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Abstract. In this paper, three controllers including OFCHA (optimal fuzzy control
using hedge algebras - HAs), FCHA (fuzzy control using HAs) and CFC (conventional
fuzzy control) are designed. Our attention is paid to the stability in the vertical position
of a damped-elastic-jointed inverted pendulum subjected to a time periodic follower force.
Different values of the pendulum length are considered. Simulation results are exposed
to illustrate the effect of OFCHA in comparison with FCHA and CFC.

1. INTRODUCTION

Fuzzy set theory introduced by Zadeh in 1965 has provided a mathematical tool
useful for modelling uncertain (imprecise) and vague data and been presented in many real
situations. As typical unstable nonlinear models, inverted pendulum systems are often used
as a benchmark for verifying the effect of a new control method because of the simplicity
of the structure. Recently, many researches on stabilization of pendulum systems have
been done.

Yi and Yubazaki [1] presented a fuzzy controller for stabilization control of inverted
pendulum systems basing on the Single Input Rule Modules (SIRMs) dynamically con-
nected fuzzy inference model. The fuzzy controller has four input items, each with a SIRM
and a dynamic importance degree. Yi et al. [2] presented a fuzzy controller with six input
items and one output item for stabilizing a parallel-type double inverted pendulum system
basing on the SIRMs dynamically connected fuzzy inference model. Becerikli and Celikb
[3] presented a fuzzy controller for an inverted pendulum system in two stages: investiga-
tion of fuzzy control system modeling methods and solution of the "Inverted Pendulum
Problem" by using Java programming with Applets for internet based control education.
Tao et al. [4] proposed a fuzzy hierarchical swing-up and sliding position controller for
the swing-up and position controls of an inverted pendulum-cart system which includes a
fuzzy switching controller, a fuzzy swing-up controller, and a twin-fuzzy-sliding-position
controller. Li and Xu [5] investigated adaptive fuzzy logic control of dynamic balance and
motion is for wheeled inverted pendulums with parametric and functional uncertainties.
The proposed adaptive fuzzy logic control based on physical properties of wheeled inverted
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pendulums makes use of a fuzzy logic engine and a systematic online adaptation mecha-
nism to approximate the unknown dynamics. Sinha and Butcher [6] used a technique that
employs both Picard iteration and expansion in shifted Chebyshev polynomials to sym-
bolically approximate the fundamental solution matrix for linear time-periodic dynamical
systems of arbitrary dimension explicitly as a function of the system parameters and time.
A double inverted pendulum subjected to a periodic follower force was considered as an
example. Galán et al. [7] studied a chain of identical pendulums coupled damped elastic
joints subject to vertical sinusoidal forcing of its base. Particular attention was paid to
the stability of the upright equilibrium configuration with a view to understanding recent
experimental results on the stabilization of an unstable stiff column under parametric ex-
citation. Ma and Butcher [8] presented a stability analysis for elastic columns under the
influence of periodically varying follower forces whose orientation is retarded, i.e., depends
on the position of the system at a previous time. Mailybaev and Seyranian [9] studied the
stability of a linear vibrational system with multi-degrees-of-freedom subjected to para-
metric excitation. A double inverted pendulum subjected to periodic excitation of support
was considered as an example.

In this paper, three controllers including OFCHA (optimal fuzzy control using hedge
algebras - HAs), FCHA (fuzzy control using HAs) and CFC (conventional fuzzy control)
are designed.

Although a CFC is flexible and easy in use, but its semantic order of linguistic
values is not closely guaranteed and its fuzzification and defuzzification methods are quite
complicated.

HAs was introduced and investigated since 1987 ([10-15]). The authors of HAs dis-
covered that: linguistic values can formulate an algebraic structure [10,11] and it is a
Complete Hedge Algebras Structure [13,14] with a main property is that the semantic
order of linguistic values is always guaranteed. It is even a rich enough algebraic structure
[12] and, therefore, it can describe completely reasoning processes. In [15], HAs theory
was begun applying to fuzzy control and it provided very much better results than CFC,
objects studied in [15], however, were too simple to evaluate completely its control effect.

That reason suggests us, in this paper, applying HAs in fuzzy control for stabilizing
a damped-elastic-jointed inverted pendulum subjected to a time periodic follower force
with three controllers (CFC, FCHA and OFCHA) in order to compare their control effect.

