
all finite sets of moment equations contain a number of involved unknown moments 
morethan: the number of equations (see [9-12]}. Particularly, taking the 8 "lowest" 
polynomial functions rp(z,z,x,x), and using the well-known definition: 

one has following equations: 

for rp = !.z2 : 
2 

2 

-2hmo2 - (f (z, z)z) + ~ = 0 
2 

2 

(2.4) 



for rp = zi: 

mo2 - /3m20 - (f (z, i)z) = 0 (2 .5) 

for rp = ~x2 : 
2 

2 

2h(x2
) - ~ = 0 (2.6) 2 

. for rp = xx: 
w5 (x2

) - (x2
) ~ 0 (2.7) 

for cp = zx: 
(xz) + (xz) = o (2.8) 

for rp = xz: 
(±z) - 2h(±z) - w5(zx) = o (2.9) 

for <p = xi: 

a 2 
- 2h(xz) ---, (3(xz) - (xf (z, z)) - 2h(xz) - w5 (zx) = 0 (2.10) 

for cp = xz : 
(xi) - 2h(xz) - (3(zx) - (xf (z, z)) = 0. (2.11) 

The moment equations (2.4)-(2.7) ar.e conventional ones for separated moments of 

z, i and x, :i;, while the moment equations (2 .8)-(2.11) contain mixed moments of 
z, z, x, ±. The equations (2.6), (2.7) are used separately to determine linearized 

coefficients: 
- a2 
h = --· 

4(x2) ' 
(2.12) 

It is seen that moment equations (2.4)-(2.11) have higher order moments. To 

close a set of moment equations one needs some additional relationships between 

moments. For instance, in Gaussian closure one puts z(t) = x(t) and only 2 
moment equations (2.4); (2.5) can be satisfied, namely, they are used to find 

(z 2 ) and (i2 ). Thus, in Gaussian closure, in principle, only 2 equations from the 

hierarchy of moment equations can be satisfied. On the other hand, one might 
suppose that the accuracy of a closure technique would be better if more moment 

equations could be satisfied. 

In the paper, we consider the following form of the system response 

(2.13) 
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Substituting (2.13) into (2 .8)-(2.11) shows that the equations (2.8), (2.9) are 
satisfied for any 0:1, 0:2. Thus , finally one has 4 equations (2.4), (2.5), (2.10), 
(2.11) for determining 4 unknowns (x 2

) , (:i: 2
) , o: 1 , a 2 . It is noted that, the so­

lution of the problem must satisfy not only the moment equations but also must 
preserve moment properties such as non-negativeness of even-order moments and 
satisfaction of Schwartz' inequality. The considered moment equations may yield 
a unique solution, multiple solutions or no solution. This matter should be inves­
tigated in other research. Particularly, for Gaussian closure we may see [13]. The 
probabilistic characteristics of z(t) can be obtained from (2.13) if x(t), a 1 , a 2 are 
known. 

3. Probability density function of response (PDF) 

Using the expression (2.13) one can easily calculate the PDF of the response 
process z(t). ' Infact, the PDF of xis known as: 

exp { - x 2 /2a~} 
Px = · 
~ 

(3.1) 

The probability distribution function of z is defined as 

Fz(Y) = P{ - oo-< x-< y}, (3.2) 

where P{E} denotes the probability of E. The PDF of z can be found as follows 

( ) 1
. Fz(Y + b.y) - Fz(Y) 

Wz y = Im A 
~y--+O uy 

= lim P{y -< z -< y + b.y} = lim 2_ f Pxdx, (3.3) 
~y--+0 L).y ~y--+O b.y 

d 

where the integration domain d takes the form 

d = { X : y < Z < y + b.y} = { X: y < X + 0:1X
3 + 0:2X

5 < y + b.y}. (3.4) 

Thus, a numerical procedure to determine this function can be established . . 

4. Power spectral density of response (PSD) 

The PSD is an important statistical characteristic of the stationary process. 
There are some investigations concerning with the PSD of the stationary response 
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of non-linear stochastic systems (see [14-15]). Here using the expression (2.13) one 
can find the PSD of z(t). The higher moments of a Gaussian random process are 
related to its second- order moments by known equations (see [16]). Applying the 
properties of Gaussian process we can express the second order autocorrelation 
function of z(t) in terms of Rx(r): 

Rz(r) = (z(t)z(t + r)) = 

= ([x(t) + a1x3(t) + a2x5(t)][x(t + r) + a 1x3(t + r) + a2x5(t + r)]) = 
= 1/i(Rx(r)), (4.1) 

in which Rx(r) (the second order autocorrelation function of x(t)) can be defined 
once the linearized equation (2.2) h_as been known (see[3]) . The PSD of z(t) is 
then defined as: . 

