Library and
Learning Resources

Specifications and bill of material for roaster in ore dressing laboratory of Missouri School of Mines

John Dee Harlan

Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses
Part of the Mining Engineering Commons
Department: Mining and Nuclear Engineering

Recommended Citation

Harlan, John Dee, "Specifications and bill of material for roaster in ore dressing laboratory of Missouri School of Mines" (1910). Bachelors Theses. 67.
https://scholarsmine.mst.edu/bachelors_theses/67

This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

THESIS
For the degree of
Bachleor of Science in
MINING ENGINEERING
-
> Specifications and
Bill of Material for
ROASTER in
ORE DRESSING LABORATORY of
MISSOURI SCHOOL OF MINES T222

John D. Harlan.

10925

Approved Roved Alualeu So
Gone 1 G1910

POSITION OF ROASTER.
In the North West comer of the East wing of the Metallurgy Building. The space allowed is nineteen feet (l9ft) long by fifteen feet (15 ft) wide. The floor is of concrete. The wells are of brick. OBJECT OF ROASTER.

To give either an Oxidizing or a Reducing Roast; to partially roast the ore or to give it a dead roast. TYPE OF ROASTER.

CYLINDRICAL, with a continuous feed and discharge, the ore travelling from the cold end of the cylimder to the discharge near the flame. The cylinder is revolved by means of a. 3" face gear around the cylinder driven by a beveled gear. Two $3^{\prime \prime}$ tires around the cylinder revolving upon $6^{\prime \prime}$ solid rolls are used to support the cylinder. FURNACE.

A modification of the coal ifired Assay Furnace with a grate area of $21 / 12^{\text {sq }}$ feet, ($15^{\prime \prime}$ wide by 20 "long). The furnace is completely lined with fire brick from six (6) to eight(8) inches thick. Outside this are eight inch ($8^{\prime \prime}$) walls of common red brick. The corners are bound with $2^{\prime \prime}$ by $2^{\prime \prime}$ angles and the walls are braced against swelling from heat by four $1 / 2^{\prime \prime}$ bars on each wall. The roof of the furnace is so constructed that the flame on leaving the grate will be first directed downward toward the ore just being discharged, thus giving it the benefit of the greatest heat at the last moment of roasting. The fire door and ash door are of the aiz of those of the Assay Furnace, namely $123 / 4^{\prime \prime}$ wide by $11^{\prime \prime}$ high. These also are lined with four incheg of fire brick.

CHITINDER.
A shell constructed of $1 / 4^{\prime \prime}$ iron, having an outside diamoter of 3^{\prime} and lined with $4^{\prime \prime}$ of fire brick. The total length is $8^{\prime \prime} 6^{\prime \prime}$. To prevent the lining becoming loosened fourrinch angles are riveted to the plate at a distance apart of 2^{\prime} on the circumference and $2^{\prime} I^{\prime \prime}$ on the linear distance, there being fifteen in all. The lining is held at the ends by means of an angle riveted on the outside of the shell and turned over the inside of the lining for $2^{\prime \prime}$. The cylinder has a slope of $1 / 2^{\prime \prime}$ to the ft. The tires and gear which encircle the shell may be obtained in one piece or in sections. The better arrangement is to have them made in four sections and have the sections bolted to-gether. A trap door $18^{\prime \prime}$ by $18^{\prime \prime}$ is provided in the middle of the cylinder for repairing the lining etc.
ORE FEEDER.
A screm conveyor having a $4^{\prime \prime}$ diameter and a total shaft length of $8^{\prime \prime} 2^{\prime \prime}$ is used to feed the ore from a hopper into a. chute which leads to the upper end of the cylinder. The length of the spiral section is $5^{\prime} 10^{\prime \prime}$. The box enclosing the sorew is of 1 " Iumber. The chute which conveys the ore into the oylinder stecl is of $1 / 8^{\prime \prime}$ aplate, the upper portion being bricked into the top of the dust chamber. The specifications for the screw conveyor are given in the Bill of Material. The conveyoy shaft is driven by a sprocket which is in turn driven by a sprocket on a counter shaft, this being driven by a sprocket on the line shaft (0). DUST CHAMBER.

The feed end of the cylinder opens into a brick dust chamber in which is a $4^{\prime \prime}$ partition with a $3^{\prime \prime}$ opening on each side to allow the gases to escape into the flue. Tho dust will
accumulate in the hopper bottom and may be drawn out through the door at the bottom. The walls of the dust chamber are of $8^{\prime \prime}$ common red brick, there being no great amount of heat for the brick to withstand.