2. THE DAMPED-ELASTIC-JOINTED INVERTED PENDULUM

The diagram of the system is shown in Fig. 1. An inverted pendulum of length l
has a concentrated mass m at its end. A spring (of constant stiffness k) and a damper (of
constant damping factor c) connect the inverted pendulum to a fixed base to avoid large
rotation angle ϕ. A periodic follower force (F = P1 + P2 cos ωt) acts on the mass m and
makes an angle γϕ with the vertical axis. A control torque u, applied at the base of the
pendulum, brings the angle ϕ to zero position.

The kinetic energy T, the potential energy Π and the dissipative function Φ of the
system can be expressed in the following forms (Galán et al. [7]):

T =
1

2
m(ẋ2

m + ẏ2
m) =

1

2
mϕ̇2l2 (1)
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Fig. 1. Configuration of the inverted pendulum system

Π =
1

2
mgym +

1

2
kϕ2 =

1

2
mgl cos ϕ +

1

2
kϕ2 (2)

Φ =
1

2
cϕ̇2 (3)

where, xm = l sinϕ; ym = l cos ϕ and g is the gravity acceleration.
Using the Lagrange equations of the second type:

d

dt

(

∂T

∂ϕ̇

)

−
∂T

∂ϕ
= −

∂Π

∂ϕ
−

∂Φ

∂ϕ
+ M (4)

The differential equation of motion for this system can then be written in the form:

ml2ϕ̈ + cϕ̇ + kϕ −
1

2
mgl sin ϕ = u + Fl sin(ϕ − θ) (5)

where the angle θ is shown in the Fig. 1.
Denoting [x1, x2]

T = [ϕ, ϕ̇]T, Eq. (5) can be rewritten into state-space form as follow:

ẋ1 = ϕ̇ = x2

ẋ2 = ϕ̈ = −
k

ml2
x1 +

g

2l
sin x1 +

Fl sin(x1 − γx1)

ml2
−

c

ml2
x2 +

u

ml2

(6)

The Eqs. (6) can be solved by using the fourth-order Runge-Kutta method (Chapra
and Canale [16]).

3. HEDGE ALGEBRAS

In this section, the idea and basic formulas of HAs are summarized based on defi-
nitions, theorems, propositions in [10-15].

By the term meaning we can observe that extremely small < very small < small <
approximately small < little small < big < very big < extremely big... So, we have a new
viewpoint: term-domains can be modelled by a poset (partially ordered set), a semantics-
based order structure. Next, we explain how we can find out this structure.
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Consider TRUTH as a linguistic variable and let X be its term-set. Assume that its
linguistic hedges used to express the TRUTH are Extremely, Very, Approximately, Little,
which for short are denoted correspondingly by E, V , A and L, and its primary terms
are false and true. Then, X ={true, V true, E true, EA true, A true, LA true, L true, L
false, false, A false, V false, E false... ∪ {0 , W , 1 is a term-domain of TRUTH, where
0 , W and 1 are specific constants called absolutely false, neutral and absolutely true,
respectively.

A term-domain X can be ordered based on the following observation:
- Each primary term has a sign which expresses a semantic tendency. For instance,

true has a tendency of "going up", called positive one, and it is denoted by c+, while false
has a tendency of "going down", called negative one, denoted by c−. In general, we always
have c+ ≥ c−, semantically.

- Each hedge has also a sign. It is positive if it increases the semantic tendency of
the primary terms and negative, if it decreases this tendency. For instance, V is positive
with respect to both primary terms, while L has a reverse effect and hence it is negative.
Denote by H− the set of all negative hedges and by H+ the set of all positive ones of
TRUTH.

The term-set X can be considered as an abstract algebra AX = ( X ,G,C,H , ≤),
where G = {c−, c+}, C = {0 , W , 1}, H = H+ ∪ H− and ≤ is a partially ordering
relation on X . It is assumed that H− ={h−1, ...,h−q}, where h−1 < h−2 < ... < h−q,
H+ ={h1,...,hp}, where h1 < h2 < ... < hp.