+oo 

Bz(w) =; f Rz(r) coswrdr. (4.2) 
0 , 

Based on the above-mentioned formulas, a numerical procedure for determining 
the PDS of z(t) can be established. 

5. Vanderpol oscillator under white noise excitation 

To elucidate the proposed technique, in [18] we have investigated the Duffing 
oscillator under white noise 

z + 2hz + {3z + c:z3 = aE(t) 

in unimodal ((3 = 1) and bimodal ((3 = -1) cases. Now, consider the Vanderpol 

system 
z - c:z + z + c:1z 2 z = aE(t), (5.1) 

herein, one gets 

2h = -c:, {3 = 1, and f(z, z) = c:1z 2 z. (5.2) 

A linearized equation corresponding to · ( 5 .1) is in the form 

x + 2hx + w6x = aE(t). (5.3) 

5.1. Moment equations and polynomial form for so.lution 

For sake of simplicity and due to the limited capacity of our computer to 
determine (x 2 ), (±2 ), a 1 , the solution of the equation (5.1) is taken in the form: 
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z(t) = x(t) + ax3 (t). (5.4) 

We consider 3 equations (2.4), (2.5), (2.10) which now, respectively, become 

a2 
cmo2 - c/m22 + - = 0, (5.5) 

2 

mo2 - m20 - c/m31 = 0, (5.6) 

a 2 + c(xz) - (xz) - c/(xz2z) - 2h(xz) - w5(zx) = 0. (5.7) 

It follows from (5.4) 
(±z) = 0 , 

(ix) = O, 

m31 = 0. 

(5.8) 

Using (5.8), (2.12) one can turn the equations (5 .6)-(5 .7) into the following forms 

(5.9) 

. a2 

a
2 + c- (±.Z) - c-1 (±z2 .Z) -

2
(±2 ) (±.Z) = o. (5.10) 

Denoting y = (x 2 ) , if follows from (5.4) 

m20 = y + 6ay2 + 15a2y3
, (5.11) 

m 02 = (±2)[1 + 6ay + 27a2y2
], (5.12) 

m 22 = (±2)[y + 24ay2 + 330.a 2y3 + 2520a3 y4 + 8505a4 y5
], (5 .13) 

(±z) = (±2 ) (1+3ay), (5.14) 

(xz) = y + 3ay2
, (5.15) 

(i:z2 z) = (i:2
) [y + 15ay2 + 105a2y3 + 315a3 y4

]. (5.16) 

From (5.9), (5.11) and (5.12) one gets 

(±2 ) = [y + 6ay
2 + 15a

2
y

3
] • 

[1 + 6ay + 27 a 2 y 2 ] 
(5.17) 

Using (5 .12) - (5 .17) after some calculation, it follows from (5.5) and (5.10) 

a 2 + 2c-y + 6a 2 ay + 24c-ay2 
- 2c-1y 2 + 27a2 a 2y2 + 156c-a2y3 

- 60c-1ay 3 + 
+ 504c-a3 y 4 

- 978.c-1a 2 y4 + 810c-a4 y5 
- 9720c-1a3 y 5 

- 57150c-1a4 y6
-

(5.18) 
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u 2 + 2cy + 3u2 cr.y + l8ccr.y2 - 2c/y2 + 9u 2 cr.2y2 + 66ccr.2y3 -

- 42c/cr.y3 
- 81u2 cr.3 y3 + 90ccr.3y4 

- 420c/cr.2y4
-

- 2340c/cr.3 y5 
- 6930c/cr.4 y6 

- 9450c/cr.5 y7 = 0 (5.19) 

for 2 unknowns: y and er. . For these equations, the moment properties such as 
non-negativeness of even-order moments and satisfaction of Schwartz' inequality 
are used to exclude some extraneous solutions. Finally, the second moment m 20 

(or (z 2)) can be calculated from (5.11). The results (z 2 ) obtained by the proposed 
procedure and that obtained by Gaussian closure with the values / = 10, c = 0.2 
are compared in Table 1 for different values of u 2 . It is seen that the proposed 
solutions (z2

) are much closer to the stimulation solutions (z2 ) MC [3J than the 
solutions obtained by Gaussian closure (x2)a. 

