The determination of friction-coefficients of water in small iron pipes

O. W. Holmes

Ernest Wander

Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses
Part of the Mining Engineering Commons
Department: Mining and Nuclear Engineering

Recommended Citation

Holmes, O. W. and Wander, Ernest, "The determination of friction-coefficients of water in small iron pipes" (1910). Bachelors Theses. 246.
https://scholarsmine.mst.edu/bachelors_theses/246

This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

THs
for the Decree of

```
Buchelor of Sciance.
    T223
        THW DETEHNTNATTON
        1910.
                            0W
```

TPTOTION-COEFTCTENTS OF WATBK
III
GNAIL IRON PTPES.
$\frac{\text { Dliver W. At otwer }}{\text { BY }}$

This thests was undertanen to istop ine accurately the cooricients of Eriction ois water, ruowng at warying velogitfes
 the cordition of ning and elbows sinure to that met with in general nratitee.

$$
-A \text { PARATUS- }
$$

Plpes and Eliows: Three stres were izsel, constatinc ot
 They wom made do in the following mamer: Tur lines of nine, about luo foot lone, wers made on joints 30 feet in loncth, ard ladd parallel to each cther. At one end the tyo hines were joined by 90 despee elbows, two nipiles and a union, for which
 qtituted. Tine frese eada of the piode wore joined by tang to the water supply ard the oatiet inpe resnectivoly, intemosei \because sata-ratves. The that opentro ot the tos compmicated with the jugssime state.

The outlet, ripe luget in exch cage was the gane, congisting of about 70 feet of $1 / 2$ inch plige, gintyine into the
measuring tark.
The plyes were not reamex and vere of comercial quality, and the obosmation were taken on the following:

$$
\begin{aligned}
& \begin{array}{cccccccc}
203.5 & " & " & " & " & 3 & " & --1 \\
20.0 & \text { inch } \\
210.0 & " & " & " & 18 & " & - & " \\
\hline 1
\end{array} \\
& \begin{array}{cccccccccc}
201.8 & " & " & " & " & 2 & " & - & 3 / 4 & \text { f.nch } \\
(4.9 & " & " & " & " & 14 & " & - & " & ") \\
(33.1 & " & " & " & " & 3 & " & -- & 2 & ")
\end{array}
\end{aligned}
$$

Soupeos of Water guphly: For the two inch plpe, the available head of the school water system was considered gufficient for the velocities desired, and conrections were made with the campus hydrunt.

The maller pipes required a greater inad, which was obtained in the following manner: A closed sylinarical steel tant, 8 fegt long and of 2 foot diametor mag mounted in a horizontal position about thres eest above the ground. Comections were made for compressed atr at the tup of the tank by a pipe fitter with a globe vilve and a pop safety ealve. The water was piped to the tark from the echool system, and Was auntter by a globe valve. Water was taken from the tank at its lowest point, where it entered the pive inne on with the ooservations were taken. The tank was fitted with a pressure-gadee and a water-glass.

Abstract

Pressure Gauges: 1 differentail mercury gade was construsted, using six foot glass tibes, connected with packing-nuts to $1 / 4$ inch black inon pipe. The assembling of the fittings and the mounting of salue are shown in accompany1ng sketches. (The latter sketch is drawn to a 1 to 10 scale.) The gauce was set x between the two lines of pipe and each side of tife gauge connected to the tees by inions and nipples. For pressures surpassing the limits of the mercury gauge two steam presaxe gatues were subtituted. These gaides were tested and readings corrected.

Meaguring Tank: To measure the water a wooden tank, 48 Inches high and 60.078 inches square, was corstmacted of 2 inch cypress, tongued and grooved, and bound by wooden and iron braces. The tank was fitted with a water glass and an outlet gate-valve.
-METHOD-

Mercury was introduced into the gauge through the mercury filler, until the glass tubes were half full. The presm sure tank was nearly filled with water, the inlet water valve closed tightily, and air, adratted to the tank, loaving oyen
the conrections between it and the air reaervoirs in the power house. The pressure used was about 150 poinds ner square inch. It was neceemary to displace all air in the gauge with water, before any chservations were taken. Then, while one man was at the reusuring tonk to ascertain the quantyty of water per minute flowing into it, by measuring the water level in the glass, and the cther was regulating and reading the difterence in preasure, in the effort to cbtaln velocittes wth intervals of about one foot, the obervations were taken. Tor each size of pipe, a set of readings were mare with two and also with a larger nurber of elbows connecting the two lines of pipe. With the $?$ inch pipe, connection was made direct to the hydrant, and no compreaged air was used.
-CALCULATTONS

To calculate the friction head in feet of water from cm. mercury:
cm. Hg. $x \frac{(13.6-1)}{12 \times 2.54}=.4 .134$ feat of water per cm. Hg.

To change from inches mercury to feet of water:

```
Inches Hg. x (13.6-1)
```

To change pounds per square inch to feet of water:

```
pounde x }\frac{144}{62.5}=2.304\mathrm{ feet of water.
```

Bimensione of Measuring Tank: 60.078×60.078 144

Velocities in Pipe:

$$
\frac{1}{A}=V=\frac{\text { Inches water per min. } \times 25.068 \times 144}{12 \times 60 \times .7854 \times \mathrm{d}^{\prime \prime}}
$$

Fer 2 inch pipe,
$V=1.596 \times$ Inches water per min.

Fer I inoh pipe,

$$
v=6.383 \times \text { inches water per min. }
$$

For 3/4 inch pipe,

$$
V=11.3475 x \text { inches water per min. }
$$

To obtain the rriction head in elbowa (fl):

$$
H=m \frac{1 v^{2}}{A^{\prime \prime} \partial g}+(X \times f I)
$$

For instance, for? inch pine and 3 foot velocity,

$$
\begin{aligned}
& \mathrm{H}^{\prime}=4.9=\frac{\mathrm{F} \times 203.5 \times 9}{2 \times 64}+16 \mathrm{fl.} \\
& \mathrm{H}^{n}=4.1=\frac{\mathrm{F} \times 203.5 \times 9}{2 . \times 64}+2 \mathrm{fl} . \\
& .8=14 \mathrm{fl} . \\
& .0571=\mathrm{fl}
\end{aligned}
$$

To obtain f for pipes: From the above equations we get,

$$
\begin{aligned}
& 4.1=\frac{203.5 \times 9}{2 \times 64} \times T+(2 \times .0571) \\
& \frac{(4.1-(2 \times .0571)) 128}{203.5 \times 9}=T=.279
\end{aligned}
$$

To oblain the length of pipe, to which one elbow is equivalent
(I) 。

$$
f I=\frac{F \times I_{1} \times V^{2}}{d^{\prime \prime} \times 2 g}
$$

For 2 inch plpe and 3 foot velocity,

$$
.0571=\frac{.279 \times 9}{2 \times 64} \quad \mathrm{x} \mathrm{~L}, \quad \mathrm{~L}=2.91
$$