Fuzziness measure of vague terms and hedges of term-domains is defined as follow
(Definition 2 - [15]): a fm: X → [0, 1] is said to be a fuzziness measure of terms in X if:

fm(c−) + fm(c+) = 1 and
∑

h∈Hfm(hu) = fm(u), for ∀u ∈ X, (7)

For the constants 0 , W and 1 ,

fm(0 ) = fm(W ) = fm(1 ) = 0, (8)

For ∀x, y ∈ X , ∀h ∈ H ,
fm(hx)

fm(x)
=

fm(hy)

fm(y)
(9)

This proportion does not depend on specific elements, called fuzziness measure of
the hedge h and denoted by µ(h).

For each fuzziness measure fm on X , we have (Proposition 1 - [15]):

fm(hx) = µ(h)fm(x), for every x ∈ X, (10)

fm(c−) + fm(c+) = 1, (11)
p

∑

i=−q,i6=0

fm(hic) = fm(c), c ∈ {c−, c+}, (12)

p
∑

i=−q,i6=0

fm(hix) = fm(x); (13)
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−1
∑

i=−q

µ(hi) = α and
p

∑

i=1

µ(hi) = β where α, β > 0 and α + β = 1 (14)

A function Sign: X → {−1, 0, 1} is a mapping which is defined recursively as follows,
for h, h′ ∈ H and c ∈ {c−, c+} (Definition 3 - [15]):

Sign(c−) = −1, Sign(c+) = +1, (15)

Sign(hc) = −Sign(c), if h is negative w.r.t. c, (16)

Sign(hc) = +Sign(c), if h is positive w.r.t. c, (17)

Sign(h′hx) = −Sign(hx), if h′hx 6= hx and h′ is negative w.r.t. h, (18)

Sign(h′hx) = +Sign(hx), if h′hx 6= hx and h′ is positive w.r.t. h, (19)

Sign(h′hx) = 0, if h′hx = hx. (20)

Let fm be a fuzziness measure on X . A semantically quantifying mapping (SQM)
ϕ : X → [0, 1], which is induced by fm on X , is defined as follows (Definition 4 - [15]):

ϕ(W ) = θ = fm(c−), ϕ(c−) = θ − αfm(c−) = βfm(c−), ϕ(c+) = θ + αfm(c+), (21)

ϕ(hjx) = ϕ(x) + Sign(hjx){

j
∑

i=Sign(j)

fm(hix) − ω(hjx)fm(hjx)}, (22)

where
j ∈ {j : −q ≤ j ≤ p&j 6= 0} = [−qp]

and

ω(hjx) =
1

2
[1 + Sign(hjx)Sign(hphjx)(β − α)].

It can be seen that the mapping ϕ is completely defined by (p+ q) free parameters:
one parameter of the fuzziness measure of a primary term and (p + q − 1) parameters of
the fuzziness measure of hedges.

To illustrate a close relationship between the meaning of terms and their fuzziness
measure and the way to compute semantically quantifying mappings, we consider the
following example.

Example : Consider a hedge algebra AX = (X, G, C, H,≤), where G = {small, large},
C = {0 , W , 1}, H− = {Little} = {h−1}, q = 1, H+ = {Very} = {h1}, p = 1. We assume:

θ = 0.5, α = 0.5. (23)

It means that the semantically quantifying mapping of the neutral element and the
sum of the fuzziness measure of the negative hedges are 0.5. Hence,

- Using Equation (14) with q = 1, we have fuzziness measures of the hedges:

µ(Little) = α = 0.5; µ(Very) = β = 1 − α = 0.5;

- Next, using Equations (21) and (11), we have fuzziness measures of the terms:

fm(small) = θ = 0.5; fm(large) = 1 − fm(small) = 0.5;
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- Then, semantically quantifying mappings of the linguistic values are computed by
using Equations (21) and (22) as follow:

ϕ(W ) = θ = 0.5;

ϕ(small) = θ − αfm(small) = 0.5 − 0.5× 0.5 = 0.25;

ϕ(Very small) = ϕ(small) + Sign(Very small) × (fm(Very small) − 0.5fm(Very small))

= 0.25 + (−1)× 0.5× 0.5 × 0.5 = 0.125;

ϕ(Little small) = ϕ(small) + Sign(Little small) × (fm(Little small) − 0.5fm(Little small))

= 0.25 + (+1)× 0.5× 0.5 × 0.5 = 0.375;

ϕ(large) = θ + αfm(large) = 0.5 + 0.5× 0.5 = 0.75;

ϕ(Very large) = ϕ(large) + Sign(Very large) × (fm(Very large)− 0.5fm(Very large))

= 0.75 + (+1)× 0.5× 0.5 × 0.5 = 0.875;

ϕ(Littlelarge) = ϕ(large) + Sign(Littlelarge) × (fm(Littlelarge) − 0.5fm(Little large))

= 0.75 + (−1)× 0.5× 0.5 × 0.5 = 0.625.