Table 1. Approximate mean squares of response of the Vanderpol system 

No 0"2 (z2)Mc ' (x2)G a (x2) (z2) L 

1 0.02 O.~W80 0.137 (-34%) -0.2595 0.3632 0.2062 (-0.9%) 
2 0.2 0.3600 0.279 (-22%)' -0.1329 0 .6583 0.3883 (7.9%) 
3 1.0 0.7325 0.552 (-25%) -0.0679 1.2353 0.7437 (1.5%) 

4 2.0 1.0310 0.759 (-26%) -0.0496 1.6725 1.0129 (-1.8%) 

5 4.0 1.4540 1.051 (-28%) -0.0358 2.2927 1.3945 (-4.1 %) 

5.2. Probability density function of response 

The PDF of the response of the bimodal Duffing oscillator is investigated, for 
example, in [17]. Herein for the Vanderpol system, the PDF is calculated from 
(3.3) where the formula (3.4) takes the form: 

d = { x : y < z = x ~ ax3 < y + i}.y} (5.20) 

and u; = (x2 ) is found from (5.18)-(5.19). 

The PDF in Gaussian closure takes the form 

(5.21) 

where 

(5.22) 
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The graphs of probability density function (PDF) obtained by th~ proposed pro­
cedure and by the Gaussian closure for a 2 = 0.2 and a 2 = 4 are shown in Figures 
1-a and 1-b. It can be seen that, the technique gives better description of the 
PDF. 

1 

f.2 

1. 0 

0.8 

0.2 

2 

-1.5 -I -0.5 o 0.5 1 

Fig. la / = 10, c: = 0.2, a 2 = 0.2 

1 

f.5 -4 -2 /l 2 

Fig. lb / = 10, c: = 0.2, a 2 = 4 
1-The PDF of proposed method, 2-The PDF of Gaussian closure 

6. Conclusion 

The main idea of the proposed technique is to represent the system response 
by a polynomial of Gaussian process . Besides, the original and the corresponding 
linearized systems are considered together. As the result; · the so-called extended 

moment equation is established. Based on this equatio,:r;i, t.he c9rr~lation between 
the original variable z and the linearized variable x is shown, and the application 
also is simplified. Thus, a possible way to determine the polynomial coefficients 
and the Gaussian process can be derived. Furthermore, the technique is quite 
simple since it can use properties of the Gaussian pro~ess although the calculations 
.are more complicated than the Gaussian closure. The proposed method has been 
effectively applied to the Duffing and Vanderpol oscillators. However, the PSD 
of the Vanderpol system needs to be investigated, the technique should be tested 
for other non-linear systems and some related questions may occur: Which set of 
extended moment equations and which form of polynomials should be chosen to 
get a better approximate solution? 

The research has been supported by a grant of the Fundamental Research 
Program in Natural Sciences. 
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PHUONG PHAP GAN DUNG DE PHAN TICH CAC H~ PHI TUYEN 

CH~U KICH DQNG NGAU NHIEN 

Bai bao trlnh bay m{>t ky thu~~ giili d1:fa tren vi~c bit~u di~n dap fuig cua 
h~ phi tuyen ch!u kich d{>ng ng~u nhien b~ng da thrrc cua dap frng Gauss cua 
h~ tuyE1n tfnh h6a trrcmg ung. Mai quan h~ girra phmmg trlnh phi tuyE1n goc va 
phmmg trlnh tuyen tfnh tmmg fuig dU'Q'C thg hi~n qua moi trrang quan mo men 
girra cac dap fuig thong qua vi~c xay dlplg cai g9i la "cac phmmg trlnh mo men 
suy n}ng". T~p hqp d6ng cua cac phU'ang trlnh nay drrqc giai dg xac d!nh cac 
cfn can tlm. Khi ap dl!ng cho h~ dao d{>ng Vanderpol ch!u kich d9ng on tr£ng, 
phU'ang phap nay cho ket qua tot ve mo men dap fuig 1~n ham m~t d9 xac su.at 
(PFD) . Han the, n6 mo ta dU'Q'C d~c trlrllg kho~g-Gauss ,~ua dap fulg ( thg hi~n 
dU'Q'C hi~u rrng phi'tuyE1n) tren dang di~u cua ham P-FD nay. 
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