ROASTED ORE DISCHARGE.
The roasted ore falls over the edge of the lower end into a brick ohamber built next to the furnace partition. It may then be drawn out through the fire door at the bottom of the chamber. The wall of this chamber directly under the cylinder is $4^{\prime \prime}$ thick while the two end walls are $8^{\prime \prime}$ thick.

ROLLS.
The rolls, $6^{\prime \prime}$ in Diam, are placed two on a shaft. The distance between centers of opposite rolls is I' $101 / \mathbf{Z}^{\prime \prime}$. The bearings used are of the extra heavy Rigid Pillow Block Type, and are set on heavy timbers which in turn have a foundation of concrete extending to the floor of the building.. CAPACITY.

The speed of the motor will be varied so as to vary the cylinder speed and thus vary the capacity of the roaster. The cylinder will be run at from 5 to 15 R.P.M. An eight foot screw running at the recommended speed of 100 R.P.M. has a maximum capacity of 100 bushels per hour. This amount will be greater than is desired in the laboratory. The speed of the conveyor will be reduced with the speed of the motor. FEEDTNG THE CONVEYOR.

The ore will have to be shoveled into the
hopper and will then be handled by the screw conveyor.

BIIJI OF MATERIAL.

Screw Conveyor.

```
Total shaft length
```



```
Outside diameter -----------n \(4^{\text {ti }}\).
Shaft diameter ---------------- I"
Recommended speed \(e-\infty-\infty-\infty-\infty 100\) R.P.M.
Max. Cap. at above speed ...- 100 bu. per hour.
Price (with one hanger) ----- 费1.40 per ft.
```


Sprockets.
1 for conveyor shaft
Diam. --n-n-n-n-n $13 / 4^{\prime \prime}$.

Price(Bored I" and K.S.) ...---- \$2. 60
1 for counter shaft on wall bracket.

Price (Bored $1^{\prime \prime}$ and K.S.) -.------ \$2.15
1 for counter shaft on wall bracket.
Diam. --n-n-m-n $7 / 2^{\prime \prime}$
Teeth ------------------2 26

1 for line shaft (C)

Price (Bored I I/2" and K.S.) …- \$I. 80

Gears.

1 band gear.for cylinder.

Face -------------------1" $3^{\prime \prime}$

1 beveled gear fro line shaft (C)
Greatest Diam. -n-n----...
Least Diam.

Bearings.
4-Txtra Heavy Rigid Pillow Blocks.

Price each ----------------

2-Common Flat Boxes.

Price each ------------- 萬工.00
Total cost
I-Standard Oiling Rigid Pillow Block
Shaft Diam. --------n-m $11 / 2^{\prime \prime}$

Z-Common Flat Boxes.

Wa. 11 Brackets.
1-for shaft (C)

Shafting.
2-pteces for Rolls.
Diam. -n-n-n-n-n-n-n $1 / 2^{\prime \prime}$
Length $5^{\prime \prime}$ each
Price (3I\& per ft $-\ldots$ \$3. 41
1-Piece for line shaft.

Length …............................... $8^{\prime \prime}$
Price@ $3 I \notin$ per ft \ldots. 3.30
Pulleys.
1-for inge shaft.
Diameter 24

Price (K.S. and Bored- $\mathrm{H}_{7} .35$
Collars.
6-Solid collars for I $1 / 2^{\prime \prime}$ shaft.
Price each
Total cost

Angle Iron.
23° of $4^{\prime \prime}$ by $4^{\prime \prime}-$ - (a)
24^{\prime} of $2^{\prime \prime}$ by $4^{\prime \prime}-$ e
25: of $9^{\prime \prime}$ by $2^{\prime \prime}-$ e (e per ft

Tires.
2-Double flanged tires.
Diam.(inside) --non $3^{\text { }}$

Flanges l"high, $^{\prime \prime}$ "thick
Froe
Total cost

Key Seating．

$$
\text { Total --- } 67^{\prime \prime}--\infty \text { per ft. }
$$

Furnace．
Eauipped as Assay fummace．
Cost
Two extra Assay Furnaco Doors－－0－
Brick．
Common red brick per $1000 \ldots \ldots$ ．．．．．．．．．
Fire brick
Rolls．

$$
4-\operatorname{solid}
$$

Price-@ each

Timber．
ユーP1ece
3＇long by $9^{\prime \prime}$ high by $9^{\prime \prime}$ wide．

I－Piece
$3^{\prime} l o n g$ by $9^{\prime \prime}$ high by $6^{\prime \prime}$ wide．
Price
25° of $4^{\prime \prime} 13 y 4^{\prime \prime}$ ．
Price
18^{\prime} of $5^{\prime \prime}$ by $5^{\prime \prime}$
Price
SーPIanks 10＇long by $12^{\prime \prime}$ wide by I＇thick．$^{\prime \prime}$
Price

Comorote