The results obtained from above example will be used in the following section.

4. FUZZY CONTROL SYSTEMS OF THE INVERTED PENDULUM

The fuzzy control systems are based on the closed-loop fuzzy system shown in Fig.
2. Where, u is determined by above-mentioned controllers, x1 and x2 are determined by
Equations (6). It is assumed that the universe of discourse for the two state variables and
control torque to be - 1 rad ≤ x1 ≤ 1 rad, - 2 rad/s ≤ x2 ≤ 2 rad/s and - 50 Nm ≤ u ≤ 50
Nm, respectively. In the following parts of this section, establishing steps of the controllers
will be presented.

Fig. 2. The inverted pendulum fuzzy control systems

4.1. Conventional fuzzy control (CFC) of the inverted pendulum
In this subsection, the CFC of the structure is established (establishing steps of

a CFC could refer in Ross [17]) using Mamdani’s inference and centroid defuzzification
method with nine control rules. The con?guration of the CFC is shown in Fig. 3.
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Fuzzy Rule Base

(FAM table)

Fuzzy Inference Engine

(Mamdani Method)

Fuzzifier Defuzzifier
State

variables

Centroid Method

Control

torque

Fig. 3. The configuration of the CFC

4.1.1. Fuzzifier

The membership functions of x1, x2 and u on their universes, that are, for the values
negative big (NB), negative (N), zero (Z), positive (P), positive big (PB) are established
as shown in Figs. 4-6, respectively.

Z

x1 (rad)

1 PN

-1 10

Z

x2 (rad/s)

1 PN

-2 20

Fig. 4. Input x1, partitioned Fig. 5. Input x2, partitioned

Z PN

u (Nm)

0

1 PBNB

50-50

Fig. 6. Output u, partitioned

4.1.2. Fuzzy rule base

The fuzzy associative memory tables (FAM tables) are established as shown in Table
1.

4.2. Fuzzy control using hedge algebras (FCHA) of the inverted pendulum
In CFC, the FAM table is formulated in Table 1. The linguistic labels in Table 1

have to be transformed into the new one given in Table 2, that are suitable to describe
linguistically reference domains of [0, 1] and can be modeled by suitable HAs. The HAs
of the state variables x1 and x2 are AX = (X, G, C, H,≤), where X = x1 or x2, G =
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Table 1. FAM table for pendulum fuzzy control system rule base

x1
x2

N Z P
N NB N Z
Z N Z P
P Z P PB

{small, large}, C = {0 , W , 1}, H = {H−, H+} = {Little, Very}, and the HAs of the
control variables AU = (u, G, C, H,≤) with the same sets G, C and H as for x1 and
x2, however, their terms describe different quantitative semantics based on different real
reference domains.

Table 2. Terms transformation

NB N Z P PB
Very small small W large Very large

The semantically quantifying mappings (SQMs) ϕ are determined and shown in
Table 3 (see section 3).

Table 3. Parameters of SQMs for the inverted pendulum control problem

Very small small W large Very large
0.125 0.25 0.5 0.75 0.875

The configuration of the FCHA is shown in Fig. 7.

HAs Rule Base

(SAM table)

HAs Inference Engine

(Linear Interpolation)

Semantization
State

variables

Linear Interpolation

Control

torque

Desemantization

Linear Interpolation

Fig. 7. The configuration of the FCHA

4.2.1. Semantization and Desemantization

Note that, for convenience in presenting the quantitative semantics formalism in
studying the meaning of vague terms, we have assumed that the common reference do-
main of the linguistic variables is the interval [0,1], called the semantic domain of the
linguistic variables. In applications, we need use the values in the reference domains, e.g.
the interval [a,b], of the linguistic variables and, therefore, we have to transform the in-
terval [a,b] into [0,1] and, vice-versa. The transformation of the interval [a, b] into [0,1]
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is called a semantization and its converse transformation from [0,1] into [a, b] is called a
desemantization. The new terminology "semantization" was defined and accepted in Ho
et al. [15].

+25

Domain of x1

Domain of x1s

0-25

0.75W0.25

-1 1

Fig. 8. Transformation: x1 to x1s

+25

Domain of x2

Domain of x2s

0-25

0.75W0.25

-2 2

Fig. 9. Transformation: x2 to x2s

Fig. 10. Transformation: uto us

The semantizations for each state variable are defined by the transformations given
in Fig. 8 and Fig. 9. The semantization and desemantization for the control variable are
defined by the transformation given in Fig. 10 (x1, x2 and u are replaced with x1s, x2s

and us when transforming from real domain to semantic one, respectively).

4.2.2. HAs rule base

We have the SAM (semantic associative memory) table based on FAM one (Table
1) with semantically quantifying mappings as shown in Table 4.

4.2.3. HAs inference engine

The Quantifying Semantic Curves describing the HAs inference method are estab-
lished through the points that present the control rules occurring in Table 4 as shown in
Fig. 11. Hence, us is determined by linear interpolations through x1s and x2s.
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Table 4. SAM table with semantically quantifying mappings

x1s
x2s

small: 0.25 W : 0.5 large: 0.75
small: 0.25 Very small: 0.125 small: 0.25 W : 0.5

W : 0.5 small: 0.25 W : 0.5 large: 0.75
large: 0.75 W : 0.5 large: 0.75 Very large: 0.875

u
s

0.1

0.3

0.5

0.7

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6

u

x1s x2s

Fig. 11. Quantifying Semantic Curve

4.3. Optimal fuzzy control using hedge algebras (OFCHA) of the inverted
pendulum
The values of linguistic variables shown in Table 3 are now considered as design

variables, their intervals are determined as follow (Table 5):

Table 5. The interval parameters of SQMs

[Very small] [small] [W] [large] [Very large]
0 ÷ 0.1875 0.1876 ÷ 0.375 0.3751 ÷ 0.625 0.6251÷ 0.8125 0.8126 ÷ 1

The goal function g is defined as follow:

g =

n
∑

i=0

[

x2
1(i) + x2

2(i)
]

= min. (24)

where, n is the number of control cycles. The parameters of the optimal algorithm using
GA are defined as follow: number of individuals per subpopulations: NIND = 10; number
of generations: MAXGEN = 1000; recombination probability: GGAP = 0.8; number of
variables: NVAR = 5 and fidelity of solution: PRECI = 10.

5. RESULTS AND DISCUSSION

In order to study the changing rule of x1 (ϕ), x2 (ϕ̇) and u using CFC, FCHA and
OFCHA, the following numerical values are used for simulations: γ = 0.5, m = 2 kg, k
= 2 Nm, Pl = l0 N, P2 = 1 N, c = 0.005 Nms, ω = π/2, g = 9.81 m/s2 the sample time
∆t = 0.1 s. The initial conditions are x1(0) = 0.6 rad and x2(0) = 1 rad/s. The values of
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x1, x2, u and e obtained from OFCHA, FCHA, CFC corresponding to differential values
of pendulum length are shown in following subsections. The error e, which measures the
performance of the controllers, is defined [15]:

e =
√

ϕ2 + ϕ̇2 =
√

x2
1 + x2

2 (25)

5.1. Results corresponding to l = 1.5 m
The optimal parameters of SQMs for OFCHA (l = 1.5 m) is tabulated in Table 6.

The values of x1, x2, u and e obtained from OFCHA, FCHA, CFC are shown in Figs.
12-15.

Table 6. Optimal parameters of SQMs for OFCHA, l = 1.5 m

Very small op small op W op largeop Very largeop

0.177786 0.193645 0.429330 0.767253 0.874883

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7

-0.2

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7

OFCHA

FCHA

CFC

Time t, s

x
1
,
ra

d
(l

=
1
.5

m
)

Fig. 12. The angle x1, rad (l = 1.5 m)

Fig. 13. The angular velocity x2, rad/s (l = 1.5 m)
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Fig. 14. The control torque u, Nm (l = 1.5 m)

Fig. 15. The error e (l = 1.5 m)

As can be seen from Fig. 12-15, the results obtained from OFCHA are better than
those of FCHA and CFC, the system is stabilized in about 3 s corresponding to OFCHA
and FCHA and about 4 s corresponding to CFC although a small vibration appears during
the stabilization process.

5.2. Results corresponding to l = 2 m
The optimal parameters of SQMs for OFCHA (l = 2 m) is tabulated in Table 7.

The values of x1, x2, u and e obtained from OFCHA, FCHA, CFC corresponding to l =
2 m are shown in Fig. 16-19.

Table 7. Optimal parameters of SQMs for OFCHA, l = 2 m

Very small op small op W op largeop Very largeop

0.187500 0.187600 0.486248 0.799677 0.814249
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Fig. 16. The angle x1, rad (l = 2 m)

Fig. 17. The angular velocity x2, rad/s (l = 2 m)

Fig. 18. The control torque u, Nm (l = 2 m)
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Fig. 19. The error e (l = 2 m)

From Figs. 16-19, the results obtained from OFCHA are better than those of FCHA
and CFC, the system is stabilized in over 4 s corresponding to OFCHA, over 6 s corre-
sponding to FCHA and over 7 s corresponding to CFC although a small vibration appears
during the stabilization process.

5.3. Discussion
From Tables 2 and 3, it can be conceded that the semantic order of HAFC is always

guaranteed.
The semantization method of FCHA (Figs. 8-10) is simpler than the fuzzification

method of CFC (Figs. 4-6).
The desemantization method of FCHA, executed by linear interpolations (see Fig.

10), is simpler than the centroid defuzzification method of CFC very much.
The inference method of FCHA, executed by linear interpolations (see Fig. 11), is

simpler than the one of CFC (Mamdani method - in this paper) very much.
FCHA, a new fuzzy control algorithm, does not require fuzzy sets to provide the

semantics of the linguistic terms used in the fuzzy rule system rather the semantics is ob-
tained through the semantically quantifying mappings (SQMs). In the algebraic approach,
the design of an FCHA leads to the determination of the parameter of SQMs, which are
the fuzziness measure of primary terms and linguistic hedges occurring in the fuzzy model.

6. CONCLUSIONS

In the present work, a new fuzzy controller based on HAs is applied for the stabiliza-
tion control of a damped elastic jointed inverted pendulum with periodic follower force.
The main results are summarized as follows:

The algebraic approach to term-domains of linguistic variables is quite different
from the fuzzy sets one in the representation of the meaning of linguistic terms and the
methodology of solving the fuzzy multiple conditional reasoning problems.

It is obtained that HAFC is simpler, effective and more understandable in compar-
ison with CFC for controlling the above pendulum.
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In fuzzy logic, many important concepts like fuzzy set, T-norm, S-norm, intersection,
union, complement, composition... are used in approximate reasoning. This is an advantage
for the process of flexible reasoning, but there are too many factors such as shape and
number of membership functions, defuzzification method,... influencing the precision of the
reasoning process and it is difficult to optimize. Those are subjective factors that cause
error in determining the values of control process. Meanwhile, approximate reasoning based
on hedge algebras, from the beginning, does not use fuzzy set concept and its precision is
obviously not influenced by this concept. Therefore, the method based on hedge algebras
does not need to determine shape and number of membership function, neither does it need
to solve defuzzification problem. Besides, in calculation, while there is a large number of
membership functions, the volume of calculation based on fuzzy control increases quickly,
meanwhile the volume of calculation based on hedge algebras does not increase much with
very simple calculation. With these above advantages, it is definitely possible to use hedge
algebras theory for many different controlling problems.

This is our first research in the field of structural active control using FCHA, needed
problems when establishing a new controller such as the stability and robustness of the
algorithm will be mentioned in our further researches.
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ĐIỀU KHIỂN MỜ TỐI ƯU SỬ DỤNG ĐẠI SỐ GIA TỬ CHO HỆ CON
LẮC NGƯỢC LIÊN KẾT ĐÀN HỒI - GIẢM CHẤN

Trong bài báo này, ba bộ điều khiển gồm OFCHA (điều khiển mờ tối ưu sử dụng
đại số gia tử), FCHA (điều khiển mờ sử dụng đại số gia tử) và CFC (điều khiển mờ thông
thường) được thiết kế để đưa một con lắc ngược có liên kết đàn hồi - giảm chấn chịu tải
theo tuần hoàn theo thời gian về vị trí cân bằng theo phương thẳng đứng. Những giá trị
khác nhau của chiều dài con lắc được khảo sát trong nghiên cứu. Các kết quả mô phỏng
được đưa ra nhằm so sánh hiệu quả của OFCHA so với FCHA và CFC.


